JP2004263232A5 - - Google Patents

Download PDF

Info

Publication number
JP2004263232A5
JP2004263232A5 JP2003053516A JP2003053516A JP2004263232A5 JP 2004263232 A5 JP2004263232 A5 JP 2004263232A5 JP 2003053516 A JP2003053516 A JP 2003053516A JP 2003053516 A JP2003053516 A JP 2003053516A JP 2004263232 A5 JP2004263232 A5 JP 2004263232A5
Authority
JP
Japan
Prior art keywords
alloy
atomic
content
permanent magnet
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003053516A
Other languages
Japanese (ja)
Other versions
JP2004263232A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2003053516A priority Critical patent/JP2004263232A/en
Priority claimed from JP2003053516A external-priority patent/JP2004263232A/en
Publication of JP2004263232A publication Critical patent/JP2004263232A/en
Publication of JP2004263232A5 publication Critical patent/JP2004263232A5/ja
Pending legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】 一般式:RFe100−x−y−z−u−wCoCu(但し、RはYを含む少なくとも1種の希土類元素であり、MはNb、Ti、Zr、Hf、V、Mo、Cr、及びMnからなる群から選ばれた少なくとも1種の元素であり、x、y、z、u及びwはそれぞれ原子%であり、3≦x≦11,0≦y≦30,11<z≦20,0.1≦u≦3.0,及び0≦w≦8である。)で表される組成を有し、及びTbCu 型の硬質磁性相を含むことを特徴とする永久磁石合金。
【請求項2】 請求項1に記載の永久磁石合金において、平均厚み50μm超の合金薄帯であり、かつ平均結晶粒径が5nm未満の微結晶及び/または非晶質相を含むことを特徴とする永久磁石合金。
【請求項3】 請求項1または2に記載の永久磁石合金において、窒素を実質的に含まない非酸化性雰囲気中で熱処理した永久磁石合金であって、前記永久磁石合金は硬質磁性相を含み、前記硬質磁性相の平均結晶粒径が5〜80nmであり、室温の保磁力Hcjが200kA/m以上であることを特徴とする永久磁石合金。
【請求項4】 請求項1〜3のいずれかに記載の永久磁石合金において、Rに占めるSmの比率が70原子%以上であることを特徴とする永久磁石合金。
【請求項5】 一般式:RFe100−x−y−z−u−wCoCu(但し、RはYを含む少なくとも1種の希土類元素であり、MはNb、Ti、Zr、Hf、V、Mo、Cr、及びMnからなる群から選ばれた少なくとも1種の元素であり、x、y、z、u及びwはそれぞれ原子%であり、3≦x≦11,0≦y≦30,11<z≦20,0.1≦u≦3.0,及び0≦w≦8である。)で表される組成を有し、及びTbCu 型の硬質磁性相を含む永久磁石合金をバインダーで結着したことを特徴とするボンド磁石。
[Claims]
    1. The general formula: RxFe100-xyzwCoyCuuMwBz(Where R is at least one rare earth element including Y, M is at least one element selected from the group consisting of Nb, Ti, Zr, Hf, V, Mo, Cr, and Mn; x, y, z, u and w are each atomic%, and 3 ≦ x ≦ 11, 0 ≦ y ≦ 30, 11 <z ≦ 20, 0.1 ≦ u ≦ 3.0, and 0 ≦ w ≦ 8It is.)Having the composition, and TbCu 7 Including the hard magnetic phase of the moldA permanent magnet alloy, characterized in that:
    (2) The permanent magnet alloy according to claim 1,Microcrystalline and / or amorphous phase having an average thickness of more than 50 μm and having an average crystal grain size of less than 5 nmIs characterized by includingPermanent magnet alloy.
    3. The method according to claim 1, whereinIn the permanent magnet alloy according to the above,A permanent magnet alloy heat-treated in a non-oxidizing atmosphere substantially free of nitrogen,The permanent magnet alloy includes a hard magnetic phase, the hard magnetic phaseA permanent magnet alloy having an average crystal grain size of 5 to 80 nm and a coercive force Hcj at room temperature of 200 kA / m or more.
    4. The permanent magnet alloy according to claim 1, wherein:At, R is at least 70 atomic%.Characterized byPermanent magnet alloy.
    5. General formula: RxFe100-xyzwCoyCuuMwBz(Where R is at least one rare earth element including Y, M is at least one element selected from the group consisting of Nb, Ti, Zr, Hf, V, Mo, Cr, and Mn; x, y, z, UAnd w are each atomic%, and 3 ≦ x ≦ 11, 0 ≦ y ≦ 30, 11 <z ≦ 20, 0.1 ≦ u ≦ 3.0, and 0 ≦ w ≦ 8.It is.)And TbCu 7 Including the hard magnetic phase of the moldA bonded magnet characterized by binding a permanent magnet alloy with a binder.
 

【0001】
【発明が属する技術分野】
本発明は6方晶系の硬質磁性相を有する、新規で高い磁気特性の希土類−Fe−Cu−B系永久磁石合金、及び前記永久磁石合金をバインダーで結着してなる生産性に富んだ新規で高性能のボンド磁石に関する。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a rare earth-Fe- Cu- B-based permanent magnet alloy having a hexagonal hard magnetic phase and high magnetic properties, and a high productivity obtained by binding the permanent magnet alloy with a binder. New and high performance bonded magnets.

【0006】
【発明が解決しようとする課題】
したがって、本発明が解決しようとする課題は、従来ない新規な組成であり、溶湯を凝固して得られた合金薄帯において優れた非晶質形成能を有する高性能の希土類−Fe−Cu−B系永久磁石合金、及びそれを用いた高性能のボンド磁石を提供することである。
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a non-conventional new composition, high performance having excellent amorphous-forming ability in the alloy ribbon obtained by solidifying the molten metal rare earth -Fe-Cu An object of the present invention is to provide a B-based permanent magnet alloy and a high-performance bonded magnet using the same.

【0007】
【課題を解決するための手段】
上記課題を解決した本発明の永久磁石合金は、一般式:RFe100−x−y−z−u−wCoCu(但し、RはYを含む少なくとも1種の希土類元素であり、MはNb、Ti、Zr、Hf、V、Mo、Cr、及びMnからなる群から選ばれた少なくとも1種の元素であり、x、y、z、u及びwはそれぞれ原子%であり、3≦x≦11,0≦y≦30,11<z≦20,0.1≦u≦3.0,及び0≦w≦8である。)で表される組成を有し、及びTbCu 型の硬質磁性相を含むことを特徴とする。B量とR量の関係は2.5≦B/R≦4であることが好ましい。B/Rが2.5未満、4超どちらであっても磁気特性に影響し良好な永久磁石合金が得られない。前記永久磁石合金は、平均結晶粒径5nm未満の微結晶及び/または非晶質相を含む
[0007]
[Means for Solving the Problems]
Permanent magnetic alloy of the present invention which solves the above problems, the general formula: R x Fe 100-x- y-z-u-w Co y Cu u M w B z ( where, R represents at least one element including Y Is a rare earth element, M is at least one element selected from the group consisting of Nb, Ti, Zr, Hf, V, Mo, Cr, and Mn, and x, y, z, u and w are each an atom a%, has a composition represented by 3 ≦ x ≦ 11,0 ≦ y ≦ 30,11 <z ≦ 20,0.1 ≦ u ≦ 3.0, and a 0 ≦ w ≦ 8.) , And a TbCu 7 type hard magnetic phase . The relationship between the B amount and the R amount is preferably 2.5 ≦ B / R ≦ 4. Regardless of whether B / R is less than 2.5 or more than 4, the magnetic properties are affected and a good permanent magnet alloy cannot be obtained. The permanent magnet alloy includes a microcrystalline and / or amorphous phase having an average crystal grain size of less than 5 nm.

