JP2018144084A - Method for producing ferrous boron-based alloy - Google Patents

Method for producing ferrous boron-based alloy Download PDF

Info

Publication number
JP2018144084A
JP2018144084A JP2017043478A JP2017043478A JP2018144084A JP 2018144084 A JP2018144084 A JP 2018144084A JP 2017043478 A JP2017043478 A JP 2017043478A JP 2017043478 A JP2017043478 A JP 2017043478A JP 2018144084 A JP2018144084 A JP 2018144084A
Authority
JP
Japan
Prior art keywords
alloy
iron
less
boron
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017043478A
Other languages
Japanese (ja)
Other versions
JP6855053B2 (en
Inventor
金清 裕和
Hirokazu Kanekiyo
裕和 金清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bizyme Inc
Original Assignee
Bizyme Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bizyme Inc filed Critical Bizyme Inc
Priority to JP2017043478A priority Critical patent/JP6855053B2/en
Publication of JP2018144084A publication Critical patent/JP2018144084A/en
Application granted granted Critical
Publication of JP6855053B2 publication Critical patent/JP6855053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a ferrous boron-based alloy excellent in mass productivity and moldability.SOLUTION: Provided is a method for producing a ferrous boron based alloy where, upon the production of a rapidly solidified alloy where an alloy molten metal essentially consisting of iron and boron is rapidly cooled on the surface of a cooling roll made of a metal rotating at a roll surface speed of 10 to 100 m/sec, a tap nozzle whose bottom part is disposed with column multiorifices in which a plurality of orifices having an orifice diameter of Φ0.6 mm or higher to below Φ2.0 mm in 2 to 4 holes are arranged by one line or more on one straight along the rotary direction of a cooling roll at the bottom is used.SELECTED DRAWING: Figure 1

Description

本発明は、鉄基硼素系合金の製造方法に関する。   The present invention relates to a method for producing an iron-based boron alloy.

近年、電子部品として使用されるノイズフィルターやトランス材向けに鉄損が低く飽和磁束密度が高い材料が市場から求められており、透磁率が高く、鉄損が低い軟磁性材料として鉄基アモルファス材料や、同じく鉄基のナノ結晶材料と言った鉄、硼素、ケイ素等々を主原料とする溶湯急冷凝固により作製される厚み17μmから22μm程度の鉄基アモルファス合金薄帯が従来のケイ素鋼板に代わる高性能高効率軟磁性材料として大型トランス等に巻鉄心として使用され需要が年々拡大している。   In recent years, materials with low iron loss and high saturation magnetic flux density have been demanded from the market for noise filters and transformer materials used as electronic parts, and iron-based amorphous materials as soft magnetic materials with high magnetic permeability and low iron loss. Also, iron-based amorphous alloy ribbons with a thickness of 17 μm to 22 μm, which are produced by rapid solidification of molten iron, which is also made of iron, boron, silicon, etc., which are also called iron-based nanocrystalline materials, are high-placing conventional silicon steel plates. As a high-efficiency soft magnetic material, it is used as a wound core for large transformers, and the demand is growing year by year.

また、鉄基材料としては鉄、硼素、ネオジム(希土類元素の一種)を主原料とする合金溶湯を上記と同じく溶湯急冷凝固により得た厚み20μm前後のフレーク状の急冷合金薄帯を結晶化熱処理した後、粉砕し等方性希土類鉄基硼素系磁粉とした上で樹脂と混合・混錬した後、成形した等方性ボンド磁石がDC小型モータや各種センサなどの各種電子工業製品分野に応用されている。   Also, crystallization heat treatment of flaky quenched alloy ribbons with a thickness of around 20μm obtained by rapid solidification of the molten alloy mainly composed of iron, boron and neodymium (a kind of rare earth element) as the iron base material. Then, it is pulverized into isotropic rare earth iron-based boron-based magnetic powder, mixed and kneaded with resin, and then molded isotropic bonded magnets are applied to various electronic industrial product fields such as DC small motors and various sensors. Has been.

非特許文献1では鉄基硼素ケイ素系のアモルファス合金は、従来、104〜106 K/secといった非常に速い急冷凝固速度で厚み17μmから22μm程度の急冷凝固合金薄帯でなければアモルファス組織を得られなかったが、リンを添加することで急冷凝固速度を低下させ厚み50μm以上の鉄基アモルファス合金薄帯が得られることが開示されているが、リン添加は飽和磁束密度Bsの低下を招来するだけでなく、リン添加系合金は合金溶解時にリン成分が揮発し炉内汚染が著しいことから未だ産業分野での応用例は少ない。 According to Non-Patent Document 1, an iron-based boron silicon-based amorphous alloy conventionally has an amorphous structure unless it is a rapidly solidified alloy ribbon having a thickness of 17 μm to 22 μm at a rapid solidification rate of 10 4 to 10 6 K / sec. Although it was not obtained, it has been disclosed that the addition of phosphorus reduces the rapid solidification rate and an iron-based amorphous alloy ribbon having a thickness of 50 μm or more can be obtained. However, the addition of phosphorus causes a decrease in the saturation magnetic flux density Bs. In addition, phosphorus-added alloys have few applications in the industrial field because the phosphorus component is volatilized when the alloy is melted and the contamination in the furnace is significant.

非特許文献2では、改良された新規の水アトマイズ法により鉄基のアモルファス合金粉末を直接得る方法が開示されているが、ガスアトマイズ法と高速水流による冷却を組みあわせた湿式工程のため、乾式工程でアモルファス化できる単ロール液体急冷法に比べ粉末の乾燥工程が加わることによる歩留り低下、並びにアトマイズ法のため一度に溶解出湯できる量が最大でも300kg/バッチ程度に制限されることから生産効率の向上が難しく、低コスト化の阻害要因となっており、鉄基アモルファス合金粉末の軟磁気性能が不可欠である応用分野への適用に限定されている。さらに急冷凝固時の合金溶湯中のSiがFeに先立ち優先酸化されSiO2を粉末表面に形成するため、軟磁気特性を得るための必須元素であるSiの一部が酸化物として奪われる。また、酸化を低減するため磁束密度の低下を招来するCrを添加するなど工夫も必要となる。加えて酸素に対して活性な希土類元素を含む硬磁性の鉄基硼素系合金組成では希土類成分が酸化によりRE2O3を生成するため硬磁気特性(永久磁石特性)が得られないことから希土類レスの合金組成系に限定される。 Non-Patent Document 2 discloses a method for directly obtaining an iron-based amorphous alloy powder by a novel improved water atomization method. However, since the wet process combines gas atomization method and cooling by high-speed water flow, a dry process is disclosed. Compared with the single-roll liquid quenching method that can be made amorphous, the yield is reduced due to the addition of a powder drying process, and the amount that can be dissolved and discharged at a time is limited to about 300 kg / batch at the maximum because of the atomization method, improving production efficiency. This is a hindrance to cost reduction and is limited to application fields where the soft magnetic performance of the iron-based amorphous alloy powder is indispensable. Furthermore, since Si in the molten alloy during rapid solidification is preferentially oxidized prior to Fe and forms SiO 2 on the powder surface, a part of Si, which is an essential element for obtaining soft magnetic properties, is taken away as an oxide. In addition, in order to reduce oxidation, it is necessary to devise such as adding Cr that causes a decrease in magnetic flux density. In addition, in the hard magnetic iron-based boron-based alloy composition containing rare earth elements that are active against oxygen, the rare earth component generates RE 2 O 3 by oxidation, so hard magnetic properties (permanent magnet properties) cannot be obtained. It is limited to an alloy composition system of less.

特許文献1、特許文献2および特許文献3は50μm以上といった厚みの急冷合金薄帯の作製方法が記載されているが、何れもスリットノズルから帯状に出湯される合金溶湯を冷却ロールにて急冷凝固することで、巻鉄心や積み鉄心等々に適用する帯材の急冷合金を提供するものであり、圧粉磁心等々向けの鉄基軟磁性粉末への応用には適さない。
加えて、特許文献1、特許文献2および特許文献3の実施例に記載されているようなスリット幅0.4mmの加工を精度良く加工することは容易でなく、さらに二列、三列と平行にスリット加工することはさらに難しいことから、BN材質の出湯ノズルを採用した場合、ノズル本体よりスリット加工費の方が高価となり溶湯急冷凝固時の消耗品コストが高騰するという問題もある。
Patent Document 1, Patent Document 2 and Patent Document 3 describe a method for producing a quenched alloy ribbon having a thickness of 50 μm or more. In any case, the molten alloy discharged from the slit nozzle is rapidly cooled and solidified by a cooling roll. By doing so, it provides a rapidly quenched alloy of a strip material to be applied to a wound iron core, a stacked iron core, etc., and is not suitable for application to an iron-based soft magnetic powder for a dust core or the like.
In addition, it is not easy to accurately process a slit width of 0.4 mm as described in Examples of Patent Document 1, Patent Document 2, and Patent Document 3, and in parallel with two rows and three rows. Since it is more difficult to slit, there is a problem that, when a hot water nozzle made of BN material is adopted, the cost of slitting is higher than that of the nozzle body, and the cost of consumables during the rapid solidification of the molten metal increases.

特許文献4では、移動する冷却基板上(回転する冷却ロール)に、その移動方向に対しほぼ直角に配列され、かつそれぞれが前記移動方向に対して10〜80°の角度をもつ複数の開口部(多孔ノズル)から溶融金属を噴出させ、急冷凝固させることを特徴とする金属薄帯の製造方法を開示しているが、本特許文献5は幅の広い急冷薄帯を作製する際、幅方向における金属薄帯の厚みばらつきの低減を目的になされた発明であり、生産効率に直ぐれ、かつ、粉砕することで成形性に優れた粉末の作製に適した鉄基硼素系合金の製造には適さない。また、10〜80°の角度を持つ複数の細長い平行四辺形、台形または楕円形状の開口部を加工することは難しく、ノズル加工費が高騰するという問題もある。   In Patent Document 4, a plurality of openings are arranged on a moving cooling substrate (rotating cooling roll) at a substantially right angle to the moving direction, and each has an angle of 10 to 80 ° with respect to the moving direction. Although a method for producing a metal ribbon is disclosed in which molten metal is ejected from a (perforated nozzle) and rapidly solidified, this Patent Document 5 discloses a width direction when producing a wide quench ribbon. The invention was made for the purpose of reducing the thickness variation of the metal ribbons in the production of iron-based boron-based alloys suitable for producing powders that are excellent in production efficiency and excellent in formability by grinding. Not suitable. Further, it is difficult to process a plurality of elongated parallelogram, trapezoidal, or elliptical openings having an angle of 10 to 80 °, and there is a problem that the nozzle processing cost increases.

特許文献5では、(B+C)濃度を10原子%以上にすることでアモルファス生成能を上げ、加えてTi添加により非磁性相であるNd2Fe23B3相の析出抑えることで、平均厚さが40μm超90μm以下の急冷凝固合金であっても永久磁石として優れた性能を有するNd2Fe14B相からなる硬磁性合金が得られることに加え、平均厚さが40μm超90μm以下の急冷凝固合金とすることで成形性に優れた等方性ボンド磁石磁粉が得られることが開示されているが、(B+C)濃度を10原子%以上20原子%未満に限定されているため、次世代高性能DCブラシレスモータ等に期待される残留磁束密度Brが0.9T以上の高Br型硬磁性粉(永久磁石粉)が得られないだけでなく、硼素リッチ組成であるが故に硬磁性を担うNd2Fe14B相の金属組織全体に占める割合が80体積%以下に制限されるため自動車向けの応用が期待される固有保磁力HcJ≧800kA/m、最大エネルギー積(BH)max≧120kJ/m3の永久磁石特性が得られる硬磁性合金(永久磁石)を作製することが難しい。 In Patent Document 5, the average thickness is increased by increasing the (B + C) concentration by 10 atomic% or more and increasing the amorphous formation ability, and by suppressing the precipitation of the Nd 2 Fe 23 B 3 phase, which is a nonmagnetic phase, by adding Ti. In addition to obtaining a hard magnetic alloy composed of the Nd 2 Fe 14 B phase, which has excellent performance as a permanent magnet, even if it is a rapidly solidified alloy with a thickness of more than 40 μm and 90 μm or less, a rapid solidification with an average thickness of more than 40 μm and 90 μm or less Although it is disclosed that an isotropic bonded magnet magnetic powder with excellent formability can be obtained by using an alloy, the (B + C) concentration is limited to 10 atomic percent or more and less than 20 atomic percent, Nd 2 not only does not provide high Br type hard magnetic powder (permanent magnet powder) with a residual magnetic flux density Br of 0.9T or higher, which is expected for DC brushless motors, etc., but also plays a role in hard magnetism due to its boron-rich composition. automatic the ratio of total metal structure Fe 14 B phase is limited to 80 vol% Intrinsic coercive force HcJ ≧ 800 kA / m to applications directed is expected, it is difficult to produce a maximum energy product (BH) max ≧ 120kJ / m 3 of the hard magnetic alloy permanent magnet properties are obtained (permanent magnets).

