WO2015158806A1 - Bleifreier cuni2si-gleitlagerwerkstoff unter zugabe eines spanbrechend wirkenden metalls - Google Patents

Bleifreier cuni2si-gleitlagerwerkstoff unter zugabe eines spanbrechend wirkenden metalls Download PDF

Info

Publication number
WO2015158806A1
WO2015158806A1 PCT/EP2015/058234 EP2015058234W WO2015158806A1 WO 2015158806 A1 WO2015158806 A1 WO 2015158806A1 EP 2015058234 W EP2015058234 W EP 2015058234W WO 2015158806 A1 WO2015158806 A1 WO 2015158806A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
sliding
material according
sliding bearing
layer
Prior art date
Application number
PCT/EP2015/058234
Other languages
English (en)
French (fr)
Inventor
Gerd Andler
Holger Schmitt
Horst Geber
Original Assignee
Federal-Mogul Wiesbaden Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal-Mogul Wiesbaden Gmbh filed Critical Federal-Mogul Wiesbaden Gmbh
Priority to JP2016562833A priority Critical patent/JP2017516915A/ja
Priority to EP15717478.0A priority patent/EP3131750A1/de
Priority to KR1020167028452A priority patent/KR20160145575A/ko
Priority to CN201580019511.0A priority patent/CN106163706A/zh
Priority to US15/304,259 priority patent/US20170037901A1/en
Publication of WO2015158806A1 publication Critical patent/WO2015158806A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/32Coating surfaces by attaching pre-existing layers, e.g. resin sheets or foils by adhesion to a substrate; Laminating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying

Definitions

  • the present invention relates to a sliding bearing material with a matrix material, which consists of 0.5 to 5 wt .-% nickel, 0.25 to 2.5 wt .-% silicon, ⁇ 0.1 wt .-% lead and the rest copper. Furthermore, the invention relates to a sliding bearing composite material with a carrier layer, a bearing metal layer and with an applied on the bearing metal layer sliding layer and a sliding element, in particular a radial plain bearing in the form of a bush or bearing shell.
  • the copper-nickel-silicon alloys can be processed both by casting technology and sintering technology or applied to a carrier layer by means of roll cladding. They are characterized by high ductility, basic strength and hardness. These parameters can be adapted by thermo-mechanical treatment in a wide range of the respective requirements, so that the materials in terms of their hardness, strength and their feeding behavior come close to the to be replaced for reasons of lack of environmental compatibility Bleibronzen. However, due to their high basic strength and hardness, the materials are significantly less machinable than these. The poor machinability has shorter tooling Service life or rapidly decreasing machining accuracy and surface finish result.
  • the German Copper Institute systematically investigates the machinability of copper materials and publishes the results in what is known as information printing.
  • the machinability of copper materials is divided into three main groups. Similar machinable materials are grouped together in one main group. The division is made in the copper materials primarily based on the chip shape formed and the wear of the tool.
  • the main machining group I contains copper materials with a very good machinability and includes lead-, tellurium- or sulfur-alloyed copper materials with homogeneous or heterogeneous microstructure. During chipping, short chipped chips are formed. The tool wear is classified as low.
  • the main machining group II contains moderately to good machinable copper materials. Compared with the materials of the machining group I, the machining of the materials results in longer chips, generally medium-length filaments. Tool wear during machining of such materials is referred to as "medium.”
  • the main group of machining groups III comprises the more difficult-to-machine copper materials relative to groups I and II, producing long helical, random or strip chips during machining. Tool wear is high ,
  • a machinability index is also introduced. This is between 100 and 70% for the materials of the first main group, Substances of the second main group between 60 and 40 and for the materials of the third main group between 30 and 20.
  • CuNiSi alloys have a machinability index of between 20 and 40, according to information pressure i.18 of the German Copper Institute, so that they can be classified in the main cutting group III or, at best, II.
  • a copper-based wrought alloy with 1, 5 to 7.0 wt .-% Ni, 0.3 to 2.3 wt .-% Si and 0.02 to 1, 0 wt .-% S for electronic components is in the document US 2013/0028784 A1.
  • the object of the invention is to provide a sliding bearing material of the type mentioned, which has similar good tribological and mechanical properties as the known CuNiSi alloys, but improved machinability and, due to longer tool life, a higher machining accuracy and surface quality. Another object is compared to the known materials, a material with even reduced Fressneist, especially in deficient lubrication to provide.
  • the plain bearing material according to the invention has a matrix material of 0.5-5% by weight of nickel, 0.25-2.5% by weight of silicon, ⁇ 0.1% by weight of lead, molten metalurgical impurities and the remainder of copper with optionally at least one Hard material and optionally with at least one solid lubricant and is characterized by at least one addition of tellurium and the rest of copper. It could be stated that the addition of tellurium as a chip-breaking element improves the chip shape and thus also the machinability of these matrix alloys. The addition of Te leads to a reduction in the elongation at fracture of the material. While CuNi2Si without such additives has about 20% elongation at break, it can be lowered by the use of tellurium up to 2%.
  • the chips no longer form long strip or flow chips, but break into fine, needle-like fragments that do not hinder the processing of the material in contrast to long chips.
  • the addition of tellurium also significantly reduces the tendency of the sliding bearing material to seize.
  • the additive is dispersed in total with a proportion of 0.01 to 2.0 wt .-% relative to the sliding bearing material within the matrix material.
  • the additive is dispersed in total with a proportion of 0.05 to 1, 0 wt .-% and particularly preferably in total with a proportion of 0.1 to 0.3 wt .-% within the matrix material.
  • the effect of lowering the elongation at break is desirable only to a certain extent, because too small an elongation at break only allows a limited deformation of the CuNiSi material after casting, but this is necessary in the manufacture of a bearing.
  • An elongation at break of 1% should therefore not be undercut. With a content of more than 2% by weight, this is no longer ensured and essential properties of the matrix material, such as strength, formability and the like, could be impaired.
  • the chip-breaking effect does not appear sufficiently.
  • the chip-breaking effect is already very well pronounced, without the essential properties of the matrix material would be significantly worsened, so this tonnage band is a very good compromise.