前記本発明の永久磁石合金は、熱処理前の物であれば平均厚み50μm超の合金薄帯を製造しても実質的に非晶質相からなる合金を製造可能である。また、この永久磁石合金を窒素を実質的に含まない非酸化性雰囲気中で熱処理すると、平均結晶粒径が5〜80nmであり、室温の保磁力Hcjが200kA/m以上のものが製造できる。このようにかなり厚くかつ高い磁気特性を有する合金薄帯なのでボンド磁石用の磁粉として適している。特に非晶質形成能に優れており、単ロール法で周速3〜8m程の速度で急冷し、厚さ50μm超、幅0.5〜4mm程の合金薄体であっても実質的に非晶質相となることが本発明に係る最大の利点である。これにより超急冷設備に代わりストリップキャストによる製法を適用できるとともに安定した特性の永久磁石合金が得られる。この合金薄体を125μmアンダー程度に粉砕してボンド磁石用磁粉とすることができる。
The permanent magnet alloy according to the present invention can produce an alloy substantially consisting of an amorphous phase even if an alloy ribbon having an average thickness of more than 50 μm is manufactured as long as it is not heat-treated. When this permanent magnet alloy is heat-treated in a non-oxidizing atmosphere containing substantially no nitrogen, a product having an average crystal grain size of 5 to 80 nm and a coercive force Hcj at room temperature of 200 kA / m or more can be produced. Since the alloy ribbon is quite thick and has high magnetic properties, it is suitable as magnetic powder for bonded magnets. Especially it has excellent amorphous-forming ability, quenched at a rate of about a single roll method the peripheral speed 3 to 8 m, a thickness of 50μm greater, substantially even I alloy thin bodies der of about width 0.5~4mm It is the greatest advantage according to the present invention that an amorphous phase is formed. As a result, a manufacturing method by strip casting can be applied instead of the super-quenching equipment, and a permanent magnet alloy having stable characteristics can be obtained. This alloy thin body can be pulverized to about 125 μm under to obtain magnetic powder for bonded magnets.

本発明のボンド磁石は、一般式:RFe100−x−y−z−u−wCoCu(但し、RはYを含む少なくとも1種の希土類元素であって、MはNb、Ti、Zr、Hf、V、Mo、Cr、及びMnからなる群から選ばれた少なくとも1種の元素であり、x、y、z、u及びwはそれぞれ原子%であり、3≦x≦11,0≦y≦30,11<z≦20,0.1≦u≦3.0,及び0≦w≦8である。)で表される組成を有し、及びTbCu 型の硬質磁性相を含む永久磁石合金をバインダーで結着したことを特徴とする。
Bonded magnet of the present invention have the general formula: R x Fe 100-x- y-z-u-w Co y Cu u M w B z ( where, R represents at least one rare earth element including Y, M is at least one element selected from the group consisting of Nb, Ti, Zr, Hf, V, Mo, Cr, and Mn; x, y, z, u, and w are each atomic%; ≦ x ≦ 11,0 ≦ y ≦ 30,11 <z ≦ 20,0.1 ≦ u ≦ 3.0, and a 0 ≦ w ≦ 8 has a composition expressed in.), and the TbCu 7 Wherein a permanent magnet alloy containing a hard magnetic phase is bound with a binder.

【0010】
【発明の実施の形態】
本発明の永久磁石合金の組成限定理由を以下に説明する。
RはYを含む少なくとも1種の希土類元素である。好ましくはRにSmが必須に含まれ、Sm以外に、Y、La、Ce、Pr、Nd、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選ばれた希土類元素の少なくとも1種を含むことが許容される。Rに占めるSmの比率は70原子%以上とするのがより好ましく、90原子%以上とするのが更に好ましく、Sm以外の不可避的希土類成分を除いてSmとするのが特に好ましい。Rに占めるSm比率が70原子%未満であると磁気特性が大きく低下して実用に供するのが困難になる。
Rの含有量(x)は3≦x≦11であり、好ましくは4≦x≦9であり、より好ましくは5≦x≦8である。xが3未満では硬質磁性相の割合が過少となりHcjは大きく低下する。xが11より大きい場合はFeB,Fe23等の軟磁性相の割合が過少となり磁気特性が大きく低下する。
Feの含有量は60〜85原子%が好ましい。Feの含有量が85原子%超では硬質磁性相が減少しHcjは大きく低下する。
Feの一部をCoで置換するとHcj及び飽和磁束密度が向上し、またキュリー温度が上昇するという効果を得られる。特にCo含有量(y)が20〜25原子%の時に最大磁束密度が向上し好ましい。yの上限値は30原子%とした。yが30原子%超ではHcj及び飽和磁束密度が大きく低下する。即ちCo含有量は0≦y≦30であり、好ましくは1≦y≦28であり、より好ましくは20≦y≦25である。
Cuは本発明に不可欠な元素である。後述の実施例にて示すが、Cuを添加しない組成では殆ど保磁力が得られていない。Cuは熱処理の際に結晶化の発生核になるものと推定される。従来のFeB/NdFeB系交換ナノコンポジット磁石においてもCuの添加は検討されているが、もともとCuを添加せずとも保磁力が発生すること、また添加した場合でも高々0.04MA/m程度の保磁力向上しか効果がない。このことからもCuの役割は本発明の組成において従来組成のCuの添加効果と全く異なっているといえる。Cu含有量(u)が0.1〜3.0原子%以外だとHcj及びBrが低下する。
MはNb、Ti、Zr、V、Hf、Mo、Cr及びMnからなる群から選ばれた少なくとも1種の元素である。M元素は溶湯急冷時の非晶質相形成能を高め、また熱処理時において析出した硬質磁性相の微細化に寄与する。実用性の観点からHcjを極力高める必要があり、M元素の含有量(w)は0≦w≦8であり、好ましくは0.5≦w≦6であり、より好ましくは2≦w≦5にするのがよい。wが8原子%超ではBr、(BH)maxが大きく低下する。
M元素の一部をGa、Ta、W、Sb、In及びBiからなる群から選ばれた少なくとも1種の元素で0原子%超2原子%以下置換すると耐食性あるいは機械的性質が向上する場合がある。
Bを所定量含有するとき非晶質形成能が顕著に高くなるので本発明の永久磁石合金においてBは必須元素である。B含有量(z)が11原子%以下だと液体急冷法(単ロール法)を適用した場合冷却ロール(銅合金製)の周速をストリップキャストによる製造に適用可能な数m/sにすることができず、急冷後の合金薄帯の非晶質形成能が不十分になる。したがってB含有量は11z≦20であり、12≦z≦19とするのが好ましく、14≦z≦18とするのがより好ましい。
B/Rは平均結晶粒径5nm未満の微結晶及び/または非晶質相、並びに硬質磁性相の存在のしやすさを示すパラメータである。B/Rは2.5超〜4であり、2.8〜3.3とするのが更に好ましい。B/Rが2.5未満及び4超ではいずれも室温のHcjが低下し実用性に乏しい。
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting the composition of the permanent magnet alloy of the present invention will be described below.
R is at least one rare earth element including Y. Preferably, R contains Sm indispensably, and in addition to Sm, a rare earth element selected from the group consisting of Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. It is permissible to include at least one of the elements. The ratio of Sm in R is more preferably 70 atomic% or more, further preferably 90 atomic% or more, and particularly preferably Sm excluding unavoidable rare earth components other than Sm. If the ratio of Sm to R is less than 70 atomic%, the magnetic properties are greatly reduced, and it is difficult to put the alloy into practical use.
The content (x) of R is 3 ≦ x ≦ 11, preferably 4 ≦ x ≦ 9, and more preferably 5 ≦ x ≦ 8. When x is less than 3, the ratio of the hard magnetic phase is too small , and Hcj is greatly reduced. When x is larger than 11, the ratio of the soft magnetic phase such as Fe 3 B and Fe 23 B 6 becomes too small , and the magnetic properties are greatly reduced.
The content of Fe is preferably from 60 to 85 atomic%. If the Fe content exceeds 85 atomic%, the hard magnetic phase decreases, and Hcj decreases significantly.
When a part of Fe is replaced with Co, Hcj and saturation magnetic flux density are improved, and the Curie temperature is increased. In particular, when the Co content (y) is 20 to 25 atomic% , the maximum magnetic flux density is improved, which is preferable. The upper limit of y was 30 atomic%. If y exceeds 30 atomic%, Hcj and the saturation magnetic flux density are greatly reduced. That is, the Co content is 0 ≦ y ≦ 30, preferably 1 ≦ y ≦ 28, and more preferably 20 ≦ y ≦ 25.
Cu is an indispensable element in the present invention. As will be shown in the examples described later, almost no coercive force was obtained with a composition to which Cu was not added. It is presumed that Cu becomes a nucleus of crystallization during heat treatment. Although the addition of Cu has been studied in conventional Fe 3 B / NdFeB exchanged nanocomposite magnets, coercive force is generated without adding Cu, and even when Cu is added, it is at most about 0.04 MA / m. Only the improvement of the coercive force is effective. From this, it can be said that the role of Cu in the composition of the present invention is completely different from the effect of adding Cu of the conventional composition. If the Cu content (u) is other than 0.1 to 3.0 atomic%, Hcj and Br decrease.
M is at least one element selected from the group consisting of Nb, Ti, Zr, V, Hf, Mo , Cr and Mn. The M element enhances the ability to form an amorphous phase during quenching of the molten metal, and contributes to miniaturization of a hard magnetic phase precipitated during heat treatment. From the viewpoint of practicality, it is necessary to increase Hcj as much as possible. The content (w) of the M element is 0 ≦ w ≦ 8, preferably 0.5 ≦ w ≦ 6, and more preferably 2 ≦ w ≦ 5. It is better to If w exceeds 8 atomic%, Br and (BH) max are greatly reduced.
When a part of the M element is replaced with at least one element selected from the group consisting of Ga, Ta, W, Sb, In and Bi in an amount of more than 0 atomic% and 2 atomic% or less, corrosion resistance or mechanical properties may be improved. is there.
When a predetermined amount of B is contained, the ability to form an amorphous phase is remarkably increased, so that B is an essential element in the permanent magnet alloy of the present invention. When the B content (z) is 11 atomic% or less , when the liquid quenching method (single roll method) is applied, the peripheral speed of the cooling roll (made of copper alloy) is set to several m / s applicable to the production by strip casting. In this case, the ability of the alloy ribbon after quenching to form an amorphous phase becomes insufficient. Therefore, the B content is 11 < z ≦ 20, preferably 12 ≦ z ≦ 19, and more preferably 14 ≦ z ≦ 18.
B / R is a parameter indicating the ease of existence of a microcrystalline and / or amorphous phase having an average crystal grain size of less than 5 nm and a hard magnetic phase. B / R is more than 2.5 to 4, more preferably 2.8 to 3.3. When B / R is less than 2.5 or more than 4, Hcj at room temperature decreases and the practicality is poor.