特開平5−329587JP-A-5-329587 特開平7−113151JP-A-7-113151 特開平8−124731JP-A-8-124731 特開昭63−220950JP 63-220950 A 特願2002−140236Japanese Patent Application 2002-140236

高飽和磁束密度を有する新規バルク金属ガラス/アモルファス厚板の創製(東北大学・金属ガラス総合研究センター)牧野彰宏、久保田健、常春涛Creation of new bulk metallic glass / amorphous thick plate with high saturation magnetic flux density (Tohoku University, Metallic Glass Research Center) Akihiro Makino, Ken Kubota, Kei Tsuneharu 新しい水アトマイズ 法(SWAP法)によるアモルファス軟磁性粉末の作製(株式会社クボタ・クボタ技術開発研究所)遠藤功、他Production of amorphous soft magnetic powder by new water atomization method (SWAP method) (Kubota, Kubota Technology Development Laboratory Co., Ltd.) Isao Endo, etc.

回転する金属製の冷却ロールにて合金溶湯を急冷する溶湯急冷凝固法にて作製される鉄基硼素系合金において軟磁性系合金並びに硬磁性合金を問わず、生産性並びに粉末時の成形性を確保するためには従来、合金組成の調整による急冷凝固速度の緩和が主たる方法として用いられてきたが、本手法は軟磁気特性並びに高磁気特性の低下を招来するか、もしくは、生産性に問題があり、合金組成に因らず製造コストの低減が可能な高生産性でかつ粉末成形性に優れた鉄基硼素系合金の製造方法が各種受動素子、モータ、センサ等々の電子部品市場より強く望まれている。   Iron-based boron-based alloys produced by a rapid solidification method of a molten metal that rapidly cools the molten alloy with a rotating metal cooling roll, regardless of whether it is a soft magnetic alloy or a hard magnetic alloy. Conventionally, relaxation of the rapid solidification rate by adjusting the alloy composition has been used as the main method to ensure this, but this method causes a decrease in soft magnetic properties and high magnetic properties, or there is a problem in productivity. The production method of iron-based boron-based alloys with high productivity and excellent powder formability that can reduce the production cost regardless of the alloy composition is stronger than the electronic parts market such as various passive elements, motors, sensors, etc. It is desired.

硼素リッチ組成並びにリンを始めとするNb、Zr、V等々のアモルファス形成能を上げる添加元素を加えた鉄基硼素系合金組成ではFeの体積比率が低下することで高性能な鉄基軟磁性粉および鉄基硬磁性粉の高性能化を阻害する。しかし、前記添加元素等の組成的な対策無しに急冷凝固時の平均出湯レートを上げ生産性を高めようとすると磁気特性の低下につながるα-Feが急冷凝固合金の組織中に析出するためα-Feの析出を抑制する前記添加元素等が必要となる。また、粉砕することで成形性に優れた磁性粉末が得られる厚み40μm以上の急冷凝固合金を得るためには冷却ロールのロール表面速度を落とすことが必要になるが、ロール表面速度を落とすと平均出湯レートを上げるのと同様、α-Feが急冷凝固合金の組織中に析出し、良好な磁気性能を発現する鉄基硼素系急冷合金を得ることは出来ない。   Iron-based boron-based alloy compositions with boron-rich compositions and iron-based boron-based alloy compositions with added elements that increase the ability to form amorphous elements such as phosphorus, such as Nb, Zr, and V. And impedes the high performance of iron-based hard magnetic powder. However, when trying to increase the average hot water rate during rapid solidification without increasing the compositional measures such as the above-mentioned additive elements to increase productivity, α-Fe, which leads to a decrease in magnetic properties, precipitates in the structure of the rapidly solidified alloy. The additive element that suppresses the precipitation of -Fe is required. Also, to obtain a rapidly solidified alloy with a thickness of 40 μm or more that can obtain magnetic powder with excellent formability by grinding, it is necessary to reduce the roll surface speed of the cooling roll, but if the roll surface speed is reduced, the average As with increasing the tapping rate, α-Fe precipitates in the structure of the rapidly solidified alloy, and it is not possible to obtain an iron-based boron-based quenched alloy that exhibits good magnetic performance.

そこで、本発明は、量産性と成形性に優れた鉄基硼素系合金の製造方法の提供を目的とする。   Therefore, an object of the present invention is to provide a method for producing an iron-based boron-based alloy having excellent mass productivity and formability.

本発明の鉄基硼素系合金の製造方法は、鉄及び硼素を必須元素とする合金溶湯を用意し、ロール表面速度5m/sec以上100m/secにて回転する金属製の冷却ロール表面上において前記合金溶湯を急冷する急冷凝固合金作製の際、オリフィス径Φ0.6mm以上Φ2.0mm未満の2孔以上4孔未満の複数のオリフィスが前記冷却ロールの回転方向に沿って一直線上に1列以上並んだ縦列マルチオリフィスを底部に配した出湯ノズルを用いて、前記出湯ノズルおよび前記冷却ロール間距離を0.16mm以上20mm未満に設定した上で、前記縦列マルチオリフィス1列からの単位時間当たりの平均出湯レートを0.6g/min以上6kg/minとして前記出湯ノズルから前記冷却ロール表面に前記合金溶湯を噴出することで、平均厚みが40μm以上160μm未満である急冷凝固合金を製造することを特徴とする。   The method for producing an iron-based boron-based alloy according to the present invention comprises preparing a molten alloy containing iron and boron as essential elements, and on the surface of a metallic cooling roll rotating at a roll surface speed of 5 m / sec to 100 m / sec. When preparing a rapidly solidified alloy that rapidly cools the molten alloy, a plurality of orifices with an orifice diameter of Φ0.6 mm or more and less than Φ2.0 mm and having two or more holes and less than 4 holes are aligned in a line along the rotation direction of the cooling roll. Using a hot water discharge nozzle having a vertical multi-orifice at the bottom, the distance between the hot water nozzle and the cooling roll is set to 0.16 mm or more and less than 20 mm, and the average hot water per unit time from the single row of multi-orifice A rapidly solidified alloy having an average thickness of 40 μm or more and less than 160 μm is manufactured by ejecting the molten alloy from the hot water nozzle to the surface of the cooling roll at a rate of 0.6 g / min or more and 6 kg / min.

本発明の鉄基硼素系合金の製造方法は、前記合金溶湯の組成が、組成式T loo-x-y-z-n QSiyRE (TはFe、CoおよびNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、QはB、Cからなる群から選択されBを必ず含む1種以上の元素、REは希土類元素、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の元素)で表現され、組成比率x、y、zおよびnが、それぞれ、5≦x<20原子%、0≦y<15原子%、0≦z<16原子%、0≦n<10原子%を満足することが好ましい。 In the method for producing an iron-based boron-based alloy according to the present invention, the composition of the molten alloy has a composition formula T loo-x-yz-n Q x Si y RE z M n (T is Fe, Co and Ni). At least one element selected from the group, which is a transition metal element that always contains Fe, Q is one or more elements that are selected from the group consisting of B and C, and must always contain B, RE is a rare earth element, M is One or more elements selected from the group consisting of P, Al, Ti, V, Cr, Mn, Nb, Cu, Zn, Ga, Mo, Ag, Hf, Zr, Ta, W, Pt, Au, and Pb) The composition ratios x, y, z, and n satisfy 5 ≦ x <20 atomic%, 0 ≦ y <15 atomic%, 0 ≦ z <16 atomic%, and 0 ≦ n <10 atomic%, respectively. It is preferable to do.

本発明の鉄基硼素系合金の製造方法は、前記縦列マルチオリフィスにおける各オリフィスの整列方向の間隔Dが0.2mm以上10mm未満であることが好ましい。   In the method for producing an iron-based boron-based alloy according to the present invention, it is preferable that an interval D in the alignment direction of each orifice in the tandem multi-orifice is 0.2 mm or more and less than 10 mm.

本発明の鉄基硼素系合金の製造方法は、前記縦列マルチオリフィスが、複数列のオリフィスを有しており、隣り合う列同士の間隔Eが3mm以上であることが好ましい。   In the method for producing an iron-based boron-based alloy according to the present invention, it is preferable that the column multi-orifice has a plurality of orifices, and an interval E between adjacent rows is 3 mm or more.

本発明の鉄基硼素系合金の製造方法は、前記出湯ノズルから噴出される溶湯の出湯圧力が2kPa以上60kPa未満であることが好ましい。   In the method for producing an iron-based boron-based alloy according to the present invention, it is preferable that a tapping pressure of the molten metal ejected from the tapping nozzle is 2 kPa or more and less than 60 kPa.

あるいは、本発明の鉄基硼素系合金の製造方法は、鉄及び硼素を必須とする鉄基硼素系合金において、組成式T loo-x-y-z-n QSiyRE (TはFe、CoおよびNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、QはB、Cからなる群から選択されBを必ず含む1種以上の元素、REは希土類元素、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の元素)で表現され、組成比率x、y、zおよびnが、それぞれ、5≦x<10原子%、0≦y<15原子%、3≦z<16原子%、0≦n<10原子%を満足する組成を有する合金溶湯を用意し、ロール表面速度10m/sec以上100m/secにて回転する金属製の冷却ロール表面上において前記合金溶湯を急冷する急冷凝固合金作製の際、オリフィス径Φ0.6mm以上Φ2.0mm未満の2孔以上4孔未満の複数のオリフィスが冷却ロールの回転方向に沿って一直線上に1列以上並んだ縦列マルチオリフィスを底部に配した出湯ノズルを用いて、前記出湯ノズルおよび前記冷却ロール間距離を0.16mm以上20mm未満に設定した上で、前記縦列マルチオリフィス1列からの単位時間当たりの平均出湯レートを0.6g/min以上6kg/minとして前記出湯ノズルから前記冷却ロール表面に前記合金溶湯を噴出することで、RE2Fe14B相を含む結晶相を1体積%以上95体積%未満の範囲で有し残部がアモルファスである平均厚みが40μm以上160μm未満である急冷凝固合金を製造することを特徴とする。 Alternatively, the method for producing an iron-based boron-based alloy according to the present invention includes a composition formula T loo-x-yz-n Q x Si y RE z M n ( T is at least one element selected from the group consisting of Fe, Co, and Ni, and is a transition metal element that always contains Fe, and Q is at least one element that is selected from the group consisting of B and C and must always contain B Element, RE is rare earth element, M is P, Al, Ti, V, Cr, Mn, Nb, Cu, Zn, Ga, Mo, Ag, Hf, Zr, Ta, W, Pt, Au, and Pb One or more selected elements), and the composition ratios x, y, z and n are respectively 5 ≦ x <10 atomic%, 0 ≦ y <15 atomic%, 3 ≦ z <16 atomic%, A rapidly solidified alloy is prepared by preparing a molten alloy having a composition satisfying 0 ≦ n <10 atomic% and rapidly cooling the molten alloy on the surface of a metallic cooling roll rotating at a roll surface speed of 10 m / sec to 100 m / sec. Made A tapping nozzle with a multi-orifice at the bottom that has multiple orifices with a diameter of Φ0.6 mm or more and less than Φ2.0 mm, with two or more holes and less than 4 holes aligned in a line along the rotation direction of the cooling roll. And the distance between the hot water nozzle and the cooling roll is set to 0.16 mm or more and less than 20 mm, and the average hot water discharge rate per unit time from the single row of multi-orifice is set to 0.6 g / min or more and 6 kg / min. By jetting the molten alloy from the hot water nozzle onto the surface of the cooling roll, the average thickness of the crystal phase including the RE 2 Fe 14 B phase in the range of 1% by volume to less than 95% by volume and the balance being amorphous is 40 μm. It is characterized by producing a rapidly solidified alloy having a thickness of less than 160 μm.

本発明の鉄基硼素系合金の製造方法は、前記冷却ロールの素材に銅または銅を主成分とする合金、MoまたはMoを主成分とする合金、あるいは、WまたはWを主成分とする合金のいずれかを用い、さらにロール表面の算術平均粗さRaを1nm以上10μm未満とすることが好ましい。   The method for producing an iron-based boron-based alloy according to the present invention includes a material for the cooling roll, copper or an alloy containing copper as a main component, an alloy containing Mo or Mo as a main component, or an alloy containing W or W as a main component. In addition, it is preferable that the roll surface has an arithmetic average roughness Ra of 1 nm or more and less than 10 μm.

上記の鉄基硼素系合金の製造方法により製造された鉄基硼素系合金は、150℃以上900℃未満の一定温度にて熱処理した後、平均粉末粒径が20μm以上200μm未満に粉砕して、タップ密度4.0g/cm3以上とした鉄基硼素系合金粉末を得ることができる。 The iron-based boron-based alloy manufactured by the above-described iron-based boron-based alloy manufacturing method is heat-treated at a constant temperature of 150 ° C. or more and less than 900 ° C., and then pulverized to an average powder particle size of 20 μm or more and less than 200 μm, An iron-based boron-based alloy powder having a tap density of 4.0 g / cm 3 or more can be obtained.

本発明によれば、量産性と成形性に優れた鉄基硼素系合金の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for producing an iron-based boron-based alloy that is excellent in mass productivity and formability.