  • tellurium is undissolved within the CuNiSi matrix and thus exists as a separate phase. This phase is predominantly found at the grain boundaries of the matrix material, where they cause a crack deflection in the matrix structure under strong local mechanical stress, as in the machining, and thus ultimately promote the tearing of the chip as the load progresses.
  • 90% of the measurable particles in the matrix material have a maximum extent of 30 ⁇ , more preferably of 15 ⁇ on. All particles with a minimum size of 500 nm are referred to as "measurable.” The minimum size is expressly only used as a "cut-off" for the detection and thus the uniqueness of the parameter.
  • the additive forms particles in this order of magnitude, then the additive is dispersed in the CuNiSi matrix in such a way that it significantly increases the machinability of the sliding bearing material, while the other mechanical and tribological properties of the matrix material are not or only very slightly or in the case of predation even surprisingly positively influenced.
  • This is attributed to the fact that a finer distribution of the particles causes a larger-scale disruption of the grain boundaries of the matrix structure and therefore the chips are broken all the more easily. So that this does not lead to an excessive loss of strength, the content of the chip-breaking additive must be kept within the limits specified above.
  • the particles are larger than 15 ⁇ m and therefore only locally present in the structure at a proportion of 2% by weight or less, there will not be a sufficient chip-breaking effect in the entire material.
  • the sliding bearing material advantageously has a machinability index of 100 - 70 on.
  • a machinability index of 100 to 70 the sliding bearing material is assigned to the main machining group I. During a machining process, it forms short chips which do not hinder the working of the material because they can be effectively removed from the processing area. This increases the surface quality, machining precision and reduces the wear on the tool.
  • no adhesive wear occurs on the sliding bearing material below a limit value of a load and sliding speed of 800 MPa-m / s, preferably below 850 MPa-m / s.
  • the measured variable of the maximum load and sliding speed is determined in a Fresstest, as described for example below with reference to Figure 2.
  • the limit or maximum value of 800 MPa m / s, preferably 850 MPa m / s, is surprisingly significantly higher than in the known CuNiSi materials.
  • the addition of tellurium in the specified range therefore not only has a chipbreaking effect, but at the same time a wear-reducing or lubricating effect.
  • a damage to the material by seizure occurs in the bearing material according to the invention consequently only at higher load and / or relative speeds of the sliding, so that the sliding bearing material can withstand a stress under deficient lubrication longer.
  • the sliding bearing material has a weight ratio of nickel to silicon between 2.5 and 5.
  • Such a weight ratio favors the formation of the nickel-silicon compounds responsible for the good tribological properties.
  • the seizure tendency of the sliding bearing material is thereby further so that the material in combination with the addition of tellurium can surpass the properties of conventional lead bronzes.
  • the sliding bearing material further comprises at least one hard material selected from the group consisting of silicides, oxides, carbides and nitirides, in particular AIN, Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , Mo 2 C, MoSi 2 , SiC, B 4 C.,
  • the sliding bearing material has at least one solid lubricant selected from the group consisting of h-BN and graphite.
  • the sliding bearing material described above can be used as a solid material in a plain bearing element, such as a bushing or a bearing shell.
  • Solid material means that the material has sufficient strength and is thus self-supporting. At the same time, the material assumes the function of the bearing metal.
  • the invention further relates to a sliding bearing composite material with a carrier layer, a bearing metal layer and with a sliding layer applied to the bearing metal layer.
  • the bearing metal layer consists of a sliding bearing material of the type described above.
  • Sliding bearing composite materials in particular in the form of bearing shells converted to sliding bearing elements are calibrated in the last operation by drilling to their final dimensions. Since bearing shells as a mass-produced article basically also have to be produced inexpensively, there is a need for optimization precisely in this processing step. For example, many identical bearings are mounted one behind the other and drilled in one operation. In addition, a high cutting and feed rate is required. The tool Service life must be high so that as little time as possible is lost for the tool change and the subsequent setup. Last but not least, wet cutting is ruled out because residues of a coolant and lubricant would have to be removed with difficulty from the bearing shell surface. The machinability is therefore of the utmost importance in this application.
  • the carrier layer in the sliding bearing composite material is a steel layer.
  • the so-called steel backing ensures the required interference fit, so that the microstructure of the bearing material can be adjusted independently of strength requirements.
  • the claimed copper alloys can consequently be designed with their structure in such a way that they are in terms of strength and hardness, as well as in terms of their tribological properties, such as feeding behavior, in a comparable range as the classical lead bronzes.
  • the application of the sliding bearing composite material is significantly expanded.
  • the composite materials with steel back offer advantages due to their thermal expansion coefficient in applications with steel housings.
  • the aim of the production processes described below is that the tellurium phase is present in a defined size in the end product, which has proven to be advantageous with respect to the feeding behavior. Also, a final aging heat treatment is omitted, in which not - as in the present case - the optimization of the sliding properties but an increase in the strength and the electrical conductivity is in the foreground.
  • the bearing metal layer is a sintered layer.
  • the sintered layer is applied in powder form on a steel backing.
  • the additive may already be present in the pre-alloyed matrix material and be pulverized together with it or it may be added as a separate powder to the sintering powder of the matrix material. If the CuNiSi matrix and the additive are present separately in powder form, these powders can be mixed with the appropriate weight distributions and then sintered onto the carrier layer.
  • the sintered material applied to the steel backing is heated for 10 to 30 minutes to sintering temperatures between 800 ° C and 1000 ° C. In this case, a first annealing is integrated into the sintering process.
  • the sintering process is as follows: The sintered powder is applied to the steel beam in a defined thickness; This is followed by a first sintering process at temperatures between 800 ° C and 1000 ° C. Before a second sintering process takes place at comparable temperatures, the sintered layer is compacted by means of a rolling process during forming between 10 and 30% and thus compacted. The final step is a rolling step, which sets the desired strength and thickness tolerances of the bimetallic strip. In both sintering processes, the cooling conditions are controlled such that the separately present tellurium particles do not exceed a maximum extent of 30 ⁇ m, preferably of 15 ⁇ m.
  • a roll-bonding compound exists between the bearing metal layer and the carrier layer, optionally via an intermediate layer.