Al、Siはるつぼからの混入が避けられない元素である。アルミナ(Al)るつぼ、あるいは石英(SiO)るつぼを用いた場合、溶湯中のR成分がるつぼを構成するAlまたはSiを還元する。その結果AlまたはSiが溶湯に混入し、もって最終的に得られる合金薄帯に混入する。従ってAi、Siの混入による影響を明らかにすることは工業生産上重要である。本発明の永久磁石合金において、Al及び/またはSi含有量は0原子%超2原子%以下であり、0.1〜1.5原子%とするのが好ましい。Al及び/またはSi含有量が2原子%超ではHcjが顕著に低下し、混入量を0とするのは工業生産上困難である。
本発明の永久磁石合金においてはAl、Si以外にC、O、P、S、H及びN等の不可避的不純物元素の混入はある程度許容できるが、混入量はこれら不純物元素の合計含有量で2原子%以下(0を含まず)に抑えるのが好ましい。
Al and Si are elements that cannot be avoided from the crucible. When an alumina (Al 2 O 3 ) crucible or a quartz (SiO 2 ) crucible is used, the R component in the molten metal reduces Al or Si constituting the crucible. As a result, Al or Si is mixed into the molten metal, and thus mixed into the finally obtained alloy ribbon. Therefore, it is important for industrial production to clarify the influence of the mixture of Ai and Si. In the permanent magnet alloy of the present invention, the Al and / or Si content is more than 0 atomic% and 2 atomic% or less, and preferably 0.1 to 1.5 atomic%. When the content of Al and / or Si exceeds 2 atomic%, Hcj is remarkably reduced, and it is difficult for industrial production to reduce the mixing amount to zero.
In permanent magnet alloys of the present invention Al, C in addition to Si, O, P, S, although mixing of unavoidable impurity elements such as H and N can be tolerated to some extent, mixing amount is the total amount of these impurity elements It is preferable to keep the content at 2 atomic% or less (excluding 0).

本発明の永久磁石合金のミクロ組織について以下に説明する。
本発明の永久磁石合金においてTbCu型相、R−Co−B相を有するものや、その他にもFeB,Fe23,RTB型結晶あるいはα−(Fe,Co)結晶が含まれることもある。
本発明の永久磁石合金において存在する非晶質相は軟磁性相である。また硬質磁性相であっても平均結晶粒径が5nm未満になると結晶粒間の交換結合が大きくなるために軟磁性的に振舞うようになる。
実質的に窒素を含まない非酸化性雰囲気中で熱処理した本発明の永久磁石合金における硬質磁性相の平均結晶粒径は5〜80nmであり、8〜40nmとするのが好ましく、10〜20nmとするのが更に好ましい。これら硬質磁性相の平均結晶粒径を5nm未満にするのは事実上困難であり、80nm超ではHcjが大きく低下して実用に供するのが困難になる。硬質磁性相の平均結晶粒径は透過型電子顕微鏡(TEM)により本発明の永久磁石合金の断面組織を観察し、撮影した断面写真から求めることができる。具体的には断面写真の測定対象視野内の硬質磁性相の結晶粒の個数をn個(n=50程度)とし、n個の結晶粒の断面積の総計をsとして結晶粒1個あたりの平均断面積(s/n)を算出する。そして面積が(s/n)の円の直径を平均結晶粒径(D)と定義した。
即ち、数1から算出することができる。
The microstructure of the permanent magnet alloy of the present invention will be described below.
Tb Cu 7 type phase in the permanent magnet alloy of the present invention, and those having R-Co 4 -B phase, Besides Fe 3 B, Fe 23 B 6 , RT 4 B -type crystal or α- (Fe, Co) Crystals may be included.
The amorphous phase present in the permanent magnet alloy of the present invention is a soft magnetic phase. Even when the hard magnetic phase has an average crystal grain size of less than 5 nm, the exchange coupling between the crystal grains becomes large, so that the hard magnetic phase behaves soft magnetically.
The average crystal grain size of the hard magnetic phase in the permanent magnet alloy of the present invention heat-treated in a non-oxidizing atmosphere containing substantially no nitrogen is 5 to 80 nm, preferably 8 to 40 nm, more preferably 10 to 20 nm. More preferably, It is practically difficult to reduce the average crystal grain size of these hard magnetic phases to less than 5 nm, and if it exceeds 80 nm, Hcj is greatly reduced, making it difficult to put to practical use. The average crystal grain size of the hard magnetic phase can be determined from a cross-sectional photograph taken by observing the cross-sectional structure of the permanent magnet alloy of the present invention with a transmission electron microscope (TEM). Specifically, the number of crystal grains of the hard magnetic phase in the visual field to be measured in the cross-sectional photograph is assumed to be n (n = about 50), and the total cross-sectional area of the n crystal grains is assumed to be s. The average cross-sectional area (s / n) is calculated. The diameter of a circle having an area of (s / n) was defined as the average crystal grain size (D).
That is, it can be calculated from Equation 1.

