WO2013137118A1 - Amorphous alloy thin strip - Google Patents

Amorphous alloy thin strip Download PDF

Info

Publication number
WO2013137118A1
WO2013137118A1 PCT/JP2013/056355 JP2013056355W WO2013137118A1 WO 2013137118 A1 WO2013137118 A1 WO 2013137118A1 JP 2013056355 W JP2013056355 W JP 2013056355W WO 2013137118 A1 WO2013137118 A1 WO 2013137118A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
amount
amorphous alloy
alloy ribbon
ribbon
Prior art date
Application number
PCT/JP2013/056355
Other languages
French (fr)
Japanese (ja)
Inventor
貴幸 茂木
東 大地
板垣 肇
備前 嘉雄
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US14/384,968 priority Critical patent/US20150050510A1/en
Priority to JP2014504831A priority patent/JP6123790B2/en
Priority to CN201380014114.5A priority patent/CN104245993A/en
Priority to DE112013001401.7T priority patent/DE112013001401T8/en
Priority to KR1020207001214A priority patent/KR20200010574A/en
Priority to KR1020147027048A priority patent/KR20140138222A/en
Priority to IN8435DEN2014 priority patent/IN2014DN08435A/en
Publication of WO2013137118A1 publication Critical patent/WO2013137118A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Definitions