  • the bearing metal is produced in the form of strip material, optionally the intermediate layer is pre-plated and then the bearing metal is rolled onto the carrier layer (with or without intermediate layer).
  • the bearing metal is transformed by 35-70%, which requires a subsequent thermomechanical treatment in order to set the mechanical properties of the bearing metal to the desired level.
  • the annealing temperature and the holding time at this temperature were chosen so that here, too, the tellurium phase forms in the aforementioned size range. There is no aging heat treatment, which usually increases the strength and electrical conductivity. Since the above-described third annealing is preceded by cold rolling, this annealing also causes recrystallization of the matrix material in addition to adjusting the size of the tellurium phase.
  • copper or a copper alloy for example a copper-zinc alloy or a copper-tin alloy, can be used.
  • the bearing metal layer is a casting layer.
  • the casting of the carrier layer is typically carried out at temperatures of 1000 ° C to 1250 ° C. This is followed by a thermomechanical treatment of rolling and calcination steps for setting the desired material properties, in particular the Tellurierenvertechnik and thus improved Fresswiderstandes on.
  • the composite material is heated at temperatures> 650 ° C for several hours. subjected to homogenization annealing (> 4 h). A subsequent forming of the composite between 35 and 70% in several rolling passes, followed by a final annealing, which in addition to the adjustment of the size of the tellurium also causes a recrystallization of the matrix material. Again, temperatures> 500 ° C at a time> 1 h application.
  • the invention also includes a sliding element, in particular a sliding bearing, which consists of a sliding bearing material of the type described above.
  • blanks are cut off after longitudinal cutting to produce sliding bearing elements, and the blanks are converted by known forming steps into sliding bearing elements (for example bearing shells or bushings).
  • machining is carried out to produce the dimensional accuracy of the bearing bore and optionally the application of a sliding layer.
  • FIG. 1 shows a light-microscopic image of the surface of the sliding bearing material according to the invention
  • FIG. 1 shows a light microscopic illustration of the transverse section of a slide bearing material according to the invention. The magnification is 500: 1, so that areas in ⁇ orders of magnitude become visible.
  • the sample shown has a composition of 2.14% by weight of nickel, 0.73% by weight of silicon, 1.52% by weight of tellurium and the remainder copper, the materials nickel, silicon and copper forming the matrix material and tellurium as an unsolved phase in it.
  • the pure matrix material is depicted as a bright surface 2, while the darker colored regions 4 indicate the addition of tellurium in the form of local particles.
  • the spatial separation of the tellurium phases or particles from the matrix material is clearly recognizable in FIG.
  • the tellurium phases are formed as sharply delimited mostly elongated areas, the maximum extent in 90% of the measurable cases is preferably in the range of up to 15 ⁇ .
  • Such a material according to the invention and comparison materials were subjected to a wear test according to the scheme illustrated in FIG.
  • the test bench on which the measurements were carried out is similar to an internal combustion engine equipped with original piston, connecting rod, crankshaft and plain bearings.
  • the speed of the crankshaft is gradually increased from 1900 revolutions per minute to a maximum of 8000 revolutions per minute.
  • the latter value corresponds to a maximum relative speed between the crank pin surface and the sliding bearing surface of 19.7 m / s.
  • the sliding bearing in the large connecting rod eye of the connecting rod which is in two parts in the form of two bearing shells, acted upon by a sinusoidal load. Simultaneously with the speed, the load gradually increases due to the centrifugal forces occurring.
  • the product is the load (in MPa) and the relative velocity (in m / s) as Plotted curve 20 and scaled on the y-axis at the left edge of the diagram.
  • the bearing is initially oil lubricated at a constant oil flow rate of 500 ml / min. After a period of 250 minutes, but before reaching the maximum load, the oil flow is gradually reduced, while the load or speed is gradually increased further.
  • the oil flow is also plotted on the graph as curve 22 and scaled on the y-axis at the right edge of the graph.
  • the maximum load and sliding speed at which the bearing eats under these conditions is measured in each case at least three tests per bearing material under the same conditions and plotted as an average value in the diagram according to FIG.
  • FIG. 3 shows the measured value of the maximum load and sliding speed as an indicator for the feeding behavior of four different CuNi 2 Si microstructure modifications.
  • the matrix material has the same composition in all four variants: 2% by weight of Ni, 0.6% by weight of Si, balance Cu. Only the material No. 12 also contains an addition of 0.5 wt .-% tellurium and thus represents the sliding bearing material according to the invention.
  • the material 10 is a recrystallized CuSi2Ni material, cast on steel and then subjected to the above-described thermo-mechanical treatment.
  • the microstructure after the thermo-mechanical treatment is characterized by fine, uniformly isotropically distributed NiSi-based intermetallic precipitates ("recrystallized") within the copper matrix, and an average exposure limit of 720 MPa m / s was measured for this material.
  • the material 12 is a re-crystallized by thermo-mechanical treatment CuNi2Si solid bearing material, that is without steel backing, with chipbreaker. He points out that all other CuNi2Si Materials with a value of 830 MPa-m / s have the highest load capacity without seizing up.
  • the material 14 is a roll-clad CuNi 2 Si material, which was first rolled out as a strip and joined to a steel back in a subsequent roll-plating process in the manner described above and also subjected to a thermomechanical treatment. An average exposure limit of 770 MPa-m / s was determined for this purpose.
  • the material 16 is a CuNi2Si casting material which has been poured onto a steel backing in the manner indicated above. This material was not subjected to any subsequent thermo-mechanical treatment and is therefore not recrystallized. Therefore, he achieved a mean load limit of only 270 MPa-m / s.
