JP2015205290A - Chill roll, and apparatus and method for manufacturing amorphous alloy foil strip - Google Patents

Chill roll, and apparatus and method for manufacturing amorphous alloy foil strip Download PDF

Info

Publication number
JP2015205290A
JP2015205290A JP2014086139A JP2014086139A JP2015205290A JP 2015205290 A JP2015205290 A JP 2015205290A JP 2014086139 A JP2014086139 A JP 2014086139A JP 2014086139 A JP2014086139 A JP 2014086139A JP 2015205290 A JP2015205290 A JP 2015205290A
Authority
JP
Japan
Prior art keywords
roll
cooling
amorphous alloy
foil strip
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014086139A
Other languages
Japanese (ja)
Other versions
JP5953618B2 (en
Inventor
駿 佐藤
Shun Sato
駿 佐藤
吉男 中村
Yoshio Nakamura
吉男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SACO LLC
Original Assignee
SACO LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SACO LLC filed Critical SACO LLC
Priority to JP2014086139A priority Critical patent/JP5953618B2/en
Priority to PCT/JP2015/050687 priority patent/WO2015159562A1/en
Publication of JP2015205290A publication Critical patent/JP2015205290A/en
Application granted granted Critical
Publication of JP5953618B2 publication Critical patent/JP5953618B2/en
Priority to US15/293,559 priority patent/US20170029924A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chill roll for manufacturing an amorphous alloy foil strip, which enables the amorphous alloy foil strip with great plate thickness to be manufactured on an industrial scale, and an apparatus and a method for manufacturing the amorphous alloy foil strip.SOLUTION: In a chill roll, channels passing through a side surface of the chill roll in a rotational axis direction are arranged at regular intervals on two or more concentric circles centering on the rotational axis of the roll. An apparatus for manufacturing an amorphous alloy foil strip includes the chill roll.

Description

本発明は、非晶質(アモルファス)合金箔帯を製造するための冷却ロール、および非晶質合金箔帯の製造装置に関する。特に、水冷式の冷却ロールを備えた非晶質合金箔帯の製造装置に関する。   The present invention relates to a cooling roll for manufacturing an amorphous alloy foil strip, and an apparatus for manufacturing an amorphous alloy foil strip. In particular, the present invention relates to an apparatus for producing an amorphous alloy foil strip provided with a water-cooled cooling roll.

従来、トランスやモータの鉄心に電力損失が少ない鉄基非晶質合金を用いることが検討され、トランスについては実用化が進んでいる。しかしながら、積鉄心トランスへの適用は未だ報告されておらず、積鉄心を採用しているメーカーでも非晶質材料の採用には二の足を踏んでいる。また、モータについては実用化がほとんど進展しておらず、従来の薄い(板厚30μm以下)箔帯を、工夫を凝らして応用する例が散見される程度である。   Conventionally, it has been studied to use an iron-based amorphous alloy with low power loss for the iron core of a transformer or a motor, and the practical use of the transformer is progressing. However, the application to the core transformer has not yet been reported, and even manufacturers that use the core are taking a second step in adopting amorphous materials. In addition, practical application of motors has hardly progressed, and there are only a few examples where conventional thin (thickness of 30 μm or less) foil strips are applied with elaboration.

厚い非晶質合金箔帯が工業的に低コストで製造されれば、巻鉄心型のトランス・リアクトルなどに限らず、積鉄心やモータへの適用も可能になる。箔帯の厚肉化により、巻鉄心型トランスにおいては鉄心加工工程の作業能率が向上するとともに、占積率が高まる。これにより、鉄心したがって巻線を含むコイルの体積が縮小する。厚肉化によりヒステリシス損が低減し、商用周波数域では、渦電流損の増加を相殺して余りある鉄損の低減効果が期待できる。箔帯の厚肉化は、電力損失の低減のみならず、強度を高めることができる。高速回転するモータにおいては、ローターに働く強い遠心力に堪えるこれまでにない製品を実現できる。   If a thick amorphous alloy foil strip is manufactured at low cost industrially, it can be applied not only to a wound core type transformer / reactor but also to a stacked core and a motor. By increasing the thickness of the foil strip, the work efficiency of the iron core machining process is improved and the space factor is increased in the wound core transformer. This reduces the volume of the coil including the iron core and hence the windings. By increasing the thickness, the hysteresis loss is reduced, and in the commercial frequency range, an increase in eddy current loss can be offset and the effect of reducing excess iron loss can be expected. The thickening of the foil strip can not only reduce the power loss but also increase the strength. For motors that rotate at high speeds, an unprecedented product that can withstand the strong centrifugal force acting on the rotor can be realized.

非晶質合金の最も一般的な製造方法は、熱伝導率が高い金属または合金製の冷却ロールを回転させながら、合金の溶湯を、ノズルを介してロールの外周面に接触させることにより、該合金溶湯を急速に冷却して箔帯状に凝固させるいわゆる単ロール液体急冷法である。単ロール液体急冷法は、溶湯が持つ熱を冷却ロールに高速移動させることによって溶湯を急冷し、溶湯が結晶化する前に凝固させて、非晶質合金箔帯を製造する方法である。ここで、「非晶質合金」とは、体積率で50%以上が非晶質であり、残部が非晶質を母相としてナノサイズの微結晶が分散析出した複相の合金を含む。また、50%以上が結晶である材料においても、結晶粒を制御するために本発明の製造装置および製造方法を使うことができる。具体的には、ネオジム・ボロンを含む永久磁石の結晶粒径制御に有効である。   The most common method for producing an amorphous alloy is to bring a molten alloy into contact with the outer peripheral surface of a roll through a nozzle while rotating a cooling roll made of a metal or alloy having high thermal conductivity. This is a so-called single roll liquid quenching method in which molten alloy is rapidly cooled and solidified into a foil strip shape. The single roll liquid quenching method is a method of manufacturing an amorphous alloy foil strip by rapidly cooling the molten metal by rapidly moving the heat of the molten metal to a cooling roll and solidifying the molten metal before it is crystallized. Here, the “amorphous alloy” includes a multiphase alloy in which 50% or more by volume is amorphous, and the balance is amorphous and the nanosized microcrystals are dispersed and precipitated with the amorphous phase as the parent phase. Even in a material in which 50% or more is a crystal, the manufacturing apparatus and the manufacturing method of the present invention can be used to control crystal grains. Specifically, it is effective for controlling the crystal grain size of a permanent magnet containing neodymium boron.

単ロール液体急冷法においては、非晶質合金箔帯の製造に伴って冷却ロールの温度が上昇し、溶湯から冷却ロールが受け取る熱量と冷却ロールから冷却水に排出される熱量とがつり合ったところで平衡状態に達する。この平衡状態における冷却ロールの表面温度が、溶湯を過冷却状態のまま凝固させられるような低い温度であれば、非晶質合金箔帯を継続的に製造し続けることができる。しかし、鋳造中にロール温度が過熱してガラス転移点を通過するまでの冷却速度が所定の冷却速度に達しない場合、非晶質の箔帯は、有限の時間内でしか製造することができない。   In the single roll liquid quenching method, the temperature of the cooling roll rose with the production of the amorphous alloy foil strip, and the amount of heat received from the molten metal by the cooling roll and the amount of heat discharged from the cooling roll to the cooling water were balanced. By the way, the equilibrium state is reached. If the surface temperature of the cooling roll in this equilibrium state is low enough to solidify the molten metal in a supercooled state, the amorphous alloy foil strip can be continuously produced. However, if the cooling rate until the roll temperature is overheated during casting and the glass transition point is not reached, the amorphous foil strip can only be produced within a finite time. .