本発明の永久磁石合金の製造条件について以下に説明する。
まずアーク溶解または高周波溶解などにより所定組成のインゴットを製造する。インゴットの溶解工程はSmの蒸発を考慮してアルゴンガス雰囲気で行うのが好ましい。次にインゴットを小片にし、高周波誘導加熱等により溶融する。得られた溶湯の急冷方法としては単ロール法の他に双ロール法、スプラット急冷法、回転ディスク法、またはガスアトマイズ法などがある。特に限定されないが単ロール法が実用性が高い。
単ロール法により溶湯を急冷する場合について以下に説明する。冷却ロール(銅合金製)の周速と溶湯の急冷凝固速度はほぼ比例する。特に限定されないが、冷却ロールの周速は2〜20m/sにするのが好ましく、3〜10m/sにするのがより好ましい。即ち、TbCu型Sm−Fe−N系窒化磁石材料用の急冷薄帯を単ロール法により製造する場合に比べて遅い液体急冷速度で十分であり工業生産性に優れている。これは本発明の永久磁石合金が高いB含有量、及び必要に応じて相応のM元素を含有するので急冷薄帯が非晶質化されやすいことによる。通常冷却ロールの周速が20m/s超では急冷薄帯の厚みが30μm未満になり、次いで熱処理し、粉砕して得られるボンド磁石用磁粉の圧縮性が悪くなるので、この磁粉を用いて製造されるボンド磁石は密度が低くなり、(BH)maxが低下する。本発明の永久磁石合金は非晶質形成能が高いため冷却ロールの周速を6m/s以下として100μm超の厚さの薄帯としても磁気特性に優れた急冷薄帯を得ることが可能である。
The manufacturing conditions of the permanent magnet alloy of the present invention will be described below.
First, an ingot having a predetermined composition is manufactured by arc melting or high frequency melting. The ingot melting step is preferably performed in an argon gas atmosphere in consideration of evaporation of Sm. Next, the ingot is cut into small pieces and melted by high-frequency induction heating or the like. As a method of quenching the obtained molten metal, there are a twin-roll method, a splat quenching method, a rotating disk method, a gas atomizing method and the like in addition to a single-roll method. Although not particularly limited, the single roll method is highly practical.
The case where the molten metal is rapidly cooled by the single roll method will be described below. The peripheral speed of the cooling roll (made of copper alloy) and the rapid solidification speed of the molten metal are almost proportional. Although not particularly limited, the peripheral speed of the cooling roll is preferably 2 to 20 m / s, and more preferably 3 to 10 m / s. That is, a slower liquid quenching rate is sufficient as compared with a case where a quenched ribbon for a TbCu 7- type Sm-Fe-N-based nitrided magnet material is manufactured by a single roll method, which is excellent in industrial productivity. This is because the permanent magnet alloy of the present invention contains a high B content and, if necessary, an appropriate M element, so that the quenched ribbon tends to be made amorphous. Usually it becomes less than 30μm thickness of the melt spun ribbon peripheral speed of the cooling roll at 20 m / s greater, then heat-treated, since the compressibility of the powder for bonded magnets obtained by pulverizing is deteriorated, manufactured using this magnet powder The resulting bonded magnet has a lower density and a lower (BH) max. Since the permanent magnet alloy of the present invention has a high amorphous forming ability, it is possible to obtain a quenched ribbon excellent in magnetic properties even when the peripheral speed of the cooling roll is 6 m / s or less and the ribbon has a thickness of more than 100 μm. is there.

【0018】
【実施例】
以下、実施例により本発明を詳細に説明するが、それら実施例により本発明が限定されるものではない。
[0018]
【Example】
The present invention will hereinafter be described in detail by way of Examples, but the present invention is not limited by these examples.