本発明によれば、鉄及び硼素を必須元素とする鉄基硼素系合金溶湯をロール表面速度10m/sec以上100m/secにて回転する金属製の冷却ロール表面上において急冷する急冷凝固合金作製の際、オリフィス径Φ0.6mm以上Φ2.0mm未満の2孔以上4孔未満の複数のオリフィスが冷却ロールの回転方向に沿って一直線上に1列以上並んだ縦列マルチオリフィスを底部に配した出湯ノズルを用いることで、同一ロール表面速度において急冷凝固速度を落とすことなく、単孔出湯ノズルを用いる従来の単ロール急冷凝固法(通称、メルトスピンニング法)においてΦ1mm以下のオリフィス径を配した出湯ノズルにて得られる単位時間当たりの出湯レート0.5g/min未満を超える高い出湯レートを実現でき、さらに縦列マルチストランドを複数列配することで、更なる高生産性の急冷凝固法が実現出来る。   According to the present invention, an iron-based boron-based alloy melt containing iron and boron as essential elements is rapidly cooled on a metal cooling roll surface rotating at a roll surface speed of 10 m / sec to 100 m / sec. In this case, a hot water discharge nozzle provided with a multi-orifice at the bottom of which a plurality of orifices having an orifice diameter of Φ0.6 mm or more and less than Φ2.0 mm and having two or more holes and less than 4 holes arranged in a straight line along the rotation direction of the cooling roll is arranged at the bottom. Using a single roll rapid solidification method (commonly known as melt spinning method) that uses a single-hole hot water discharge nozzle without reducing the rapid solidification rate at the same roll surface speed, a hot water discharge nozzle with an orifice diameter of Φ1 mm or less Can achieve a high tapping rate exceeding 0.5 g / min per unit time, and by arranging multiple rows of multi-strands, the productivity can be further increased. Solidification method can be realized.

加えて縦列マルチオリフィスを採用した出湯ノズルを用いることで、厚み40μm以上160μm未満であることを特徴とする鉄基硼素系合金得られ、本鉄基硼素系合金を平均粉末粒径20μm以上200μm未満に粉砕することでタップ密度4.0g/cm3以上の優れた成形性を有する合金粉末を製造可能となる。   In addition, an iron-based boron-based alloy having a thickness of 40 μm or more and less than 160 μm can be obtained by using a tapping nozzle adopting a tandem multi-orifice. The iron-based boron-based alloy has an average powder particle size of 20 μm or more and less than 200 μm. It is possible to produce an alloy powder having an excellent formability with a tap density of 4.0 g / cm 3 or more by pulverizing.

また、ボール盤等で容易に加工できる円形状のオリフィスは、平行四辺形、台形、三角形及び楕円形のオリフィスやスリット出湯ノズルに比べて大幅に加工費を低減出来る。   In addition, circular orifices that can be easily machined with a drilling machine or the like can greatly reduce machining costs compared to parallelogram, trapezoidal, triangular, and elliptical orifices and slit hot water nozzles.

本願発明は、汎用用途まで高性能な鉄基軟磁性粉および鉄基硬磁性粉の応用分野を拡大することを狙った急冷凝固工程の低コスト化を主たる目的とし、磁気性能の低下を招来すること無く単位時間当たりの平均出湯レートを大幅に向上してもα-Feが析出せず、アモルファス組織からなる急冷凝固合金を、合金組成上の対策に因らず実現すると共に、平均厚みが40μm以上160μm未満であることを特徴とする鉄基硼素系合金を得た後、粉砕し、平均粉末粒径が20μm以上200μm未満に粉砕したタップ密度4.0g/cm3以上が得られる成形性に優れた鉄基硼素系合金粉末を提供することができる。 The present invention mainly aims to reduce the cost of the rapid solidification process aiming to expand the application field of high-performance iron-based soft magnetic powder and iron-based hard magnetic powder to general-purpose applications, leading to a decrease in magnetic performance. Even if the average hot water discharge rate per unit time is greatly improved, α-Fe does not precipitate, and a rapidly solidified alloy consisting of an amorphous structure can be realized regardless of the alloy composition measures, and the average thickness is 40 μm. After obtaining an iron-based boron-based alloy characterized by being less than 160 μm, it is pulverized and excellent in formability to obtain a tap density of 4.0 g / cm 3 or more by pulverizing to an average powder particle size of 20 μm or more and less than 200 μm An iron-based boron-based alloy powder can be provided.

(a)は本発明による希土類元素を含む合金組成の鉄基硼素系合金に適用する急冷凝固合金を製造する際に使用する装置の全体構成例を示す断面図であり、(b)は急冷凝固が行われる部分の拡大図である。(c)は出湯ノズル底面の拡大図であり、縦列マルチオリフィスの配置を示す。(A) is sectional drawing which shows the example of whole structure of the apparatus used when manufacturing the rapid solidification alloy applied to the iron-based boron series alloy of the alloy composition containing the rare earth elements by this invention, (b) is rapid solidification FIG. (C) is an enlarged view of the bottom surface of the hot water nozzle and shows the arrangement of the tandem multi-orifice. (a)は従来の単ロール溶湯急冷凝固法における急冷凝固が行われる部分の拡大図である。(b)は従来の単ロール溶湯急冷凝固法における出湯ノズル底面の拡大図である。(A) is an enlarged view of a portion where rapid solidification is performed in a conventional single-roll molten metal rapid solidification method. (B) is an enlarged view of the bottom surface of the tap nozzle in the conventional single roll molten metal rapid solidification method. 実施例1で得られた急冷凝固合金の粉末X線回折プロファイルである。2 is a powder X-ray diffraction profile of a rapidly solidified alloy obtained in Example 1. FIG. 比較例13で得られた急冷凝固合金の粉末X線回折プロファイルである。3 is a powder X-ray diffraction profile of a rapidly solidified alloy obtained in Comparative Example 13.

従来の単孔の出湯ノズルから噴出される溶湯は冷却ロール表面上で孔径と同じ幅から孔径×2倍程度までの幅を持つ湯だまりを形成し、この湯だまりの幅が急冷凝固合金薄帯の幅となることから、発明者は、この湯だまりを複数の孔をロールの回転方向に沿った直線上に複数並べることで重ね湯だまりの厚みを増すことで急冷凝固合金薄帯の厚みを増すと同時に短時間当たりの出湯レートを増すことが可能な製造条件を検討した結果、従来、スリット状出湯ノズルでしか実現出来なかった湯だまりを重ねることによる急冷凝固合金薄帯の厚肉化を2孔以上4孔未満の複数のオリフィスが冷却ロールの回転方向に沿って一直線上に1列以上並んだ縦列マルチオリフィスにおいてオリフィス径をΦ0.6mm以上Φ2.0未満とし、さらに各オリフィスの整列方向の間隔Dを0.2mm以上10mm未満とした上、出湯ノズルと冷却ロール間距離を0.15mm以上20mm未満に設置することにより直線上に並んだ各孔から噴出される溶湯からなる湯だまりは孔径と同じ幅から孔径×2倍までの幅で重なり、スリットノズルを用いなくても平均厚みが40μm以上160μm未満で、かつ粉砕し易い0.6mmから4mm程度の幅を持つα-Feの析出が無い急冷凝固合金薄帯が得られることを見出した。   The molten metal ejected from the conventional single-hole tap nozzle forms a puddle with the same width as the hole diameter on the surface of the chill roll to a hole diameter x 2 times, and the width of this puddle is a rapidly solidified alloy ribbon. Therefore, the inventor increases the thickness of the rapidly solidified alloy ribbon by increasing the thickness of the stacked pool by arranging a plurality of holes on a straight line along the rotation direction of the roll. As a result of investigating manufacturing conditions that can increase the rate of hot water per hour at the same time, the thickness of the rapidly solidified alloy ribbon can be increased by stacking hot water pools that could only be achieved with a slit-type hot water nozzle. In a multi-orifice in which multiple orifices with 2 holes or more but less than 4 holes are aligned in a line along the rotation direction of the cooling roll, the orifice diameter is Φ0.6 mm or more and less than Φ2.0. of The distance D is set to 0.2 mm or more and less than 10 mm, and the distance between the hot water nozzle and the cooling roll is set to 0.15 mm or more and less than 20 mm, so that the puddle made of the molten metal ejected from each hole arranged in a straight line is the same as the hole diameter. Rapid solidification without overlapping of α-Fe with an average thickness of 40 μm or more and less than 160 μm and with a width of 0.6 mm to 4 mm that is easy to pulverize without overlapping using a slit nozzle. It has been found that an alloy ribbon can be obtained.

さらに、縦列マルチオリフィスを複数列並べ出湯レートをさらに増す際、縦列マルチストランド同士の列間隔Eを3mm以上とすることで、隣接する縦列マルチストランドから噴出する溶湯で形成される湯だまりが接触することなく、粉砕し易い0.6mmから4mm程度の幅を持つ急冷凝固合金薄帯を複数列生成することを知見し、単位時間当たりの平均出湯レートを0.6g/min以上6kg/minとする前記縦列マルチオリフィスを複数列配置することが可能となり、0.6g/min以上6kg/minの単位時間当たりの平均出湯レートを複数倍に出来る製造方法を実現した。   Furthermore, when increasing the row hot water rate of the multi-columns of the multi-columns, the puddle formed by the molten metal ejected from the adjacent multi-strands is brought into contact by setting the row interval E between the multi-strands to 3 mm or more. Without the need to know, that it is easy to pulverize to produce multiple rows of rapidly solidified alloy ribbons with a width of about 0.6mm to 4mm, the average hot water discharge rate per unit time is 0.6g / min to 6kg / min Multiple rows of multi-orifices can be arranged, and a production method has been realized that can multiply the average hot water discharge rate per unit time from 0.6 g / min to 6 kg / min.

本発明による製造方法にて得られる鉄基硼素系合金は、鉄及び硼素を必須とする鉄基硼素系合金において、組成式T loo-x-y-z-n QSiyRE (TはFe、CoおよびNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、QはB、Cからなる群から選択されBを必ず含む1種以上の元素、REは希土類元素、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の元素)で表現され、組成比率x、y、zおよびnが、それぞれ、5≦x<20原子%、0≦y<15原子%、0≦z<16原子%、0≦n<10原子%を満足する。 The iron-based boron-based alloy obtained by the production method according to the present invention is an iron-based boron-based alloy in which iron and boron are essential, and the composition formula T loo-x-yz-n Q x Si y RE z M n (T is at least one element selected from the group consisting of Fe, Co, and Ni, and is a transition metal element that always contains Fe, and Q is one or more elements that are selected from the group consisting of B and C and always contain B) Element, RE is rare earth element, M is P, Al, Ti, V, Cr, Mn, Nb, Cu, Zn, Ga, Mo, Ag, Hf, Zr, Ta, W, Pt, Au and Pb The composition ratio x, y, z, and n are 5 ≦ x <20 atomic%, 0 ≦ y <15 atomic%, and 0 ≦ z <16 atomic%, respectively. 0 ≦ n <10 atomic% is satisfied.

本発明による製造方法にて得られる鉄基硼素系合金は、鉄及び硼素を必須とする鉄基硼素系合金において、組成式T loo-x-y-z-n QSiyRE (TはFe、CoおよびNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、QはB、Cからなる群から選択されBを必ず含む1種以上の元素、REは希土類元素、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の元素)で表現され、組成比率x、y、zおよびnが、それぞれ、5≦x<10原子%、0≦y<15原子%、3≦z<16原子%、0≦n<10原子%を満足する。 The iron-based boron-based alloy obtained by the production method according to the present invention is an iron-based boron-based alloy in which iron and boron are essential, and the composition formula T loo-x-yz-n Q x Si y RE z M n (T is at least one element selected from the group consisting of Fe, Co, and Ni, and is a transition metal element that always contains Fe, and Q is one or more elements that are selected from the group consisting of B and C and always contain B) Element, RE is rare earth element, M is P, Al, Ti, V, Cr, Mn, Nb, Cu, Zn, Ga, Mo, Ag, Hf, Zr, Ta, W, Pt, Au and Pb The composition ratio x, y, z, and n are 5 ≦ x <10 atomic%, 0 ≦ y <15 atomic%, and 3 ≦ z <16 atomic%, respectively. 0 ≦ n <10 atomic% is satisfied.

以下に本発明の好ましい実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

[合金組成]
Feを必須元素として含む遷移金属Tは、上述の元素の含有残余を占める。Feの一部をFeと同じく強磁性元素であるCo及びNiの一種または二種で置換しても、所望の硬磁気特性を得ることができる。ただし、Feに対する置換量が30%を超えると、磁束密度の大幅な低下を招来するため、置換量は0%〜30%の範囲に限定される。
[Alloy composition]
The transition metal T containing Fe as an essential element occupies the remaining content of the above elements. Even if a part of Fe is replaced with one or two of Co and Ni which are ferromagnetic elements like Fe, desired hard magnetic properties can be obtained. However, if the substitution amount with respect to Fe exceeds 30%, the magnetic flux density is significantly reduced, so the substitution amount is limited to a range of 0% to 30%.