  • the present invention relates to an amorphous alloy ribbon.
  • Fe-based amorphous alloy ribbons mainly composed of Fe (iron) (for example, Fe-B-Si-based amorphous alloy ribbons mainly composed of Fe (iron) and further containing B (boron) and Si (silicon) ) Is used as a material such as a magnetic core of a transformer because it has a low iron loss and a high saturation magnetic flux density.
  • Fe-based amorphous alloy ribbon generally has a lower space factor than a grain-oriented electrical steel sheet, and therefore requires a higher space factor. If the space factor is low, a magnetic core with the same inner and outer diameters will also reduce the total magnetic flux and inductance.
  • the manufacturing conditions for example, the surface condition of the cooling roll, etc.
  • the magnetic characteristics such as the magnetic flux density may be deteriorated. Therefore, as a method of improving the space factor of the Fe—B—Si amorphous alloy ribbon, in addition to the adjustment of the manufacturing conditions described above, a method of adjusting the composition of the Fe—B—Si amorphous alloy ribbon itself Can be considered.
  • the space factor of the ribbon is improved by adding C (carbon) to the composition of the Fe—B—Si amorphous alloy ribbon.
  • C carbon
  • the ribbon tends to become brittle. It is also important to maintain a high magnetic flux density in the amorphous alloy ribbon.
  • an object of the present invention is to provide an amorphous alloy ribbon that has an excellent space factor, is suppressed in brittleness (brittleness), and maintains a high magnetic flux density.
  • ⁇ 2> The amorphous alloy ribbon according to ⁇ 1>, wherein the amount of C is 0.3 atomic% to 0.6 atomic%.
  • ⁇ 3> The amorphous alloy ribbon according to ⁇ 1> or ⁇ 2>, wherein the amount of B is 10.0 atomic% to 11.5 atomic%.
  • ⁇ 4> The amorphous alloy ribbon according to any one of ⁇ 1> to ⁇ 3>, wherein the space factor is 88% or more.
  • ⁇ 5> When the total amount of Fe, Si, and B is 100.0 atomic percent, the amount of Fe is 79.0 atomic percent to 80.0 atomic percent, and the amount of Si is 8.5 atomic percent.
  • ⁇ 6> The amorphous alloy ribbon according to any one of ⁇ 1> to ⁇ 5> manufactured by a single roll method.
  • amorphous alloy ribbon that has an excellent space factor, is suppressed in brittleness (brittleness), and maintains a high magnetic flux density.
  • the amorphous alloy ribbon (hereinafter, also simply referred to as “strip”) of the present invention comprises Fe, Si, B, C, and unavoidable impurities, and the total amount of Fe, Si, and B is 100.0 atomic%.
  • the amount of Si is 8.5 atomic% to 9.5 atomic% (that is, 8.5 atomic% to 9.5 atomic%), and the amount of B is 10.0 atomic% to 12 atomic%.
  • the amount of C with respect to the total amount of 100.0 atomic percent is 0.2 atomic percent to 0.6 atomic percent (that is, 0.2 atomic percent to 0.6 atomic percent).
  • the thickness is 10 ⁇ m to 40 ⁇ m (that is, 10 ⁇ m or more and 40 ⁇ m or less), and the width is 100 mm to 300 mm (that is, 100 mm or more and 300 mm or less).
  • Fe—B—Si based amorphous alloy ribbon (hereinafter, also simply referred to as “Fe—B—Si based amorphous alloy ribbon”) containing Fe as a main component and further containing B and Si is obtained.
  • C carbon
  • the amount of Si is relatively large (specifically, the amount of Si is 8.5 when the total amount of Fe, Si, and B is 100.0 atomic%). If too much C is added to the Fe—B—Si amorphous alloy ribbon having a composition (at least atomic%) (specifically, the total amount of Fe, Si, and B is 100.0 atomic% of C It has been found that the ribbon becomes brittle (when the amount exceeds 0.6 atomic%). Therefore, the present inventor has made the composition of the Fe—B—Si amorphous alloy ribbon in which the amount of Si is 8.5 atomic percent or more when the total amount of Fe, Si, and B is 100.0 atomic percent.
  • the space factor is improved while suppressing brittleness (brittleness).
  • the inventors have obtained knowledge that a high magnetic flux density can be maintained, and the present invention has been completed based on this knowledge. That is, according to the present invention, there is provided an amorphous alloy ribbon that has an excellent space factor, is suppressed in brittleness (brittleness), and maintains a high magnetic flux density.
  • the amount of C is 0.6 atomic% or less, it is possible to suppress the aging deterioration of the amorphous alloy ribbon that may occur when C is added.
  • the amorphous alloy ribbon of the present invention exhibits a high space factor (for example, a space factor of 86% or more).
  • the space factor of the amorphous alloy ribbon of the present invention is preferably 88% or more, and more preferably 89% or more.
  • the “space factor” refers to a space factor (%) measured in accordance with ASTM A900 / A900M-01 (2006).
  • the space factor may be slightly increased by tightening at the time of manufacturing. It is empirically known that the occupancy rate is 88-90%.
  • the amount of C relative to the total amount of Fe, Si and B of 100.0 atomic% is 0.2 atomic% to 0.6 atomic%. %. If the amount of C exceeds 0.6 atomic%, the ribbon becomes brittle. On the other hand, when the amount of C exceeds 0.6 atomic%, the aging deterioration of the amorphous alloy ribbon is promoted, and the period until crystallization may occur may be shortened. On the other hand, in the present invention, the amount of C being 0.2 atomic% or more indicates that the ribbon is substantially contained in C, thereby improving the space factor of the ribbon.
  • the amount of C is preferably 0.3 atomic% to 0.6 atomic% from the viewpoint of further improving the space factor of the ribbon.
  • the amount of Si when the total amount of Fe, Si, and B is 100.0 atomic% is 8.5 atomic% to 9.5 atomic%.
  • the amorphous alloy ribbon of the present invention can be expected to have an effect of suppressing aging deterioration of the ribbon when the amount of Si is 8.5 atomic% or more.
  • the amount of Si is more preferably 9.0 atomic% or more.
  • the ribbon becomes It turns out that it tends to be brittle.
  • the brittleness of the ribbon is remarkably suppressed by setting the amount of C to 0.6 atomic% or less.
  • the amount of Si exceeds 9.5 atomic%, the amount of Fe is relatively reduced, so that the saturation magnetic flux density is lowered.
  • the amount of Si exceeds 9.5 atomic%, the amorphous forming ability tends to decrease.
  • the amount of B when the total amount of Fe, Si, and B is 100.0 atomic% is 10.0 atomic% or more. Less than 12.0 atomic% (preferably 10.0 atomic% to 11.5 atomic%).
  • the amount of B is less than 10.0 atomic%, the crystallization temperature is lowered and the stability of the amorphous phase is impaired.
  • the amount of B is 12.0 atomic% or more, the raw material cost increases, which is not preferable. For this reason, the amount of B is less than 12.0 atomic%, but is preferably 11.5 atomic% or less.
  • the amount of B is preferably 10.5 atomic% or more, and more preferably 11.0 atomic% or more from the viewpoint of further improving the amorphous forming ability.
  • the amount of Fe when the total amount of Fe, Si, and B is 100.0 atomic% is 8% of Si.
  • the amount of Fe is specifically more than 78.5 atomic% and 81.5 atomic% or less, preferably 79.0 atomic% to 81.5 atomic%, more preferably 79.0 atomic%.
  • the amount of Fe is 81.0 atomic% or less, the crystallization temperature becomes higher and the thermal stability is further improved.
  • a preferable combination of the amount of Fe, the amount of Si, and the amount of B is such that the amount of Fe is 79.0 atomic percent to 81.5 atomic percent (more preferably 79.0 atomic percent to 81.0 atomic percent). %, More preferably 79.0 atomic% to 80.5 atomic%), the amount of Si is 8.5 atomic% to 9.5 atomic%, and the amount of B is 10.0 atomic% or more and 12.
  • the combination is less than 0 atomic% (preferably 10.0 atomic% to 11.5 atomic%), and the more preferable combination is that the amount of Fe is 79.0 atomic% to 80.0 atomic%, A combination in which the amount is 8.5 atomic percent to 9.5 atomic percent and the amount of B is 10.5 atomic percent to 11.5 atomic percent, and a particularly preferred combination is that the amount of Fe is 79.0 atomic percent % To 80.0 atomic%, and the amount of Si is 9.0 atomic% to 9.5 atomic% The amount of B is a combination of 11.0 atomic% to 11.5 atomic%.
  • the amorphous alloy ribbon of the present invention contains inevitable impurities in addition to the above-described elements (Fe, Si, B, and C).
  • the inevitable impurities refer to impurities that are inevitably mixed in the manufacturing process of the amorphous alloy ribbon or the master alloy or molten alloy as a raw material thereof.
  • the inevitable impurities include Mn, S, Cr, P, Ti, Ni, Al, Co, Zr, Mo, and Cu.
  • Si and B dominate the physical properties of the amorphous alloy ribbon, and the influence of the impurities is small.
  • the thickness (plate thickness) of the amorphous alloy ribbon of the present invention is 10 ⁇ m to 40 ⁇ m. If the thickness is less than 10 ⁇ m, the mechanical strength of the ribbon tends to be insufficient. From this viewpoint, the thickness is 10 ⁇ m or more, preferably 15 ⁇ m or more, and more preferably 20 ⁇ m or more. On the other hand, when the thickness exceeds 40 ⁇ m, it tends to be difficult to stably obtain an amorphous phase. From this viewpoint, the thickness is 40 ⁇ m or less, preferably 35 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the width of the amorphous alloy ribbon of the present invention is 100 mm to 300 mm.
  • the width is 100 mm or more, a practical transformer can be suitably produced. From this viewpoint, the width is 100 mm or more, and more preferably 125 mm or more.
  • the width exceeds 300 mm, it is difficult to obtain a thin ribbon having a uniform thickness in the width direction, and the shape is not uniform, so that it is partially embrittled or the magnetic flux density (B1) is lowered. From these viewpoints, the width is 300 mm or less, and more preferably 275 mm or less.
  • the method for producing the amorphous alloy ribbon of the present invention is not particularly limited, and for example, a known method such as a liquid quenching method (single roll method, twin roll method, centrifugal method, etc.) can be used.
  • a known method such as a liquid quenching method (single roll method, twin roll method, centrifugal method, etc.) can be used.
  • the single roll method is a manufacturing method with relatively simple manufacturing equipment and capable of stable manufacturing, and has excellent industrial productivity.
  • FIG. 1 is a schematic sectional view conceptually showing an embodiment of an amorphous alloy ribbon manufacturing apparatus suitable for manufacturing the amorphous alloy ribbon of the present invention.
  • An amorphous alloy ribbon manufacturing apparatus 100 shown in FIG. 1 is an amorphous alloy ribbon manufacturing apparatus using a single roll method. As shown in FIG. 1, the amorphous alloy ribbon manufacturing apparatus 100 includes a crucible 20 provided with a molten metal nozzle 10 and a cooling roll 30 whose surface faces the tip of the molten metal nozzle 10.
  • FIG. 1 shows an amorphous alloy ribbon manufacturing apparatus 100 cut along a plane perpendicular to the axial direction of the cooling roll 30 and the width direction of the amorphous alloy ribbon 22C (the two directions are the same). A cross section is shown.
  • the crucible 20 has an internal space that can accommodate the molten alloy 22A that is a raw material for the amorphous alloy ribbon, and the internal space communicates with the molten metal flow path in the molten metal nozzle 10. Thereby, the molten alloy 22A accommodated in the crucible 20 can be discharged to the cooling roll 30 by the molten metal nozzle 10 (in FIG. 1, the discharge direction and the flow direction of the molten alloy 22A are indicated by arrows Q). )
  • the crucible 20 and the molten metal nozzle 10 may be comprised integrally, and may be comprised as a different body.
  • a high frequency coil 40 as a heating means is disposed at least at a part of the periphery of the crucible 20.
  • the crucible 20 in which the master alloy of the amorphous alloy ribbon is accommodated is heated to generate the molten alloy 22A in the crucible 20, or the liquid state of the molten alloy 22A supplied to the crucible 20 from the outside is maintained. It can be done.
  • the molten metal nozzle 10 has an opening (discharge port) for discharging the molten alloy.
  • This opening is preferably a rectangular (slit-shaped) opening.
  • the length of the long side of the rectangular opening is a length corresponding to the width of the amorphous alloy ribbon to be manufactured. Specifically, the length of the long side of the rectangular opening is preferably 100 mm to 300 mm. The lower limit of the length of the long side is more preferably 125 mm. Further, the upper limit of the length of the long side is more preferably 275 mm.
  • the distance between the tip of the molten metal nozzle 10 and the surface of the cooling roll 30 is close enough to form the hot water pool 22B formed by the molten alloy 22A when the molten molten metal 22A is discharged by the molten metal nozzle 10.
  • this distance can be made into the range normally set in a single roll method, 500 micrometers or less are preferable and 300 micrometers or less are more preferable.
  • this distance is preferably 50 ⁇ m or more from the viewpoint of suppressing contact between the tip of the molten metal nozzle 10 and the surface of the cooling roll 30.
  • the cooling roll 30 is configured to be able to rotate in the direction of arrow P.
  • a cooling medium such as water is circulated inside the cooling roll 30, whereby the molten alloy 22 ⁇ / b> A applied (discharged) to the surface of the cooling roll 30 can be cooled to generate an amorphous alloy ribbon 22 ⁇ / b> C.
  • the material of the cooling roll 30 is a material having high thermal conductivity such as Cu, Cu alloy (Cu—Be alloy, Cu—Cr alloy, Cu—Zr alloy, Cu—Zn alloy, Cu—Sn alloy, Cu—Ti alloy, etc.). Is preferred.
  • the surface roughness of the surface of the cooling roll 30 is not particularly limited, but from the viewpoint of the space factor, the arithmetic average roughness (Ra) of the surface of the cooling roll 30 is preferably 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less. More preferred.
  • the arithmetic average roughness (Ra) of the surface of the cooling roll 30 is preferably 0.1 ⁇ m or more from the viewpoint of workability for adjusting the surface roughness.
  • the cooling roll 30 normally used in a single roll method can be used.
  • the diameter of the cooling roll 30 is preferably 200 mm or more, and more preferably 300 mm or more, from the viewpoint of cooling ability. On the other hand, this diameter is more preferably 700 mm or less from the viewpoint of cooling ability.
  • the surface roughness (the arithmetic average roughness Ra) refers to the surface roughness measured according to JIS B 0601 (2001).
  • a peeling gas nozzle 50 is arranged in the vicinity of the surface of the cooling roll 30 (on the downstream side in the rotation direction of the cooling roll 30 from the molten metal nozzle 10).
  • a stripping gas for example, high-pressure gas such as nitrogen gas or compressed air
  • peeling of the amorphous alloy ribbon 22C from the roll 30 is performed more efficiently.
  • the amorphous alloy ribbon manufacturing apparatus 100 has a configuration other than the above-described configuration (for example, a take-up roll for winding the manufactured amorphous alloy ribbon 22C, a hot water reservoir 22B made of molten alloy, or CO 2 gas or N A gas nozzle or the like for spraying two gases or the like.
  • the basic configuration of the amorphous alloy ribbon manufacturing apparatus 100 is based on a conventional amorphous alloy ribbon manufacturing apparatus using a single roll method (for example, Japanese Patent No. 3494371, Japanese Patent No. 3594123, Japanese Patent No. 4244123, Patent (See Japanese Patent No. 4529106).
  • a molten alloy 22A that is a raw material for the amorphous alloy ribbon of the present invention is prepared in the crucible 20.
  • the molten alloy 22A may be a molten alloy obtained by melting the master alloy having the composition of the amorphous alloy ribbon of the present invention.
  • C (carbon) is obtained from the composition of the amorphous alloy ribbon of the present invention.
  • a molten alloy obtained by preparing a mother alloy having a composition excluding the above and dissolving C (carbon) in a molten metal in which the mother alloy is dissolved may be used.
  • the temperature of the molten alloy 22A is not particularly limited, but is preferably 1210 ° C. or higher and 1260 ° C. or higher from the viewpoint of suppressing deposits resulting from the molten alloy 22A from adhering to the wall surface of the molten metal nozzle. It is more preferable. Further, the temperature of the molten alloy 22A is preferably 1410 ° C. or less, and more preferably 1360 ° C. or less, from the viewpoint of suppressing generation of air pockets generated on the contact surface side with the surface of the cooling roll 30.
  • the molten alloy is discharged from the molten metal nozzle 10 to form the hot water pool 22B while forming a coating film of the molten alloy on the surface of the cooling roll 30; This coating film is cooled to form amorphous alloy ribbon 22C.
  • the amorphous alloy ribbon 22C formed on the surface of the cooling roll 30 is peeled off from the surface of the cooling roll 30 by blowing a peeling gas from the peeling gas nozzle 50, and wound into a roll by a winding roll (not shown). Take and collect.
  • the operations from the discharge of molten alloy to the winding (recovery) of the amorphous alloy ribbon are continuously performed, whereby a long amorphous alloy ribbon having a longitudinal length of, for example, 3000 m or more is obtained.
  • the discharge pressure of the molten alloy is preferably 10 kPa or more, and more preferably 15 kPa or more.
  • the discharge pressure is preferably 30 kPa or less, and more preferably 25 kPa or less.
  • the rotational speed of the cooling roll 30 can be made into the range normally set in a single roll method, However, The peripheral speed is 40 m / s or less, More preferably, the peripheral speed is 30 m / s or less. On the other hand, the rotational speed is preferably a peripheral speed of 10 m / s or more, and more preferably a peripheral speed of 20 m / s or more. Further, the temperature of the surface of the cooling roll 30 is preferably 80 ° C. or more, more preferably 100 ° C. or more after 5 seconds or more have passed since the supply of the molten alloy to the surface of the cooling roll 30 is started. On the other hand, this temperature is preferably 300 ° C.
  • the cooling rate of the molten alloy by the cooling roll 30 is preferably 1 ⁇ 10 5 ° C./s or more, and more preferably 1 ⁇ 10 6 ° C./s or more.
  • a molten alloy composed of Fe, Si, B, C and inevitable impurities (hereinafter also referred to as “Fe—Si—B—C alloy molten metal”) was prepared in a crucible.
  • the amorphous alloy ribbon shown in Table 1 below is obtained by melting a master alloy composed of Fe, Si, B, and inevitable impurities, adding carbon to the resulting molten metal, and mixing them.
  • a molten alloy for production was prepared.
  • this Fe—Si—B—C-based alloy molten metal is taken from the opening of the molten metal nozzle having a rectangular (slit shape) opening having a long side length of 142 mm and a short side length of 0.6 mm, It was discharged onto the surface of a rotating cooling roll and rapidly solidified to produce 1000 kg of an amorphous alloy ribbon having a width of 142 mm and a thickness of 25 ⁇ m.
  • the detailed production conditions of the amorphous alloy ribbon were as follows. ⁇ Discharge pressure of molten alloy: 20 kPa ⁇ Cooling roll peripheral speed: 25 m / s -Molten alloy temperature: 1300 ° C ⁇ Distance between molten metal nozzle tip and cooling roll surface: 200 ⁇ m ⁇ Cooling temperature (temperature after 5 seconds or more from the start of the supply of molten alloy to the surface of the cooling roll): 170 ° C.
  • the amounts of Fe, Si, B, and C in the amorphous alloy ribbons of Examples and Comparative Examples are as shown in Table 1 below.
  • the amount of Fe (at%), the amount of Si (at%), and the amount of B (at%) are respectively when the total amount of Fe, Si and B is 100.0 at%.
  • the amount of C (at%) is the amount with respect to the total amount of Fe, Si and B of 100.0 at% (that is, the amount of C added when the total amount is 100.0 at%). These amounts are those measured by ICP emission spectroscopy.
  • ⁇ Brittleness> For the amorphous alloy ribbons of each Example and each Comparative Example, the following evaluation of brittleness (numerization of brittleness) was performed. Table 1 shows the numerical values of the brittleness obtained by the above evaluation. This evaluation result indicates that the smaller the brittleness value is, the more the brittleness is suppressed, and the larger the brittleness value is, the more brittle it is.
  • FIG. 2 is a conceptual diagram schematically showing a sample used for evaluation of brittleness
  • FIG. 3 is a conceptual diagram schematically showing a sample piece after tearing and a tear line in evaluation of brittleness.
  • the brittleness is evaluated by cutting out a sample of 1250 mm in length (one round of the cooling roll) from the amorphous alloy ribbon and dividing the sample into two equal parts in the longitudinal direction (one-dot chain line in FIG. 2). And the two obtained sample pieces were used.
  • a tear operation in which a sample was cut at one end in the longitudinal direction of the sample piece as a tear starting point, and a tear force was applied to the sample piece (hereinafter, this operation is referred to as a “tear operation”). Called). This tearing operation was performed from one end in the longitudinal direction to the other end in the longitudinal direction along the longitudinal direction of the sample piece. In FIG. 3, the tearing direction in the tearing operation is indicated by an arrow R. Next, a tear line actually generated by the tearing operation (for example, a tear line T in FIG. 3) is visually observed, and a step of 6 mm or more (in FIG. 3) generated in the width direction of the sample piece at the tear line.
  • a tear line actually generated by the tearing operation for example, a tear line T in FIG. 3 is visually observed, and a step of 6 mm or more (in FIG. 3) generated in the width direction of the sample piece at the tear line.
  • the brittleness per tear line was evaluated according to the following evaluation criteria. “1 point” in the following evaluation criteria indicates that brittleness is most suppressed, and “5 points” indicates that it is most brittle.
  • the evaluation of the brittleness per tear line is performed at the center part in the width direction of the sample piece, the position (2 places) 6.4 mm from the end part in the width direction of the sample piece, and It performed about each of the position (2 places) of 12.8 mm from the width direction edge part.
  • the evaluation points are indicated by broken lines. The number of evaluation points is 5 for each of the bisected sample pieces, and 10 for each sample. That is, ten tear lines are generated per sample. Next, the average point of brittleness was calculated from the evaluation result for 10 tear lines, and the obtained average point was used as the numerical value of brittleness in the sample.
  • the amount of Fe (at%), the amount of Si (at%), and the amount of B (at%) are amounts when the total amount of Fe, Si, and B is 100.0 at%, respectively.
  • the amount of C (at%) is the amount of Fe, Si, and B with respect to the total amount of 100.0 at% (that is, the amount of C added when the total amount of Fe, Si, and B is 100.0 at%) ).
  • the numerical value of the brittleness indicates that the smaller the value, the more the brittleness is suppressed, and the larger the value, the more brittle.