厚肉非晶質合金箔の製造にあたり、その板厚に比例する熱量を、冷却ロールに移動させなければならない。しかし、冷却ロールの内面と接触する冷却水に排出できる熱量には制限があった。これまでの水冷ロールの冷却構造は、公知例(特許文献1、2、3)に示されるように、ロールの外周面、周方向に沿って流れる冷却水路で構成されていた。   In producing a thick amorphous alloy foil, an amount of heat proportional to the plate thickness must be transferred to a cooling roll. However, there is a limit to the amount of heat that can be discharged to the cooling water in contact with the inner surface of the cooling roll. Conventional cooling structures for water-cooled rolls have been configured with cooling water channels that flow along the outer peripheral surface of the roll and the circumferential direction, as shown in known examples (Patent Documents 1, 2, and 3).

また、特許文献4は、ロールの側面を貫通する冷却流路を配しているが、ロールの冷却に寄与する流路は、最外周の同心円上にある流路のみで排熱能力が不十分である。外周から2番目の同心円上にある流路は温度調節のために配設されたもので、冷却装置がついていない。   Moreover, although the patent document 4 has arrange | positioned the cooling flow path which penetrates the side surface of a roll, the flow path which contributes to cooling of a roll is inadequate in heat exhaustion capability only by the flow path on the outermost concentric circle. It is. The flow path on the second concentric circle from the outer periphery is provided for temperature control and does not have a cooling device.

従来の冷却ロールは、冷却水が排出できる単位時間あたりの熱量に制限があった。それは、ロールの外周面に相当する面積以上の冷却水路面積が取れなかったためである。そのため一定の板幅のもとで、非晶質で得られる板厚に制限があった。   Conventional cooling rolls have a limitation in the amount of heat per unit time that cooling water can be discharged. This is because a cooling channel area larger than the area corresponding to the outer peripheral surface of the roll could not be taken. For this reason, there is a limitation on the thickness of the amorphous material obtained under a certain plate width.

これまで制限のあった板厚(現状の市販材では25〜30μm)を大幅にこえる板厚の非晶質合金箔帯の製造方法(工業生産規模、例えば、1チャージ100kg以上)が特許文献(1,2,3)に提案されている。   Patent Document (A manufacturing method for an amorphous alloy foil strip having a plate thickness that greatly exceeds the plate thickness that has been limited so far (25-30 μm for current commercial materials) (industrial production scale, for example, 100 kg or more per charge) 1, 2, 3).

これらの方法は、従来の非晶質合金箔の板厚限界(工業生産規模)30μmをこえる板厚の非晶質箔帯を連続的に製造する方法である。しかし、これらの方法は冷却ロールを複数個使うため、設備が大型になる問題がある。また、溶湯注湯を2つの冷却ロールで交互に繰り返す煩雑さがあり作業を複雑にする。   These methods are methods for continuously producing amorphous foil strips having a thickness exceeding 30 μm, which is the thickness limit (industrial production scale) of conventional amorphous alloy foils. However, since these methods use a plurality of cooling rolls, there is a problem that the equipment becomes large. Moreover, there is a trouble of repeating the molten metal pouring alternately with two cooling rolls, which complicates the operation.

最近、合金溶湯を冷却ロールの外周面に吐出するために、耐久性の高いノズル材料が見出された。このノズルを使えば、数時間、連続して鋳造が可能である。特許文献1〜3の交互鋳造法に依存せず、単一冷却ロールでも厚肉非晶質合金箔帯が連続的に製造できる可能性が生まれた。   Recently, a highly durable nozzle material has been found for discharging molten alloy to the outer peripheral surface of a cooling roll. If this nozzle is used, continuous casting is possible for several hours. There is a possibility that a thick amorphous alloy foil strip can be continuously produced even with a single cooling roll without depending on the alternate casting methods of Patent Documents 1 to 3.

特許第5114241号公報Japanese Patent No. 5114241 特許第5270295号公報Japanese Patent No. 5270295 特許第5329915号公報Japanese Patent No. 5329915 特開2012−086232号公報JP 2012-086232 A

本発明の目的は、厚い非晶質合金箔帯を、単一冷却ロールを用い、工業的な規模(1チャージ100kg以上)の製造を可能にする非晶質合金箔帯の製造装置を提供することである。今日市販されている厚肉非晶質合金箔の板厚は30μm以下に限られていた。この制限を突破して30μmより厚い非晶質箔帯を連続的に製造する技術を提案することが本発明の目的である。   An object of the present invention is to provide an apparatus for producing an amorphous alloy foil strip that enables the production of a thick amorphous alloy foil strip on an industrial scale (one charge of 100 kg or more) using a single cooling roll. That is. The thickness of the thick amorphous alloy foil that is commercially available today is limited to 30 μm or less. It is an object of the present invention to propose a technique for breaking through this limitation and continuously producing amorphous foil strips thicker than 30 μm.

本発明は、単一の冷却ロールを用い、連続的に板厚の大きな非晶質合金箔帯を製造するために、該冷却ロールの冷却水流路の構造を特定するものである。具体的には、所望の板厚の非晶質合金を得るために、ロール内冷却水路の表面積を確保できる冷却ロールの構造を提供する。   The present invention specifies the structure of the cooling water flow path of the cooling roll in order to produce an amorphous alloy foil strip having a large plate thickness continuously using a single cooling roll. Specifically, in order to obtain an amorphous alloy having a desired plate thickness, a cooling roll structure capable of securing the surface area of the cooling water channel in the roll is provided.

本発明によれば、厚い非晶質合金箔帯を工業的な規模で製造することができる非晶質合金箔帯の製造装置を実現することができる。その結果、生産コストが低減でき、占積率向上による応用製品の小型化が可能になった。また、コアロス(鉄損)が低減され省エネルギーに寄与する。巻回、積層して用いる磁気鉄心においてアニールする場合、コア内温度の均一性が実現できる。熱は層間よりエッジから内部に流れるからである。温度の均一性が実現できることにより、アニール条件の最適化が図れる。コア全体の温度が狭い範囲で同等なので、最適条件がコアの各部分で達成され、最適特性を容易に達成できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing apparatus of the amorphous alloy foil strip which can manufacture a thick amorphous alloy foil strip on an industrial scale is realizable. As a result, the production cost can be reduced, and the application product can be downsized by improving the space factor. In addition, core loss (iron loss) is reduced, contributing to energy saving. In the case of annealing in a magnetic core used by winding and stacking, uniformity of core temperature can be realized. This is because heat flows from the edge to the inside from the interlayer. By realizing temperature uniformity, the annealing conditions can be optimized. Since the temperature of the entire core is the same in a narrow range, optimal conditions are achieved in each part of the core, and optimal characteristics can be easily achieved.

第1の実施形態に係る非晶質合金箔帯の製造装置を例示する斜視図である。It is a perspective view which illustrates the manufacturing apparatus of the amorphous alloy foil strip which concerns on 1st Embodiment. 第1の実施形態の装置を例示する、(a)正面図、および(b)側面図である。It is the (a) front view and (b) side view which illustrate the device of a 1st embodiment. (a)は、第1の実施形態の変形例に係る装置を冷却ロールの正面からみた模式図であり、(b)は、つば状の突起をつけた貫通孔入口部を冷却ロールの側面からみた図である。(A) is the schematic diagram which looked at the apparatus which concerns on the modification of 1st Embodiment from the front of the cooling roll, (b) is the through-hole inlet part which attached | subjected the collar-shaped protrusion from the side of a cooling roll. FIG. 第2の実施形態における冷却ロールの冷却水路構造を例示する模式図である。(a)は、第2の実施形態における非晶質合金箔帯の製造装置を例示する模式的正面図であり、冷却水路系統の1つを示す。(b)は、この冷却ロールおよび近傍を例示する模式的側面図であり、(c)はこの冷却ロールの別の冷却水路系統を示す正面図である。It is a schematic diagram which illustrates the cooling water channel structure of the cooling roll in 2nd Embodiment. (A) is a typical front view which illustrates the manufacturing apparatus of the amorphous alloy foil strip in 2nd Embodiment, and shows one of the cooling channel systems. (B) is a schematic side view illustrating the cooling roll and the vicinity thereof, and (c) is a front view showing another cooling channel system of the cooling roll. 第2の実施形態の変形例に係る非晶質合金箔帯の製造装置を例示する側面図である。It is a side view which illustrates the manufacturing apparatus of the amorphous alloy foil strip which concerns on the modification of 2nd Embodiment. 図1において合金溶湯が冷却ロールと接触するノズル先端部の様子(パドル)を例示する側面図である。本発明で基本とするダブルスリットノズルとパドル近傍を示す概念図である。It is a side view which illustrates the mode (paddle) of the nozzle front-end | tip part which an alloy molten metal contacts with a cooling roll in FIG. It is a conceptual diagram which shows the double slit nozzle and paddle vicinity which are fundamental in this invention. 本発明の単一ロールで達成できない大きな板厚の非晶質合金箔帯を製造する際に用いるツイン冷却ロール法を例示する装置の正面図である。It is a front view of the apparatus which illustrates the twin cooling roll method used when manufacturing the amorphous alloy foil strip of the big board thickness which cannot be achieved with the single roll of this invention.