Q(=B+C)の組成比率xが5原子%未満になると、アモルファス生成能が大きく低下するため、溶湯急冷凝固の際にα-Feが析出するため軟磁性組成の場合、透磁率が低下し高性能の軟磁性材料が得られない。また、希土類元素含む硬磁性組成の場合、残留磁束密度Brが低下し高性能の硬磁性材料が得られない。
軟磁性組成の場合、組成比率xが20原子%を超えるとFeの成分比率が低下することから磁束密度の低下を招来するため高性能な軟磁性材料を得ることが困難になる。また、希土類元素を含む硬磁性材料の場合、組成比率xが10原子%を超えると、硬磁性特性を担うRE2Fe14B相の存在比率が低下するため硬磁気特性の低下を招来する。このため、軟磁性組成の場合、組成比率xは5原子%以上20原子%未満の範囲とし、組成比率xは7原子%以上19原子%未満であることが好ましく、8原子%以上19原子%未満であることが更に好ましい。加えて希土類元素を含む硬磁性組成の場合、組成比率xは5原子%以上10原子%未満の範囲とし、組成比率xは5.5原子%以上10原子%未満であることが好ましく、5.5原子%以上9原子%未満であることが更に好ましい。
When the composition ratio x of Q (= B + C) is less than 5 atomic%, the ability to form amorphous material is greatly reduced, and α-Fe precipitates during the rapid solidification of the melt. A high-performance soft magnetic material cannot be obtained. In the case of a hard magnetic composition containing rare earth elements, the residual magnetic flux density Br is lowered and a high-performance hard magnetic material cannot be obtained.
In the case of a soft magnetic composition, if the composition ratio x exceeds 20 atomic%, the Fe component ratio decreases, leading to a decrease in magnetic flux density, making it difficult to obtain a high-performance soft magnetic material. In the case of a hard magnetic material containing rare earth elements, if the composition ratio x exceeds 10 atomic%, the abundance ratio of the RE 2 Fe 14 B phase responsible for the hard magnetic characteristics decreases, leading to a decrease in hard magnetic characteristics. Therefore, in the case of a soft magnetic composition, the composition ratio x is in the range of 5 atomic% to less than 20 atomic%, and the composition ratio x is preferably 7 atomic% to less than 19 atomic%, and is preferably 8 atomic% to 19 atomic%. More preferably, it is less than. In addition, in the case of a hard magnetic composition containing rare earth elements, the composition ratio x is in the range of 5 atomic% or more and less than 10 atomic%, and the composition ratio x is preferably 5.5 atomic% or more and less than 10 atomic%, preferably 5.5 atomic% or more. More preferably, it is less than 9 atomic%.

QにおけるBに対するCの置換率が増すと合金溶湯の融点が低くなり急冷凝固の際に用いる耐火物の損耗量が減るため急冷凝固に係る工程費用が低下出来るが、Bに対するCの置換率が50%を超えるとアモルファス生成能が大きく低下するため好ましくなく、置換率は0%〜50%に限定する。好ましくは0%〜30%が良く、さらに好ましくは0%〜20%が良い。   When the substitution rate of C for B in Q increases, the melting point of the molten alloy decreases, and the amount of refractory used during rapid solidification decreases, so the process cost for rapid solidification can be reduced. If it exceeds 50%, the amorphous forming ability is greatly reduced, which is not preferable, and the substitution rate is limited to 0% to 50%. Preferably it is 0% to 30%, more preferably 0% to 20%.

本発明においてSiは、FeおよびBと同時添加することでアモルファス生成能を向上すると共に鉄基硼素系急冷凝固合金の透磁率を高める元素として有効であるが、Siの添加量yが15原子%を超えると飽和磁束密度Bsが大幅に低下するためyは15原子%未満とする。また、希土類元素REを含まない軟磁性を示す鉄基硼素系急冷凝固合金の場合、yは透磁率の向上の観点から2原子%以上15原子%未満が好ましい。さらに好ましくは2.5原子%以上12原子%未満が良い。   In the present invention, Si is effective as an element that improves the amorphous forming ability by simultaneously adding Fe and B and increases the magnetic permeability of the iron-based boron-based rapidly solidified alloy, but the addition amount of Si is 15 atomic%. If the value exceeds 1, the saturation magnetic flux density Bs is significantly reduced. Further, in the case of an iron-based boron-based rapidly solidified alloy that does not contain a rare earth element RE and exhibits soft magnetism, y is preferably 2 atomic percent or more and less than 15 atomic percent from the viewpoint of improving the magnetic permeability. More preferably, it is 2.5 atomic% or more and less than 12 atomic%.

本発明においては、P、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の添加元素Mを加えてもよい。本添加元素により、アモルファス生成能の向上、急冷凝固金属組織の微細化等々の効果により、急冷凝固時の生産性の向上が得られるだけなく、希土類を含む硬磁性組成の場合、減磁曲線の角形性向上及び保有保磁力HcJの向上が実現できる。ただし、これらの元素Mの添加量が10原子%を超えると、磁化の低下を招くため、Mの組成比率nは0原子%以上10原子%未満に限定され、組成比率nは0原子%以上7原子%未満であることが好ましく、組成比率nは0原子%以上5原子%未満であることがさらに好ましい。   In the present invention, 1 selected from the group consisting of P, Al, Ti, V, Cr, Mn, Nb, Cu, Zn, Ga, Mo, Ag, Hf, Zr, Ta, W, Pt, Au, and Pb You may add the additional element M more than a seed | species. This additive element not only improves productivity during rapid solidification, but also improves the productivity of amorphous formation, refinement of rapidly solidified metal structure, etc., and in the case of hard magnetic compositions containing rare earths, the demagnetization curve Improves squareness and coercivity HcJ. However, if the addition amount of these elements M exceeds 10 atomic%, the magnetization is reduced, so the composition ratio n of M is limited to 0 atomic% or more and less than 10 atomic%, and the composition ratio n is 0 atomic% or more. It is preferably less than 7 atomic%, and the composition ratio n is more preferably 0 atomic% or more and less than 5 atomic%.

希土類元素を含む硬磁性を有する鉄基硼素系合金の場合、希土類元素REはLaおよびCeを実質的に含まない希土類金属の1種または2種以上とする。REの組成比率yが3原子%未満では硬磁性特性を担うRE2Fe14B相の存在比率が著しく低下するため、200kA/mを越える固有保磁力HcJが得られず、実用に供せる硬磁性材料(永久磁石)とならない。また、REの組成比率yが16原子%を越えると、RE2Fe14B相の粒界相全体を酸素に対して非常に活性なRE-rich相が占めるため急冷凝固合金を粉砕する際、発火・爆発の危険があると共に、粉末自体の耐食性が著しく低下するため硬磁気特性の経時的な劣化が大きいためREの組成比率yは3原子%以上16原子%未満の範囲に限定するとする。組成比率yは4原子%以上15原子%であることが好ましく、6原子%以上14原子%未満であることがさらに好ましい。 In the case of an iron-based boron-based alloy having hard magnetism containing a rare earth element, the rare earth element RE is one or more rare earth metals substantially free of La and Ce. When the RE composition ratio y is less than 3 atomic%, the existence ratio of the RE 2 Fe 14 B phase, which is responsible for the hard magnetic properties, is significantly reduced, so that an intrinsic coercive force HcJ exceeding 200 kA / m cannot be obtained, and a practically usable hard It is not a magnetic material (permanent magnet). In addition, when the RE composition ratio y exceeds 16 atomic%, the entire grain boundary phase of the RE 2 Fe 14 B phase is occupied by a very active RE-rich phase with respect to oxygen. It is assumed that the composition ratio y of RE is limited to a range of 3 atomic% or more and less than 16 atomic% because there is a risk of ignition / explosion and the corrosion resistance of the powder itself is remarkably deteriorated so that the hard magnetic characteristics are deteriorated with time. The composition ratio y is preferably 4 atom% or more and 15 atom%, and more preferably 6 atom% or more and less than 14 atom%.

[合金溶湯の急冷凝固装置]
本発明の好ましい実施形態によれば、合金溶湯を高速で回転する金属製の冷却ロールの表面に接触させることにより、合金溶湯から熱を奪い急冷凝固させる。適切な量の合金溶湯を冷却ロールの表面に接触させるためには、オリフィス径Φ0.6mm以上Φ2.0mm未満の2孔以上4孔未満の複数のオリフィスが冷却ロールの回転方向に沿って一直線上に1列以上並んだ縦列マルチオリフィスを底部に配した出湯ノズルを用いることで、同一ロール表面速度において急冷凝固速度を落とすことなく、単孔出湯ノズルを用いる従来の単ロール急冷凝固法においてΦ1mm以下のオリフィス径を配した出湯ノズルにて得られる単位時間当たりの出湯レート0.5g/min未満を超える高い出湯レートを実現できるが、オリフィス径はロール表面へ供給する溶湯の供給レートに影響するため、Φ0.6mm以上Φ2.0未満が良く、Φ0.6mm以下ではオリフィス1孔当たりの溶湯供給レートが、0.1kg/min以下となり4孔の縦列マルチオリフィスを配した出湯ノズルでも総量が0.4kg/min程度となり急冷凝固工程の生産性が極めて悪いだけでなくノズル閉塞の原因となる、Φ2.0以上ではオリフィス1孔当たりの溶湯供給レートが1500g/min以上となるため冷却ロール上に湯だまりが形成されず溶滴(スプラッシュ)となり急冷凝固合金薄帯が生成されないことから、アモルファス組織の生成が可能な急冷凝固を達成できないため、オリフィス径はΦ0.6mm以上Φ2.0mm未満に限定する。オリフィス径はΦ0.7mm以上Φ1.8mm未満が好ましく、Φ0.7mm以上Φ1.5mm未満がさらに好ましい。
[Rapid solidification equipment for molten alloy]
According to a preferred embodiment of the present invention, the molten alloy is brought into contact with the surface of a metal cooling roll that rotates at high speed, thereby removing heat from the molten alloy and rapidly solidifying it. In order to bring an appropriate amount of molten alloy into contact with the surface of the chill roll, a plurality of orifices with an orifice diameter of Φ0.6 mm or more and less than Φ2.0 mm that are 2 holes or more and less than 4 holes are aligned along the rotation direction of the chill roll. 1mm or less in conventional single roll rapid solidification method using a single hole hot water discharge nozzle without reducing the rapid solidification rate at the same roll surface speed by using a hot water discharge nozzle arranged at the bottom of one or more rows of multi-orifices arranged in a row A high tapping rate exceeding 0.5 g / min per unit time obtained with a tapping nozzle with an orifice diameter of 5 mm / min can be realized, but the orifice diameter affects the feed rate of the molten metal supplied to the roll surface. Φ0.6mm or more and less than Φ2.0 is good, and when Φ0.6mm or less, the molten metal supply rate per orifice is 0.1kg / min or less, and the hot water nozzle with 4-hole tandem multi-orifice is arranged. However, the total amount is about 0.4 kg / min, not only the productivity of the rapid solidification process is very bad, but also causes nozzle clogging. When Φ2.0 or more, the molten metal supply rate per orifice hole is 1500 g / min or more. Since the hot water pool is not formed on the roll, it becomes a droplet (splash) and a rapidly solidified alloy ribbon is not formed, so rapid solidification that can generate an amorphous structure cannot be achieved, so the orifice diameter is Φ0.6 mm or more and Φ2.0 mm Limited to less than. The orifice diameter is preferably Φ0.7 mm or more and less than Φ1.8 mm, and more preferably Φ0.7 mm or more and less than Φ1.5 mm.

前記縦列マルチオリフィスの孔数は、急冷凝固合金の厚みに係り、1孔では平均厚み40μm以上の急冷凝固合金の厚みが得られないため2孔以上が必要となるが、4孔以上では急冷凝固合金の厚みが160μm以上になり、アモルファス組織の生成が可能な急冷凝固速度を達成できないため2孔以上4孔未満に限定する。   The number of holes in the tandem multi-orifice depends on the thickness of the rapidly solidified alloy, and one hole cannot obtain the thickness of the rapidly solidified alloy with an average thickness of 40 μm or more, so two or more holes are required. Since the thickness of the alloy is 160 μm or more and a rapid solidification rate capable of generating an amorphous structure cannot be achieved, the number is limited to 2 or more and less than 4 holes.

前記縦列マルチオリフィスを底部に配した出湯ノズルを介して合金溶湯を冷却ロール表面上へ噴出する際、出湯ノズルと冷却ロール間距離は、生成される急冷凝固合金薄帯の最大厚み160μm(0.16mm)以上に設定しないと出湯ノズル底面と急冷凝固合金薄帯が干渉するため0.16mm以上に限定する。また、出湯ノズルと冷却ロール間距離が20mmを超えると縦列に配した各オリフィスから噴出する溶湯が回転する冷却ロールの巻込み風により揺らぐと共に冷却を受けるため、冷却ロール上に生成する各湯だまりの位置がずれ、平均厚み40μm以上160μm未満の急冷凝固合金薄帯が得られないことから、20mm未満に限定する。好ましくは0.2mm以上10mm未満が良く、さらに好ましくは0.3mm以上5mm未満が良い。   When the molten alloy is ejected onto the surface of the cooling roll through the hot water nozzle provided at the bottom of the multi-orifice, the distance between the hot water nozzle and the cooling roll is 160 μm (0.16 mm). ) If it is not set above, the bottom of the hot water nozzle and the rapidly solidified alloy ribbon will interfere with each other, so it is limited to 0.16mm or more. In addition, when the distance between the hot water nozzle and the cooling roll exceeds 20 mm, the molten metal ejected from each of the orifices arranged in tandem fluctuates and receives cooling by the entrainment wind of the rotating cooling roll. The position is limited to less than 20 mm because a rapidly solidified alloy ribbon having an average thickness of 40 μm or more and less than 160 μm cannot be obtained. The thickness is preferably 0.2 mm or more and less than 10 mm, more preferably 0.3 mm or more and less than 5 mm.