Abstract

The present invention provides an amorphous alloy thin strip which is composed of Fe, Si, B, C and unavoidable impurities, and wherein: the amount of Si is from 8.5 atom% to 9.5 atom% and the amount of B is 10.0 atom% or more but less than 12.0 atom% when the total of Fe, Si and B is taken as 100.0 atom%; and the amount of C relative to the above-mentioned total of 100.0 atom% is from 0.2 atom% to 0.6 atom%. This amorphous alloy thin strip has a thickness of 10-40 μm and a width of 100-300 mm.

Description

アモルファス合金薄帯Amorphous alloy ribbon
 本発明は、アモルファス合金薄帯に関する。 The present invention relates to an amorphous alloy ribbon.
 アモルファス合金薄帯は、その優れた特性から、多くの用途において工業材料として有望視されている。
 中でも、Fe(鉄)を主成分とするFe系アモルファス合金薄帯(例えば、Fe(鉄)を主成分とし更にB(ホウ素)及びSi(ケイ素)を含むFe-B-Si系アモルファス合金薄帯)は、鉄損が低く飽和磁束密度が高い等の理由から、変圧器の磁心等の材料として用いられている。かかるFe系アモルファス合金薄帯では、一般に、方向性電磁鋼板に比べて占積率が低いので、高い占積率が求められる。占積率が低いと、同じ内外径の磁心を作製した場合、総磁束やインダクタンスも低下するため、その分磁心を大きくしたり、巻線の数を増加しなければならないので、機器の小型化の点やコストの点で問題となる。
 Fe系アモルファス合金薄帯の占積率を向上させるために、これまで種々の検討がなされている。
 例えば、単ロール法により、高い占積率を示すFe系アモルファス合金薄帯を製造するための製造方法として、溶湯ノズル先端と冷却ロール表面との距離、冷却ロールの温度、冷却ロールの周速、冷却ロール周囲の雰囲気、溶湯ノズルからの噴出圧力、冷却ロールの表面状態など、製造条件を調整する方法が知られている(例えば、特開2006-281317号公報、特開平9-216036号公報、及び特開2007-217757号公報参照)。
Amorphous alloy ribbons are promising as industrial materials in many applications due to their excellent properties.
Among them, Fe-based amorphous alloy ribbons mainly composed of Fe (iron) (for example, Fe-B-Si-based amorphous alloy ribbons mainly composed of Fe (iron) and further containing B (boron) and Si (silicon) ) Is used as a material such as a magnetic core of a transformer because it has a low iron loss and a high saturation magnetic flux density. Such an Fe-based amorphous alloy ribbon generally has a lower space factor than a grain-oriented electrical steel sheet, and therefore requires a higher space factor. If the space factor is low, a magnetic core with the same inner and outer diameters will also reduce the total magnetic flux and inductance. Therefore, it is necessary to increase the number of cores and the number of windings. This is a problem in terms of cost and cost.
In order to improve the space factor of the Fe-based amorphous alloy ribbon, various studies have been made so far.
For example, as a production method for producing an Fe-based amorphous alloy ribbon having a high space factor by a single roll method, the distance between the molten metal nozzle tip and the surface of the cooling roll, the temperature of the cooling roll, the peripheral speed of the cooling roll, There are known methods for adjusting the manufacturing conditions such as the atmosphere around the cooling roll, the jet pressure from the molten metal nozzle, and the surface state of the cooling roll (for example, JP-A-2006-281317, JP-A-9-216036, And Japanese Patent Application Laid-Open No. 2007-217757).
 しかしながら、上記従来の技術のように製造条件の調整によって薄帯の占積率を向上させる方法では、アモルファス合金薄帯を連続して製造するにあたり、製造条件(例えば冷却ロールの表面状態等)を長時間維持することが困難である場合がある。また、製造条件の調整によって薄帯の占積率を向上させる方法では、磁束密度等の磁気特性が低下する場合がある。
 そこで、Fe-B-Si系アモルファス合金薄帯の占積率を向上させる方法としては、上述の製造条件の調整の他に、Fe-B-Si系アモルファス合金薄帯の組成自体を調整する方法が考えられる。
However, in the method of improving the strip space factor by adjusting the manufacturing conditions as in the above-described conventional technique, the manufacturing conditions (for example, the surface condition of the cooling roll, etc.) It may be difficult to maintain for a long time. Further, in the method of improving the strip space factor by adjusting the manufacturing conditions, the magnetic characteristics such as the magnetic flux density may be deteriorated.
Therefore, as a method of improving the space factor of the Fe—B—Si amorphous alloy ribbon, in addition to the adjustment of the manufacturing conditions described above, a method of adjusting the composition of the Fe—B—Si amorphous alloy ribbon itself Can be considered.
 本発明者の検討により、Fe-B-Si系アモルファス合金薄帯の組成に、C(炭素)を加えることで、薄帯の占積率が向上することが明らかとなった。更に検討した結果、Siの量が比較的多い組成のFe-B-Si系アモルファス合金薄帯に対してCを多く加えすぎると、薄帯が脆くなる傾向があることが判明した。
 また、アモルファス合金薄帯では、高い磁束密度を維持することも重要である。
According to the study by the present inventors, it has been clarified that the space factor of the ribbon is improved by adding C (carbon) to the composition of the Fe—B—Si amorphous alloy ribbon. As a result of further investigation, it has been found that if too much C is added to the Fe—B—Si amorphous alloy ribbon having a relatively large amount of Si, the ribbon tends to become brittle.
It is also important to maintain a high magnetic flux density in the amorphous alloy ribbon.
 従って、本発明の課題は、占積率に優れ、脆さ(脆性)が抑制され、高い磁束密度が維持されたアモルファス合金薄帯を提供することである。 Therefore, an object of the present invention is to provide an amorphous alloy ribbon that has an excellent space factor, is suppressed in brittleness (brittleness), and maintains a high magnetic flux density.
 前記課題を解決するための具体的手段は以下のとおりである。
<1> Fe、Si、B、C、及び不可避的不純物からなり、Fe、Si、及びBの合計量を100.0原子%としたときに、Siの量が8.5原子%~9.5原子%であり、Bの量が10.0原子%以上12.0原子%未満であり、前記合計量100.0原子%に対するCの量が0.2原子%~0.6原子%であり、厚さが10μm~40μmであり、幅が100mm~300mmであるアモルファス合金薄帯である。
<2> 前記Cの量が0.3原子%~0.6原子%である<1>に記載のアモルファス合金薄帯である。
<3> 前記Bの量が10.0原子%~11.5原子%である<1>又は<2>に記載のアモルファス合金薄帯である。
<4> 占積率が88%以上である<1>~<3>のいずれか1つに記載のアモルファス合金薄帯である。
<5> Fe、Si、及びBの合計量を100.0原子%としたときに、Feの量が79.0原子%~80.0原子%であり、Siの量が8.5原子%~9.5原子%であり、Bの量が10.5原子%~11.5原子%である<1>~<4>のいずれか1つに記載のアモルファス合金薄帯である。
<6> 単ロール法により製造された<1>~<5>のいずれか1つに記載のアモルファス合金薄帯である。
Specific means for solving the above-described problems are as follows.
<1> Consists of Fe, Si, B, C, and unavoidable impurities. When the total amount of Fe, Si, and B is 100.0 atomic%, the amount of Si is 8.5 atomic% to 9. 5 atomic percent, the amount of B is 10.0 atomic percent or more and less than 12.0 atomic percent, and the amount of C relative to the total amount of 100.0 atomic percent is 0.2 atomic percent to 0.6 atomic percent. There is an amorphous alloy ribbon having a thickness of 10 μm to 40 μm and a width of 100 mm to 300 mm.
<2> The amorphous alloy ribbon according to <1>, wherein the amount of C is 0.3 atomic% to 0.6 atomic%.
<3> The amorphous alloy ribbon according to <1> or <2>, wherein the amount of B is 10.0 atomic% to 11.5 atomic%.
<4> The amorphous alloy ribbon according to any one of <1> to <3>, wherein the space factor is 88% or more.
<5> When the total amount of Fe, Si, and B is 100.0 atomic percent, the amount of Fe is 79.0 atomic percent to 80.0 atomic percent, and the amount of Si is 8.5 atomic percent The amorphous alloy ribbon according to any one of <1> to <4>, which is ˜9.5 atomic% and the amount of B is 10.5 atomic% to 11.5 atomic%.
<6> The amorphous alloy ribbon according to any one of <1> to <5> manufactured by a single roll method.
 本発明によれば、占積率に優れ、脆さ(脆性)が抑制され、高い磁束密度が維持されたアモルファス合金薄帯を提供することができる。 According to the present invention, it is possible to provide an amorphous alloy ribbon that has an excellent space factor, is suppressed in brittleness (brittleness), and maintains a high magnetic flux density.
本発明のアモルファス合金薄帯の製造に好適なアモルファス合金薄帯製造装置の一実施形態を概念的に示す概略断面図である。It is a schematic sectional drawing which shows notionally one Embodiment of the amorphous alloy ribbon production apparatus suitable for manufacture of the amorphous alloy ribbon of this invention. 脆さの評価に用いたサンプルを模式的に示す概略図である。It is the schematic which shows typically the sample used for evaluation of a brittleness. 脆さの評価における引き裂き後のサンプル片及び引き裂き線を模式的に示す概念図である。It is a conceptual diagram which shows typically the sample piece and tear line after tear in evaluation of a brittleness.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 以下、本発明のアモルファス合金薄帯について詳細に説明する。
 本発明のアモルファス合金薄帯(以下、単に「薄帯」ともいう)は、Fe、Si、B、C、及び不可避的不純物からなり、Fe、Si、及びBの合計量を100.0原子%としたときに、Siの量が8.5原子%~9.5原子%(即ち、8.5原子%以上9.5原子%以下)であり、Bの量が10.0原子%以上12.0原子%未満であり、前記合計量100.0原子%に対するCの量が0.2原子%~0.6原子%(即ち、0.2原子%以上0.6原子%以下)であり、厚さが10μm~40μm(即ち、10μm以上40μm以下)であり、幅が100mm~300mm(即ち、100mm以上300mm以下)である。
In this specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
Hereinafter, the amorphous alloy ribbon of the present invention will be described in detail.
The amorphous alloy ribbon (hereinafter, also simply referred to as “strip”) of the present invention comprises Fe, Si, B, C, and unavoidable impurities, and the total amount of Fe, Si, and B is 100.0 atomic%. The amount of Si is 8.5 atomic% to 9.5 atomic% (that is, 8.5 atomic% to 9.5 atomic%), and the amount of B is 10.0 atomic% to 12 atomic%. Less than 0.0 atomic percent, and the amount of C with respect to the total amount of 100.0 atomic percent is 0.2 atomic percent to 0.6 atomic percent (that is, 0.2 atomic percent to 0.6 atomic percent). The thickness is 10 μm to 40 μm (that is, 10 μm or more and 40 μm or less), and the width is 100 mm to 300 mm (that is, 100 mm or more and 300 mm or less).
 本発明者の検討により、Feを主成分とし更にB及びSiを含むFe-B-Si系アモルファス合金薄帯(以下、単に「Fe-B-Si系アモルファス合金薄帯」ともいう)の組成にC(炭素)を加えることで、薄帯の占積率が向上することが明らかとなった。この理由は、Cを加えることにより、Fe-B-Si系アモルファス合金薄帯の原料である合金溶湯の流動性が上がり、その結果、製造される薄帯の表面の平坦性が向上するためと考えられる。
 また、本発明者が更に検討した結果、Siの量が比較的多い(具体的には、Fe、Si、及びBの合計量を100.0原子%としたときのSiの量が8.5原子%以上である)組成のFe-B-Si系アモルファス合金薄帯に対してCを多く加えすぎると(具体的には、Fe、Si、及びBの合計量100.0原子%に対するCの量が0.6原子%を超えると)薄帯が脆くなることが判明した。
 そこで本発明者は、Fe、Si、及びBの合計量を100.0原子%としたときのSiの量が8.5原子%以上であるFe-B-Si系アモルファス合金薄帯の組成に対し、前記合計量100.0原子%に対する量が0.2原子%~0.6原子%となるようにCを加えることにより、脆さ(脆性)を抑制しながら、占積率を向上させることができ、しかも、高い磁束密度を維持できるとの知見を得、この知見に基づいて本発明を完成させた。
 即ち、本発明によれば、占積率に優れ、脆さ(脆性)が抑制され、高い磁束密度が維持されたアモルファス合金薄帯が提供される。
 また、本発明によれば、前記Cの量を0.6原子%以下としたことにより、Cを添加したときに生じることがあるアモルファス合金薄帯の経年劣化を抑制できる。
According to the study of the present inventor, the composition of the Fe—B—Si based amorphous alloy ribbon (hereinafter, also simply referred to as “Fe—B—Si based amorphous alloy ribbon”) containing Fe as a main component and further containing B and Si is obtained. It has been clarified that adding C (carbon) improves the space factor of the ribbon. The reason for this is that by adding C, the fluidity of the molten alloy as a raw material for the Fe—B—Si amorphous alloy ribbon is increased, and as a result, the flatness of the surface of the ribbon to be produced is improved. Conceivable.
Further, as a result of further investigation by the inventor, the amount of Si is relatively large (specifically, the amount of Si is 8.5 when the total amount of Fe, Si, and B is 100.0 atomic%). If too much C is added to the Fe—B—Si amorphous alloy ribbon having a composition (at least atomic%) (specifically, the total amount of Fe, Si, and B is 100.0 atomic% of C It has been found that the ribbon becomes brittle (when the amount exceeds 0.6 atomic%).
Therefore, the present inventor has made the composition of the Fe—B—Si amorphous alloy ribbon in which the amount of Si is 8.5 atomic percent or more when the total amount of Fe, Si, and B is 100.0 atomic percent. On the other hand, by adding C so that the amount relative to the total amount of 100.0 atomic% is 0.2 atomic% to 0.6 atomic%, the space factor is improved while suppressing brittleness (brittleness). In addition, the inventors have obtained knowledge that a high magnetic flux density can be maintained, and the present invention has been completed based on this knowledge.
That is, according to the present invention, there is provided an amorphous alloy ribbon that has an excellent space factor, is suppressed in brittleness (brittleness), and maintains a high magnetic flux density.