以下、図面を参照しつつ、本発明の実施形態について説明する。
先ず、第1の実施形態について説明する。
図1は、本実施形態に係る非晶質合金箔帯の製造装置を例示する斜視図であり、
図2は、本実施形態に係る製造装置の、(a)冷却ロールと冷却水路を例示した正面図、(b)冷却ロールの側面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the first embodiment will be described.
FIG. 1 is a perspective view illustrating an apparatus for manufacturing an amorphous alloy foil strip according to this embodiment.
FIG. 2: is the front view which illustrated the (a) cooling roll and the cooling water channel of the manufacturing apparatus which concerns on this embodiment, (b) The side view of a cooling roll.

図1に示すように、本実施形態に係る非晶質合金箔帯の製造装置1においては、冷却ロール11と、冷却ロール11内に冷却水を流通させる冷却水供給手段12と、冷却ロール11を回転させる駆動手段13(排水手段を含む)と、冷却ロール11の外周面11aに対して溶湯を供給する溶湯供給手段17とが設けられている。溶湯供給手段17においては、合金を溶かす溶解炉14、溶湯Aを保持する坩堝15と、坩堝15の底面に取り付けられ、坩堝15内の溶湯を下方に向けて吐出するノズル16とが設けられている。ノズル16は、冷却ロール11の上方に、冷却ロール11の外周面11aから僅かな隙間を隔てて配置されている。製造装置1は、非晶質合金箔帯Sを製造するための装置である。ここで、「非晶質合金」とは、体積率で50%以上が非晶質であり、残部が非晶質を母相としてナノメートル(nm)サイズの微結晶が分散析出した複相の合金を含む。   As shown in FIG. 1, in the amorphous alloy foil strip manufacturing apparatus 1 according to this embodiment, a cooling roll 11, cooling water supply means 12 for circulating cooling water in the cooling roll 11, and cooling roll 11. Is provided with a driving means 13 (including a drainage means) and a molten metal supply means 17 for supplying the molten metal to the outer peripheral surface 11a of the cooling roll 11. In the molten metal supply means 17, a melting furnace 14 for melting the alloy, a crucible 15 for holding the molten metal A, and a nozzle 16 attached to the bottom surface of the crucible 15 and discharging the molten metal in the crucible 15 downward are provided. Yes. The nozzle 16 is disposed above the cooling roll 11 with a slight gap from the outer peripheral surface 11 a of the cooling roll 11. The manufacturing apparatus 1 is an apparatus for manufacturing the amorphous alloy foil strip S. Here, the “amorphous alloy” is a composite phase in which 50% or more by volume is amorphous, and the balance is nanophase (nm) -sized microcrystals dispersed and precipitated with amorphous as a parent phase. Includes alloys.

次に、上述の如く構成された非晶質合金箔帯の製造装置の動作、すなわち、本実施形態に係る非晶質合金箔帯の製造方法について説明する。
先ず、溶解炉14で、非晶質合金箔帯Sの原料となる合金を溶解して溶湯Aをるつぼ15に注入する。溶湯Aは、Fe、Co、Niのうち、少なくとも1種類を合計70原子%から95原子%含み、該3種類の強磁性金属元素以外は半金属B、Si、C、Pのうち少なくとも1種類の元素を5原子%〜30原子%含む。さらに左記の強磁性元素の一部にCr、V、Nb、Mo、W、Ta、Cu、Snのうち少なくとも1種類を0.01原子%〜5原子%の範囲で加えても良い。言わずもがな、構成元素の含有率の総和は、不可避的不純物を除けば、100%でなければならない。
Next, the operation of the amorphous alloy foil strip manufacturing apparatus configured as described above, that is, the method for manufacturing an amorphous alloy foil strip according to the present embodiment will be described.
First, in the melting furnace 14, the alloy that is the raw material of the amorphous alloy foil strip S is melted and the molten metal A is poured into the crucible 15. The molten metal A contains at least one of Fe, Co, and Ni in a total of 70 to 95 atomic%, and at least one of the semimetals B, Si, C, and P other than the three types of ferromagnetic metal elements. These elements are contained in an amount of 5 atomic% to 30 atomic%. Further, at least one of Cr, V, Nb, Mo, W, Ta, Cu, and Sn may be added in a range of 0.01 atomic% to 5 atomic% to a part of the ferromagnetic elements shown on the left. Needless to say, the total content of the constituent elements must be 100%, excluding inevitable impurities.

上記の添加元素のうちCuは、非晶質箔を作製したのち、アニールにより結晶化させ、数ナノメートルから100ナノメートルの範囲の微細結晶粒からなる、いわゆるナノ結晶材料を作製するさいの必須元素である。ナノ結晶材でなくても、高周波磁気特性を向上させるために、結晶化を部分的に促進して磁区の細分化を図るため、Cuを単独で(Fe,Co,Ni)−(B,Si,C,P)合金に、0.1原子%〜2.5原子%の範囲で添加することも本発明の範囲である。   Of the above additive elements, Cu is indispensable for producing a so-called nanocrystalline material consisting of fine crystal grains in the range of several nanometers to 100 nanometers after producing an amorphous foil and then crystallizing by annealing. It is an element. Even if it is not a nanocrystalline material, in order to improve high-frequency magnetic properties, in order to partially promote crystallization and subdivide the magnetic domain, Cu alone (Fe, Co, Ni)-(B, Si , C, P), it is also within the scope of the present invention to be added in the range of 0.1 atomic% to 2.5 atomic%.

Snは箔の表面の薄い層に偏析して結晶化を抑える作用をするので、高含有量のFeを含むFe基合金の非晶質箔帯を製造する際に有効である。82原子%以上のFeを含有する合金はアニールによって表面結晶化が生じやすく、鉄損、透磁率などの磁気特性が大幅に劣化するが、0.1質量%から1質量%のSnを含むとアニール後も結晶化は起こらず、本来のすぐれた軟磁気特性を維持する。またS(硫黄)の微量添加もSnと同様の作用をする。S添加量は、0.003〜0.5質量%の範囲がよい。   Sn segregates in a thin layer on the surface of the foil and acts to suppress crystallization, so it is effective in producing an amorphous foil strip of an Fe-based alloy containing a high content of Fe. An alloy containing 82 atomic% or more of Fe is likely to cause surface crystallization by annealing, and the magnetic properties such as iron loss and magnetic permeability are greatly deteriorated. However, when 0.1 mass% to 1 mass% of Sn is contained Crystallization does not occur even after annealing, and the original excellent magnetic properties are maintained. Further, addition of a small amount of S (sulfur) has the same effect as Sn. The amount of S added is preferably in the range of 0.003 to 0.5 mass%.