  • the plain bearing materials according to the invention in a surprising manner have a significantly reduced tendency to feed. They are therefore even without solid lubricants for applications under deficient lubrication in a special way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Gleitlagerwerkstoff mit einem Matrix-werkstoff, der aus 0,5 –5 Gew.-% Nickel, 0,25 –2,5 Gew.-% Silizium, < 0,1Gew.-% Blei, schmelzmetallurgisch bedingten Verunreinigungen und Rest Kupfer, mit wahlweise wenigstens einem Hartstoff und mit wahlweise wenigstens einem Festschmierstoff besteht und wenigstens einen Zusatzvon Tellur aufweist. Ferner betrifft die Erfindung einen Gleitlagerverbundwerkstoff mit einer Trägerschicht, einer Lagermetallschicht und mit einer auf der Lagermetallschicht aufgebrachten Gleitschicht, wobei die Lagermetallschicht aus einem solchen Gleitlagerwerkstoff besteht, sowie ein Gleitelement oder Gleitlager aus einem solchen Gleitlagerverbundwerkstoff.

Description

Bleifreier CuNi2Si-Gleitlagerwerkstoff unter Zugabe eines spanbrechend wirkenden Metalls
Beschreibung
Die vorliegende Erfindung betrifft einen Gleitlagerwerkstoff mit einem Matrixwerkstoff, der aus 0,5 - 5 Gew.-% Nickel, 0,25 - 2,5 Gew.-% Silizium, < 0,1 Gew.-% Blei und Rest Kupfer besteht. Ferner betrifft die Erfindung einen Gleitlagerverbundwerkstoff mit einer Trägerschicht, einer Lagermetallschicht und mit einer auf der Lagermetallschicht aufgebrachten Gleitschicht sowie ein Gleitelement, insbesondere ein Radialgleitlager in Form einer Buchse oder Lagerschale.
Bleifreie Werkstoffe auf Kupfer-Nickel-Silizium-Basis, nachfolgend auch als CuNiSi-Legierung bezeichnet, sind allgemein seit langem bekannt und kommen seit einiger Zeit auch als Gleitlagerwerkstoffe, insbesondere als Gleitlagerverbundwerkstoffe für Buchsen oder Lagerschalen zur Anwendung. Beispielhaft wird auf die Schrift WO 2006/120016 A1 verwiesen, in der der Werkstoff mit der eingangs genannten Zusammensetzung beschrieben ist.
Die Kupfer-Nickel-Silizium-Legierungen können sowohl gießtechnisch als auch sintertechnisch verarbeitet oder auf eine Trägerschicht mittels Walzplattieren aufgebracht werden. Sie zeichnen sich durch eine hohe Duktilität, Grundfestigkeit und -härte aus. Diese Parameter können durch thermomechanische Behandlung in einem weiten Bereich an die jeweiligen Anforderungen angepasst werden, so dass die Werkstoffe hinsichtlich ihrer Härte, Festigkeit und ihres Fressverhaltens an die aus Gründen mangelnder Umweltverträglichkeit zu ersetzenden Bleibronzen heranreichen. Allerdings sind die Werkstoffe unter anderem aufgrund ihrer hohen Grundfestigkeit und Härte deutlich schlechter zerspanbar als diese. Die schlechte Zerspanbarkeit hat kürzere Werkzeug- Standzeiten bzw. schnell nachlassende Bearbeitungsgenauigkeit und Oberflächengüte zur Folge.
Das Deutsche Kupferinstitut untersucht unter anderem die Zerspanbarkeit von Kupferwerkstoffen systematisch und veröffentlicht die Ergebnisse in dem sogenannten Informationsdruck. Im Folgenden wird auf die 18. Auflage des Informationsdruckes (i.18) aus 2010 Bezug genommen. Die Zerspanbarkeit von Kupferwerkstoffen wird darin in drei verschiedene Hauptgruppen unterteilt. Dabei werden ähnlich zerspanbare Werkstoffe in einer Hauptgruppe zusammenge- fasst. Die Einteilung erfolgt bei den Kupferwerkstoffen vorrangig anhand der gebildeten Spanform sowie dem Verschleiß des Werkzeugs.
Die Zerspanungshauptgruppe I enthält Kupferwerkstoffe mit einer sehr guten Zerspanbarkeit und umfasst blei-, tellur- oder schwefellegierte Kupferwerkstoffe mit homogenem oder heterogenem Gefüge. Bei der Zerspanung kommt es zur Ausbildung von kurzen Bröckelspänen. Der Werkzeugverschleiß wird als gering eingestuft. Die Zerspanungshauptgruppe II enthält mäßig bis gut zerspanbare Kupferwerkstoffe. Verglichen mit den Werkstoffen der Zerspanungshauptgruppe I hat die Bearbeitung der Werkstoffe längere Späne zur Folge, im Allgemeinen mittellange Wendelspäne. Der Werkzeugverschleiß beim Bearbeiten von solchen Werkstoffen wird als„mittel" bezeichnet. In der Zerspanungshauptgruppe III sind die relativ zu den Gruppen I und II schwerer zerspanbaren Kupferwerkstoffe zusammengefasst. Bei deren Bearbeitung bilden sich lange Wendel-, Wirr- oder Bandspäne. Der Werkzeugverschleiß ist hoch.
Um eine weitere Differenzierung innerhalb der Hauptgruppen der empirisch gewonnenen Daten genormter Werkstoffe hinsichtlich deren Zerspanbarkeit zu ermöglichen, wird ferner ein Zerspanbarkeitsindex eingeführt. Dieser liegt bei den Werkstoffen der ersten Hauptgruppe zwischen 100 und 70, bei den Werk- Stoffen der zweiten Hauptgruppe zwischen 60 und 40 und bei den Werkstoffen der dritten Hauptgruppe zwischen 30 und 20.
CuNiSi-Legierungen weisen gemäß dem Informationsdruck i.18 des Deutschen Kupferinstitutes je nach Zusammensetzung und Wärmebehandlung einen Zerspanbarkeitsindex zwischen 20 und 40 auf, so dass sie in der Zerspanungshauptgruppe III oder bestenfalls II einzuordnen sind.
Eine kupferbasierte Knetlegierung mit 1 ,5 bis 7,0 Gew.-% Ni, 0,3 bis 2,3 Gew.-% Si und 0,02 bis 1 ,0 Gew.-% S für elektronische Bauteile ist in der Schrift US 2013/0028784 A1 beschrieben.