In addition, according to the present invention, when the amount of C is 0.6 atomic% or less, it is possible to suppress the aging deterioration of the amorphous alloy ribbon that may occur when C is added.
 上述した通り、本発明のアモルファス合金薄帯は、高い占積率(例えば、占積率86%以上)を示す。
 本発明のアモルファス合金薄帯の占積率は、88%以上であることが好ましく、89%以上であることがより好ましい。
 本発明において「占積率」は、ASTM A900/A900M-01(2006)に準拠して測定された占積率(%)を指す。
 尚、前記測定法による占積率88%のアモルファス合金薄帯を用いて変圧器の磁心を作製した場合、作製時の締め付けにより占積率が若干高くなることがあるため、作製された磁心の占積率は88~90%を示す、ということが経験的に知られている。
As described above, the amorphous alloy ribbon of the present invention exhibits a high space factor (for example, a space factor of 86% or more).
The space factor of the amorphous alloy ribbon of the present invention is preferably 88% or more, and more preferably 89% or more.
In the present invention, the “space factor” refers to a space factor (%) measured in accordance with ASTM A900 / A900M-01 (2006).
In addition, when a transformer magnetic core is manufactured using an amorphous alloy ribbon having a space factor of 88% according to the measurement method, the space factor may be slightly increased by tightening at the time of manufacturing. It is empirically known that the occupancy rate is 88-90%.
 以下、本発明のアモルファス合金薄帯の組成について説明する。 Hereinafter, the composition of the amorphous alloy ribbon of the present invention will be described.
 本発明のアモルファス合金薄帯は、Fe、Si、及びBの合計量100.0原子%に対するCの量(以下、単に「Cの量」ともいう)が0.2原子%~0.6原子%である。
 Cの量が0.6原子%を超えると、薄帯が脆くなる。また、Cの量が0.6原子%を超えると、アモルファス合金薄帯の経年劣化が促進され、結晶化が起こるまでの期間が短くなる場合がある。
 一方、本発明においてCの量が0.2原子%以上であることは、薄帯にCが実質的に含まれることを示しており、これにより薄帯の占積率が向上する。
 Cの量は、薄帯の占積率をより向上させる観点からは、0.3原子%~0.6原子%であることが好ましい。
In the amorphous alloy ribbon of the present invention, the amount of C relative to the total amount of Fe, Si and B of 100.0 atomic% (hereinafter also simply referred to as “the amount of C”) is 0.2 atomic% to 0.6 atomic%. %.
If the amount of C exceeds 0.6 atomic%, the ribbon becomes brittle. On the other hand, when the amount of C exceeds 0.6 atomic%, the aging deterioration of the amorphous alloy ribbon is promoted, and the period until crystallization may occur may be shortened.
On the other hand, in the present invention, the amount of C being 0.2 atomic% or more indicates that the ribbon is substantially contained in C, thereby improving the space factor of the ribbon.
The amount of C is preferably 0.3 atomic% to 0.6 atomic% from the viewpoint of further improving the space factor of the ribbon.
 本発明のアモルファス合金薄帯は、Fe、Si、及びBの合計量を100.0原子%としたときのSiの量(以下、単に「Siの量」ともいう)が8.5原子%~9.5原子%である。
 本発明のアモルファス合金薄帯は、Siの量が8.5原子%以上であることにより、薄帯の経年劣化抑制の効果が期待できる。Siの量は9.0原子%以上であることがより好ましい。
 しかし、上述したとおり、Siの量が8.5原子%以上(特に9.0原子%以上)であるFe-B-Si系アモルファス合金薄帯に対してCを多く加えすぎると、薄帯が脆くなる傾向があることが判明した。この点に関し、本発明のアモルファス合金薄帯では、Cの量を0.6原子%以下としたことにより、薄帯の脆さが顕著に抑制される。
 一方、Siの量が9.5原子%を超えると、相対的にFeの量が少なくなることにより、飽和磁束密度が低下する。更に、Siの量が9.5原子%を超えると、アモルファス形成能が低下する傾向がある。
In the amorphous alloy ribbon according to the present invention, the amount of Si when the total amount of Fe, Si, and B is 100.0 atomic% (hereinafter also simply referred to as “the amount of Si”) is 8.5 atomic% to 9.5 atomic%.
The amorphous alloy ribbon of the present invention can be expected to have an effect of suppressing aging deterioration of the ribbon when the amount of Si is 8.5 atomic% or more. The amount of Si is more preferably 9.0 atomic% or more.
However, as described above, if too much C is added to the Fe—B—Si amorphous alloy ribbon in which the amount of Si is 8.5 atomic% or more (especially 9.0 atomic% or more), the ribbon becomes It turns out that it tends to be brittle. In this regard, in the amorphous alloy ribbon according to the present invention, the brittleness of the ribbon is remarkably suppressed by setting the amount of C to 0.6 atomic% or less.
On the other hand, when the amount of Si exceeds 9.5 atomic%, the amount of Fe is relatively reduced, so that the saturation magnetic flux density is lowered. Furthermore, when the amount of Si exceeds 9.5 atomic%, the amorphous forming ability tends to decrease.
 本発明のアモルファス合金薄帯は、Fe、Si、及びBの合計量を100.0原子%としたときのBの量(以下、単に「Bの量」ともいう)が10.0原子%以上12.0原子%未満(好ましくは10.0原子%~11.5原子%)である。
 Bの量が10.0原子%未満であると、結晶化温度が低くなり、アモルファス相の安定性が損なわれる。
 一方、Bの量が12.0原子%以上であると、原料コストが増大するため好ましくない。このため、Bの量は12.0原子%未満であるが、11.5原子%以下であることが好ましい。
 また、Bの量は、アモルファス形成能をより向上させる観点から、10.5原子%以上であることが好ましく、11.0原子%以上であることがより好ましい。
In the amorphous alloy ribbon of the present invention, the amount of B (hereinafter also simply referred to as “amount of B”) when the total amount of Fe, Si, and B is 100.0 atomic% is 10.0 atomic% or more. Less than 12.0 atomic% (preferably 10.0 atomic% to 11.5 atomic%).
When the amount of B is less than 10.0 atomic%, the crystallization temperature is lowered and the stability of the amorphous phase is impaired.
On the other hand, if the amount of B is 12.0 atomic% or more, the raw material cost increases, which is not preferable. For this reason, the amount of B is less than 12.0 atomic%, but is preferably 11.5 atomic% or less.
Further, the amount of B is preferably 10.5 atomic% or more, and more preferably 11.0 atomic% or more from the viewpoint of further improving the amorphous forming ability.
 本発明のアモルファス合金薄帯は、Fe、Si、及びBの合計量を100.0原子%としたときのFeの量(以下、単に「Feの量」ともいう)は、Siの量が8.5原子%~9.5原子%であり、かつ、Bの量が10.0原子%以上12.0原子%未満である限り特に限定はない。
 Feの量は、具体的には78.5原子%を超えて81.5原子%以下であるが、好ましくは79.0原子%~81.5原子%であり、より好ましくは79.0原子%~81.0原子%であり、更に好ましくは79.0原子%~80.5原子%であり、特に好ましくは79.0原子%~80.0原子%である。
 Feの量が81.0原子%以下であると、結晶化温度がより高くなり、熱的安定性がより向上する。
In the amorphous alloy ribbon of the present invention, the amount of Fe when the total amount of Fe, Si, and B is 100.0 atomic% (hereinafter also simply referred to as “the amount of Fe”) is 8% of Si. There is no particular limitation as long as it is 0.5 atomic% to 9.5 atomic% and the amount of B is 10.0 atomic% or more and less than 12.0 atomic%.
The amount of Fe is specifically more than 78.5 atomic% and 81.5 atomic% or less, preferably 79.0 atomic% to 81.5 atomic%, more preferably 79.0 atomic%. % To 81.0 atomic%, more preferably 79.0 atomic% to 80.5 atomic%, and particularly preferably 79.0 atomic% to 80.0 atomic%.
When the amount of Fe is 81.0 atomic% or less, the crystallization temperature becomes higher and the thermal stability is further improved.
 本発明において、Feの量、Siの量、及びBの量の好ましい組み合わせは、Feの量が79.0原子%~81.5原子%(より好ましくは79.0原子%~81.0原子%、更に好ましくは79.0原子%~80.5原子%)であり、Siの量が8.5原子%~9.5原子%であり、Bの量が10.0原子%以上12.0原子%未満(好ましくは10.0原子%~11.5原子%)である組み合わせであり、より好ましい組み合わせは、Feの量が79.0原子%~80.0原子%であり、Siの量が8.5原子%~9.5原子%であり、Bの量が10.5原子%~11.5原子%である組み合わせであり、特に好ましい組み合わせは、Feの量が79.0原子%~80.0原子%であり、Siの量が9.0原子%~9.5原子%であり、Bの量が11.0原子%~11.5原子%である組み合わせである。 In the present invention, a preferable combination of the amount of Fe, the amount of Si, and the amount of B is such that the amount of Fe is 79.0 atomic percent to 81.5 atomic percent (more preferably 79.0 atomic percent to 81.0 atomic percent). %, More preferably 79.0 atomic% to 80.5 atomic%), the amount of Si is 8.5 atomic% to 9.5 atomic%, and the amount of B is 10.0 atomic% or more and 12. The combination is less than 0 atomic% (preferably 10.0 atomic% to 11.5 atomic%), and the more preferable combination is that the amount of Fe is 79.0 atomic% to 80.0 atomic%, A combination in which the amount is 8.5 atomic percent to 9.5 atomic percent and the amount of B is 10.5 atomic percent to 11.5 atomic percent, and a particularly preferred combination is that the amount of Fe is 79.0 atomic percent % To 80.0 atomic%, and the amount of Si is 9.0 atomic% to 9.5 atomic% The amount of B is a combination of 11.0 atomic% to 11.5 atomic%.
 また、本発明のアモルファス合金薄帯は、上述した元素(Fe、Si、B、及びC)に加えて不可避的不純物を含む。ここで、不可避的不純物とは、アモルファス合金薄帯又はその原料となる母合金もしくは合金溶湯の製造工程において不可避的に混入する不純物を指す。前記不可避的不純物としては、例えば、Mn,S,Cr,P,Ti,Ni,Al,Co,Zr,Mo,Cu等が挙げられる。
 但し、アモルファス合金薄帯の物性を決めるのはSi、Bが支配的であり、上記不純物の影響度は小さい。
Further, the amorphous alloy ribbon of the present invention contains inevitable impurities in addition to the above-described elements (Fe, Si, B, and C). Here, the inevitable impurities refer to impurities that are inevitably mixed in the manufacturing process of the amorphous alloy ribbon or the master alloy or molten alloy as a raw material thereof. Examples of the inevitable impurities include Mn, S, Cr, P, Ti, Ni, Al, Co, Zr, Mo, and Cu.
However, Si and B dominate the physical properties of the amorphous alloy ribbon, and the influence of the impurities is small.
 また、本発明のアモルファス合金薄帯の厚さ(板厚)は10μm~40μmである。
 前記厚さが10μm未満であると、薄帯の機械的強度が不十分となる傾向がある。この観点から、前記厚さは10μm以上であるが、15μm以上が好ましく、20μm以上がより好ましい。
 一方、前記厚さが40μmを超えると、アモルファス相を安定して得ることが難しくなる傾向がある。この観点から、前記厚さは40μm以下であるが、35μm以下が好ましく、30μm以下がより好ましい。
The thickness (plate thickness) of the amorphous alloy ribbon of the present invention is 10 μm to 40 μm.
If the thickness is less than 10 μm, the mechanical strength of the ribbon tends to be insufficient. From this viewpoint, the thickness is 10 μm or more, preferably 15 μm or more, and more preferably 20 μm or more.
On the other hand, when the thickness exceeds 40 μm, it tends to be difficult to stably obtain an amorphous phase. From this viewpoint, the thickness is 40 μm or less, preferably 35 μm or less, and more preferably 30 μm or less.
 また、本発明のアモルファス合金薄帯の幅は100mm~300mmである。
 前記幅が100mm以上であると、実用的な変圧器を好適に作製できる。この観点から、前記幅は100mm以上であるが、125mm以上がより好ましい。
 一方、前記幅が300mmを超えると、幅方向に均一な厚さの薄帯を得ることが困難となり、形状が不均一な為に部分的に脆化したり、磁束密度(B1)が低下する。これらの観点から、前記幅は300mm以下であるが、275mm以下がより好ましい。
The width of the amorphous alloy ribbon of the present invention is 100 mm to 300 mm.
When the width is 100 mm or more, a practical transformer can be suitably produced. From this viewpoint, the width is 100 mm or more, and more preferably 125 mm or more.
On the other hand, when the width exceeds 300 mm, it is difficult to obtain a thin ribbon having a uniform thickness in the width direction, and the shape is not uniform, so that it is partially embrittled or the magnetic flux density (B1) is lowered. From these viewpoints, the width is 300 mm or less, and more preferably 275 mm or less.
 本発明のアモルファス合金薄帯の製造方法には特に限定はなく、例えば、液体急冷法(単ロール法、双ロール法、遠心法等)等の公知の方法を用いることができる。
 中でも、単ロール法は、製造設備が比較的単純で、かつ安定製造が可能な製造法であって、優れた工業生産性を有する。
The method for producing the amorphous alloy ribbon of the present invention is not particularly limited, and for example, a known method such as a liquid quenching method (single roll method, twin roll method, centrifugal method, etc.) can be used.
Among these, the single roll method is a manufacturing method with relatively simple manufacturing equipment and capable of stable manufacturing, and has excellent industrial productivity.
 図1は、本発明のアモルファス合金薄帯を製造するために好適なアモルファス合金薄帯製造装置の一実施形態を概念的に示す概略断面図である。
 図1に示すアモルファス合金薄帯製造装置100は、単ロール法によるアモルファス合金薄帯製造装置である。
 図1に示すように、アモルファス合金薄帯製造装置100は、溶湯ノズル10を備えた坩堝20と、その表面が溶湯ノズル10の先端に対向する冷却ロール30と、を備えている。図1は、アモルファス合金薄帯製造装置100を、冷却ロール30の軸方向及びアモルファス合金薄帯22Cの幅方向(これらの2つの方向は同一である)に対して垂直な面で切断したときの断面を示している。
FIG. 1 is a schematic sectional view conceptually showing an embodiment of an amorphous alloy ribbon manufacturing apparatus suitable for manufacturing the amorphous alloy ribbon of the present invention.
An amorphous alloy ribbon manufacturing apparatus 100 shown in FIG. 1 is an amorphous alloy ribbon manufacturing apparatus using a single roll method.