本実施形態の製造装置1の機能について説明を続ける。冷却水供給手段12が冷却ロール11内の流水経路21に冷却水Wを流通させながら、駆動手段(排水手段を兼ねる)13が冷却ロール11を回転させる。この状態で、ノズル16から、冷却ロール11の外周面11aに対して、溶解炉14から坩堝15に注がれた合金の溶湯Aを吐出する。   The description of the function of the manufacturing apparatus 1 of the present embodiment will be continued. The cooling means 11 rotates the cooling roll 11 while the cooling water supply means 12 circulates the cooling water W through the flowing water path 21 in the cooling roll 11. In this state, a molten alloy A poured from the melting furnace 14 to the crucible 15 is discharged from the nozzle 16 to the outer peripheral surface 11 a of the cooling roll 11.

このとき、溶湯Aは、冷却ロール11の外周面11aとノズル16との間でパドルを形成する。回転する冷却ロール11によって、冷却ロール11によって冷却されたパドルのロール表面11aに接触した近傍は高粘度の過冷却液体となり、ロールの回転方向に引き出されると共に、冷却ロール11によって急冷され、過冷却液体構造のまま凝固する。これにより、ストリップ状の非晶質合金箔帯Sが形成される。非晶質合金箔帯Sは、冷却ロール11の外周面11aと共に所定の位置まで移動した後、冷却ロール11から遠ざかる方向に誘導され、巻き取られる。一方、溶湯Aから冷却ロール11に伝達された熱は、冷却ロール内部を流れる冷却水に移動した後、流水経路21内を流れる冷却水Wによって冷却ロール11の外部に排出される。   At this time, the molten metal A forms a paddle between the outer peripheral surface 11 a of the cooling roll 11 and the nozzle 16. The vicinity of the rotating roll 11 in contact with the roll surface 11a of the paddle cooled by the cooling roll 11 becomes a highly viscous supercooled liquid, which is drawn out in the rotating direction of the roll and is rapidly cooled by the cooling roll 11 to be supercooled. It solidifies as a liquid structure. As a result, a strip-shaped amorphous alloy foil strip S is formed. The amorphous alloy foil strip S moves to a predetermined position together with the outer peripheral surface 11 a of the cooling roll 11, and then is guided and wound up in a direction away from the cooling roll 11. On the other hand, the heat transferred from the molten metal A to the cooling roll 11 is transferred to the cooling water flowing inside the cooling roll 11 and then discharged to the outside of the cooling roll 11 by the cooling water W flowing inside the flowing water path 21.

本発明の非晶質合金箔帯製造装置をより具体的に説明する。図2(a)は、本発明の実施形態の1つを示している。冷却ロール11には側面を貫通する貫通孔21a、21b、21cが形成されている。図2(b)に示すロール回転軸を中心Cとする複数の同心円上に等間隔で設けられている。図2(b)の冷却ロール11の側面図は、貫通孔が3つの同心円に等間隔に並んでいる様子を例示している。貫通孔の直径は同じ同心円上では同じ大きさである。   The amorphous alloy foil strip manufacturing apparatus of the present invention will be described more specifically. FIG. 2 (a) shows one embodiment of the present invention. The cooling roll 11 is formed with through holes 21a, 21b, and 21c that penetrate the side surfaces. They are provided at equal intervals on a plurality of concentric circles centered on the roll rotation axis shown in FIG. The side view of the cooling roll 11 in FIG. 2B illustrates a state where the through holes are arranged in three concentric circles at equal intervals. The diameters of the through holes are the same size on the same concentric circle.

冷却ロール11の側面は両側ともそれぞれカバー22a、22bで覆われている。カバーは冷却水を外部に逃がさず、貫通孔に冷却水を送り、または受ける役割をする。図2では給水側から冷却水を送り、貫通孔を通過した冷却水を反対側に流す例を示したが、図3(a)のように本流路を2重管構造にして本管24のロール中心部を水が通過したのち冷却水供給側と反対面に設置されたカバー23bに当たったのち裏側から貫通孔を通過した後、2重管を通して排水することも可能である。後者のほうが空気が残留しにくく、水が貫通孔を均等に流れやすい。   Both sides of the cooling roll 11 are covered with covers 22a and 22b, respectively. The cover does not allow the cooling water to escape to the outside, and serves to send or receive the cooling water to the through hole. FIG. 2 shows an example in which the cooling water is sent from the water supply side and the cooling water that has passed through the through hole is flowed to the opposite side. However, as shown in FIG. It is also possible to drain the water through the double pipe after passing through the through hole from the back side after hitting the cover 23b installed on the opposite surface to the cooling water supply side after the water passes through the center of the roll. In the latter, air is less likely to remain, and water tends to flow evenly through the through holes.

第1の実施形態の変形例として、図3(a)において給水側と反対側の面の貫通孔入口の端部(回転軸から遠い側)に、図3(b)のような半円形のつば(ひさし)状の突起26をつけると、水の流れがスムースになり、貫通孔を流れる水量を均等化しやすい。貫通孔の出口側には、つば(ひさし)は不要である。しかし、ロール回転中のバランスを取りにくい場合は出口側にも、つばを設けても良い。   As a modification of the first embodiment, a semicircular shape as shown in FIG. 3B is formed at the end of the through hole entrance (the side far from the rotation axis) on the surface opposite to the water supply side in FIG. When the rib-like projections 26 are attached, the flow of water becomes smooth, and the amount of water flowing through the through holes is easily equalized. No eaves are required on the outlet side of the through hole. However, if it is difficult to balance during roll rotation, a collar may be provided on the outlet side.

なお、図2、図3において、空気抜きのために、カバー23に弁27を設けると便利である。冷却流路に空気が残留することがある。残留空気は、貫通孔を通過する冷却水の均等化をはばみ、ロールの冷却効率を低下させる。鋳造開始前に、冷却水を流してゆっくりとロールを回転しながらカバーに設けた弁(1つのカバーに複数設けても良い)を開けて空気を抜き、そして閉じる。ゆっくり回転させながら弁の開閉を繰り返すことにより、ロールの流路に残留する空気を限りなくゼロに近づけることができる。   In FIGS. 2 and 3, it is convenient to provide a valve 27 on the cover 23 in order to remove air. Air may remain in the cooling channel. The residual air prevents the cooling water passing through the through hole from being equalized and reduces the cooling efficiency of the roll. Before starting casting, the cooling water is poured to slowly rotate the roll, and the valve provided on the cover (a plurality of one cover may be provided) is opened to bleed and close. By repeatedly opening and closing the valve while rotating slowly, the air remaining in the flow path of the roll can be brought close to zero as much as possible.

次に、第2の実施形態について説明する。
図4は、第1の実施形態で示した冷却ロールの側面を貫通する貫通孔の配置を例示する図2(b)において、同心円上にあり隣り合う貫通孔を金属製のU字形パイプで結んだ例を示している。図4(a)は、第2の実施形態を例示する冷却ロールの正面図であり、(b)は冷却ロールの側面図である。また、図4(c)は、装置の正面からみた、最もロールの外周に近い同心円上に設けられた冷却水の流路を示す図である。なお、図4(a)はロール外周から2番目の同心円上に設けられた冷却水路を示している。
Next, a second embodiment will be described.
FIG. 4 is a view illustrating the arrangement of the through holes penetrating the side surface of the cooling roll shown in the first embodiment. In FIG. 2B, adjacent through holes that are concentric are connected by a metal U-shaped pipe. An example is shown. FIG. 4A is a front view of a cooling roll illustrating the second embodiment, and FIG. 4B is a side view of the cooling roll. Moreover, FIG.4 (c) is a figure which shows the flow path of the cooling water provided on the concentric circle nearest to the outer periphery of a roll seen from the front of the apparatus. FIG. 4A shows a cooling water channel provided on the second concentric circle from the outer periphery of the roll.