(実施例1)
M=Nbとし、B含有量と磁気特性の関係を調べた。サマリウムメタル片、電解鉄片、コバルトメタル片、銅片、ニオブメタル片、及びクリスタルボロン片をそれぞれ所定量秤量し、これらをアルゴンガス減圧雰囲気中でアーク溶解してB及びCo含有量の異なる複数のボタン状インゴットを作製した。但し、Smは溶解時の蒸散が激しいため5質量%増しで秤量し、かつアーク溶解工程では均質化を図るために1回の溶解・凝固毎に裏返し、合計4回の溶解・凝固を行った。次にこれらのインゴットを解砕して得られた解砕片のうち所定組成の8.5gを石英管ノズル(直径1cm、ノズル径0.8mm)に入れた。次に単ロール型液体急冷装置(日新技研(株)製、型式:NEV−A1型)にセットし、石英管ノズルと冷却ロール(銅合金製、直径20cm)のギャップを0.2mmに調整した。次にチャンバー内をアルゴンガス減圧雰囲気(30kPa)とし、石英管中のインゴット片を高周波溶解して溶湯にした。次にアルゴンガス圧力105kPaを溶湯に印加して周速8m/sで回転する冷却ロール上に噴出圧1.05×10Pa溶湯を噴出させ、幅1〜2mm、平均厚さ81μmの合金薄帯を作製した。得られた急冷後の合金薄帯の組成はICP分析の結果、Sm5.5FebalCo20Cu0.5Nb(x=15.5〜20.0原子%)の組成式で表されるのがわかった。
次にこれらの合金薄帯を2cm程度の長さに切断した後、ニオブ箔及びSUS箔で包み、次いでアルゴンガス雰囲気の管状炉に入炉して熱処理を行った。熱処理の加熱条件は640℃×10分と、660℃×10分の2条件とした。熱処理後の合金薄帯を6mmの長さに切断して得られた合金薄帯片4〜5本(約10mg)を粘着シート上に縦4mm×横6mmの大きさに並べて試料にした。次に試料を振動試料型磁力計(東英工業(株)製、型式:VSM−5)にセットし、室温(20℃)で着磁磁場1.6MA/mを印加して磁気特性を測定した。また熱処理後の合金薄帯の密度をガス置換式密度計((株)島津製作所製、型式:Accupyc1330)により測定した。図1にB含有量と室温のHcj、Br及び(BH)maxの関係を示す。
図1の結果からSm5.5FebalCo20Cu0.5Nb0.5(x=15.5〜20.0原子%)の組成式で表される合金薄帯はB含有量(x)が15.5〜20.0原子%のときに200kA/m以上のHcjを得られ、B含有量が16.5原子%以上のときに300kA/m以上のHcjを得られるのがわかった。B量が17原子%より多くなると(BH)maxが126kJ/m を最大として下がっていく。よってこの組成での最も好ましいB量の範囲は16.5〜18原子%であることがわかった。熱処理温度の違いを見ると640℃の方が高い飽和磁束密度、最大エネルギー積が得られている。
(Example 1)
With M = Nb, the relationship between the B content and the magnetic properties was examined. A samarium metal piece, an electrolytic iron piece, a cobalt metal piece, a copper piece, a niobium metal piece, and a crystal boron piece are each weighed to a predetermined amount, and are arc-melted in an argon gas reduced-pressure atmosphere to form a plurality of buttons having different B and Co contents. An ingot was prepared. However, Sm was weighed with an increase of 5% by mass due to severe evaporation during melting, and in the arc melting step, it was turned upside down every single melting and solidification in order to achieve homogenization, and a total of four melting and solidifying operations were performed. . Next, 8.5 g of a predetermined composition among the crushed pieces obtained by crushing these ingots was put into a quartz tube nozzle (diameter 1 cm, nozzle diameter 0.8 mm). Next, it was set in a single-roll type liquid quenching device (Model: NEV-A1 manufactured by Nissin Giken Co., Ltd.), and the gap between the quartz tube nozzle and the cooling roll (made of copper alloy, diameter: 20 cm) was adjusted to 0.2 mm. did. Next, the inside of the chamber was set to an argon gas reduced pressure atmosphere (30 kPa), and the ingot pieces in the quartz tube were melted by high frequency to obtain a molten metal. Then it is ejected molten metal at jetting pressure 1.05 × 10 5 Pa on a cooling roll rotating argon gas pressure 105kPa was applied to the molten metal at a peripheral speed of 8m / s, the width 1 to 2 mm, an average thickness of 81μm alloy A ribbon was made. As a result of ICP analysis, the composition of the obtained alloy ribbon after quenching was represented by a composition formula of Sm 5.5 Fe bal Co 20 Cu 0.5 Nb 3 B x (x = 15.5 to 20.0 atomic%). I found it to be represented.
Next, these alloy ribbons were cut into lengths of about 2 cm, wrapped in niobium foil and SUS foil, and then heat-treated by entering a tubular furnace in an argon gas atmosphere. The heating conditions of the heat treatment were 640 ° C. × 10 minutes and 660 ° C. × 10/10. 4 to 5 alloy strips (about 10 mg) obtained by cutting the heat-treated alloy ribbon to a length of 6 mm were arranged on a pressure-sensitive adhesive sheet in a size of 4 mm in length and 6 mm in width to make a sample. Next, the sample was set on a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd., model: VSM-5), and a magnetic field of 1.6 MA / m was applied at room temperature (20 ° C.) to measure magnetic properties. did. Further, the density of the alloy ribbon after the heat treatment was measured by a gas displacement type density meter (manufactured by Shimadzu Corporation, model: Accupyc1330). FIG. 1 shows the relationship between the B content and Hcj, Br and (BH) max at room temperature.
From the results in FIG. 1, the alloy ribbon represented by the composition formula of Sm 5.5 Fe bal Co 20 Cu 0.5 Nb 0.5 B x (x = 15.5 to 20.0 atom%) has a B content of When (x) is 15.5 to 20.0 at%, Hcj of 200 kA / m or more can be obtained, and when B content is 16.5 at% or more, Hcj of 300 kA / m or more can be obtained. all right. When the amount of B exceeds 17 atomic%, (BH) max decreases to 126 kJ / m 3 at the maximum. Therefore, it was found that the most preferable range of the B content in this composition was 16.5 to 18 atomic%. Looking at the difference in the heat treatment temperature, the saturation magnetic flux density and the maximum energy product are higher at 640 ° C.

(実施例2)
B含有量と磁気特性の関係を調べた。Sm、Fe、Co、Cu、Nb、Bを所定量秤量しアーク溶解を行い、B含有量の異なる複数のインゴットを作製した。これらのインゴットの小片を高周波溶解し、次いで溶湯を周速8m/sで回転する単ロール型液体急冷装置の冷却ロール(銅合金製)上に噴出させて幅1〜2mm、平均厚さ80μmの合金薄帯を作製した。急冷後の合金薄帯の組成はICP分析の結果、Sm6.5FebalCo20CuNb(x=17.0〜20.0原子%)の組成式で表されるのがわかった。これらの合金薄帯をアルゴンガス雰囲気の炉に入炉し、660℃で10分の熱処理を施した。熱処理後の合金薄帯に対し、以降は実施例1と同様の処理を施し室温の磁気特性を測定した。図2にこれら合金薄帯のB含有量とHcj、Br及び(BH)maxの関係を示す。図2よりB含有量が17.5〜20.0原子%で600kA/m以上のHcjを得られるのがわかる。但し残留磁束密度、最大エネルギー積はB量の増加とともに低減することがわかる。
(Example 2)
The relationship between the B content and the magnetic properties was examined. A predetermined amount of Sm, Fe, Co, Cu, Nb, and B was weighed and subjected to arc melting to produce a plurality of ingots having different B contents. The small pieces of these ingots are melted by high frequency, and then the molten metal is jetted onto a cooling roll (made of copper alloy) of a single roll type liquid quenching device rotating at a peripheral speed of 8 m / s to have a width of 1-2 mm and an average thickness of 80 μm. An alloy ribbon was produced. As a result of ICP analysis, the composition of the alloy ribbon after quenching is represented by a composition formula of Sm 6.5 Fe bal Co 20 Cu 1 Nb 3 B x (x = 17.0 to 20.0 atomic%). all right. These alloy ribbons were placed in a furnace in an argon gas atmosphere and heat-treated at 660 ° C. for 10 minutes. Thereafter, the same treatment as in Example 1 was performed on the alloy ribbon after the heat treatment, and the magnetic properties at room temperature were measured. FIG. 2 shows the relationship between the B content of these alloy ribbons and Hcj, Br and (BH) max. FIG. 2 shows that Hcj of 600 kA / m or more can be obtained when the B content is 17.5 to 20.0 atomic%. However, it can be seen that the residual magnetic flux density and the maximum energy product decrease as the B amount increases.