Aufgabe der Erfindung ist es, einen Gleitlagerwerkstoff der eingangs genannten Art bereitzustellen, der ähnlich gute tribologische und mechanische Eigenschaften wie die bekannten CuNiSi-Legierungen, jedoch eine verbesserte Zerspanbarkeit und, aufgrund längerer Werkzeugstandzeiten, eine höhere Bearbeitungsgenauigkeit und Oberflächengüte aufweist. Eine weitere Aufgabe ist es gegenüber den bekannten Werkstoffen einen Werkstoff mit nochmals verminderter Fressneigung, insbesondere bei Mangelschmierung, bereitzustellen.
Gelöst wird diese Aufgabe mit einem Gleitlagerwerkstoff gemäß Patentanspruch 1 .
Der erfindungsgemäße Gleitlagerwerkstoff weist einen Matrixwerkstoff aus 0,5 - 5 Gew.-% Nickel, 0,25 - 2,5 Gew.-% Silizium, < 0,1 Gew.-% Blei, schmelzmetallurgischen Verunreinigungen und Rest Kupfer mit wahlweise wenigstens einem Hartstoff und mit wahlweise wenigstens einem Festschmierstoff auf und ist durch wenigstens einen Zusatz von Tellur und Rest Kupfer gekennzeichnet. Es konnte festgestellt werden, dass sich durch den Zusatz von Tellur als spanbrechendes Element die Spanform und damit die Zerspanbarkeit auch dieser Matrixlegierungen verbessern lässt. Die Zugabe von Te führt zu einer Absenkung der Bruchdehnung des Materials. Während CuNi2Si ohne derartige Zusätze etwa 20% Bruchdehnung besitzt, kann diese durch den Einsatz von Tellur auf bis zu 2% abgesenkt werden. Die Späne bilden deshalb keine langen Bandoder Fließspäne mehr aus, sondern zerbrechen zu feinen, nadelartigen Bruchstücken, die die Bearbeitung des Werkstoffes im Gegensatz zu langen Spänen nicht behindern. Insbesondere überrascht die Feststellung, dass die Zugabe von Tellur zusätzlich die Fressneigung des Gleitlagerwerkstoffes signifikant verringert.
Gemäß einer vorteilhaften Ausführungsform ist der Zusatz insgesamt mit einem Anteil von 0,01 bis 2,0 Gew.-% bezogen auf den Gleitlagerwerkstoff innerhalb des Matrixwerkstoffs dispergiert. Bevorzugt ist der Zusatz insgesamt mit einem Anteil von 0,05 bis 1 ,0 Gew.-% und insbesondere bevorzugt insgesamt mit einem Anteil von 0,1 bis 0,3 Gew.-% innerhalb des Matrixwerkstoffs dispergiert.
Der Effekt der Absenkung der Bruchdehnung ist nur bis zu einem gewissen Grad erwünscht, weil eine zu geringe Bruchdehnung nur noch eine eingeschränkte Umformung des CuNiSi-Werkstoffes nach dem Gießen erlaubt, die aber bei der Herstellung eines Lagers erforderlich ist. Eine Bruchdehnung von 1 % sollte deshalb keinesfalls unterschritten werden. Bei einem Anteil über 2 Gew.-% ist das nicht mehr sichergestellt und es könnten wesentliche Eigenschaften des Matrixwerkstoffes, wie Festigkeit, Umformbarkeit und dergleichen beeinträchtigt werden. Bei zu geringen Anteilen unterhalb 0,01 Gew.-% tritt der spanbrechende Effekt nicht genügend in Erscheinung. Insbesondere bei einer Zusatzmenge von 0,1 bis 0,3 Gew.-% ist der spanbrechende Effekt bereits sehr gut ausgeprägt, ohne dass die wesentlichen Eigenschaften des Matrixwerkstoffs signifikant verschlechtert wären, so dass dieser Mengenbereich einen sehr guten Kompromiss darstellt.
Der Zusatz Tellur liegt innerhalb der CuNiSi-Matrix ungelöst und damit als separate Phase vor. Diese Phase ist überwiegend an den Korngrenzen des Matrix- materials zu finden, wo sie bei starker lokaler mechanischer Belastung, wie bei der zerspanenden Bearbeitung, eine Rissumlenkung in dem Matrixgefüge bewirken, und somit schließlich das Abreißen des Spanes bei fortschreitender Belastung begünstigen. Bevorzugt weisen 90% der messbaren Partikel im Matrixwerkstoff eine maximale Ausdehnung von 30 μιτι, besonders bevorzugt von 15 μιτι, auf. Als„messbar" werden alle Partikel bezeichnet, die eine Mindestgröße von 500 nm aufweisen. Die Mindestgröße dient ausdrücklich nur als„Cut-off" für den Nachweis und somit der Eindeutigkeit des Parameters.
Bildet der Zusatz Partikel in dieser Größenordnung, so ist der Zusatz derart in der CuNiSi-Matrix dispergiert, dass dieser die Zerspanbarkeit des Gleitlagerwerkstoffes signifikant steigert, während die weiteren mechanischen und tribo- logischen Eigenschaften des Matrixmaterials nicht oder nur sehr gering oder im Fall der Fressneigung sogar überraschend positiv beeinflusst werden. Dies wird darauf zurückgeführt, dass eine feinere Verteilung der Partikel eine großflächigere Störung der Korngrenzen des Matrixgefüges bewirkt und dass deshalb die Späne umso leichter brechen. Damit dies nicht zu einem zu hohen Festigkeitsverlust führt muss der Gehalt des spanbrechenden Zusatzes in den oben angegebenen Grenzen gehalten werden. Sind die Partikel hingegen größer als 15 μιτι und deshalb bei einem Anteil von 2 Gew.-% oder weniger nur vereinzelt lokal im Gefüge anzutreffen, wird es keinen ausreichenden spanbrechenden Effekt im gesamten Material geben.
In Folge der Dispersion des wenigstens einen Zusatzes innerhalb der Matrix weist der Gleitlagerwerkstoff vorteilhafterweise einen Zerspanbarkeitsindex von 100 - 70 auf. Mit einem Zerspanbarkeitsindex von 100 bis 70 ist der Gleitlagerwerkstoff der Zerspanungshauptgruppe I zugeordnet. Er bildet während einer spanenden Bearbeitung kurze Bröckelspäne aus, die die Bearbeitung des Werkstoffes nicht behindern, weil sie effektiv aus dem Bearbeitungsbereich entfernbar sind. Dies erhöht die Oberflächengüte, Bearbeitungspräzision und vermindert den Verschleiß an dem Werkzeug.