出湯ノズルの低部に縦列で配置されるオリフィスは噴出する合金溶湯の直進性に影響することから、ロール表面に垂直に溶湯が噴射されることで合金溶湯をロール表面の密着性が上がり安定した溶湯急冷凝固状態が維持出来るため、オリフィス長は0.5mm以上30mm未満が良い。オリフィス長は0.5mm未満では、溶湯噴射の直進性が得られず、ロール表面上での急冷凝固が不安定になる。また、オリフィス長が30mm以上では合金溶湯がオリフィスを通過中に凝固しノズル閉塞を引き起こす。オリフィス長は0.7mm以上20mm未満が好ましい。   Since the orifices arranged in tandem at the lower part of the hot water nozzle affect the straightness of the molten alloy that is ejected, the molten metal is injected perpendicularly to the roll surface, and the adhesiveness of the molten alloy is increased and stabilized. Since the molten metal can be maintained in a rapidly solidified state, the orifice length should be 0.5 mm or more and less than 30 mm. If the orifice length is less than 0.5 mm, straightness of molten metal injection cannot be obtained, and rapid solidification on the roll surface becomes unstable. On the other hand, when the orifice length is 30 mm or more, the molten alloy solidifies while passing through the orifice and causes nozzle clogging. The orifice length is preferably 0.7 mm or more and less than 20 mm.

図1の(c)に示す前記縦列マルチオリフィスにおける各オリフィスの間隔Dが0.2mm以下の場合、各オリフィスから噴出される溶湯が冷却ロールに到達する前に接触するため平均厚みが40μm以上160μm未満の急冷凝固合金薄帯が得られない。また、Dを10mm以上にした場合、各オリフィスから溶湯が噴出され冷却ロール表面に形成される湯だまりが重なりあうことが出来ないため平均厚みが40μm以上160μm未満の急冷凝固合金薄帯が得られない。Dは0.5mm以上8mm以下が好ましく、1mm以上6mm未満がさらに好ましい。   When the distance D between the orifices in the tandem multi-orifice shown in (c) of FIG. 1 is 0.2 mm or less, the molten metal ejected from each orifice comes into contact before reaching the cooling roll, and the average thickness is 40 μm or more and less than 160 μm. The rapidly solidified alloy ribbon cannot be obtained. In addition, when D is 10 mm or more, molten metal is ejected from each orifice, and the puddles formed on the surface of the cooling roll cannot overlap, so that a rapidly solidified alloy ribbon with an average thickness of 40 μm or more and less than 160 μm is obtained. Absent. D is preferably 0.5 mm or more and 8 mm or less, and more preferably 1 mm or more and less than 6 mm.

図1の(c)に示すように縦列マルチオリフィスを複数列並べることで出湯レートをさらに増すことが可能となるが、縦列マルチオリフィス同士の列間隔Eを3mm以内の場合、隣接する縦列マルチオリフィスから噴出する溶湯で形成される湯だまりが接触するため3mm以上に限定する。Eは冷却ロールの抜熱性を考慮し5mm以上にすることが好ましく、7mm以上がさらに好ましい。但し、Eが大き過ぎるとより多くの縦列マルチオリフィスを並べることが出来ないため20mm以下であることが好ましく、15mm以下がさらに好ましい。   As shown in FIG. 1 (c), it is possible to further increase the tapping rate by arranging a plurality of column multi-orifices, but if the column interval E between the column multi-orifices is within 3 mm, adjacent column multi-orifices Limit to 3 mm or more because the hot water pool formed by the molten metal spouted from E is preferably 5 mm or more, more preferably 7 mm or more in consideration of the heat removal property of the cooling roll. However, if E is too large, a larger number of tandem multi-orifices cannot be arranged, so that it is preferably 20 mm or less, and more preferably 15 mm or less.

冷却ロールの表面に供給される合金溶湯は、冷却ロールによって冷却された後、冷却口−ルの表面から離れ、薄帯状の急冷凝固合金が形成される。   After the molten alloy supplied to the surface of the cooling roll is cooled by the cooling roll, the alloy melt is separated from the surface of the cooling port, and a ribbon-like rapidly solidified alloy is formed.

本発明において非常に酸化し易い希土類元素を含む鉄基硼素系の急冷凝固合金の場合、合金溶解時、並びに合金溶湯の急冷凝固の際、合金溶湯の酸化を防ぐことが重要であるため、例えば、図1に示す急冷装置を用いて急冷凝固合金を製造する。   In the present invention, in the case of an iron-based boron-based rapidly solidified alloy containing a rare earth element that is very easily oxidized, it is important to prevent oxidation of the molten alloy during melting of the alloy and during rapid solidification of the molten alloy. A rapidly solidified alloy is produced using the quenching apparatus shown in FIG.

合金溶湯の酸化を防ぐためには、図1に示す急冷装置内を20Pa以下、好ましくは10Pa以下、さらに好ましくは1Pa以下まで真空排気した後、不活性ガスを絶対圧10kPa〜101.3kPaまで導入し、急冷装置内の酸素濃度を500ppm以下、好ましくは200ppm以下、さらに好ましくは100ppm以下にした上、急冷凝固合金の作製工程を実施する必要がある。不活性ガスとしては、ヘリウムまたはアルゴン等の希ガスや窒素を用いることができるが、窒素は希土類元素並びに鉄と比較的に反応しやすいため、ヘリウムまたはアルゴンなどの希ガスを用いることが好ましい。   In order to prevent oxidation of the molten alloy, the quenching apparatus shown in FIG. 1 is evacuated to 20 Pa or less, preferably 10 Pa or less, more preferably 1 Pa or less, and then an inert gas is introduced to an absolute pressure of 10 kPa to 101.3 kPa. It is necessary to set the oxygen concentration in the rapid cooling apparatus to 500 ppm or less, preferably 200 ppm or less, and more preferably 100 ppm or less, and then perform a process for producing a rapidly solidified alloy. As the inert gas, a rare gas such as helium or argon or nitrogen can be used. However, since nitrogen relatively easily reacts with rare earth elements and iron, it is preferable to use a rare gas such as helium or argon.

図1の装置は、真空または不活性ガス雰囲気を保持し、その圧力を調整することが可能な原料合金の溶解室1および急冷室2を備えている。図1(a)は全体構成図であり、図1(b)は急冷凝固が行われる部分の拡大図である。   The apparatus shown in FIG. 1 includes a melting chamber 1 and a quenching chamber 2 for a raw material alloy that can maintain a vacuum or an inert gas atmosphere and adjust the pressure. FIG. 1A is an overall configuration diagram, and FIG. 1B is an enlarged view of a portion where rapid solidification is performed.

図1(a)に示されるように、溶解室1は所望の合金組成になるように配合した原料20を高温にて溶解する溶解炉3と、底部に出湯ノズル5を配する貯湯容器4と、大気の進入を抑制しつつ配合原料を溶解炉3内に供給するための配合原料供給装置8を備えている。貯湯容器4は原料合金の溶湯21を貯えている。急冷室2は、出湯ノズル5から出た溶湯21を急冷凝固するための回転冷却ロール7を備えている。   As shown in FIG. 1 (a), the melting chamber 1 has a melting furnace 3 for melting a raw material 20 blended so as to have a desired alloy composition at a high temperature, and a hot water storage container 4 having a hot water discharge nozzle 5 at the bottom. A blended material supply device 8 is provided for feeding the blended material into the melting furnace 3 while suppressing the entry of air. The hot water storage container 4 stores a molten alloy 21 of a raw material alloy. The quenching chamber 2 includes a rotary cooling roll 7 for rapidly cooling and solidifying the molten metal 21 discharged from the hot water nozzle 5.

この装置においては、溶解室1および急冷室2内の雰囲気およびその圧力が所定の範囲に制御される。そのために、雰囲気ガス供給口lb、2b、および8bとガス排気口la、2a.および8aとが装置の適切な箇所に設けられている。   In this apparatus, the atmosphere in the melting chamber 1 and the quenching chamber 2 and the pressure thereof are controlled within a predetermined range. Therefore, the atmospheric gas supply ports lb, 2b and 8b and the gas exhaust ports la, 2a. And 8a are provided at appropriate places in the apparatus.

溶解炉3は傾動可能であり、ロート6を介して溶湯21を貯湯容器4内に適宜、注ぎ込む。溶湯21は貯湯容器4内において不図示の加熱装置によって加熱される。貯湯容器4の出湯ノズル5は、溶解室1と急冷室2との隔壁に配置され、貯湯容器4内の溶湯21を下方に位置する冷却ロール7の表面に噴出させる。   The melting furnace 3 can be tilted, and the molten metal 21 is appropriately poured into the hot water storage container 4 through the funnel 6. The molten metal 21 is heated in the hot water storage container 4 by a heating device (not shown). The hot water discharge nozzle 5 of the hot water storage container 4 is disposed in the partition wall between the melting chamber 1 and the quenching chamber 2 and ejects the molten metal 21 in the hot water storage container 4 onto the surface of the cooling roll 7 positioned below.

冷却ロール7は、好ましい実施形態において前記鉄基硼素系合金を作製するにあたり前記冷却ロールの素材には熱伝導性や耐久性に優れる銅または銅を主成分とする合金、MoまたはMoを主成分とする合金製、あるいは、WまたはWを主成分とする合金を用いる。さらにロール表面の算術平均粗さRaを1nm以上10μm未満とすることで前記湯だまりとロール表面の密着性が向上し、冷却ロールによる溶湯急冷能力が増すことから好ましい。Raは1nm以上1μm未満とすることが好ましく、1nm以上700nm未満とすることがさらに好ましい。   In a preferred embodiment, the cooling roll 7 has a copper or copper-based alloy, Mo or Mo as a main component, which is excellent in thermal conductivity and durability, as a material of the cooling roll in producing the iron-based boron-based alloy. Or an alloy mainly composed of W or W is used. Furthermore, it is preferable that the arithmetic average roughness Ra of the roll surface is 1 nm or more and less than 10 μm, because the adhesion between the hot water pool and the roll surface is improved, and the molten metal quenching ability by the cooling roll is increased. Ra is preferably 1 nm or more and less than 1 μm, and more preferably 1 nm or more and less than 700 nm.

冷却ロール7の直径は例えばΦ200mm〜Φ1000mmであり、冷却ロール7を水冷する場合、冷却ロール内に設けた水冷装置の水冷能力を単位時間あたりの凝固潜熱と出湯量とに応じて算出され適宜調節される。   The diameter of the cooling roll 7 is, for example, Φ200 mm to Φ1000 mm. When the cooling roll 7 is water-cooled, the water-cooling capacity of the water-cooling device provided in the cooling roll is calculated according to the solidification latent heat per unit time and the amount of hot water to be adjusted appropriately. Is done.

[急冷工程]
先ず、前述の組成式で表現される原料合金の溶湯21を作製し、図1の溶解室1の貯湯容器4に貯える。次に、この溶湯21は出湯ノズル5から不活性ガス雰囲気中にて回転する冷却ロール7上に底部にオリフィスを配した出湯ノズルより噴出された後、前期合金溶湯は冷却ロールとの接触によって急冷され凝固する。
[Rapid cooling process]
First, a raw material alloy melt 21 expressed by the above-described composition formula is prepared and stored in the hot water storage container 4 of the melting chamber 1 of FIG. Next, after the molten metal 21 is ejected from a hot water nozzle having an orifice at the bottom on a cooling roll 7 rotating in an inert gas atmosphere from the hot water nozzle 5, the molten alloy is rapidly cooled by contact with the cooling roll. And then solidify.

図1に示すような溶湯急冷凝固法として単ロール急冷法を採用する場合、合金溶湯の冷却速度は、冷却ロールのロール表面速度や、ロール表面へ供給される単位時間当たりの出湯レートによって制御することが可能である。また、冷却ロールの温度が水冷によって調整され得る構造を有している場合、合金溶湯の冷却速度は、冷却ロール中を流れる冷却水の流量によっても制御可能である。このため、必要に応じてロール表面速度、出湯量および冷却水流量の何れか少なくとも1つを調節することにより、合金溶湯の急冷凝固速度を制御することが可能である。   When the single roll quenching method is employed as the molten metal rapid solidification method as shown in FIG. 1, the cooling rate of the molten alloy is controlled by the roll surface speed of the cooling roll and the rate of hot water supplied per unit time supplied to the roll surface. It is possible. Moreover, when it has the structure where the temperature of a cooling roll can be adjusted with water cooling, the cooling rate of a molten alloy is controllable also with the flow volume of the cooling water which flows in a cooling roll. For this reason, it is possible to control the rapid solidification rate of the molten alloy by adjusting at least one of the roll surface speed, the amount of hot water and the flow rate of cooling water as required.