(実施例3)
Cu含有量と磁気特性の関係を調査した。Sm、Fe、Co、Cu、及びBを原料として、Cu,B含有量の異なる複数のインゴットを作製した。これらのインゴットの小片を高周波溶解し、次いで溶湯を周速12m/sで回転する単ロール型液体急冷装置の冷却ロール(銅合金製)上に噴出させて幅1〜2mm、平均厚さ50〜60μmの合金薄帯を作製した。急冷後の合金薄帯の組成はICP分析の結果、Sm5.5FebalCo20Cu(x=0〜2原子%、y=15.5〜18.5原子%)で示される組成式で表されるのがわかった。これらの合金薄帯をアルゴンガス雰囲気の炉に入炉し、640℃で10分の熱処理を施した。熱処理後の合金薄帯に対し、以降は実施例1と同様の処理を施し室温の磁気特性を測定した。図3にこれら合金薄帯のCu,B含有量とHcj、Br及び(BH)maxの関係を示す。図3より本発明の組成ではCuが0原子%の無添加であると保磁力が殆ど出ないが、添加量が1.0原子%程度まで増えるに従い急激に保磁力が増大している。無添加のものと比べて10倍近い保磁力となることからCuは本発明に必須の元素であることがわかる。Cuが0.5〜2.0原子%であると200kA/m以上の保磁力が得られた。
(Example 3)
The relationship between Cu content and magnetic properties was investigated. Using Sm, Fe, Co, Cu, and B as raw materials, a plurality of ingots having different Cu and B contents were produced. The small pieces of these ingots are melted by high frequency, and then the molten metal is jetted onto a cooling roll (made of copper alloy) of a single-roll type liquid quenching device rotating at a peripheral speed of 12 m / s to have a width of 1-2 mm and an average thickness of 50-200 mm An alloy ribbon of 60 μm was produced. The composition of the alloy ribbon after quenching results of ICP analysis are shown in Sm 5.5 Fe bal Co 20 Cu x B y (x = 0~2 atomic%, y = 15.5 to 18.5 atom%) It was found to be represented by the composition formula. These alloy ribbons were introduced into a furnace in an argon gas atmosphere, and were subjected to a heat treatment at 640 ° C. for 10 minutes. Thereafter, the same treatment as in Example 1 was performed on the alloy ribbon after the heat treatment, and the magnetic properties at room temperature were measured. FIG. 3 shows the relationship between the Cu and B contents of these alloy ribbons and Hcj, Br and (BH) max. From FIG. 3, in the composition of the present invention, the coercive force hardly appears when Cu is not added at 0 atomic%, but the coercive force increases rapidly as the added amount increases to about 1.0 atomic%. Since the coercive force is nearly ten times as large as that of the non-added one, it is understood that Cu is an essential element in the present invention. When Cu was 0.5 to 2.0 atomic%, a coercive force of 200 kA / m or more was obtained.

(実施例4)
サマリウムメタル片、電解鉄片、コバルトメタル片、銅片、ニオブメタル片、及びクリスタルボロン片をそれぞれ所定量秤量し、これらをアルゴンガス減圧雰囲気中でアーク溶解してCo含有量の異なる2種のボタン状インゴットを作製した。以降は実施例1と同様にして溶湯を急冷してCo含有量の異なる複数の合金薄帯を作製した。得られた急冷後の合金薄帯の組成はICP分析の結果、Sm5.5FebalCo10Cu0.5Nb0.518.5の組成式で表されるもの(試料1)と、Sm5.5FebalCo22.5Cu0.5Nb0.518.5の組成式で表されるもの(試料2)であることがわかった。
次にこれらの合金薄帯を2cm程度の長さに切断した後、ニオブ箔及びSUS箔で包み、次いでアルゴンガス雰囲気の管状炉に入炉して熱処理を行った。熱処理の加熱条件は、660℃×10分とした。熱処理後の合金薄帯を6mmの長さに切断して得られた合金薄帯片4〜5本(約10mg)を粘着シート上に縦4mm×横6mmの大きさに並べて試料にした。次に試料を振動試料型磁力計(東英工業(株)製、型式:VSM−5)にセットし、室温(20℃)で着磁磁場1.6MA/mを印加して磁気特性を測定したところ、試料1はHcjが390kA/m,Brが0.822T,(BH)maxが63.0kJ/m であった。また試料2はHcjが386kA/mと同等であり、かつBrが0.979T,(BH)maxが116.1kJ/m と良好な磁気特性が得られた。
(Example 4)
A samarium metal piece, an electrolytic iron piece, a cobalt metal piece, a copper piece, a niobium metal piece, and a crystal boron piece are each weighed in a predetermined amount, and are arc-melted in an argon gas reduced-pressure atmosphere to form two types of buttons having different Co contents. An ingot was made. Thereafter, the molten metal was rapidly cooled in the same manner as in Example 1 to produce a plurality of alloy ribbons having different Co contents. As a result of ICP analysis, the composition of the obtained alloy ribbon after quenching was represented by a composition formula of Sm 5.5 Fe bal Co 10 Cu 0.5 Nb 0.5 B 18.5 (Sample 1) , Sm 5.5 Fe bal Co 22.5 Cu 0.5 Nb 0.5 B 18.5 (Sample 2).
Next, these alloy ribbons were cut into lengths of about 2 cm, wrapped in niobium foil and SUS foil, and then heat-treated by entering a tubular furnace in an argon gas atmosphere. The heating condition of the heat treatment was 660 ° C. × 10 minutes. 4 to 5 alloy strips (about 10 mg) obtained by cutting the heat-treated alloy ribbon to a length of 6 mm were arranged on a pressure-sensitive adhesive sheet in a size of 4 mm in length and 6 mm in width to make a sample. Next, the sample was set on a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd., model: VSM-5), and a magnetic field of 1.6 MA / m was applied at room temperature (20 ° C.) to measure magnetic properties. As a result, Sample 1 had Hcj of 390 kA / m 3 , Br of 0.822 T, and (BH) max of 63.0 kJ / m 3 . The sample 2 is equivalent to Hcj is 386 kA / m, and Br is 0.979T, (BH) max is good magnetic properties were obtained with 116.1 kJ / m 3.

(実施例5)
Sm含有量と磁気特性の関係を調査した。Sm、Fe、Co、Cu及びBを所定量秤量し、アルゴンガス減圧雰囲気でアーク溶解してSm含有量の異なる2つのインゴットを作製した。2つのインゴットの各小片の配合比率を変化させて単ロール型液体急冷装置の石英管ノズルに装入し、以降は実施例1と同様にして溶湯を急冷してSm含有量の異なる複数の合金薄帯を作製した。ICP分析によりこれらの合金薄帯の組成は、SmFebalCo20Cu18.5(x=5.5,6.0,6.5)で表され、平均厚さは78〜85μmであった。次にアルゴンガス雰囲気で620℃,640℃,660℃と条件を変えて10分の熱処理を施し、以降は実施例1と同様にして室温の磁気特性を測定した。測定結果を図4に示す。
図4から、熱処理条件によって若干異なるがSm含有量が6.0原子%でHcjが最大となる傾向が見られ、Sm含有量が5.5〜6.5原子%の領域で240kA/m超の高いHcjが得られた。ただしSm含有量が多くなるにつれBrと(BH)maxは減少する傾向にあるがこれは熱処理後の結晶の中でFeB型結晶が相対的に少なくなるためと思われる。適宜最適な組成を選択することが重要なのは勿論である。
(Example 5)
The relationship between the Sm content and the magnetic properties was investigated. Sm, Fe, Co, Cu and B weighed in predetermined amounts to prepare a two ingots of different Sm content by arc melting in an argon gas vacuum atmosphere. The mixing ratio of each small piece of the two ingots was changed and charged into a quartz tube nozzle of a single-roll type liquid quenching device. A ribbon was made. The compositions of these alloy thin ribbons by ICP analysis is represented by Sm x Fe bal Co 20 Cu 1 B 18.5 (x = 5.5,6.0,6.5), the average thickness of 78~85μm Met. Next, a heat treatment was performed in an argon gas atmosphere at 620 ° C., 640 ° C. and 660 ° C. for 10 minutes, and the magnetic properties at room temperature were measured in the same manner as in Example 1. FIG. 4 shows the measurement results.
FIG. 4 shows that Hcj tends to be maximum when the Sm content is 6.0 at%, but slightly exceeds 240 kA / m in the region where the Sm content is 5.5 to 6.5 at%, although slightly different depending on the heat treatment conditions. High Hcj was obtained. However, Br and (BH) max tend to decrease as the Sm content increases, which is presumably because Fe 3 B-type crystals relatively decrease in the heat-treated crystals. It is, of course, important to appropriately select the optimum composition.