図4において、62a、62b、62cはロール側面からみて順に、最も外周に近い冷却水の流路、外周から2番目の同心円上にある流路、そして外周から3番目の同心円上にある流路を示している。   In FIG. 4, 62a, 62b, and 62c are, in order from the side of the roll, the cooling water channel closest to the outer periphery, the second concentric channel from the outer periphery, and the third concentric channel from the outer periphery. Is shown.

第2の実施形態を例示する図4は、同心円上にあり隣り合う貫通孔をU字型パイプ64で結ぶことを示している。これにより同一同心円上にある貫通孔は本管流路21から分岐した1つの流路を形成する。図4は、同心円が3つの例をあげているので、3つの流路21a、21b、21cが存在する。それぞれの端部は、ロールの回転軸に沿って設けられた、回転分流装置ロータリージョイント63に結合されている。これによってロール回転中も、回転軸に沿った給水、排水の本管(図示せず)に分岐した流路が接続されている。   FIG. 4 exemplifying the second embodiment shows that contiguous through holes that are concentric are connected by a U-shaped pipe 64. Thereby, the through-holes on the same concentric circle form one flow path branched from the main flow path 21. FIG. 4 shows three examples of concentric circles, so there are three flow paths 21a, 21b, and 21c. Each end is coupled to a rotary diverter rotary joint 63 provided along the rotation axis of the roll. As a result, even during the rotation of the roll, the flow path branched to the main water supply (not shown) for water supply and drainage along the rotation axis is connected.

第2の実施形態では、本流路から分岐した、流路62a、62b、62cのそれぞれに流量調節弁65が設けられている。各流路に流量調節弁があると、鋳造する箔帯の板幅、板厚に応じて最適な流量配分をすることができる。例えば、板幅、板厚が比較的小さい場合、ロール外周面に最も近い流路に重点をおいて冷却水を供給すればよい。板厚、板幅が大きくなるに応じて、2番目、3番目の同心円上の流路にも給水配分を多くする。これによって、板厚、板幅が大きくなっても、冷却能力不足を生じない。   In the second embodiment, the flow rate adjusting valve 65 is provided in each of the flow paths 62a, 62b, and 62c branched from the main flow path. If there is a flow control valve in each flow path, an optimal flow distribution can be made according to the width and thickness of the foil strip to be cast. For example, when the plate width and plate thickness are relatively small, the cooling water may be supplied with emphasis on the flow path closest to the outer peripheral surface of the roll. As the plate thickness and plate width increase, the distribution of water supply is also increased in the flow paths on the second and third concentric circles. Thereby, even if the plate thickness and the plate width are increased, the cooling capacity is not insufficient.

より具体的に示すなら、板厚30μmの非晶質合金箔帯を製造する際、ロール外周に
最も近い流路を重点に90%以上の冷却水を供給すればよい。箔の板厚が増加するに応じて2番目、3番目の流路に流れる冷却水の流量を増やしていけば50μm、75μm、100μmの板厚の非晶質箔帯の製造が可能になる。1番目の流路で取りきれない熱は、2番目、3番目の流路によってほぼ100%で吸収される。ロールの冷却流路を包む部分は、複数のリングあるいはスリーブを焼嵌め法などで機械的に接合したものでなく、1体ものなので、熱抵抗部分がないので、熱の流れはCu合金本来の高熱伝導率を生かすことができる。
More specifically, when producing an amorphous alloy foil strip having a plate thickness of 30 μm, 90% or more of cooling water may be supplied focusing on the flow path closest to the outer periphery of the roll. If the flow rate of the cooling water flowing through the second and third flow paths is increased as the foil thickness increases, it is possible to produce amorphous foil strips having thicknesses of 50 μm, 75 μm, and 100 μm. The heat that cannot be removed by the first flow path is absorbed by the second and third flow paths at almost 100%. The portion surrounding the cooling flow path of the roll is not a mechanically joined multiple rings or sleeves by a shrink fit method or the like, but is a single body, so there is no heat resistance portion, so the heat flow is the original of the Cu alloy. High thermal conductivity can be utilized.

次に、第2の実施形態の変形例について説明する。
図5は、本変形例における冷却ロールを例示する側面図である。なお、図5においては、便宜上、貫通孔67(図4(a)参照)及びU字形パイプ64(図4(a)参照)は図示を省略し、流水経路である貫通孔21a〜21cを破線で示している。
Next, a modification of the second embodiment will be described.
FIG. 5 is a side view illustrating a cooling roll in the present modification. In FIG. 5, for the sake of convenience, the through hole 67 (see FIG. 4A) and the U-shaped pipe 64 (see FIG. 4A) are omitted, and the through holes 21a to 21c which are flowing water paths are broken lines. Is shown.

図5に示すように、本変形例における冷却ロール61aにおいては、各段の流水経路が3つに分かれている。これにより、前述の第2の実施形態と比較して、ロータリージョイントに集合するパイプ(流路)の本数が増えるものの(図示の例では3倍)、冷却水の温度上昇を抑えることができ、冷却ロールの排熱能力をより効果的に高めることが可能になる。これは冷却水路の圧損が低減するからである。   As shown in FIG. 5, in the cooling roll 61a in this modification, the flow path of each stage is divided into three. Thereby, compared with the above-mentioned 2nd Embodiment, although the number of the pipes (flow path) gathering to a rotary joint increases (in the example of illustration, 3 times), the temperature rise of cooling water can be suppressed, It becomes possible to increase the exhaust heat capacity of the cooling roll more effectively. This is because the pressure loss of the cooling water channel is reduced.

本発明の側面貫通孔を配した非晶質合金薄帯の製造装置において、給水路の途中に冷却水を冷却する装置を設けると排熱効果が向上する。   In the apparatus for producing an amorphous alloy ribbon provided with the side through-holes according to the present invention, if a device for cooling the cooling water is provided in the middle of the water supply channel, the exhaust heat effect is improved.

本発明において用いる冷却ロールの直径、幅について説明する。これらは、ロールの重量を支えるロール回転軸、軸受けなどの支持機構の強度に依存する。あまり直径が大きいと冷却能は向上するものの支持機構の負荷が大きくなる。また、直径が小さすぎると、流路の分岐数が不足して、冷却能が不足する。所望の板厚に応じて直径を決めるべきである。例示すると、板厚30〜60μmでは40〜60cmの直径があれば十分で、板厚60〜90μmでは直径60〜80cmが適当である。90〜110μmでは80〜100cmがよい。   The diameter and width of the cooling roll used in the present invention will be described. These depend on the strength of a support mechanism such as a roll rotating shaft and a bearing that supports the weight of the roll. If the diameter is too large, the cooling capacity is improved, but the load on the support mechanism is increased. On the other hand, if the diameter is too small, the number of branches in the flow path is insufficient and the cooling capacity is insufficient. The diameter should be determined according to the desired thickness. For example, a diameter of 40 to 60 cm is sufficient for a plate thickness of 30 to 60 μm, and a diameter of 60 to 80 cm is appropriate for a plate thickness of 60 to 90 μm. In 90-110 micrometers, 80-100 cm is good.

冷却ロールの幅についても、幅が広くなるほど冷却能力は高くなる。しかし、従来の1段冷却ロールにくらべて幅を広げる効果は小さい。1段冷却の場合、ロールの肉厚(ロール表面と冷却水路の距離)を大きくすることにより、熱は2次元的にながれ広い範囲の冷却水に伝わる。しかし、本発明で提案する多段式の冷却水路(2以上の同心円上に配設された水路)では、熱量の多くは一次元的に流れる(温度勾配がロールの半径方向で大きい)のでロールの幅を広げる効果は限定的である。極言すれば、ロールの幅は、箔帯の幅をある程度上回っていればよい。   As for the width of the cooling roll, the cooling capacity increases as the width increases. However, the effect of widening the width compared with the conventional one-stage cooling roll is small. In the case of one-stage cooling, by increasing the thickness of the roll (distance between the roll surface and the cooling water channel), heat is transferred two-dimensionally and transferred to a wide range of cooling water. However, in the multistage cooling water channel proposed in the present invention (water channel arranged on two or more concentric circles), most of the heat flows one-dimensionally (the temperature gradient is large in the radial direction of the roll). The effect of widening is limited. In other words, the width of the roll only needs to exceed the width of the foil strip to some extent.