As shown in FIG. 1, the amorphous alloy ribbon manufacturing apparatus 100 includes a crucible 20 provided with a molten metal nozzle 10 and a cooling roll 30 whose surface faces the tip of the molten metal nozzle 10. FIG. 1 shows an amorphous alloy ribbon manufacturing apparatus 100 cut along a plane perpendicular to the axial direction of the cooling roll 30 and the width direction of the amorphous alloy ribbon 22C (the two directions are the same). A cross section is shown.
 坩堝20は、アモルファス合金薄帯の原料となる合金溶湯22Aを収容しうる内部空間を有しており、この内部空間と溶湯ノズル10内の溶湯流路とが連通されている。これにより、坩堝20内に収容された合金溶湯22Aを、溶湯ノズル10によって冷却ロール30に吐出できるようになっている(図1では、合金溶湯22Aの吐出方向及び流通方向を矢印Qで示している)。なお、坩堝20及び溶湯ノズル10は、一体に構成されたものであってもよいし、別体として構成されたものであってもよい。
 坩堝20の周囲の少なくとも一部には、加熱手段としての高周波コイル40が配置されている。これにより、アモルファス合金薄帯の母合金が収容された状態の坩堝20を加熱して坩堝20内で合金溶湯22Aを生成したり、外部から坩堝20に供給された合金溶湯22Aの液体状態を維持できるようになっている。
The crucible 20 has an internal space that can accommodate the molten alloy 22A that is a raw material for the amorphous alloy ribbon, and the internal space communicates with the molten metal flow path in the molten metal nozzle 10. Thereby, the molten alloy 22A accommodated in the crucible 20 can be discharged to the cooling roll 30 by the molten metal nozzle 10 (in FIG. 1, the discharge direction and the flow direction of the molten alloy 22A are indicated by arrows Q). ) In addition, the crucible 20 and the molten metal nozzle 10 may be comprised integrally, and may be comprised as a different body.
A high frequency coil 40 as a heating means is disposed at least at a part of the periphery of the crucible 20. As a result, the crucible 20 in which the master alloy of the amorphous alloy ribbon is accommodated is heated to generate the molten alloy 22A in the crucible 20, or the liquid state of the molten alloy 22A supplied to the crucible 20 from the outside is maintained. It can be done.
 また、溶湯ノズル10は、合金溶湯を吐出するための開口部(吐出口)を有している。
 この開口部は、矩形(スリット形状)の開口部とすることが好適である。
 矩形の開口部の長辺の長さは、製造されるアモルファス合金薄帯の幅に対応する長さとなっている。矩形の開口部の長辺の長さとして、具体的には、100mm~300mmが好ましい。この長辺の長さの下限は125mmがより好ましい。また、この長辺の長さの上限は275mmがより好ましい。
Moreover, the molten metal nozzle 10 has an opening (discharge port) for discharging the molten alloy.
This opening is preferably a rectangular (slit-shaped) opening.
The length of the long side of the rectangular opening is a length corresponding to the width of the amorphous alloy ribbon to be manufactured. Specifically, the length of the long side of the rectangular opening is preferably 100 mm to 300 mm. The lower limit of the length of the long side is more preferably 125 mm. Further, the upper limit of the length of the long side is more preferably 275 mm.
 溶湯ノズル10の先端と冷却ロール30の表面との距離は、溶湯ノズル10によって合金溶湯22Aを吐出したときに、合金溶湯22Aによる湯溜まり22Bが形成される程度に近接している。
 この距離は、単ロール法において通常設定される範囲とすることができるが、500μm以下が好ましく、300μm以下がより好ましい。
 また、この距離は、溶湯ノズル10の先端と冷却ロール30の表面との接触を抑制する観点からは、50μm以上であることが好ましい。
The distance between the tip of the molten metal nozzle 10 and the surface of the cooling roll 30 is close enough to form the hot water pool 22B formed by the molten alloy 22A when the molten molten metal 22A is discharged by the molten metal nozzle 10.
Although this distance can be made into the range normally set in a single roll method, 500 micrometers or less are preferable and 300 micrometers or less are more preferable.
In addition, this distance is preferably 50 μm or more from the viewpoint of suppressing contact between the tip of the molten metal nozzle 10 and the surface of the cooling roll 30.
 冷却ロール30は矢印Pの方向に軸回転できるように構成されている。
 冷却ロール30の内部には水等の冷却媒体が流通されており、これにより、冷却ロール30の表面に付与(吐出)された合金溶湯22Aを冷却しアモルファス合金薄帯22Cを生成できるようになっている。
 冷却ロール30の材質は、Cu、Cu合金(Cu-Be合金、Cu-Cr合金、Cu-Zr合金、Cu-Zn合金、Cu-Sn合金、Cu-Ti合金等)の熱伝導性の高い材料が好ましい。
 冷却ロール30表面の表面粗さには特に限定はないが、占積率の観点からは、冷却ロール30表面の算術平均粗さ(Ra)は、0.5μm以下が好ましく、0.3μm以下がより好ましい。冷却ロール30表面の算術平均粗さ(Ra)は、表面粗さ調整の加工性の観点からは、0.1μm以上が好ましい。
 また、本実施形態では、上述の好ましい表面粗さ(Ra)を維持するために、合金薄帯の製造中にブラシ等で冷却ロール30の表面を研磨してもよい。
 その他、冷却ロール30としては、単ロール法において通常用いられる冷却ロールを用いることができる。
 冷却ロール30の直径は、冷却能の観点から、200mm以上が好ましく、300mm以上がより好ましい。一方、この直径は、冷却能の観点から、700mm以下がより好ましい。
 本明細書中において表面粗さ(前記算術平均粗さRa)は、JIS B 0601(2001)に準拠して測定された表面粗さを指す。
The cooling roll 30 is configured to be able to rotate in the direction of arrow P.
A cooling medium such as water is circulated inside the cooling roll 30, whereby the molten alloy 22 </ b> A applied (discharged) to the surface of the cooling roll 30 can be cooled to generate an amorphous alloy ribbon 22 </ b> C. ing.
The material of the cooling roll 30 is a material having high thermal conductivity such as Cu, Cu alloy (Cu—Be alloy, Cu—Cr alloy, Cu—Zr alloy, Cu—Zn alloy, Cu—Sn alloy, Cu—Ti alloy, etc.). Is preferred.
The surface roughness of the surface of the cooling roll 30 is not particularly limited, but from the viewpoint of the space factor, the arithmetic average roughness (Ra) of the surface of the cooling roll 30 is preferably 0.5 μm or less, preferably 0.3 μm or less. More preferred. The arithmetic average roughness (Ra) of the surface of the cooling roll 30 is preferably 0.1 μm or more from the viewpoint of workability for adjusting the surface roughness.
Moreover, in this embodiment, in order to maintain the above-mentioned preferable surface roughness (Ra), you may grind the surface of the cooling roll 30 with a brush etc. during manufacture of an alloy ribbon.
In addition, as the cooling roll 30, the cooling roll normally used in a single roll method can be used.
The diameter of the cooling roll 30 is preferably 200 mm or more, and more preferably 300 mm or more, from the viewpoint of cooling ability. On the other hand, this diameter is more preferably 700 mm or less from the viewpoint of cooling ability.
In this specification, the surface roughness (the arithmetic average roughness Ra) refers to the surface roughness measured according to JIS B 0601 (2001).
 冷却ロール30の表面の近傍(溶湯ノズル10よりも冷却ロール30の回転方向のついての下流側)には、剥離ガスノズル50が配置されている。これにより、冷却ロール30の回転方向(矢印P)とは逆向き(図2中の破線の矢印の方向)に剥離ガス(例えば窒素ガスや圧縮空気等の高圧ガス)を吹きつけることによって、冷却ロール30からのアモルファス合金薄帯22Cの剥離がより効率よく行われる。 In the vicinity of the surface of the cooling roll 30 (on the downstream side in the rotation direction of the cooling roll 30 from the molten metal nozzle 10), a peeling gas nozzle 50 is arranged. Thus, cooling is performed by blowing a stripping gas (for example, high-pressure gas such as nitrogen gas or compressed air) in the direction opposite to the rotation direction (arrow P) of the cooling roll 30 (the direction of the broken arrow in FIG. 2). Peeling of the amorphous alloy ribbon 22C from the roll 30 is performed more efficiently.
 アモルファス合金薄帯製造装置100は、上述した構成以外のその他の構成(例えば、製造されたアモルファス合金薄帯22Cを巻き取る巻き取りロール、合金溶湯による湯溜まり22B又はその近傍にCOガスやNガス等を吹き付けるガスノズル等)を備えていてもよい。
 その他、アモルファス合金薄帯製造装置100の基本的な構成は、従来の単ロール法によるアモルファス合金薄帯製造装置(例えば、特許第3494371号公報、特許第3594123号公報、特許第4244123号公報、特許第4529106号公報等参照)と同様の構成とすることができる。
The amorphous alloy ribbon manufacturing apparatus 100 has a configuration other than the above-described configuration (for example, a take-up roll for winding the manufactured amorphous alloy ribbon 22C, a hot water reservoir 22B made of molten alloy, or CO 2 gas or N A gas nozzle or the like for spraying two gases or the like.
In addition, the basic configuration of the amorphous alloy ribbon manufacturing apparatus 100 is based on a conventional amorphous alloy ribbon manufacturing apparatus using a single roll method (for example, Japanese Patent No. 3494371, Japanese Patent No. 3594123, Japanese Patent No. 4244123, Patent (See Japanese Patent No. 4529106).
 次に、アモルファス合金薄帯製造装置100を用いたアモルファス合金薄帯22Cの製造の一例について説明する。
 まず、坩堝20に、本発明のアモルファス合金薄帯の原料となる合金溶湯22Aを準備する。
 ここで合金溶湯22Aは、本発明のアモルファス合金薄帯の組成の母合金を溶解させて得られた合金溶湯であってもよいし、まず本発明のアモルファス合金薄帯の組成からC(炭素)を除いた組成の母合金を準備し、この母合金を溶解させた溶湯中にC(炭素)を溶解させて得られた合金溶湯であってもよい。
 合金溶湯22Aの温度には特に限定はないが、合金溶湯22Aに起因する析出物が溶湯ノズルの壁面に付着することを抑制する観点から、1210℃以上であることが好ましく、1260℃以上であることがより好ましい。また、合金溶湯22Aの温度は、冷却ロール30表面との接触面側に発生するエアポケットの生成を抑制する観点から、1410℃以下であることが好ましく、1360℃以下であることがより好ましい。
Next, an example of manufacturing the amorphous alloy ribbon 22C using the amorphous alloy ribbon manufacturing apparatus 100 will be described.
First, a molten alloy 22A that is a raw material for the amorphous alloy ribbon of the present invention is prepared in the crucible 20.
Here, the molten alloy 22A may be a molten alloy obtained by melting the master alloy having the composition of the amorphous alloy ribbon of the present invention. First, C (carbon) is obtained from the composition of the amorphous alloy ribbon of the present invention. Alternatively, a molten alloy obtained by preparing a mother alloy having a composition excluding the above and dissolving C (carbon) in a molten metal in which the mother alloy is dissolved may be used.
The temperature of the molten alloy 22A is not particularly limited, but is preferably 1210 ° C. or higher and 1260 ° C. or higher from the viewpoint of suppressing deposits resulting from the molten alloy 22A from adhering to the wall surface of the molten metal nozzle. It is more preferable. Further, the temperature of the molten alloy 22A is preferably 1410 ° C. or less, and more preferably 1360 ° C. or less, from the viewpoint of suppressing generation of air pockets generated on the contact surface side with the surface of the cooling roll 30.
 次に、矢印Pの方向に回転する冷却ロール30表面に、溶湯ノズル10によって合金溶湯を吐出して湯溜まり22Bを形成しながら前記冷却ロール30表面に前記合金溶湯による塗膜を形成するとともに、この塗膜を冷却してアモルファス合金薄帯22Cとする。次に、冷却ロール30の表面に形成されたアモルファス合金薄帯22Cを、剥離ガスノズル50からの剥離ガスの吹きつけによって冷却ロール30の表面から剥離し、不図示の巻き取りロールによってロール状に巻き取って回収する。
 合金溶湯の吐出からアモルファス合金薄帯の巻き取り(回収)までの操作は連続的に行われ、これにより、例えば長手方向長さが3000m以上の長尺状のアモルファス合金薄帯が得られる。
Next, on the surface of the cooling roll 30 rotating in the direction of the arrow P, the molten alloy is discharged from the molten metal nozzle 10 to form the hot water pool 22B while forming a coating film of the molten alloy on the surface of the cooling roll 30; This coating film is cooled to form amorphous alloy ribbon 22C. Next, the amorphous alloy ribbon 22C formed on the surface of the cooling roll 30 is peeled off from the surface of the cooling roll 30 by blowing a peeling gas from the peeling gas nozzle 50, and wound into a roll by a winding roll (not shown). Take and collect.
The operations from the discharge of molten alloy to the winding (recovery) of the amorphous alloy ribbon are continuously performed, whereby a long amorphous alloy ribbon having a longitudinal length of, for example, 3000 m or more is obtained.
 このときの合金溶湯の吐出圧力は、10kPa以上が好ましく、15kPa以上がより好ましい。一方、この吐出圧力は、30kPa以下が好ましく、25kPa以下がより好ましい。
 吐出圧力が上述の好ましい範囲であると、占積率をより向上させることができる。
At this time, the discharge pressure of the molten alloy is preferably 10 kPa or more, and more preferably 15 kPa or more. On the other hand, the discharge pressure is preferably 30 kPa or less, and more preferably 25 kPa or less.
When the discharge pressure is in the above-described preferable range, the space factor can be further improved.
 また、冷却ロール30の回転速度は単ロール法において通常設定される範囲とすることができるが、周速40m/s以下が好ましく、周速30m/s以下がより好ましい。一方、この回転速度は、周速10m/s以上が好ましく、周速20m/s以上がより好ましい。
 また、冷却ロール30表面の温度は、冷却ロール30表面への合金溶湯の供給が開始されてから5秒以上経過した後において、80℃以上が好ましく、100℃以上がより好ましい。一方、この温度は、300℃以下が好ましく、250℃以下がより好ましい。
 冷却ロール30による合金溶湯の冷却速度は、1×10℃/s以上が好ましく、1×10℃/s以上がより好ましい。