(実施例6)
Sm、Fe、Co、Cu、Nb、Bを所定量秤量しアーク溶解を行い、B含有量の異なる複数のインゴットを作製した。これらのインゴットの小片を高周波溶解し、次いで溶湯を周速8m/sで回転する単ロール型液体急冷装置の冷却ロール(銅合金製)上に噴出させて幅1〜2mm、平均厚さ80μmの合金薄帯を作製した。この合金薄帯の組成はSmFebalCo20Cu0.5Nb0.518.5(図5(a))(試料3)とSmFebalCo20Cu0.5Nb3.018.5(図5(b))(試料4)である。これらの合金薄帯を2cm程度の長さに切断した後、ニオブ箔及びSUS箔で包み、次いでアルゴンガス雰囲気の管状炉に入炉して熱処理を行った。熱処理の加熱条件は660℃×10分とした。以降は実施例1と同様の方法で測定・評価を行った。また、合金薄帯を乳鉢で粉末とした後、rint2500X線回折装置の試料ホルダーに両面テープで付着させた。X線回折(Cukα線を使用)の結果を図5(a,b)に示す。Nb量が0.5原子%である試料3(図5(a))はHcjが346kA/m,Brが0.958Tとバランス良い特性が得られている。X線回折パタンでは軟磁性相としてFeB型結晶が析出している。またFe23型に相当するピークも観察された。硬質磁性相としてはSmFe型(TbCu型)とSmCo型と見られるピークが現れている。一方Nb量が3.0原子%である試料4(図5(b))ではBrは落ちるもののHcjが690kA/mと高い保磁力が得られている。X線回折パタンではTbCu型結晶が主相となっており、Fe23型とSmCo型、及び構造が不明の結晶に対応する回折ピークが見られた。また、FeB型結晶は全く見られなかった。
(Example 6)
A predetermined amount of Sm, Fe, Co, Cu, Nb, and B was weighed and subjected to arc melting to produce a plurality of ingots having different B contents. The small pieces of these ingots are melted by high frequency, and then the molten metal is jetted onto a cooling roll (made of copper alloy) of a single roll type liquid quenching device rotating at a peripheral speed of 8 m / s to have a width of 1-2 mm and an average thickness of 80 μm. An alloy ribbon was produced. The composition of this alloy ribbon was Sm 6 Fe bal Co 20 Cu 0.5 Nb 0.5 B 18.5 (FIG. 5A) (sample 3) and Sm 6 Fe bal Co 20 Cu 0.5 Nb 3. is 0 B 18.5 (FIG. 5 (b)) (sample 4). After cutting these alloy ribbons to a length of about 2 cm, they were wrapped with niobium foil and SUS foil, and then heat-treated by entering a tubular furnace in an argon gas atmosphere. The heating condition of the heat treatment was 660 ° C. × 10 minutes. Thereafter, measurement and evaluation were performed in the same manner as in Example 1. Further, after the alloy ribbon was made into a powder in a mortar, it was attached to a sample holder of a print 2500 X-ray diffractometer using a double-sided tape. The results of X-ray diffraction (using Cukα rays) are shown in FIGS. Sample 3 having an Nb content of 0.5 atomic% (FIG. 5 (a)) has well-balanced characteristics of Hcj of 346 kA / m and Br of 0.958T. In the X-ray diffraction pattern , Fe 3 B-type crystals are precipitated as a soft magnetic phase. Further, a peak corresponding to Fe 23 B 6 type was also observed. As the hard magnetic phase, peaks appearing as Sm 1 Fe 9 type (TbCu 7 type) and Sm 1 Co 4 B 1 type appear. On the other hand, in sample 4 (FIG. 5 (b)) in which the Nb content is 3.0 at%, Br is reduced but Hcj is as high as 690 kA / m . In the X-ray diffraction pattern , a TbCu 7 type crystal was the main phase, and diffraction peaks corresponding to Fe 23 B 6 type, Sm 1 Co 4 B 1 type, and a crystal whose structure was unknown were found. Further, no Fe 3 B type crystal was observed.

(比較例1)
合金薄帯の組成をNb量を3.0原子%、B量を21.0原子%となるように変えた以外は実施例6と同様にして合金薄帯を製造した。これらの合金薄帯を2cm程度の長さに切断した後、ニオブ箔及びSUS箔で包み、次いでアルゴンガス雰囲気の管状炉に入炉して熱処理を行った。熱処理の加熱条件は640℃×10分とした。以降は実施例6と同様の方法で測定・評価を行った。X線回折パタンを図6に示す。この組成では640℃の熱処理を行なっても合金薄帯中の結晶化が進行せず、非晶質相に対応するハローパタンが現れている。但し熱処理の加熱条件を660℃とした場合、およびNb量を0.5原子%とした場合のどちらにおいてもTbCu型結晶やSmCo型結晶の回折パタンが得られることを確認している。基本的にNb,B量が増加すると結晶化温度が上昇し非晶質相が多くなる傾向であることを確認できた。また、Sm量が少ないとFeB型結晶が多くなり残留磁束密度が高くなる傾向にある。
(Comparative Example 1)
An alloy ribbon was manufactured in the same manner as in Example 6, except that the composition of the alloy ribbon was changed so that the Nb content was 3.0 atomic% and the B content was 21.0 atomic%. After cutting these alloy ribbons to a length of about 2 cm, they were wrapped with niobium foil and SUS foil, and then heat-treated by entering a tubular furnace in an argon gas atmosphere. The heating condition of the heat treatment was 640 ° C. × 10 minutes. Thereafter, measurement and evaluation were performed in the same manner as in Example 6. FIG. 6 shows the X-ray diffraction pattern . With this composition, crystallization in the alloy ribbon does not progress even if heat treatment at 640 ° C. is performed, and a halo pattern corresponding to the amorphous phase appears. However, it was confirmed that a diffraction pattern of a TbCu 7- type crystal or a Sm 1 Co 4 B 1- type crystal was obtained both when the heating condition of the heat treatment was 660 ° C. and when the Nb content was 0.5 atomic%. are doing. Basically, it was confirmed that as the Nb and B contents increased, the crystallization temperature increased and the amorphous phase tended to increase. On the other hand, when the amount of Sm is small, the amount of Fe 3 B type crystal tends to increase and the residual magnetic flux density tends to increase.