つぎに、貫通孔の大きさについて説明する。基本的には、溶湯から冷却ロールに移った熱がすべて冷却水に吸収される十分な貫通孔の総表面積があればよい。詳しくは後述する。貫通孔の大きさは、孔あけ加工のしやすさ、加工コストなどが重要なポイントとなる。また、冷却水を流通させる圧力が適正な範囲でなければならない。これらを勘案すると、貫通孔の直径は、20〜50mmが好ましい。   Next, the size of the through hole will be described. Basically, it is only necessary to have a sufficient total surface area of the through holes so that all the heat transferred from the molten metal to the cooling roll is absorbed by the cooling water. Details will be described later. As for the size of the through hole, the ease of drilling and the processing cost are important points. Moreover, the pressure which distribute | circulates cooling water must be an appropriate range. Considering these, the diameter of the through hole is preferably 20 to 50 mm.

本発明において用いるノズル(合金溶湯を冷却ロールに吐出するための開口部)は基本的に多重スリットノズルである。ダブルノズルの例を図6に示す。従来、一般に、単一スリットノズルが用いられているが、ノズルの幅(矩形状開口部のロール移動方向に測った寸法)を大きくしても、箔の板厚は一定の値に留まり、それ以上にならない。本発明者らの実験とそれらに基づく計算によれば、箔の板厚は溶湯と冷却ロールの熱伝達率に依存することが判明した。ダブルノズルの幅は、それぞれ、0.2〜0.8mmの範囲が好ましい。また、上流側のスリット幅を大きくすると、ブリッジの幅を大きく取れるので、ブリッジ部の強度と耐摩耗性の観点から有利である。板厚は、ノズルの多重度に応じて厚くなるので、厚さ60〜80μmではトリプル、80〜110μmでは4重あるいは5重のノズルを用いるとよい。少なくとも5重までは、非晶質状態の合金箔帯が製造できることを確認している。   The nozzle (opening for discharging the molten alloy to the cooling roll) used in the present invention is basically a multi-slit nozzle. An example of a double nozzle is shown in FIG. Conventionally, a single slit nozzle is generally used, but even if the width of the nozzle (the dimension measured in the roll movement direction of the rectangular opening) is increased, the thickness of the foil remains constant. No more. According to the experiments by the present inventors and calculations based thereon, it has been found that the thickness of the foil depends on the heat transfer coefficient of the molten metal and the cooling roll. The width of each double nozzle is preferably in the range of 0.2 to 0.8 mm. Further, if the upstream slit width is increased, the bridge width can be increased, which is advantageous from the viewpoint of the strength and wear resistance of the bridge portion. Since the plate thickness increases according to the multiplicity of the nozzles, it is preferable to use triple nozzles when the thickness is 60 to 80 μm and quadruple or five times when the thickness is 80 to 110 μm. It has been confirmed that an alloy foil strip in an amorphous state can be produced up to at least 5 layers.

すなわち、鋳造初期において冷却ロールの表面温度は低い。熱伝導率が高いことにより用いられるCu、あるいはCu合金ロールは、Fe系合金となじみが悪い。Cu−Fe合金の平衡状態図が示すように互いに溶けあう比率は低温(常温を含む)ではわずかである。お互いに嫌っているので、格子振動で伝える熱も伝わりにくい。熱伝達率が低いのである。熱伝達率が低ければいくら溶湯を供給しても凝固しない。すなわち、板厚は厚くならない。供給過剰の溶湯は周辺に湯玉となって飛び散るだけである。安定なパドル(ノズルとロールの間に保持される湯溜まり)は形成されない。   That is, the surface temperature of the cooling roll is low at the initial stage of casting. Cu or Cu alloy rolls used due to their high thermal conductivity are poorly compatible with Fe-based alloys. As shown in the equilibrium diagram of the Cu—Fe alloy, the ratio of mutual melting is small at low temperatures (including room temperature). Because they dislike each other, the heat transmitted by lattice vibration is also difficult to be transmitted. The heat transfer rate is low. If the heat transfer coefficient is low, it will not solidify no matter how much molten metal is supplied. That is, the plate thickness does not increase. The excess supply of molten metal simply scatters around as hot water. A stable paddle (a pool of hot water held between the nozzle and the roll) is not formed.

熱伝達率をあげるために、ロール温度を上げる必要がある。そのために、鋳造初期は吐出圧を低めに設定し、熱伝達率に見合った量の溶湯を供給する。すると、パドルは安定し凝固あるいは高粘度の過冷却液体化する際に放出される熱はすべてロールに吸収され、ロールの温度が上昇する。これにより熱伝達率は高まり、さらに多くの熱量を受けいれる。すなわち箔の板厚を厚くできる。   In order to increase the heat transfer rate, it is necessary to increase the roll temperature. Therefore, at the initial stage of casting, the discharge pressure is set to a low value, and an amount of molten metal corresponding to the heat transfer coefficient is supplied. Then, the paddle is stabilized and all the heat released when it is solidified or turned into a superviscous liquid with high viscosity is absorbed by the roll, and the temperature of the roll rises. As a result, the heat transfer coefficient is increased and a larger amount of heat is received. That is, the foil thickness can be increased.

これまで多重スリットノズル法で厚肉箔ができないという声を聞く。それは、冷却ロールが低いにも関わらず、ロールの熱吸収力をこえた溶湯を供給するからである。溢れた溶湯は飛び散り、安定したパドルが形成されない。熱がロールに吸収されないからロールの温度はいつまでたっても上がらず、厚い箔は形成されない。極めて当たり前のことであるが一般には認識されていないようである。   I hear that you can't make thick foil with the multiple slit nozzle method. This is because, even though the cooling roll is low, molten metal exceeding the heat absorption capacity of the roll is supplied. The overflowing molten metal scatters and a stable paddle is not formed. Since the heat is not absorbed by the roll, the temperature of the roll will not rise and the thick foil will not be formed. It seems quite common, but not generally recognized.

上述のように鋳造初期に冷却ロールの温度上昇を早めるために、図4に例示する方法は効果的である。たとえば、鋳造をスタートさせるときは、最外周の流路には給水しない。該当する流路の流量調節弁65を閉じておく。すると速やかにロールの外周温度は上昇する。それに応じて吐出圧を高める。熱伝達率が高い状態なので凝固速度が高まり板厚は大きくなる。所望の板厚になった時点で最外周の流路にも給水する。この時点で、ロール外周面の温度は高くなっているので熱の収支はバランスがとれている。すなわち、ロールが吸収する熱量とロールの抜熱能力が等しくなっている。   As described above, the method illustrated in FIG. 4 is effective in order to accelerate the temperature rise of the cooling roll at the initial stage of casting. For example, when casting is started, water is not supplied to the outermost channel. The flow rate adjustment valve 65 of the corresponding flow path is closed. Then, the outer peripheral temperature of the roll rises quickly. The discharge pressure is increased accordingly. Since the heat transfer rate is high, the solidification speed increases and the plate thickness increases. When the desired plate thickness is reached, water is also supplied to the outermost channel. At this time, since the temperature of the outer peripheral surface of the roll is high, the heat balance is balanced. That is, the amount of heat absorbed by the roll is equal to the heat removal capability of the roll.