Moreover, the rotational speed of the cooling roll 30 can be made into the range normally set in a single roll method, However, The peripheral speed is 40 m / s or less, More preferably, the peripheral speed is 30 m / s or less. On the other hand, the rotational speed is preferably a peripheral speed of 10 m / s or more, and more preferably a peripheral speed of 20 m / s or more.
Further, the temperature of the surface of the cooling roll 30 is preferably 80 ° C. or more, more preferably 100 ° C. or more after 5 seconds or more have passed since the supply of the molten alloy to the surface of the cooling roll 30 is started. On the other hand, this temperature is preferably 300 ° C. or lower, and more preferably 250 ° C. or lower.
The cooling rate of the molten alloy by the cooling roll 30 is preferably 1 × 10 5 ° C./s or more, and more preferably 1 × 10 6 ° C./s or more.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。以下の実施例において、「at%」は原子%を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In the following examples, “at%” represents atomic%.
〔実施例1~9、比較例1~2〕
≪アモルファス合金薄帯の作製≫
 図1に示したアモルファス合金薄帯製造装置100と同様の構成のアモルファス合金薄帯製造装置を準備した。ここで、冷却ロールとしては、以下の冷却ロールを準備した。
[Examples 1 to 9, Comparative Examples 1 and 2]
<< Production of amorphous alloy ribbon >>
An amorphous alloy ribbon manufacturing apparatus having the same configuration as that of the amorphous alloy ribbon manufacturing apparatus 100 shown in FIG. 1 was prepared. Here, the following cooling rolls were prepared as the cooling rolls.
-冷却ロール-
・材質       … Cu-Be合金
・直径       … 400mm
・冷却ロール表面の算術平均粗さRa … 0.3μm
-Cooling roll-
-Material: Cu-Be alloy-Diameter: 400 mm
・ Arithmetic average roughness Ra on the surface of the chill roll: 0.3 μm
 まず、坩堝内で、Fe、Si、B、C、及び不可避的不純物からなる合金溶湯(以下、「Fe-Si-B-C系合金溶湯」ともいう)を調製した。詳細には、Fe、Si、B、及び不可避的不純物からなる母合金を溶解し、得られた溶湯に炭素を添加して溶解させ、混合することにより、下記表1に示すアモルファス合金薄帯を製造するための合金溶湯を調製した。
 次に、このFe-Si-B-C系合金溶湯を、長辺の長さ142mm×短辺の長さ0.6mmの矩形(スリット形状)の開口部を有する溶湯ノズルの該開口部から、回転する冷却ロール表面に吐出し、急冷凝固させて、幅が142mmで厚さが25μmのアモルファス合金薄帯を1000kg作製した。
First, a molten alloy composed of Fe, Si, B, C and inevitable impurities (hereinafter also referred to as “Fe—Si—B—C alloy molten metal”) was prepared in a crucible. Specifically, the amorphous alloy ribbon shown in Table 1 below is obtained by melting a master alloy composed of Fe, Si, B, and inevitable impurities, adding carbon to the resulting molten metal, and mixing them. A molten alloy for production was prepared.
Next, this Fe—Si—B—C-based alloy molten metal is taken from the opening of the molten metal nozzle having a rectangular (slit shape) opening having a long side length of 142 mm and a short side length of 0.6 mm, It was discharged onto the surface of a rotating cooling roll and rapidly solidified to produce 1000 kg of an amorphous alloy ribbon having a width of 142 mm and a thickness of 25 μm.
 アモルファス合金薄帯の詳細な作製条件は以下の通りとした。
・合金溶湯の吐出圧力 … 20kPa
・冷却ロールの周速  … 25m/s
・合金溶湯温度    … 1300℃
・溶湯ノズル先端と冷却ロール表面との距離 … 200μm
・冷却温度(冷却ロール表面への合金溶湯の供給が開始されてから5秒以上経過した後の温度)  … 170℃
The detailed production conditions of the amorphous alloy ribbon were as follows.
・ Discharge pressure of molten alloy: 20 kPa
・ Cooling roll peripheral speed: 25 m / s
-Molten alloy temperature: 1300 ° C
・ Distance between molten metal nozzle tip and cooling roll surface: 200 μm
・ Cooling temperature (temperature after 5 seconds or more from the start of the supply of molten alloy to the surface of the cooling roll): 170 ° C.
 各実施例及び各比較例のアモルファス合金薄帯における、Fe、Si、B、及びCの量は、下記表1に示すとおりである。
 下記表1において、Feの量(at%)、Siの量(at%)、及びBの量(at%)は、それぞれ、Fe、Si及びBの合計量を100.0at%としたときの量である。Cの量(at%)は、Fe、Si及びBの合計量100.0at%に対する量(即ち、前記合計量を100.0at%としたときのCの添加量)である。
 これらの量は、ICP発光分光分析法により測定された量である。
The amounts of Fe, Si, B, and C in the amorphous alloy ribbons of Examples and Comparative Examples are as shown in Table 1 below.
In Table 1 below, the amount of Fe (at%), the amount of Si (at%), and the amount of B (at%) are respectively when the total amount of Fe, Si and B is 100.0 at%. Amount. The amount of C (at%) is the amount with respect to the total amount of Fe, Si and B of 100.0 at% (that is, the amount of C added when the total amount is 100.0 at%).
These amounts are those measured by ICP emission spectroscopy.
≪評価≫
 各実施例及び各比較例のアモルファス合金薄帯について、以下の評価を行った。
≪Evaluation≫
The following evaluation was performed about the amorphous alloy ribbon of each Example and each comparative example.
<占積率>
 各実施例及び各比較例のアモルファス合金薄帯について、それぞれ、ASTM A900/A900M-01(2006)に準拠し、占積率(%)を測定した。
 測定結果を下記表1に示す。
<Space factor>
The space factor (%) of each of the amorphous alloy ribbons of each Example and each Comparative Example was measured according to ASTM A900 / A900M-01 (2006).
The measurement results are shown in Table 1 below.
<脆さ>
 各実施例及び各比較例のアモルファス合金薄帯について、それぞれ、以下に示す脆さの評価(脆さの数値化)を行った。
 上記評価によって得られた脆さの数値を下記表1に示す。
 この評価結果は、脆さの数値が小さいほど脆さが抑制されていることを示しており、脆さの数値が大きいほど脆いことを示している。
<Brittleness>
For the amorphous alloy ribbons of each Example and each Comparative Example, the following evaluation of brittleness (numerization of brittleness) was performed.
Table 1 shows the numerical values of the brittleness obtained by the above evaluation.
This evaluation result indicates that the smaller the brittleness value is, the more the brittleness is suppressed, and the larger the brittleness value is, the more brittle it is.
 ここで、脆さの評価について、図2及び図3を参照しながら説明する。
 図2は、脆さの評価に用いたサンプルを模式的に示す概念図であり、図3は、脆さの評価における引き裂き後のサンプル片及び引き裂き線を模式的に示す概念図である。
 脆さの評価は、図2に示すように、アモルファス合金薄帯から長さ1250mmのサンプル(冷却ロール1周分)を切り出し、このサンプルを長手方向について2等分し(図2中の一点鎖線の位置で切断し)、得られた2つのサンプル片を用いて行った。
 具体的には、各サンプル片について、サンプル片の長手方向一端に切り込みを入れて引き裂き開始点とし、サンプル片にせん断力が加わるように引き裂く操作を行った(以下、この操作を「引き裂き操作」という)。この引き裂き操作は、サンプル片の長手方向に沿って、長手方向一端から長手方向他端に到るまで行った。図3中では、引き裂き操作における引き裂き方向を矢印Rで示した。
 次に、引き裂き操作によって実際に生じた引き裂き線(例えば、図3中の引き裂き線T)を目視で観察し、この引き裂き線において、サンプル片の幅方向に生じた6mm以上の段差(図3中の寸法kが6mm以上である段差)の数を確認した。
 この結果に基づき、下記評価基準に従って、引き裂き線一本当たりの脆さを評価した。
 下記評価基準の「1点」は、脆さが最も抑制されていることを示しており、「5点」は最も脆いことを示している。
Here, evaluation of brittleness will be described with reference to FIGS.
FIG. 2 is a conceptual diagram schematically showing a sample used for evaluation of brittleness, and FIG. 3 is a conceptual diagram schematically showing a sample piece after tearing and a tear line in evaluation of brittleness.
As shown in FIG. 2, the brittleness is evaluated by cutting out a sample of 1250 mm in length (one round of the cooling roll) from the amorphous alloy ribbon and dividing the sample into two equal parts in the longitudinal direction (one-dot chain line in FIG. 2). And the two obtained sample pieces were used.
Specifically, for each sample piece, an operation was performed in which a sample was cut at one end in the longitudinal direction of the sample piece as a tear starting point, and a tear force was applied to the sample piece (hereinafter, this operation is referred to as a “tear operation”). Called). This tearing operation was performed from one end in the longitudinal direction to the other end in the longitudinal direction along the longitudinal direction of the sample piece. In FIG. 3, the tearing direction in the tearing operation is indicated by an arrow R.
Next, a tear line actually generated by the tearing operation (for example, a tear line T in FIG. 3) is visually observed, and a step of 6 mm or more (in FIG. 3) generated in the width direction of the sample piece at the tear line. The number of steps with a dimension k of 6 mm or more was confirmed.
Based on this result, the brittleness per tear line was evaluated according to the following evaluation criteria.
“1 point” in the following evaluation criteria indicates that brittleness is most suppressed, and “5 points” indicates that it is most brittle.
-引き裂き線一本当たりの脆さの評価基準-
 1点 … 引き裂き線一本当たり、6mm以上の段差が0個
 2点 … 引き裂き線一本当たり、6mm以上の段差が1~3個
 3点 … 引き裂き線一本当たり、6mm以上の段差が4~6個
 4点 … 引き裂き線一本当たり、6mm以上の段差が7~9個
 5点 … 引き裂き線一本当たり、6mm以上の段差が10個以上(又は、引き裂き操作によりサンプル片が崩壊し、サンプル片長手方向の引き裂きを実質的に行うことができない)
-Evaluation criteria for brittleness per tear line-
1 point: 0 step of 6 mm or more per tear line 2 points: 1 to 3 steps of 6 mm or more per tear line 3 points: 4 steps of 6 mm or more per tear line 6 pieces 4 points ... 7 to 9 steps of 6 mm or more per tear line 5 points ... 10 steps or more of 6 mm or more per tear line (or sample piece collapses by tearing operation, sample (Cannot perform tearing in one longitudinal direction)
 上記引き裂き線一本当たりの脆さの評価を、図2に示すように、サンプル片の幅方向中央部、サンプル片の幅方向端部から6.4mmの位置(2箇所)、及びサンプル片の幅方向端部から12.8mmの位置(2箇所)のそれぞれについて行った。図2中では、評価箇所を破線で示した。評価箇所は、2等分されたサンプル片についてそれぞれ5箇所ずつであり、一つのサンプルについて10箇所である。即ち、一つのサンプル当たり、引き裂き線が10本生じることになる。
 次に、引き裂き線10本分の評価結果から脆さの平均点を算出し、得られた平均点を、そのサンプルにおける脆さの数値とした。
As shown in FIG. 2, the evaluation of the brittleness per tear line is performed at the center part in the width direction of the sample piece, the position (2 places) 6.4 mm from the end part in the width direction of the sample piece, and It performed about each of the position (2 places) of 12.8 mm from the width direction edge part. In FIG. 2, the evaluation points are indicated by broken lines. The number of evaluation points is 5 for each of the bisected sample pieces, and 10 for each sample. That is, ten tear lines are generated per sample.
Next, the average point of brittleness was calculated from the evaluation result for 10 tear lines, and the obtained average point was used as the numerical value of brittleness in the sample.
<磁束密度(B1、60Hz)>
 各実施例及び各比較例のアモルファス合金薄帯について、それぞれ、ASTM A932/A932M-01に準拠し、周波数60Hz、79.557A/mの磁場を印加したときの磁束密度(B1、60Hz)を測定した。
 測定結果を下記表1に示す。
<Magnetic flux density (B1, 60 Hz)>
Measure the magnetic flux density (B1, 60 Hz) when applying a magnetic field with a frequency of 60 Hz and 79.557 A / m in accordance with ASTM A932 / A932M-01 for the amorphous alloy ribbons of each example and each comparative example. did.
The measurement results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
~表1の説明~
・Feの量(at%)、Siの量(at%)、及びBの量(at%)は、それぞれ、Fe、Si、及びBの合計量を100.0at%としたときの量である。
・Cの量(at%)は、Fe、Si、及びBの合計量100.0at%に対する量(即ち、Fe、Si、及びBの合計量を100.0at%としたときのCの添加量)である。
・脆さの数値は、小さい程脆さが抑制されていることを示し、大きい程脆いことを示している。
~ Explanation of Table 1 ~
The amount of Fe (at%), the amount of Si (at%), and the amount of B (at%) are amounts when the total amount of Fe, Si, and B is 100.0 at%, respectively. .
The amount of C (at%) is the amount of Fe, Si, and B with respect to the total amount of 100.0 at% (that is, the amount of C added when the total amount of Fe, Si, and B is 100.0 at%) ).
・ The numerical value of the brittleness indicates that the smaller the value, the more the brittleness is suppressed, and the larger the value, the more brittle.
 表1に示すように、Cの量が0.2at%~0.6at%である実施例1~9では、占積率に優れ、脆さ(脆性)が抑制され、高い磁束密度が維持されていた。特に、Cの量が0.3at%~0.6at%である実施例2~9では、占積率が88%以上であることが確認された。
 一方、Cの量が0.6at%を超える比較例1及び2では、脆さ(脆性)が悪化した。
As shown in Table 1, in Examples 1 to 9 in which the amount of C is 0.2 at% to 0.6 at%, the space factor is excellent, brittleness (brittleness) is suppressed, and high magnetic flux density is maintained. It was. In particular, in Examples 2 to 9 in which the amount of C was 0.3 at% to 0.6 at%, it was confirmed that the space factor was 88% or more.
On the other hand, in Comparative Examples 1 and 2 in which the amount of C exceeds 0.6 at%, brittleness (brittleness) deteriorated.
 日本出願2012-058714の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2012-058714 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (6)