(実施例7)
SmFe54.5Co20Cu18.5組成のインゴットを製造し、冷却用銅製単ロールによる合金溶湯の冷却速度と合金薄帯の磁気特性および合金薄帯の厚みとの関係を調べた。ロール周速度を4、6、8m/sと変化させた場合の磁気特性を図7に示す。熱処理は640℃、660℃各10分で行った。660℃以下の熱処理で結晶化させた試料の保磁力はほぼロール周速によらないことが分かる。Brは640℃で行なった方が0.95T以上の高い値が得られた。Hcj、Brのバランスから640℃の熱処理が最適である。また、ロール周速4m/sにおいても100kJ/m以上の(BH)maxが得られている。
また、上記組成のインゴットを用い、ロール周速度を4、6、8m/sの範囲で変化させた場合の薄帯厚みの測定を行った。図8に示す。ロール周速度6m/s以下では100μm以上の厚みを有する薄帯が得られた。さらに4m/sにおける急冷直後の薄帯粉末のX線回折パタンを調べたところ、図9に示す非晶質相に相当するハローパタンを示すことが分かった。このように4m/sにおいても結晶化が見られず、本発明の組成が格別に非晶質形成能が高いことが分かる。また、この合金薄帯のナノ電子回折パタンおよび組織写真を図10に示す。
(Example 7)
An ingot having a composition of Sm 6 Fe 54.5 Co 20 Cu 1 B 18.5 was produced, and the relationship between the cooling rate of the molten alloy by a single roll of copper for cooling, the magnetic properties of the alloy ribbon, and the thickness of the alloy ribbon was investigated. Was. FIG. 7 shows the magnetic characteristics when the roll peripheral speed was changed to 4, 6, and 8 m / s. The heat treatment was performed at 640 ° C. and 660 ° C. for 10 minutes each. It can be seen that the coercive force of the sample crystallized by the heat treatment at 660 ° C. or less does not substantially depend on the peripheral speed of the roll. As for Br, a higher value of 0.95 T or more was obtained when the reaction was performed at 640 ° C. The heat treatment at 640 ° C. is optimal from the balance of Hcj and Br . Further, (BH) max of 100 kJ / m 3 or more was obtained even at a roll peripheral speed of 4 m / s.
In addition, using the ingot of the above composition, the ribbon thickness was measured when the roll peripheral speed was changed in the range of 4, 6, and 8 m / s. As shown in FIG. At a roll peripheral speed of 6 m / s or less, a ribbon having a thickness of 100 μm or more was obtained. Further, when the X-ray diffraction pattern of the ribbon powder immediately after quenching at 4 m / s was examined, it was found that it exhibited a halo pattern corresponding to the amorphous phase shown in FIG. Thus, no crystallization was observed even at 4 m / s, indicating that the composition of the present invention has an exceptionally high amorphous forming ability. FIG. 10 shows a nanoelectron diffraction pattern and a structure photograph of this alloy ribbon.

【0029】
【発明の効果】
本発明によれば、従来にない新規な組成であり、溶湯を凝固して得られた合金薄帯において優れた非晶質形成能を有する高性能の希土類−Fe−Cu−B系永久磁石合金、及びそれを用いた高性能のボンド磁石を提供することができる。
[0029]
【The invention's effect】
According to the present invention, a high-performance rare earth- Fe-Cu-B-based permanent magnet alloy having a novel composition that has never existed before and having excellent amorphous forming ability in an alloy ribbon obtained by solidifying a molten metal. , And a high-performance bonded magnet using the same can be provided.

【図面の簡単な説明】
【図1】
B含有量と磁気特性の関係の一例を示す図である。
【図2】
B含有量と磁気特性の関係の他の例を示す図である。
【図3】
Cu含有量と磁気特性の関係の一例を示す図である。
【図4】
Sm含有量と磁気特性の関係の一例を示す図である。
【図5】
熱処理後の合金薄帯粉末試料のX線回折パタンの一例を示す図である。
【図6】
比較の熱処理後の合金薄帯粉末試料のX線回折パタンを示す図である。
【図7】
冷却ロールの周速と熱処理後の合金薄帯の磁気特性との関係の一例を示す図である。
【図8】
冷却ロールの周速と合金薄帯の平均厚さの関係の一例を示す図である。
【図9】
急冷凝固して得られた合金薄帯試料のX線回折パタンの一例を示す図である。
【図10】
図9での合金薄帯試料のナノ電子回折パタンと組織写真である。

[Brief description of the drawings]
FIG.
It is a figure which shows an example of the relationship between B content and magnetic characteristics.
FIG. 2
It is a figure which shows the other example of the relationship between B content and magnetic characteristics.
FIG. 3
It is a figure which shows an example of the relationship between Cu content and magnetic characteristics.
FIG. 4
It is a figure which shows an example of the relationship between Sm content and magnetic characteristics.
FIG. 5
It is a figure which shows an example of the X-ray diffraction pattern of the alloy ribbon powder sample after heat processing.
FIG. 6
It is a figure which shows the X-ray-diffraction pattern of the alloy ribbon powder sample after heat processing of a comparative example .
FIG. 7
It is a figure which shows an example of the relationship between the peripheral speed of a cooling roll, and the magnetic property of the alloy ribbon after heat processing.
FIG. 8
It is a figure which shows an example of the relationship between the peripheral speed of a cooling roll, and the average thickness of an alloy ribbon.
FIG. 9
It is a figure which shows an example of the X-ray diffraction pattern of the alloy ribbon sample obtained by rapid solidification .
FIG. 10
10 is a nanoelectron diffraction pattern and a structure photograph of the alloy ribbon sample in FIG. 9.

JP2003053516A 2003-02-28 2003-02-28 Permanent magnet alloy and bond magnet Pending JP2004263232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053516A JP2004263232A (en) 2003-02-28 2003-02-28 Permanent magnet alloy and bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053516A JP2004263232A (en) 2003-02-28 2003-02-28 Permanent magnet alloy and bond magnet

Publications (2)

Publication Number Publication Date
JP2004263232A JP2004263232A (en) 2004-09-24
JP2004263232A5 true JP2004263232A5 (en) 2006-04-13

Family

ID=33118093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053516A Pending JP2004263232A (en) 2003-02-28 2003-02-28 Permanent magnet alloy and bond magnet

Country Status (1)

Country Link
JP (1) JP2004263232A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030387A1 (en) * 2009-09-11 2011-03-17 株式会社 東芝 Magnet material, permanent magnet, and motor and electricity generator each utilizing the permanent magnet
JP6613117B2 (en) * 2015-11-24 2019-11-27 住友電気工業株式会社 Rare earth magnet and method for producing rare earth magnet
JP7234082B2 (en) 2019-09-17 2023-03-07 株式会社東芝 Magnetic materials, permanent magnets, rotating electric machines, and vehicles

Similar Documents

Publication Publication Date Title
JP4288687B2 (en) Amorphous alloy composition
Hirosawa et al. Unusual effects of Ti and C additions on structural and magnetic properties of Nd–Fe–B nanocomposite magnets in a B-rich and Nd-poor composition range
US5750044A (en) Magnet and bonded magnet
EP0867897B1 (en) Fe based hard magnetic alloy having super-cooled liquid region
JP3877893B2 (en) High permeability metal glass alloy for high frequency
JP2002030378A (en) Method for producing iron-based permanent magnet alloy by control of crystallization heat generating temperature
JP2010182827A (en) Production method of high-coercive force magnet
WO2003003386A1 (en) R-t-b-c based rare earth magnetic powder and bonded magnet
JP3801456B2 (en) Iron-based rare earth permanent magnet alloy and method for producing the same
JP2018144084A (en) Method for producing ferrous boron-based alloy
JP2898229B2 (en) Magnet, manufacturing method thereof, and bonded magnet
US7022252B2 (en) Permanent magnetic alloy and bonded magnet
JP2007092096A (en) Amorphous magnetic alloy
JP4120253B2 (en) Quenched alloy for nanocomposite magnet and method for producing the same
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JP3712595B2 (en) Alloy ribbon for permanent magnet and sintered permanent magnet
JP2004263232A5 (en)
JP2000003808A (en) Hard magnetic material
JP4320701B2 (en) Permanent magnet alloy and bonded magnet
JPH10312918A (en) Magnet and bonded magnet
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
JP2003286548A (en) Rapidly cooled alloy for nano-composite magnet and production method therefor
JP2004263232A (en) Permanent magnet alloy and bond magnet
JP2002064009A (en) Iron-based rare earth alloy magnet and method of manufacturing the same
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region