In einer weiteren vorteilhaften Ausführungsform tritt an dem Gleitlagerwerkstoff unterhalb eines Grenzwertes einer Last- und Gleitgeschwindigkeit von 800 MPa-m/s, vorzugsweise unterhalb 850 MPa-m/s, kein adhäsiver Verschleiß auf.
Die Messgröße der maximalen Last- und Gleitgeschwindigkeit wird in einem Fresstest ermittelt, wie er beispielsweise nachstehend unter Bezugnahme auf Figur 2 beschrieben wird. Der Grenz- oder Maximalwert von 800 MPa m/s, vorzugsweise 850 MPa m/s, ist überraschenderweise signifikant höher als bei den bekannten CuNiSi-Werkstoffen. Der Zusatz von Tellur im angegebenen Bereich hat mithin nicht nur eine spanbrechende Wirkung, sondern zugleich eine verschleißmindernde bzw. schmierende Wirkung. Eine Schädigung des Werkstoffes durch Fressen tritt bei dem erfindungsgemäßen Lagerwerkstoff folglich erst bei höherer Belastung und/oder Relativgeschwindigkeiten der Gleitpartner auf, so dass der Gleitlagerwerkstoff einer Beanspruchung unter Mangelschmierung länger widerstehen kann.
Vorzugsweise weist der Gleitlagerwerkstoff ein Gewichtsverhältnis von Nickel zu Silizium zwischen 2,5 und 5 auf.
Ein solches Gewichtsverhältnis begünstigt die Bildung der für die guten tribolo- gischen Eigenschaften verantwortlichen Nickel-Silizium-Verbindungen. Insbesondere die Fressneigung des Gleitlagerwerkstoffes wird dadurch weiter ver- bessert, so dass der Werkstoff in Verbindung mit der Zugabe von Tellur die Eigenschaften herkömmlicher Blei-Bronzen übertreffen kann.
Vorzugsweise weist der Gleitlagerwerkstoff desweiteren wenigstens einen Hartstoff ausgewählt aus der Gruppe bestehend aus Siliziden, Oxiden, Carbiden und Nitiriden, insbesondere AIN, AI2O3, SiO2, TiO2, ZrO2, Mo2C, MoSi2, SiC, B4C,
Figure imgf000009_0001
Vorteilhaft ist es ferner, wenn der Gleitlagerwerkstoff wenigstens einen Festschmierstoff ausgewählt aus der Gruppe bestehend aus h-BN und Graphite aufweist.
Der vorstehend beschriebene Gleitlagerwerkstoff kann als Massivwerkstoff in einem Gleitlagerelement, wie beispielsweise einer Buchse oder einer Lagerschale eingesetzt werden . Massivwerkstoff heißt, dass der Werkstoff eine ausreichende Festigkeit aufweist und somit selbsttragend ist. Gleichzeitig übernimmt der Werkstoff die Funktion des Lagermetalls.
Die Erfindung hat ferner einen Gleitlagerverbundwerkstoff mit einer Trägerschicht, einer Lagermetallschicht und mit einer auf der Lagermetallschicht aufgebrachten Gleitschicht zum Gegenstand. Die Lagermetallschicht besteht aus einem Gleitlagerwerkstoff der vorstehend beschriebenen Art.
Gleitlagerverbundwerkstoffe insbesondere in Form von zu Lagerschalen umgeformten Gleitlagerelementen werden im letzten Arbeitsgang durch Bohren auf ihr Endmaß kalibriert. Da Lagerschalen als Massenartikel grundsätzlich auch kostengünstig hergestellt werden müssen, besteht gerade bei diesem Bearbeitungsschritt Optimierungsbedarf. Beispielsweise werden viele gleiche Lagerschalen hintereinander aufgespannt und in einem Arbeitsgang gebohrt. Zudem wird eine hohe Schneid- und Vorschubgeschwindigkeit verlangt. Die Werkzeug- Standzeiten müssen hoch sein, damit möglichst wenig Zeit für den Werkzeugwechsel und die anschließende Einrichtung verloren geht. Nicht zuletzt scheidet eine Nasszerspanung aus, weil Rückstände eines Kühl- und Schmiermittels mühsam von der Lagerschalenoberfläche entfernt werden müssten. Die Zerspanbarkeit ist deshalb gerade bei dieser Anwendung von größter Wichtigkeit.
Vorzugsweise ist die Trägerschicht in dem Gleitlagerverbundwerkstoff eine Stahlschicht.
Der sogenannte Stahlrücken gewährleistet aufgrund seiner Steifigkeit den erforderlichen Presssitz, so dass die Gefügestruktur des Lagermaterials unabhängig von Festigkeitsanforderungen eingestellt werden kann. Die beanspruchten Kupferlegierungen können folglich mit ihrer Gefügestruktur so gestaltet werden, dass sie hinsichtlich Festigkeit und Härte, sowie hinsichtlich ihrer tribologischen Eigenschaften, wie zum Beispiel Fressverhalten, in einem vergleichbaren Bereich wie die klassischen Bleibronzen liegen. Insgesamt wird der Einsatzbereich des Gleitlagerverbundwerkstoffes wesentlich erweitert. Auch bieten die Verbundwerkstoffe mit Stahlrücken Vorteile aufgrund ihres thermischen Ausdehnungskoeffizienten in Anwendungsfällen mit Stahlgehäusen.
Ziel bei den im Folgenden beschriebenen Herstellprozessen ist, dass im Endprodukt die Tellurphase in einer definierten Größe vorliegt, was sich als vorteilhaft bezüglich des Fressverhaltens erwiesen hat. Auch wird auf eine abschließende Auslagerungswärmebehandlung verzichtet, bei der nicht - wie vorliegend - die Optimierung der Gleiteigenschaften sondern eine Erhöhung der Festigkeit bzw. der elektrischen Leitfähigkeit im Vordergrund steht.