本発明にて採用している単ロール溶湯急冷凝固法では、溶湯急冷凝固速度の可変がロール表面速度により容易に変更可能であり、例えばロール表面速度10m/secでは5×10-4℃/sec前後の急冷凝固速度が得られ、50m/secでは10-5℃/sec後半から10-6℃/sec以上の急冷凝固速度に到達可能である。前期の銅または銅を主成分とする合金、MoまたはMoを主成分とする合金製、あるいは、WまたはWを主成分とする合金のいずれかを主原料とする冷却ロールのロール表面速度は10m/sec以上100m/sec未満が良い。10m/sec以下では溶湯急冷凝固速度が遅く粗大な結晶粒からなる急冷合金組織となり良好な軟磁気特性並びに硬磁気特性を得られない。また、100m/sec以上では高速回転による巻込み風によりノズルオリフィスから噴出した合金溶湯が凝固する等の理由によりロール表面に形成される湯だまりがロール表面に密着せず溶湯急冷状態が得られない。好ましいロール表面速度は、12m/sec以上70m/sec未満、さらに好ましいロール表面速度は、14m/sec以上60m/sec未満である。 In the single roll melt rapid solidification method employed in the present invention, the melt rapid solidification rate can be easily changed by the roll surface speed, for example, 5 × 10 −4 ° C./sec at a roll surface speed of 10 m / sec. The rapid solidification rate before and after is obtained, and at 50 m / sec, the rapid solidification rate of 10 −6 ° C / sec or more can be reached from the latter half of 10 −5 ° C / sec. The roll surface speed of the chill roll made of either the copper or copper-based alloy of the previous period, Mo or Mo-based alloy, or W or W-based alloy as the main raw material is 10 m. / sec or more and less than 100m / sec is good. If it is less than 10 m / sec, the rapid solidification rate of the molten metal is slow and a rapidly cooled alloy structure consisting of coarse crystal grains is obtained, and good soft magnetic properties and hard magnetic properties cannot be obtained. In addition, at 100 m / sec or more, the molten metal spouted from the nozzle orifice is solidified due to the entrainment wind caused by high-speed rotation, so that the puddle formed on the roll surface does not adhere to the roll surface and the molten metal cannot be rapidly cooled. . A preferable roll surface speed is 12 m / sec or more and less than 70 m / sec, and a more preferable roll surface speed is 14 m / sec or more and less than 60 m / sec.

合金の溶湯21が冷却ロール7によって冷却される時間は、回転する冷却ロール7の外周表面に合金が接触してから離れるまでの時間に相当し、その間に合金の温度は低下し、過冷却液体状態になる。その後、過冷却状態の合金は冷却ロール7から離れ、不活性ガス雰囲気中を飛行する。合金は薄帯状で飛行している間に雰囲気ガスに熱を奪われる結果、その温度は更に低下する。雰囲気ガスの絶対圧力は、10kPa〜101.3kPa(常圧)の範囲内に設定することが好ましい。
なお、希土類元素を含まない軟磁性鉄基硼素系合金の場合、必ずしも不活性ガス雰囲気である必要はなく、大気中で溶湯凝固急冷を実施しても良い。
The time for which the molten alloy 21 is cooled by the cooling roll 7 corresponds to the time from when the alloy comes into contact with the outer peripheral surface of the rotating cooling roll 7 until it leaves, during which the temperature of the alloy decreases and the supercooling liquid It becomes a state. Thereafter, the supercooled alloy leaves the cooling roll 7 and flies through the inert gas atmosphere. While the alloy is in the form of a ribbon, the temperature is further reduced as a result of the heat being taken away by the atmospheric gas. The absolute pressure of the atmospheric gas is preferably set in the range of 10 kPa to 101.3 kPa (normal pressure).
Note that in the case of a soft magnetic iron-based boron-based alloy containing no rare earth element, it is not always necessary to have an inert gas atmosphere, and the molten metal solidification and quenching may be performed in the atmosphere.

[熱処理]
好ましい実施形態では、鉄基硼素系合金もしくは前記鉄基硼素合金を150℃以上900℃未満の一定温度にて熱処理することにより合金中の歪除去並びに結晶化することが出来る。
歪除去の場合は、アモルファス相の結晶化温度以下である550℃以下が好ましく。500℃以下がより好ましい。また、アモルファス相の結晶化を目的とした場合は、550℃以上900℃未満の温度熱処理することが好ましい。より好ましくは600℃以上800℃以下が良く、さらに好ましくは600℃以上750℃以下が良い。熱処理雰囲気については希土類元素を含む合金組成の場合は真空中もしくは不活性ガス中の熱処理が好ましく、希土類元素含まない合金組成の場合は、大気中での熱処理も許容される。
[Heat treatment]
In a preferred embodiment, the strain in the alloy can be removed and crystallized by heat-treating the iron-based boron-based alloy or the iron-based boron alloy at a constant temperature of 150 ° C. or higher and lower than 900 ° C.
In the case of strain removal, it is preferably 550 ° C. or lower which is lower than the crystallization temperature of the amorphous phase. 500 ° C. or lower is more preferable. For the purpose of crystallization of the amorphous phase, it is preferable to perform a heat treatment at a temperature of 550 ° C. or higher and lower than 900 ° C. More preferably, it is 600 ° C. or more and 800 ° C. or less, and further preferably 600 ° C. or more and 750 ° C. or less. Regarding the heat treatment atmosphere, heat treatment in a vacuum or an inert gas is preferable in the case of an alloy composition containing a rare earth element, and heat treatment in the atmosphere is also allowed in the case of an alloy composition not containing a rare earth element.

[粉砕]
本発明の鉄基硼素系合金を平均粉末粒径が20μm以上200μm未満に粉砕したタップ密度4.0g/cm3以上である成形性に優れた鉄基硼素系合金粉末が得られるが、射出成形用途に適用する場合は、平均粒度が100μm以下になるように粉砕することが好ましく、より好ましい粉末の平均粉末粒径は20μm以上100μm以下である。また、圧縮成形用途に適用する場合は、粒度が200μm以下になるように粉砕することが好ましく、より好ましい粉末の平均結晶粒径は50μm以上150μm以下である。さらに好ましくは粒径分布に2つのピークを持ち、平均結晶粒径が50μm以上130μm以下である。
[Crushing]
An iron-based boron-based alloy powder excellent in formability having a tap density of 4.0 g / cm 3 or more obtained by grinding the iron-based boron-based alloy of the present invention to an average powder particle size of 20 μm or more and less than 200 μm can be obtained. When applied to the above, it is preferable to grind so that the average particle size is 100 μm or less, and the more preferable average particle size of the powder is 20 μm to 100 μm. In addition, when applied to compression molding applications, it is preferable to grind so that the particle size is 200 μm or less, and the more preferable average crystal grain size of the powder is 50 μm or more and 150 μm or less. More preferably, the particle size distribution has two peaks, and the average crystal particle size is 50 μm or more and 130 μm or less.

なお、粉砕した鉄基硼素系合金粉末の表面にカップリング処理やリン酸処理等の化成処理及びガラス被膜処理などの表面処理を施すことにより、成形方法を問わず成形品における成形性の改善や耐食性、耐熱性の向上、並びに電気絶縁性を高めることが可能である。   The surface of the pulverized iron-based boron-based alloy powder is subjected to a surface treatment such as a coupling treatment or a phosphoric acid treatment, or a glass coating treatment, thereby improving formability in a molded product regardless of the molding method. It is possible to improve corrosion resistance, heat resistance, and electrical insulation.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例)
以下の表1に示す各合金組成となるよう、純度99.5%以上のB、C、Si、Cr、Nb、P、CuおよびFeの各元素を配合した素原料100kgをアルミナ製坩堝へ挿入した後、高周波誘導加熱により溶解、合金溶湯を形成した後、低部に表1に示す縦列マルチオリフィスを配したBN製出湯ノズルが接続されている内径200mm×高さ400mmのアルミナ製貯湯容器へ前記合金溶湯50kgを注いだ。なお、出湯ノズル直下にはΦ600mm×幅200mmの表1に記載の金属にて作製された冷却ロールが配置されている。
(Example)
After inserting 100 kg of raw material containing each element of B, C, Si, Cr, Nb, P, Cu and Fe with a purity of 99.5% or more into each alumina composition shown in Table 1 below into an alumina crucible After melting by high-frequency induction heating, forming an alloy melt, the alloy is transferred to an alumina hot water storage vessel having an inner diameter of 200 mm and a height of 400 mm to which a BN hot water nozzle having a multi-orifice shown in Table 1 is connected at the lower part. 50kg of molten metal was poured. A cooling roll made of the metal shown in Table 1 having a diameter of 600 mm and a width of 200 mm is disposed immediately below the hot water nozzle.

その後、貯湯容器の周囲に設置された高周波加熱用コイルへ通電することで、前記合金溶湯50kgをさらに加熱し、溶湯温度が配合組成合金の融点より50℃以上高温に到達した後、出湯ノズル上部に配したアルミナ製溶湯ストッパーを引き抜き、出湯ノズル底部に配した縦列マルチオリフィスから合金溶湯を表1に記載の出湯ノズル/ロール間距離に設定した位置で同じく表1に記載のロール表面速度にて回転している冷却ロールの表面上へ噴出した。なお、冷却ロールの表面粗度をRaは表1に示される値に調節した。   After that, by energizing the high-frequency heating coil installed around the hot water storage container, the alloy molten metal 50 kg was further heated, and after the molten metal temperature reached 50 ° C. higher than the melting point of the composition alloy, the top of the hot water nozzle At the position where the molten alloy was set to the distance between the outlet nozzle and the roll shown in Table 1 from the multi-orifice arranged in the bottom of the outlet nozzle at the same time as the roll surface speed shown in Table 1 It spouted onto the surface of the rotating cooling roll. The surface roughness Ra of the cooling roll was adjusted to the value shown in Table 1.

前記冷却ロールの表面に接触した前記合金溶湯は冷却ロール表面上にて湯だまりを形成、湯だまりと冷却ロールの界面にて溶湯急冷凝固し、表2に示す平均厚みおよび平均幅を持つ薄帯状の急冷凝固合金を得た。表2に急冷凝固合金の生産効率を表す平均出湯レート並びに縦列マルチオリフィス1列当たりの平均出湯レートを合わせて示す。   The molten alloy in contact with the surface of the cooling roll forms a puddle on the surface of the cooling roll, rapidly solidifies the molten metal at the interface between the puddle and the cooling roll, and has a strip shape having the average thickness and average width shown in Table 2 A rapidly solidified alloy was obtained. Table 2 shows the average tapping rate representing the production efficiency of the rapidly solidified alloy and the average tapping rate per column of multi-orifice.

粉末X線回折による調査の結果、得られた急冷凝固合金は、アモルファス単相組織であることを確認した。図3に代表例として実施例1の粉末X線回折プロファイルを示す。表2に粉末X線回析より評価した急冷凝固合金の構成相を示す。   As a result of investigation by powder X-ray diffraction, it was confirmed that the obtained rapidly solidified alloy had an amorphous single phase structure. FIG. 3 shows a powder X-ray diffraction profile of Example 1 as a representative example. Table 2 shows the constituent phases of the rapidly solidified alloy evaluated by powder X-ray diffraction.

希土類元素を含む合金組成系においては、合金溶湯の酸化を防ぐため、以下の表1に示す各組成を有するように、純度99.5%以上のNd、Pr、B、Ti、Co、Ti、Nb、ZrおよびFeの各元素を配合した素原料200gを10-2Pa以下に真空排気した後、絶対圧80kPaになるようアルゴンガスを導入した上、高周波溶解にて母合金を作製。その後、100mm角程度に破砕した前記母合金100kgをアルミナ製坩堝へ挿入した。 In an alloy composition system containing rare earth elements, Nd, Pr, B, Ti, Co, Ti, Nb, with a purity of 99.5% or more so as to have the compositions shown in Table 1 below in order to prevent oxidation of the molten alloy. After evacuating 200 g of raw material containing each element of Zr and Fe to 10 −2 Pa or less, argon gas was introduced to an absolute pressure of 80 kPa, and a mother alloy was prepared by high frequency melting. Thereafter, 100 kg of the mother alloy crushed to about 100 mm square was inserted into an alumina crucible.

その後、10-2Pa以下に真空排気した後、絶対圧70kPaになるようアルゴンガスを導入した上、高周波加熱を行なうことにより、前記アルミナ製坩堝内の母合金を再溶解し合金溶湯を形成した後、低部に表1に示す縦列マルチオリフィスを配したBN製出湯ノズルが接続されている内径200mm×高さ400mmのアルミナ製貯湯容器へ前記合金溶湯50kgを注いだ。なお、出湯ノズル直下にはΦ600mm×幅200mmの表1に記載の金属にて作製された冷却ロールが配置されている。 Thereafter, after evacuating to 10 −2 Pa or less, argon gas was introduced to an absolute pressure of 70 kPa, and then high frequency heating was performed to remelt the mother alloy in the alumina crucible to form a molten alloy. Thereafter, 50 kg of the molten alloy was poured into an alumina hot water storage vessel having an inner diameter of 200 mm and a height of 400 mm, to which a BN hot water nozzle having a multi-orifice shown in Table 1 arranged in the lower part was connected. A cooling roll made of the metal shown in Table 1 having a diameter of 600 mm and a width of 200 mm is disposed immediately below the hot water nozzle.