  1.  Fe、Si、B、C、及び不可避的不純物からなり、
     Fe、Si、及びBの合計量を100.0原子%としたときに、Siの量が8.5原子%~9.5原子%であり、Bの量が10.0原子%以上12.0原子%未満であり、
     前記合計量100.0原子%に対するCの量が0.2原子%~0.6原子%であり、
     厚さが10μm~40μmであり、幅が100mm~300mmであるアモルファス合金薄帯。
    Fe, Si, B, C, and inevitable impurities,
    When the total amount of Fe, Si and B is 100.0 atomic percent, the amount of Si is 8.5 atomic percent to 9.5 atomic percent, and the amount of B is 10.0 atomic percent or more and 12. Less than 0 atomic%,
    The amount of C with respect to the total amount of 100.0 atomic% is 0.2 atomic% to 0.6 atomic%;
    An amorphous alloy ribbon having a thickness of 10 μm to 40 μm and a width of 100 mm to 300 mm.
  2.  前記Cの量が0.3原子%~0.6原子%である請求項1に記載のアモルファス合金薄帯。 2. The amorphous alloy ribbon according to claim 1, wherein the amount of C is 0.3 atomic% to 0.6 atomic%.
  3.  前記Bの量が10.0原子%~11.5原子%である請求項1又は請求項2に記載のアモルファス合金薄帯。 3. The amorphous alloy ribbon according to claim 1, wherein the amount of B is 10.0 atomic% to 11.5 atomic%.
  4.  占積率が88%以上である請求項1~請求項3のいずれか1項に記載のアモルファス合金薄帯。 The amorphous alloy ribbon according to any one of claims 1 to 3, wherein the space factor is 88% or more.
  5.  Fe、Si、及びBの合計量を100.0原子%としたときに、Feの量が79.0原子%~80.0原子%であり、Siの量が8.5原子%~9.5原子%であり、Bの量が10.5原子%~11.5原子%である請求項1~請求項4のいずれか1項に記載のアモルファス合金薄帯。 When the total amount of Fe, Si, and B is 100.0 atomic percent, the amount of Fe is 79.0 atomic percent to 80.0 atomic percent and the amount of Si is 8.5 atomic percent to 9. 5. The amorphous alloy ribbon according to claim 1, wherein the amorphous alloy ribbon is 5 atomic% and the amount of B is 10.5 atomic% to 11.5 atomic%.
  6.  単ロール法により製造された請求項1~請求項5のいずれか1項に記載のアモルファス合金薄帯。 The amorphous alloy ribbon according to any one of claims 1 to 5, which is produced by a single roll method.
PCT/JP2013/056355 2012-03-15 2013-03-07 Amorphous alloy thin strip WO2013137118A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/384,968 US20150050510A1 (en) 2012-03-15 2013-03-07 Amorphous alloy ribbon
JP2014504831A JP6123790B2 (en) 2012-03-15 2013-03-07 Amorphous alloy ribbon
CN201380014114.5A CN104245993A (en) 2012-03-15 2013-03-07 Amorphous alloy thin strip
DE112013001401.7T DE112013001401T8 (en) 2012-03-15 2013-03-07 BAND OF AMORPHER ALLOY
KR1020207001214A KR20200010574A (en) 2012-03-15 2013-03-07 Amorphous alloy thin strip
KR1020147027048A KR20140138222A (en) 2012-03-15 2013-03-07 Amorphous alloy thin strip
IN8435DEN2014 IN2014DN08435A (en) 2012-03-15 2013-03-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012058714 2012-03-15
JP2012-058714 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013137118A1 true WO2013137118A1 (en) 2013-09-19