Gemäß einer vorteilhaften Ausführungsform ist die Lagermetallschicht eine Sinterschicht. Die Sinterschicht wird in Pulverform auf einem Stahlrücken aufgebracht. Der Zusatz kann bereits in dem vorlegierten Matrixmaterial enthalten sein und zusammen mit diesem pulverisiert werden oder es wird als separates Pulver zu dem Sinterpulver des Matrixmaterials zugegeben. Liegen die CuNiSi-Matrix und der Zusatz separat in Pulverform vor, können diese Pulver mit den entsprechenden Gewichtsverteilungen vermischt, und anschließend auf die Trägerschicht gesintert werden. Das auf dem Stahlrücken aufgebrachte Sintermaterial wird über 10 - 30 Minuten auf Sintertemperaturen zwischen 800°C und 1000°C erhitzt. Dabei ist in den Sinterprozess ein erstes Glühen integriert. Anschließende Walzschritte kompaktieren die Lagermetallschicht bis die Porosität das gewünschte Maß erreicht. Gleichzeitig werden durch das Walzen in Kombination mit Glühschritten die gewünschten Materialeigenschaften des Lagermetalls, insbesondere dessen Streckgrenze, eingestellt. Im Detail stellt sich der Sinterprozess wie folgt dar: Das Sinterpulver wird auf den Stahlträger in definierter Dicke aufgetragen; daran anschließend erfolgt ein erster Sinterprozess bei Temperaturen zwischen 800°C und 1000°C. Bevor ein zweiter Sinterprozess bei vergleichbaren Temperaturen erfolgt, wird die Sinterschicht mittels eines Walzvorganges bei Umformungen zwischen 10 - 30 % kompaktiert und damit verdichtet. Den Abschluss bildet ein finaler Walzschritt, mittels dem die gewünschten Festigkeiten und Dickentoleranzen des Bimetal-Bandes eingestellt werden. Bei beiden Sinterprozessen werden die Abkühlbedingungen derart gesteuert, dass die separat vorliegenden Tellurpartikel eine maximale Ausdehnung von 30 μιτι, bevorzugt von 15 μιτι, nicht überschreiten.
Gemäß einer alternativen Ausführungsform besteht zwischen der Lagermetallschicht und der Trägerschicht, gegebenenfalls über eine Zwischenschicht, eine Walzplattierverbindung. Zuvor wird das Lagermetall in Form von Bandmaterial hergestellt, wahlweise wird die Zwischenschicht vorplattiert und anschließend das Lagermetall auf die Trägerschicht (mit oder ohne Zwischenschicht) ausgewalzt. Dabei erfolgt eine Umformung des Lagermetalls von 35 - 70%, was eine anschließende thermo- mechanische Behandlung erforderlich macht, um die mechanischen Eigenschaften des Lagermetalls auf das gewünschte Maß einzustellen. Diese beinhaltet ein erstes Glühen des Verbundes bei 550°C bis 700°C für 2 bis 5 Stunden, mindestens ein erstes Walzen des Verbundes, wobei ein Umformgrad von 20 bis 30 % erreicht wird, mindestens ein zweites Glühen bei 500°C - 600°C für mehr >1 h, gegebenenfalls ein zweites Walzen des Verbundes, wobei ein Umformgrad von max. 30 % erreicht wird mit einem anschließenden dritten Glühen bei Temperaturen >500°C über mindestens 1 h. Die Glühtemperatur und die Haltezeit bei dieser Temperatur wurden so gewählt, dass sich auch hier die Tellurphase im bereits erwähnten Größenbereich ausbildet. Es erfolgt keine Auslagerungswärmebehandlung, wodurch üblicherweise die Festigkeit und die elektrische Leitfähigkeit gesteigert wird. Da der oben beschriebenen dritten Glühung ein Kaltwalzen vorausgegangen ist, bewirkt diese Glühung neben der Einstellung der Größe der Tellurphase außerdem noch eine Rekristallisation des Matrixwerkstoffes.
Für die Zwischenschicht können Kupfer oder eine Kupferlegierung, beispielsweise eine Kupfer-Zink-Legierung oder eine Kupfer-Zinn-Legierung, eingesetzt werden.
In einer weiteren alternativen Ausführungsform ist die Lagermetallschicht eine Gießschicht. Das Begießen der Trägerschicht erfolgt typischerweise bei Temperaturen von 1000°C bis 1250°C. Auch hieran schließt sich eine thermomechani- sche Behandlung aus Walz- und Glühschritten zur Einstellung der gewünschten Materialeigenschaften, insbesondere der Tellurgrößenverteilung und eines damit verbesserten Fresswiderstandes, an. Nach dem Begießen eines Stahlbandes wird der Verbundwerkstoff bei Temperaturen > 650°C für mehrere Stun- den (> 4 h) einer Homogenisierungsglühung unterzogen. Einem sich anschließenden Umformen des Verbundes zwischen 35 und 70 % in mehreren Walzstichen, schließt sich wieder eine Abschlußglühung an, die neben der Einstellung der Größe der Tellurphase außerdem noch eine Rekristallisation des Matrixwerkstoffes bewirkt. Auch hier finden wieder Temperaturen > 500°C bei einer Zeit > 1 h Anwendung.
Neben dem Gleitlagerwerkstoff und dem Gleitlagerverbundwerkstoff umfasst die Erfindung auch ein Gleitelement, insbesondere ein Gleitlager, das aus einem Gleitlagerwerkstoff der vorstehend beschriebenen Art besteht.
Von dem wie vorstehend beschrieben hergestellten Massiv- oder Gleitlagerverbundwerkstoff werden zur Herstellung von Gleitlagerelementen nach dem Längsteilen Platinen abgetrennt und die Platinen durch bekannte Umformschritte zu Gleitlagerelementen (z.B. Lagerschalen oder Buchsen) umgeformt. Als abschließender Prozess erfolgt eine spanende Bearbeitung zur Herstellung der Maßhaltigkeit der Lagerbohrung und gegebenenfalls das Aufbringen einer Gleitschicht.