その後、絶対圧70kPaのアルゴンガス雰囲気を維持した状態のまま、貯湯容器の周囲に設置された高周波加熱用コイルへ通電することで、前記合金溶湯50kgをさらに加熱し、溶湯温度が配合組成合金の融点より80℃以上高温に到達した後、出湯ノズル上部に配したアルミナ製溶湯ストッパーを引き抜き、出湯ノズル底部に配した縦列マルチオリフィスから合金溶湯を表1に記載の出湯ノズル/ロール間距離に設定した位置で同じく表1に記載のロール表面速度にて回転している冷却ロールの表面上へ噴出した。なお、冷却ロールの表面粗度をRaは表1に示される値に調節した。   Then, while maintaining an argon gas atmosphere with an absolute pressure of 70 kPa, by energizing a high-frequency heating coil installed around the hot water storage container, 50 kg of the molten alloy was further heated. After reaching a temperature higher than 80 ° C above the melting point, pull out the alumina melt stopper placed at the top of the tapping nozzle, and set the molten alloy to the tapping nozzle / roll distance shown in Table 1 from the tandem multi-orifice placed at the bottom of the tapping nozzle. In the same position, it was ejected onto the surface of the cooling roll rotating at the roll surface speed described in Table 1. The surface roughness Ra of the cooling roll was adjusted to the value shown in Table 1.

前記冷却ロールの表面に接触した希土類元素を含む合金溶湯は冷却ロール表面上にて湯だまりを形成、湯だまりと冷却ロールの界面にて溶湯急冷凝固し、表2に示す平均厚みおよび平均幅を持つ薄帯状の急冷凝固合金を得た。表2に急冷凝固合金の生産効率を表す平均出湯レート並びに縦列マルチオリフィス1列当たりの平均出湯レートを合わせて示す。   The molten alloy containing a rare earth element in contact with the surface of the cooling roll forms a puddle on the surface of the cooling roll, rapidly solidifies the molten metal at the interface between the puddle and the cooling roll, and has the average thickness and average width shown in Table 2. A ribbon-like rapidly solidified alloy was obtained. Table 2 shows the average tapping rate representing the production efficiency of the rapidly solidified alloy and the average tapping rate per column of multi-orifice.

粉末X線回折による調査の結果、得られた急冷凝固合金は、アモルファス相とNd2Fe14B型正方晶化合物推定される結晶相が混在した急冷合金組織を有していることを確認した。表2に粉末X線回析より評価した急冷凝固合金の構成相を示す。 As a result of investigation by powder X-ray diffraction, it was confirmed that the obtained rapidly solidified alloy had a quenched alloy structure in which an amorphous phase and a crystal phase presumed to be a Nd 2 Fe 14 B type tetragonal compound were mixed. Table 2 shows the constituent phases of the rapidly solidified alloy evaluated by powder X-ray diffraction.

次いで希土類元素含有組成の実施例については、急冷凝固合金を長さ20mm程度に切断した後、数gをニオブ箔に包んだ後、1Pa以下の真空雰囲気中で結晶化熱処理を行なった。表3に各試料に対する結晶化熱処理条件を示す。   Next, in the examples of the rare earth element-containing composition, the rapidly solidified alloy was cut to a length of about 20 mm, and several g was wrapped in niobium foil, and then subjected to crystallization heat treatment in a vacuum atmosphere of 1 Pa or less. Table 3 shows the crystallization heat treatment conditions for each sample.

結晶化熱処理を行なった後、急冷凝固合金薄帯の結晶相を粉末X線回折にて確認したところ、Nd2Fe14B型正方晶化合物並びにα-Feと推定される結晶相で構成されていた。 After the heat treatment for crystallization, the crystal phase of the rapidly solidified alloy ribbon was confirmed by powder X-ray diffraction, and it was composed of Nd 2 Fe 14 B type tetragonal compound and crystal phase presumed to be α-Fe. It was.

振動式試料磁力計(VSM)を用い、結晶化熱処理後の急冷凝固合金薄帯の室温磁気特性を測定した磁気特性結果を表3に示す。   Table 3 shows the magnetic property results obtained by measuring the room temperature magnetic properties of the rapidly solidified alloy ribbon after the crystallization heat treatment using a vibrating sample magnetometer (VSM).

結晶化熱処理を実施していない希土類レス鉄基硼素系合金と結晶化熱処理を実施した希土類を含む急冷凝固合金を平均粉末粒径75μmになるよう粉砕した後、タップデンサーにて評価したタップ密度を表4に示す。   After pulverizing a rare earth-free iron-based boron-based alloy that has not been subjected to crystallization heat treatment and a rapidly solidified alloy containing rare earth that has been subjected to crystallization heat treatment to an average powder particle size of 75 μm, the tap density evaluated by a tap denser is Table 4 shows.

(比較例)
以下の表1に示す各合金組成となるよう、純度99.5%以上のB、C、Si、Cr、Nb、P、CuおよびFeの各元素を配合した上、実施例と同一方法にて急冷凝固合金を作製した。表1に縦列マルチオリフィスの設定状態、冷却ロール材質、出湯ノズル/ロール間距離、ロール表面速度並びにロール表面粗度Raを示す。
(Comparative example)
After blending each element of B, C, Si, Cr, Nb, P, Cu and Fe with a purity of 99.5% or more so as to have each alloy composition shown in Table 1 below, it is rapidly solidified by the same method as in the examples. An alloy was made. Table 1 shows the setting state of the tandem multi-orifice, the cooling roll material, the hot water nozzle / roller distance, the roll surface speed, and the roll surface roughness Ra.

表2に比較例で得られた急冷凝固合金薄帯の平均厚みおよび平均幅並びに急冷凝固合金の生産効率を表す平均出湯レート並びに縦列マルチオリフィス1列当たりの平均出湯レートを合わせて示す。   Table 2 shows the average thickness and average width of the rapidly solidified alloy ribbon obtained in the comparative example, the average hot water rate representing the production efficiency of the rapidly solidified alloy, and the average hot water rate per one row of multi-orifice.

粉末X線回折による調査の結果、得られた急冷凝固合金は、アモルファス単相もしくはアモルファス相とα-Feが混在する組織であることを確認した。図4に代表例として比較例1の粉末X線回折プロファイルを示す。表2に粉末X線回析より評価した急冷凝固合金の構成相を示す。   As a result of investigation by powder X-ray diffraction, it was confirmed that the obtained rapidly solidified alloy had an amorphous single phase or a structure in which an amorphous phase and α-Fe were mixed. FIG. 4 shows a powder X-ray diffraction profile of Comparative Example 1 as a representative example. Table 2 shows the constituent phases of the rapidly solidified alloy evaluated by powder X-ray diffraction.

希土類元素を含む合金組成系においては、合金溶湯の酸化を防ぐため、以下の表1に示す各組成を有するように、純度99.5%以上のNd、Pr、B、Ti、Co、Ti、Nb、ZrおよびFeの各元素を配合した上、実施例と同一方法にて急冷凝固合金を作製した。表1に縦列マルチオリフィスの設定状態、冷却ロール材質、出湯ノズル/ロール間距離、ロール表面速度並びにロール表面粗度Raを示す。   In an alloy composition system containing rare earth elements, Nd, Pr, B, Ti, Co, Ti, Nb, with a purity of 99.5% or more so as to have the compositions shown in Table 1 below in order to prevent oxidation of the molten alloy. After blending each element of Zr and Fe, a rapidly solidified alloy was produced by the same method as in the examples. Table 1 shows the setting state of the tandem multi-orifice, the cooling roll material, the hot water nozzle / roller distance, the roll surface speed, and the roll surface roughness Ra.

表2に比較例で得られた希土類元素を含む急冷凝固合金薄帯の平均厚みおよび平均幅並びに急冷凝固合金の生産効率を表す平均出湯レート並びに縦列マルチオリフィス1列当たりの平均出湯レートを合わせて示す。   Table 2 shows the average thickness and width of the rapidly solidified alloy ribbons containing rare earth elements obtained in the comparative examples, the average hot water rate indicating the production efficiency of the rapidly solidified alloy, and the average hot water rate per one row of multi-orifice columns. Show.

粉末X線回折による調査の結果、得られた急冷凝固合金は、アモルファス相とNd2Fe14B型正方晶化合物と推定される結晶相が混在した急冷合金組織を有していることを確認した。表2に粉末X線回析より評価した急冷凝固合金の構成相を示す。 As a result of investigation by powder X-ray diffraction, it was confirmed that the obtained rapidly solidified alloy had a quenched alloy structure in which an amorphous phase and a crystal phase presumed to be Nd 2 Fe 14 B type tetragonal compound were mixed. . Table 2 shows the constituent phases of the rapidly solidified alloy evaluated by powder X-ray diffraction.

次いで希土類元素含有組成の比較例については、急冷凝固合金を長さ20mm程度に切断した後、数gをニオブ箔に包んだ後、1Pa以下の真空雰囲気中で結晶化熱処理を行なった。表3に各試料に対する結晶化熱処理条件を示す。   Next, for the comparative example of the rare earth element-containing composition, the rapidly solidified alloy was cut to a length of about 20 mm, and several g was wrapped in niobium foil, and then subjected to crystallization heat treatment in a vacuum atmosphere of 1 Pa or less. Table 3 shows the crystallization heat treatment conditions for each sample.

結晶化熱処理を行なった後、急冷凝固合金薄帯の結晶相を粉末X線回折にて確認したところ、Nd2Fe14B型正方晶化合物並びにα-Feと推定される結晶相で構成されていた。 After the heat treatment for crystallization, the crystal phase of the rapidly solidified alloy ribbon was confirmed by powder X-ray diffraction, and it was composed of Nd 2 Fe 14 B type tetragonal compound and crystal phase presumed to be α-Fe. It was.

振動式試料磁力計(VSM)を用い、結晶化熱処理後の急冷凝固合金薄帯の室温磁気特性を測定した磁気特性結果を表3に示す。   Table 3 shows the magnetic property results obtained by measuring the room temperature magnetic properties of the rapidly solidified alloy ribbon after the crystallization heat treatment using a vibrating sample magnetometer (VSM).

結晶化熱処理を実施していない希土類レス鉄基硼素系合金と結晶化熱処理を実施した希土類を含む急冷凝固合金を平均粉末粒径75μmに粉砕した後、タップデンサーにて評価したタップ密度を表4に示す。   Table 4 shows the tap density evaluated by a tap denser after grinding a rapidly solidified alloy containing a rare earth-free iron-based boron-based alloy that has not been subjected to crystallization heat treatment and a rare earth that has been subjected to crystallization heat treatment to an average powder particle size of 75 μm. Shown in

本発明の鉄基硼素系合金の製造方法は、例えば、圧粉磁心等に用いられる鉄基硼素系軟磁性粉並びに小型DCブラシレスモータ等に用いられる等方性ボンド磁石用鉄基硼素系硬磁性粉へ適用される。   The method for producing an iron-based boron-based alloy of the present invention includes, for example, iron-based boron-based soft magnetic powders for isotropic bonded magnets used for iron-based boron-based soft magnetic powders used in dust cores and small DC brushless motors. Applied to the powder.