板厚が一定以上、厚くなると最外周の流路だけでは熱を奪えない。取りきれない熱は、外周から2番目の水路を流れる水が吸収する。さらに板厚が厚くなる場合は3番目の流路の水が受け持つ。このように、所望の板厚に応じて流路を増やしていけばよい。図4および図5に示した3段の流路は、これに限らず、板厚に応じて加減してよい。   When the plate thickness exceeds a certain level, heat cannot be removed only by the outermost channel. The heat that cannot be removed is absorbed by the water flowing through the second water channel from the outer periphery. If the plate thickness further increases, the water in the third channel is responsible. In this way, the number of channels may be increased according to the desired plate thickness. The three-stage flow paths shown in FIGS. 4 and 5 are not limited to this, and may be adjusted depending on the plate thickness.

本発明を実施する際、貫通孔の配置、すなわち、ロール外周面からの距離を決めなければならない。しかし、従来のように最外周のみに冷却水路を設定した場合は、ロールの肉厚が重要になるが、本発明においては特定できない。熱伝導率の高いCuあるいはCu合金(熱伝導率が純Cuの70%以上)を用いる限り、ロールの側面を貫通する貫通孔の表面積の総和がロールに単位時間あたりに入熱する熱量を吸収できれば肉厚を指定する必要はない。冷却水の流路の表面積の総和と水の強制対流熱伝達率 (1.2〜5.8)×10 W/kgを使って冷却水に伝わる熱量を見積もることができる。上記の熱伝達率は、西川兼康監修・北山直方著「図解 伝熱工学の学び方」オーム社刊(昭和60年1月10日発行)を参照した。 In carrying out the present invention, the arrangement of the through holes, that is, the distance from the outer peripheral surface of the roll must be determined. However, when the cooling water channel is set only on the outermost periphery as in the prior art, the thickness of the roll is important, but cannot be specified in the present invention. As long as Cu or Cu alloy with high thermal conductivity is used (the thermal conductivity is 70% or more of pure Cu), the total surface area of the through-holes penetrating the side of the roll absorbs the heat input to the roll per unit time. It is not necessary to specify the wall thickness if possible. The amount of heat transferred to the cooling water can be estimated by using the total surface area of the cooling water flow path and the forced convection heat transfer coefficient of water (1.2 to 5.8) × 10 3 W / kg. The above heat transfer coefficient was referred to the book “How to Learn Illustrated Heat Transfer Engineering” published by Ohmsha (published on January 10, 1985), supervised by Kaneyasu Nishikawa and Naokata Kitayama.

非常に厚い非晶質合金箔帯を所望の場合、ロール側面からみた流路の数は4つ以上になることがある。流路の数が大きくなると、ロールの直径を大きくしなければならない。ロールが大きくなりすぎると、ロールを支持する回転軸および軸受けなどの支持機構の強度に問題が生じる。そのような場合、図7のように2つのロールを並べて使う。装置の具体例および操作法はすでに特許文献1に開示されているのでここでは説明を省く。変形例は、特許文献2と特許文献3に示されている。   If a very thick amorphous alloy foil strip is desired, the number of channels as viewed from the roll side may be four or more. As the number of channels increases, the roll diameter must increase. If the roll becomes too large, a problem arises in the strength of the support mechanism such as the rotating shaft and the bearing that supports the roll. In such a case, two rolls are used side by side as shown in FIG. Since the specific example and operation method of the apparatus have already been disclosed in Patent Document 1, the description thereof is omitted here. Modifications are shown in Patent Document 2 and Patent Document 3.

本発明の冷却ロールと特許文献1、2、3のいずれかと併用すると、ロール交換にいたる時間が長くなるので生産性が高まる。作業能率も改善される。 When the cooling roll of the present invention is used in combination with any one of Patent Documents 1, 2, and 3, the time required for roll replacement becomes longer, and thus productivity is increased. Work efficiency is also improved.

1、2、3、4、5:製造装置、11:冷却ロール、11a:外周面、12:冷却水供給手段、13:駆動手段、14:溶解炉、15:坩堝、16:ノズル、17:溶湯供給手段、18:溶湯供給装置の移動手段、21a、21b、21c:貫通孔、26:突起、61a:冷却ロール、62:本管から分岐した冷却水路、62a:ロール最外周の冷却水路、62b:ロール外周から2番目の冷却水路、62c:外周から3番目の冷却水路、63a:給水側ロータリージョイント、63b:排水側ロータリージョイント、64:U字形パイプ、65:流量調節弁、67:貫通孔、71a、71b:冷却ロール、72a、72b:冷却水供給手段、73:駆動手段、74a、74b:給水管、75a、75b:排水管、77:レール、81:スリット、A:溶湯、C:回転軸、P:パドル、S:非晶質合金箔帯 1, 2, 3, 4, 5: Manufacturing apparatus, 11: Cooling roll, 11a: Outer peripheral surface, 12: Cooling water supply means, 13: Driving means, 14: Melting furnace, 15: Crucible, 16: Nozzle, 17: Molten metal supply means, 18: moving means of the molten metal supply apparatus, 21a, 21b, 21c: through-hole, 26: protrusion, 61a: cooling roll, 62: cooling water channel branched from the main pipe, 62a: cooling water channel on the outermost periphery of the roll, 62b: second cooling water channel from outer periphery of roll, 62c: third cooling water channel from outer periphery, 63a: water supply side rotary joint, 63b: drainage side rotary joint, 64: U-shaped pipe, 65: flow control valve, 67: penetration Hole, 71a, 71b: Cooling roll, 72a, 72b: Cooling water supply means, 73: Driving means, 74a, 74b: Water supply pipe, 75a, 75b: Drain pipe, 77: Rail, 81: Sleeve Preparative, A: molten, C: rotary shaft, P: Paddle, S: amorphous alloy foil strip

冷却ロール11の側面は両側ともそれぞれカバー23a、23bで覆われている。カバーは冷却水を外部に逃がさず、貫通孔に冷却水を送り、または受ける役割をする。図2では給水側から冷却水を送り、貫通孔を通過した冷却水を反対側に流す例を示したが、図3(a)のように本流路を2重管構造にして本管24のロール中心部を水が通過したのち冷却水供給側と反対面に設置されたカバー23bに当たったのち裏側から貫通孔を通過した後、2重管を通して排水することも可能である。後者のほうが空気が残留しにくく、水が貫通孔を均等に流れやすい。   Both sides of the cooling roll 11 are covered with covers 23a and 23b, respectively. The cover does not allow the cooling water to escape to the outside, and serves to send or receive the cooling water to the through hole. FIG. 2 shows an example in which the cooling water is sent from the water supply side and the cooling water that has passed through the through hole is flowed to the opposite side. However, as shown in FIG. It is also possible to drain the water through the double pipe after passing through the through hole from the back side after hitting the cover 23b installed on the opposite surface to the cooling water supply side after the water passes through the center of the roll. In the latter, air is less likely to remain, and water tends to flow evenly through the through holes.

これまで多重スリットノズル法で厚肉箔ができないという声を聞く。それは、冷却ロールの温度が低いにも関わらず、ロールの熱吸収力をこえた溶湯を供給するからである。溢れた溶湯は飛び散り、安定したパドルが形成されない。熱がロールに吸収されないからロールの温度はいつまでたっても上がらず、厚い箔は形成されない。極めて当たり前のことであるが一般には認識されていないようである。   I hear that you can't make thick foil with the multiple slit nozzle method. This is because, despite the low temperature of the cooling roll, the molten metal exceeding the heat absorption capacity of the roll is supplied. The overflowing molten metal scatters and a stable paddle is not formed. Since the heat is not absorbed by the roll, the temperature of the roll will not rise and the thick foil will not be formed. It seems quite common, but not generally recognized.