Family

ID=49161028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056355 WO2013137118A1 (en) 2012-03-15 2013-03-07 Amorphous alloy thin strip

Country Status (7)

Country Link
US (1) US20150050510A1 (en)
JP (1) JP6123790B2 (en)
KR (2) KR20140138222A (en)
CN (1) CN104245993A (en)
DE (1) DE112013001401T8 (en)
IN (1) IN2014DN08435A (en)
WO (1) WO2013137118A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094385A1 (en) * 2014-12-11 2016-06-16 Metglas, Inc. Fe-Si-B-C-BASED AMORPHOUS ALLOY RIBBON AND TRANSFORMER CORE FORMED THEREBY
WO2017090402A1 (en) * 2015-11-26 2017-06-01 日立金属株式会社 Iron-based amorphous alloy ribbon
EP3225712A4 (en) * 2014-11-25 2018-06-06 Hitachi Metals, Ltd. Amorphous alloy ribbon and method for manufacturing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA037553B1 (en) * 2015-03-12 2021-04-13 Монтаньяни, Гульельмо Method, device for manufacturing transformers with a core made of amorphous material, and transformer thus produced
KR101626432B1 (en) 2015-06-30 2016-06-01 주식회사 서진안전 Breathable gaiters secured
JP6478061B2 (en) * 2016-04-04 2019-03-06 Jfeスチール株式会社 Amorphous alloy ribbon
WO2018151172A1 (en) * 2017-02-14 2018-08-23 日立金属株式会社 Fe-based amorphous alloy ribbon manufacturing method, fe-based amorphous alloy ribbon manufacturing device, and wound body of fe-based amorphous alloy ribbon
CN107267889B (en) * 2017-06-14 2019-11-01 青岛云路先进材料技术股份有限公司 A kind of Fe-based amorphous alloy and preparation method thereof with low stress sensibility
JP6605182B2 (en) * 2017-07-04 2019-11-13 日立金属株式会社 Amorphous alloy ribbon and manufacturing method thereof, amorphous alloy ribbon piece
CN111801752B (en) * 2018-03-02 2024-03-19 Tdk株式会社 Magnetic core, method for manufacturing the same, and coil component
CN114574785A (en) * 2020-12-01 2022-06-03 安泰非晶科技有限责任公司 Amorphous nanocrystalline alloy strip and manufacturing method thereof
CN115247242A (en) * 2021-04-25 2022-10-28 安泰非晶科技有限责任公司 Amorphous alloy strip and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190548A (en) * 1984-03-08 1985-09-28 Nippon Steel Corp Method for casting amorphous alloy for iron core of electromagnetic apparatus
JPH09143640A (en) * 1995-11-21 1997-06-03 Kawasaki Steel Corp Wide amorphous alloy foil for power transformer iron core
JPH10323742A (en) * 1997-05-28 1998-12-08 Kawasaki Steel Corp Soft magnetic amorphous metal thin band
JP2006045662A (en) * 2004-07-05 2006-02-16 Hitachi Metals Ltd Amorphous alloy ribbon
JP2008104340A (en) * 1999-12-23 2008-05-01 Metglas Inc Bulk amorphous metal magnetic member for electric motor
JP2008279457A (en) * 2007-05-08 2008-11-20 Nippon Steel Corp Method for producing amorphous alloy thin strip, and production device therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017019B2 (en) * 1980-09-26 1985-04-30 アライド・コーポレーシヨン Iron-based boron-containing magnetic amorphous alloy and its manufacturing method
JP5165820B2 (en) * 1998-05-13 2013-03-21 メトグラス・インコーポレーテッド High stack rate amorphous metal ribbon and transformer core
JP3722411B2 (en) * 2000-05-11 2005-11-30 日立金属株式会社 Method for producing base material for iron-based amorphous alloy
JP3494371B2 (en) * 2001-02-14 2004-02-09 日立金属株式会社 Method for producing amorphous alloy ribbon and method for producing nanocrystalline alloy ribbon using the same
JP2007217757A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Amorphous alloy thin strip excellent in magnetic property and space factor
JP5163490B2 (en) * 2006-04-07 2013-03-13 日立金属株式会社 Soft magnetic metal ribbon laminate and method for producing the same
JP5114241B2 (en) * 2008-02-25 2013-01-09 駿 佐藤 Amorphous alloy foil strip manufacturing apparatus and amorphous alloy foil strip manufacturing method
WO2009107561A1 (en) * 2008-02-25 2009-09-03 新日本製鐵株式會社 Apparatus for producing amorphous alloy foil strip and method for producing amorphous alloy foil strip
CN102473500B (en) * 2009-09-14 2014-10-15 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same
CN101840764B (en) * 2010-01-25 2012-08-08 安泰科技股份有限公司 Low-cost high-saturation magnetic induction intensity iron-based amorphous soft magnetism alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190548A (en) * 1984-03-08 1985-09-28 Nippon Steel Corp Method for casting amorphous alloy for iron core of electromagnetic apparatus
JPH09143640A (en) * 1995-11-21 1997-06-03 Kawasaki Steel Corp Wide amorphous alloy foil for power transformer iron core
JPH10323742A (en) * 1997-05-28 1998-12-08 Kawasaki Steel Corp Soft magnetic amorphous metal thin band
JP2008104340A (en) * 1999-12-23 2008-05-01 Metglas Inc Bulk amorphous metal magnetic member for electric motor
JP2006045662A (en) * 2004-07-05 2006-02-16 Hitachi Metals Ltd Amorphous alloy ribbon
JP2008279457A (en) * 2007-05-08 2008-11-20 Nippon Steel Corp Method for producing amorphous alloy thin strip, and production device therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225712A4 (en) * 2014-11-25 2018-06-06 Hitachi Metals, Ltd. Amorphous alloy ribbon and method for manufacturing same
US10450638B2 (en) 2014-11-25 2019-10-22 Hitachi Metals, Ltd. Amorphous alloy ribbon and method for manufacturing same
WO2016094385A1 (en) * 2014-12-11 2016-06-16 Metglas, Inc. Fe-Si-B-C-BASED AMORPHOUS ALLOY RIBBON AND TRANSFORMER CORE FORMED THEREBY
CN107004480A (en) * 2014-12-11 2017-08-01 梅特格拉斯公司 Fe Si B C system's amorphous alloy ribbons and the transformer magnetic core being formed from
US20170365392A1 (en) * 2014-12-11 2017-12-21 Metglas, Inc. Fe-Si-B-C-BASED AMORPHOUS ALLOY RIBBON AND TRANSFORMER CORE FORMED THEREBY
US10566127B2 (en) 2014-12-11 2020-02-18 Hitachi Metals, Ltd. Fe—Si—B—C-based amorphous alloy ribbon and transformer core formed thereby
WO2017090402A1 (en) * 2015-11-26 2017-06-01 日立金属株式会社 Iron-based amorphous alloy ribbon
JPWO2017090402A1 (en) * 2015-11-26 2018-09-13 日立金属株式会社 Fe-based amorphous alloy ribbon

Also Published As

Publication number Publication date
IN2014DN08435A (en) 2015-05-08
JP6123790B2 (en) 2017-05-10
KR20200010574A (en) 2020-01-30
JPWO2013137118A1 (en) 2015-08-03
CN104245993A (en) 2014-12-24
DE112013001401T8 (en) 2015-02-26
DE112013001401T5 (en) 2014-12-24
US20150050510A1 (en) 2015-02-19
KR20140138222A (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP6123790B2 (en) Amorphous alloy ribbon
JP6414171B2 (en) Amorphous alloy ribbon
JP6077446B2 (en) Ferromagnetic amorphous alloy ribbons with reduced surface defects and their applications
US10519534B2 (en) Iron-based amorphous alloy thin strip
CN114411069A (en) Wide iron-based amorphous alloys of precursors to nanocrystalline alloys
JP7070438B2 (en) Method for manufacturing Fe-based amorphous alloy ribbon, equipment for manufacturing Fe-based amorphous alloy ribbon, and winding body for Fe-based amorphous alloy ribbon.
KR20150054912A (en) Ultrafine crystal alloy ribbon, fine crystal soft magnetic alloy ribbon, and magnetic parts using same
WO2018181604A1 (en) Fe-based amorphous alloy ribbon for fe-based nanocrystalline alloy, and method for manufacturing same
US7918946B2 (en) Fe-based amorphous alloy excellent in soft magnetic properties
JP6077445B2 (en) Ferromagnetic amorphous alloy ribbons and their manufacture
JP6003899B2 (en) Fe-based early microcrystalline alloy ribbon and magnetic parts
JP6313956B2 (en) Nanocrystalline alloy ribbon and magnetic core using it
JP2004353090A (en) Amorphous alloy ribbon and member using the same
JP6160784B2 (en) Amorphous alloy ribbon and manufacturing method thereof
JP5645108B2 (en) Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon
TWI642796B (en) Amorphous alloy ribbon
JP4969808B2 (en) Manufacturing method and manufacturing apparatus for iron-based amorphous ribbon with excellent magnetic properties
JP2002283012A (en) Iron-base amorphous alloy having good strip forming performance
JP2023057649A (en) Method and apparatus for producing amorphous-alloy foil strip, and amorphous-alloy foil strip produced by the producing method
JP2010028037A (en) Soft magnetic thin belt, manufacturing method thereof, magnetic core using soft magnetic thin belt, and coil
JP2018178168A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN BAND
JP2001300697A (en) Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504831

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130014017

Country of ref document: DE

Ref document number: 112013001401

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14384968

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147027048

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201406196

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13760359

Country of ref document: EP

Kind code of ref document: A1