本発明の鉄基硼素系合金の製造方法は、磁気性能の低下を招来する合金組成での対策に因ることなく、回転する金属製の冷却ロールにて合金溶湯を急冷する溶湯急冷凝固法にて作製される鉄基硼素系合金において、軟磁性合金並びに硬磁性合金を問わず、溶湯急冷凝固時の平均出湯レートを大幅に向上できることから、高性能でかつ成形性に優れた鉄基硼素系磁性粉を安価に市場へ提供することが可能であり、各種受動素子、モータ、センサ等々の電子部品市場での利用可能性が極めて高い。   The method for producing an iron-based boron-based alloy according to the present invention is a molten metal rapid solidification method in which a molten metal is rapidly cooled with a rotating metal cooling roll without depending on a countermeasure with an alloy composition that causes a decrease in magnetic performance. Iron-based boron-based alloys with high performance and excellent formability, because the average hot water rate during rapid solidification of molten metal can be greatly improved, regardless of whether they are soft magnetic alloys or hard magnetic alloys. It is possible to provide magnetic powder to the market at a low cost, and the applicability in the electronic component market such as various passive elements, motors, sensors, etc. is extremely high.

lb、2b、8b、および9b雰囲気ガス供給口
la、2a、8a、および9aガス排気口
1 溶解室
2 急冷室
3 溶解炉
4 貯湯容器
5 出湯ノズル
6 ロート
7 回転冷却ロール
21 溶湯
22 合金薄帯
23 オリフィス
24 縦列マルチオリフィス
25 冷却ロール回転方向
lb, 2b, 8b, and 9b Atmospheric gas supply ports la, 2a, 8a, and 9a gas exhaust ports 1 Melting chamber 2 Quenching chamber 3 Melting furnace 4 Hot water storage vessel 5 Hot water discharge nozzle 6 Funnel 7 Rotating cooling roll 21 Molten metal 22 Alloy ribbon 23 Orifice 24 Parallel multi-orifice 25 Cooling roll rotation direction

Claims (8)

鉄及び硼素を必須元素とする合金溶湯を用意し、ロール表面速度5m/sec以上100m/secにて回転する金属製の冷却ロール表面上において前記合金溶湯を急冷する急冷凝固合金作製の際、オリフィス径Φ0.6mm以上Φ2.0mm未満の2孔以上4孔未満の複数のオリフィスが前記冷却ロールの回転方向に沿って一直線上に1列以上並んだ縦列マルチオリフィスを底部に配した出湯ノズルを用いて、前記出湯ノズルおよび前記冷却ロール間距離を0.16mm以上20mm未満に設定した上で、前記縦列マルチオリフィス1列からの単位時間当たりの平均出湯レートを0.6g/min以上6kg/minとして前記出湯ノズルから前記冷却ロール表面に前記合金溶湯を噴出することで、平均厚みが40μm以上160μm未満である急冷凝固合金を製造する鉄基硼素系合金の製造方法。   An alloy melt containing iron and boron as essential elements is prepared, and an orifice is used to produce a rapidly solidified alloy that rapidly cools the molten alloy on the surface of a metal cooling roll rotating at a roll surface speed of 5 m / sec to 100 m / sec. Using a tapping nozzle with a multi-orifice arranged at the bottom of a plurality of orifices with a diameter of Φ0.6 mm or more and less than Φ2.0 mm and having two or more holes and less than 4 holes aligned in a line along the rotation direction of the cooling roll. The distance between the hot water nozzle and the cooling roll is set to 0.16 mm or more and less than 20 mm, and the hot water discharge rate is set to 0.6 g / min or more and 6 kg / min as an average hot water rate per unit time from the single row of multi-orifices. An iron-based boron-based alloy manufacturing method for manufacturing a rapidly solidified alloy having an average thickness of 40 μm or more and less than 160 μm by ejecting the molten alloy from a nozzle onto the surface of the cooling roll. 前記合金溶湯の組成が、組成式T loo-x-y-z-n QSiyRE (TはFe、CoおよびNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、QはB、Cからなる群から選択されBを必ず含む1種以上の元素、REは希土類元素、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の元素)で表現され、組成比率x、y、zおよびnが、それぞれ、5≦x<20原子%、0≦y<15原子%、0≦z<16原子%、0≦n<10原子%を満足する請求項1に記載の鉄基硼素系合金の製造方法。 The composition of the molten alloy, the composition formula T loo-x-y-z -n Q x Si y RE z M n (T is at least one element selected from the group consisting of Fe, Co and Ni Transition metal element that always contains Fe, Q is one or more elements selected from the group consisting of B and C, RE is rare earth element, M is rare earth element, M is P, Al, Ti, V, Cr, Mn, Nb , Cu, Zn, Ga, Mo, Ag, Hf, Zr, Ta, W, Pt, Au, and Pb), and the composition ratio x, y, z, and n Of the iron-based boron-based alloy according to claim 1 satisfying 5 ≦ x <20 atomic%, 0 ≦ y <15 atomic%, 0 ≦ z <16 atomic%, and 0 ≦ n <10 atomic%, respectively. Production method. 前記縦列マルチオリフィスにおける各オリフィスの整列方向の間隔Dが0.2mm以上10mm未満である請求項1または2に記載の鉄基硼素系合金の製造方法。   The method for producing an iron-based boron-based alloy according to claim 1 or 2, wherein an interval D in the alignment direction of each orifice in the tandem multi-orifice is 0.2 mm or more and less than 10 mm. 前記縦列マルチオリフィスは、複数列のオリフィスを有しており、隣り合う列同士の間隔Eが3mm以上である請求項1から3のいずれかに記載の鉄基硼素系合金の製造方法。   The method for producing an iron-based boron-based alloy according to any one of claims 1 to 3, wherein the tandem multi-orifice has a plurality of orifices, and an interval E between adjacent rows is 3 mm or more. 前記出湯ノズルから噴出される溶湯の出湯圧力が2kPa以上60kPa未満である請求項1から4のいずれかに記載の鉄基硼素系合金の製造方法。   The method for producing an iron-based boron-based alloy according to any one of claims 1 to 4, wherein a molten metal ejected from the molten metal nozzle has a molten metal pressure of 2 kPa or more and less than 60 kPa. 鉄及び硼素を必須とする鉄基硼素系合金において、組成式T loo-x-y-z-n QSiyRE (TはFe、CoおよびNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、QはB、Cからなる群から選択されBを必ず含む1種以上の元素、REは希土類元素、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、Au及びPbからなる群から選択された1種以上の元素)で表現され、組成比率x、y、zおよびnが、それぞれ、5≦x<10原子%、0≦y<15原子%、3≦z<16原子%、0≦n<10原子%を満足する組成を有する合金溶湯を用意し、ロール表面速度10m/sec以上100m/secにて回転する金属製の冷却ロール表面上において前記合金溶湯を急冷する急冷凝固合金作製の際、オリフィス径Φ0.6mm以上Φ2.0mm未満の2孔以上4孔未満の複数のオリフィスが冷却ロールの回転方向に沿って一直線上に1列以上並んだ縦列マルチオリフィスを底部に配した出湯ノズルを用いて、前記出湯ノズルおよび前記冷却ロール間距離を0.16mm以上20mm未満に設定した上で、前記縦列マルチオリフィス1列からの単位時間当たりの平均出湯レートを0.6g/min以上6kg/minとして前記出湯ノズルから前記冷却ロール表面に前記合金溶湯を噴出することで、RE2Fe14B相を含む結晶相を1体積%以上95体積%未満の範囲で有し残部がアモルファスである平均厚みが40μm以上160μm未満である急冷凝固合金を製造する鉄基硼素系合金の製造方法。 In an iron-based boron-based alloy in which iron and boron are essential, the composition formula T loo-x-yz-n Q x Si y RE z M n (T is at least selected from the group consisting of Fe, Co, and Ni) One element, transition metal element that always contains Fe, Q is one or more elements selected from the group consisting of B and C, RE always contains B, RE is a rare earth element, M is P, Al, Ti, One or more elements selected from the group consisting of V, Cr, Mn, Nb, Cu, Zn, Ga, Mo, Ag, Hf, Zr, Ta, W, Pt, Au, and Pb), and the composition ratio A molten alloy having a composition in which x, y, z, and n satisfy 5 ≦ x <10 atomic%, 0 ≦ y <15 atomic%, 3 ≦ z <16 atomic%, and 0 ≦ n <10 atomic%, respectively. When preparing a rapidly solidified alloy that rapidly cools the molten alloy on the surface of a metal cooling roll rotating at a roll surface speed of 10 m / sec to 100 m / sec, an orifice diameter of Φ0.6 mm or more and less than Φ2.0 mm is prepared. 2 holes or more 4 holes not Using a hot water discharge nozzle with a plurality of full orifices arranged in a line along the rotation direction of the cooling roll in a straight line and a multi-orifice arranged at the bottom, the distance between the hot water discharge nozzle and the cooling roll is 0.16 mm or more and 20 mm By setting the average hot water discharge rate per unit time from the column multi-orifice one row is 0.6 g / min or more and 6 kg / min, and jetting the molten alloy from the hot water nozzle onto the surface of the cooling roll. An iron-based boron-based alloy for producing a rapidly solidified alloy having a crystal phase containing RE 2 Fe 14 B phase in the range of 1% by volume to less than 95% by volume and the balance being amorphous and having an average thickness of 40 μm to less than 160 μm Production method. 前記冷却ロールの素材に銅または銅を主成分とする合金、MoまたはMoを主成分とする合金、あるいは、WまたはWを主成分とする合金のいずれかを用い、さらにロール表面の算術平均粗さRaを1nm以上10μm未満とした請求項1から6のいずれかに記載の鉄基硼素系合金の製造方法。 The cooling roll material is either copper or an alloy containing copper as a main component, Mo or an alloy containing Mo as a main component, or an alloy containing W or W as a main component. The method for producing an iron-based boron-based alloy according to any one of claims 1 to 6, wherein the thickness Ra is 1 nm or more and less than 10 µm. 請求項1から7のいずれかに記載の鉄基硼素系合金の製造方法により製造された鉄基硼素系合金を150℃以上900℃未満の一定温度にて熱処理した後、平均粉末粒径が20μm以上200μm未満に粉砕してタップ密度4.0g/cm3以上とした鉄基硼素系合金粉末。 An iron-based boron-based alloy manufactured by the method for manufacturing an iron-based boron-based alloy according to any one of claims 1 to 7 is heat-treated at a constant temperature of 150 ° C or higher and lower than 900 ° C, and then the average powder particle size is 20 µm. Iron-based boron-based alloy powder pulverized to less than 200 μm to a tap density of 4.0 g / cm 3 or more.
JP2017043478A 2017-03-08 2017-03-08 Manufacturing method of iron-based boron-based alloy Active JP6855053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043478A JP6855053B2 (en) 2017-03-08 2017-03-08 Manufacturing method of iron-based boron-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043478A JP6855053B2 (en) 2017-03-08 2017-03-08 Manufacturing method of iron-based boron-based alloy

Publications (2)

Publication Number Publication Date
JP2018144084A true JP2018144084A (en) 2018-09-20
JP6855053B2 JP6855053B2 (en) 2021-04-07

Family

ID=63589861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043478A Active JP6855053B2 (en) 2017-03-08 2017-03-08 Manufacturing method of iron-based boron-based alloy

Country Status (1)

Country Link
JP (1) JP6855053B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549301A (en) * 2020-04-21 2020-08-18 中国科学院力学研究所 High-entropy alloy composition, high-entropy alloy film, high-entropy alloy target and preparation method of film
WO2021251071A1 (en) * 2020-06-10 2021-12-16 Bizyme有限会社 Magnet alloy, bonded magnet, and methods respectively for manufacturing those products
CN117286431A (en) * 2023-11-21 2023-12-26 国网智能电网研究院有限公司 Iron-based amorphous soft magnetic alloy casting belt and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549301A (en) * 2020-04-21 2020-08-18 中国科学院力学研究所 High-entropy alloy composition, high-entropy alloy film, high-entropy alloy target and preparation method of film
CN111549301B (en) * 2020-04-21 2021-10-08 中国科学院力学研究所 High-entropy alloy composition, high-entropy alloy film, high-entropy alloy target and preparation method of film
WO2021251071A1 (en) * 2020-06-10 2021-12-16 Bizyme有限会社 Magnet alloy, bonded magnet, and methods respectively for manufacturing those products
CN117286431A (en) * 2023-11-21 2023-12-26 国网智能电网研究院有限公司 Iron-based amorphous soft magnetic alloy casting belt and preparation method thereof
CN117286431B (en) * 2023-11-21 2024-03-08 国网智能电网研究院有限公司 Iron-based amorphous soft magnetic alloy casting belt and preparation method thereof

Also Published As

Publication number Publication date
JP6855053B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US6695929B2 (en) Method of making material alloy for iron-based rare earth magnet
EP1446816B1 (en) Nanocomposite magnet
US7208097B2 (en) Iron-based rare earth alloy nanocomposite magnet and method for producing the same
JP2018167298A (en) METHOD FOR PRODUCING Fe-Si-B-BASED NANOCRYSTAL ALLOY
EP2513917B1 (en) Rare earth magnet and manufacturing method therefor
EP1762632B1 (en) Iron-based rare-earth-containing nanocomposite magnet and process for producing the same
CN102821891A (en) Permanent magnet, method for producing same, and motor and power generator each using same
JP6855053B2 (en) Manufacturing method of iron-based boron-based alloy
US20090129966A1 (en) Iron-based rare-earth-containing nanocomposite magnet and process for producing the same
EP1411532B1 (en) R-t-b-c based rare earth magnetic powder and bonded magnet
JP2010182827A (en) Production method of high-coercive force magnet
JP3801456B2 (en) Iron-based rare earth permanent magnet alloy and method for producing the same
CN104114305A (en) R-T-B-Ga-BASED MAGNET MATERIAL ALLOY AND METHOD FOR PRODUCING SAME
US20210062310A1 (en) Alloys, magnetic materials, bonded magnets and methods for producing the same
JP4120253B2 (en) Quenched alloy for nanocomposite magnet and method for producing the same
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JP6855054B2 (en) Method for manufacturing Fe-Si-B-based quenching solidification alloy strip
JP4715245B2 (en) Iron-based rare earth nanocomposite magnet and method for producing the same
JP2003286548A (en) Rapidly cooled alloy for nano-composite magnet and production method therefor
JP3773484B2 (en) Nano composite magnet
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP2003158005A (en) Nanocomposite magnet and its manufacturing method
JP2004263232A5 (en)
JP2000269015A (en) Iron based permanent magnet containing trace of rare earth metal and production thereof
JP2003286547A (en) Rapid cooled alloy for nano-composite magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210310

R150 Certificate of patent or registration of utility model

Ref document number: 6855053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250