Claims (2)

冷却ロールの側面に回転軸方向に貫通する流路を、前記ロールの回転軸を中心とする2以上の同心円上に等間隔に配設したことを特徴とする非晶質合金箔帯製造用の冷却ロール。   A flow path that penetrates the side surface of the cooling roll in the direction of the rotation axis is disposed at equal intervals on two or more concentric circles centered on the rotation axis of the roll. Cooling roll. 請求項1記載の冷却ロールを備えた非晶質合金箔帯の製造装置。   The manufacturing apparatus of the amorphous alloy foil strip provided with the cooling roll of Claim 1.
JP2014086139A 2014-04-18 2014-04-18 Cooling roll, amorphous alloy foil strip manufacturing apparatus, and amorphous alloy foil strip manufacturing method Active JP5953618B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014086139A JP5953618B2 (en) 2014-04-18 2014-04-18 Cooling roll, amorphous alloy foil strip manufacturing apparatus, and amorphous alloy foil strip manufacturing method
PCT/JP2015/050687 WO2015159562A1 (en) 2014-04-18 2015-01-13 Cooling roller and manufacturing device for amorphous alloy foil strips
US15/293,559 US20170029924A1 (en) 2014-04-18 2016-10-14 Cooling roll and manufacturing apparatus of amorphous alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086139A JP5953618B2 (en) 2014-04-18 2014-04-18 Cooling roll, amorphous alloy foil strip manufacturing apparatus, and amorphous alloy foil strip manufacturing method

Publications (2)

Publication Number Publication Date
JP2015205290A true JP2015205290A (en) 2015-11-19
JP5953618B2 JP5953618B2 (en) 2016-07-20

Family

ID=54323781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086139A Active JP5953618B2 (en) 2014-04-18 2014-04-18 Cooling roll, amorphous alloy foil strip manufacturing apparatus, and amorphous alloy foil strip manufacturing method

Country Status (3)

Country Link
US (1) US20170029924A1 (en)
JP (1) JP5953618B2 (en)
WO (1) WO2015159562A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105665666A (en) * 2015-12-31 2016-06-15 安泰科技股份有限公司 Uniform-cooling cooling roller device and method for amorphous strip preparing
CN111299527A (en) * 2019-12-12 2020-06-19 云南大泽电极科技股份有限公司 Condensation crystallization technology for cast-rolled lead alloy plate strip
JPWO2020196608A1 (en) * 2019-03-26 2021-11-25 日立金属株式会社 Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
CN113714475A (en) * 2021-08-16 2021-11-30 江苏国能合金科技有限公司 Amorphous crystallizer copper sheathing
WO2022107237A1 (en) * 2020-11-18 2022-05-27 安彦 大久保 Cooling roll device
DE112022002930T5 (en) 2021-08-17 2024-03-21 Hilltop Corporation METHOD FOR PRODUCING AN FE-SI-B BASED, THICK-LAYERED, QUICKLY SOLID ALLOY STRIP

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108555259A (en) * 2018-06-29 2018-09-21 王春龙 A kind of chill roll and equipment producing amorphous band
CN108788037A (en) * 2018-07-20 2018-11-13 芜湖君华材料有限公司 A kind of amorphous magnetic material conduction oil circulating cooling system
CN111097186B (en) * 2019-12-25 2021-11-09 中天电气技术有限公司 Cooling crystallizer
CN112059131B (en) * 2020-09-16 2022-03-25 浙江师范大学 Non-winding high-efficiency amorphous thin belt preparation device
CN113600766B (en) * 2021-08-16 2022-10-28 江苏国能合金科技有限公司 Amorphous crystallizer with uniform cooling effect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946048A (en) * 1972-09-08 1974-05-02
JPH01177055U (en) * 1988-06-07 1989-12-18

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307771A (en) * 1980-01-25 1981-12-29 Allied Corporation Forced-convection-cooled casting wheel
AUPP331698A0 (en) * 1998-05-04 1998-05-28 Bhp Steel (Jla) Pty Limited Casting steel strip
KR20140029361A (en) * 2010-10-18 2014-03-10 카스트립 엘엘씨. Twin roll continuous caster
JP2014091157A (en) * 2012-11-06 2014-05-19 Saco Llc Apparatus and method for producing amorphous alloy foil strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946048A (en) * 1972-09-08 1974-05-02
JPH01177055U (en) * 1988-06-07 1989-12-18

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105665666A (en) * 2015-12-31 2016-06-15 安泰科技股份有限公司 Uniform-cooling cooling roller device and method for amorphous strip preparing
CN105665666B (en) * 2015-12-31 2018-05-04 安泰科技股份有限公司 A kind of cooling roller device uniformly cooled down prepared for amorphous band and method
JPWO2020196608A1 (en) * 2019-03-26 2021-11-25 日立金属株式会社 Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
JP7148876B2 (en) 2019-03-26 2022-10-06 日立金属株式会社 Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
CN111299527A (en) * 2019-12-12 2020-06-19 云南大泽电极科技股份有限公司 Condensation crystallization technology for cast-rolled lead alloy plate strip
WO2022107237A1 (en) * 2020-11-18 2022-05-27 安彦 大久保 Cooling roll device
JPWO2022107237A1 (en) * 2020-11-18 2022-05-27
CN113714475A (en) * 2021-08-16 2021-11-30 江苏国能合金科技有限公司 Amorphous crystallizer copper sheathing
DE112022002930T5 (en) 2021-08-17 2024-03-21 Hilltop Corporation METHOD FOR PRODUCING AN FE-SI-B BASED, THICK-LAYERED, QUICKLY SOLID ALLOY STRIP

Also Published As

Publication number Publication date
JP5953618B2 (en) 2016-07-20
WO2015159562A1 (en) 2015-10-22
US20170029924A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5953618B2 (en) Cooling roll, amorphous alloy foil strip manufacturing apparatus, and amorphous alloy foil strip manufacturing method
JP5329915B2 (en) Apparatus for producing amorphous alloy foil strip and method for producing amorphous alloy foil strip
JP6263512B2 (en) Wide iron-based amorphous alloys are precursors of nanocrystalline alloys
TWI454324B (en) A manufacturing apparatus for an amorphous alloy foil tape, and a method for producing an amorphous alloy foil tape
KR20140047738A (en) Iron-based amorphous alloy broad ribbon and its manufacturing method
JP6123790B2 (en) Amorphous alloy ribbon
CN105397044A (en) Amorphous Alloy Ribbon
JP2018167298A (en) METHOD FOR PRODUCING Fe-Si-B-BASED NANOCRYSTAL ALLOY
US7918946B2 (en) Fe-based amorphous alloy excellent in soft magnetic properties
JP5114241B2 (en) Amorphous alloy foil strip manufacturing apparatus and amorphous alloy foil strip manufacturing method
JPS5942160A (en) Cooling roll for producing amorphous alloy light-gauge strip
JP2014091157A (en) Apparatus and method for producing amorphous alloy foil strip
JP3830697B2 (en) Method for producing composite roll for rolling
CN107002212A (en) Amorphous alloy band and its manufacture method
WO2022196672A1 (en) Method for producing fe-si-b-based thick rapidly solidified alloy thin strip
JP5270295B2 (en) Apparatus for producing amorphous alloy foil strip and method for producing amorphous alloy foil strip
JP5135960B2 (en) Amorphous alloy foil strip and method for producing the same
JP4969808B2 (en) Manufacturing method and manufacturing apparatus for iron-based amorphous ribbon with excellent magnetic properties
WO2023022002A1 (en) Method for producing fe-si-b-based thick rapidly solidified alloy thin strip
JP2023057649A (en) Method and apparatus for producing amorphous-alloy foil strip, and amorphous-alloy foil strip produced by the producing method
US20210213515A1 (en) Thin strip manufacture method
JPH0191901A (en) Manufacture of composite roll for rolling
JPH04110450A (en) Amorphous alloy
JPS5919058A (en) Production of ultraquicklly cooled metallic strip
JPS6137353A (en) Production of copper and copper plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160526

R150 Certificate of patent or registration of utility model

Ref document number: 5953618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250