Weitere Eigenschaften und Merkmale des erfindungsgemäßen Gleitlagerwerkstoffes werden anhand der nachfolgenden Zeichnungen erläutert. Es zeigen:
Figur 1 eine lichtmikroskopische Aufnahme der Oberfläche des erfindungsgemäßen Gleitlagerwerkstoffes,
Figur 2 ein Diagramm zur Illustration eines Testprogramms zur Ermittlung des Verschleißes eines Gleitlagers und ein Diagramm ermittelter Verschleißwerte der erfindungsgemäßen und verschiedener anderer Kupferlegierungen. In der Figur 1 ist eine lichtmikroskopische Abbildung des Querschliffes eines erfindungsgemäßen Gleitlagerwerkstoffes dargestellt. Die Vergrößerung beträgt 500:1 , so dass Bereiche in μηη-Größenordnungen Sichtbar werden. Die gezeigte Probe hat eine Zusammensetzung von 2,14 Gew.-% Nickel, 0,73 Gew.-% Silizium, 1 ,52 Gew.-% Tellur sowie Rest Kupfer, wobei die Materialien Nickel, Silizium und Kupfer den Matrixwerkstoff bilden und Tellur als ungelöste Phase darin vorliegt.
Der reine Matrixwerkstoff ist als helle Fläche 2 abgebildet, während die dunkler gefärbten Bereiche 4 den Zusatz Tellur in Form von lokalen Partikeln kennzeichnen. Deutlich wird in der Figur 1 die räumliche Separation der Tellur- Phasen oder Partikel von dem Matrixwerkstoff erkennbar. Die Tellur-Phasen bilden sich als scharf begrenzte meist längliche Bereiche aus, deren maximale Ausdehnung in 90 % der messbaren Fälle vorzugsweise im Bereich von bis zu 15 μιτι liegt.
Ein solcher erfindungsgemäßer Werkstoff und Vergleichswerkstoffe wurden nach dem in Figur 2 illustrierten Schema einem Verschleißtest unterzogen. Der Prüfstand, auf dem die Messungen durchgeführt wurden, ist ähnlich einem Verbrennungsmotor mit original Kolben, Pleuelstange, Kurbelwelle und Gleitlagern ausgestattet. Während des Tests wird die Drehzahl der Kurbelwelle von 1900 Umdrehungen pro Minute auf maximal 8000 Umdrehungen pro Minute stufenweise gesteigert. Letzterer Wert entspricht einer maximalen Relativgeschwindigkeit zwischen der Kurbelzapfenoberfläche und der Gleitlageroberfläche von 19,7 m/s. Dabei wird das Gleitlager im großen Pleuelauge des Pleuels, welches zweiteilig in Form zweier Lagerschalen ausgebildet ist, mit einer sinusförmigen Last beaufschlagt. Gleichzeitig mit der Drehzahl steigert sich stufenweise auch die Last aufgrund der auftretenden Fliehkräfte. In dem Diagramm ist das Produkt aus der Last (in MPa) und der Relativgeschwindigkeit (im m/s) als Kurve 20 aufgetragen und auf der y-Achse am linken Rand des Diagramms skaliert. Das Lager ist anfänglich mit einer konstanten Ölflussrate von 500 ml/min ölgeschmiert. Nach einer Dauer von 250 min, aber noch vor Erreichen der Maximallast, wird der Ölfluss schrittweise reduziert, während die Last bzw. Drehzahl schrittweise weiter gesteigert wird. Der Ölfluss ist ebenfalls in dem Diagramm als Kurve 22 aufgetragen und auf der y-Achse am rechten Rand des Diagramms skaliert. Die maximale Last- und Gleitgeschwindigkeit, bei der das Lager unter diesen Bedingungen frisst, wird in jeweils wenigstens drei Versuchen pro Lagerwerkstoff unter gleichen Bedingungen gemessen und als Durchschnittswert in dem Diagramm gemäß Figur 3 aufgetragen.
In Figur 3 ist der Messwert der maximalen Last- und Gleitgeschwindigkeit als Indikator für das Fressverhalten vier verschiedener CuNi2Si- Gefügemodifikationen dargestellt. Der Matrixwerkstoff hat in allen vier Varianten die gleiche Zusammensetzung: 2 Gew.-% Ni, 0,6 Gew.-% Si, Rest Cu. Nur der Werkstoff Nr. 12 beinhaltet darüber hinaus einen Zusatz von 0,5 Gew.-% Tellur und repräsentiert somit den erfindungsgemäßen Gleitlagerwerkstoff.
Der Werkstoff 10 ist ein rekristallisierter CuSi2Ni-Werkstoff, auf Stahl gegossen und anschließend der vorstehend beschriebenen thermo-mechanischen Behandlung unterzogen. Das Gefüge nach der thermo-mechanischen Behandlung zeichnet sich durch feine, gleichmäßig isotrop verteilte intermetallische Ausscheidungen („rekristallisiert") auf NiSi-Basis innerhalb der Kupfermatrix aus. Es wurde bei diesem Werkstoff ein gemittelter Belastungsgrenzwert von 720 MPa m/s gemessen.
Der Werkstoff 12 ist ein durch thermo-mechanischen Behandlung rekristallisierter CuNi2Si-Massivlagerwerkstoff, dass heißt ohne Stahlrücken, mit Spanbrecher. Er weist gegenüber allen anderen untersuchten CuNi2Si- Werkstoffen mit einem Wert von 830 MPa-m/s die größte Belastbarkeit ohne Fressen auf.
Der Werkstoff 14 ist ein walzplattierter CuNi2Si-Werkstoff, der zunächst als Band ausgewalzt und in einem anschließenden Walzplattierprozess in der oben beschriebenen Weise auf einen Stahlrücken gefügt und ebenfalls einer thermo- mechanischen Behandlung unterzogen wurde. Es wurde hierfür ein mittlerer Belastungsgrenzwert von 770 MPa-m/s ermittelt.
Der Werkstoff 16 ist ein CuNi2Si-Gusswerkstoff, der in der oben angegebenen Weise auf einen Stahlrücken aufgegossen wurde. Dieser Werkstoff wurde keiner anschließenden thermo-mechanischen Behandlung unterzogen und ist deshalb nicht rekristallisiert. Deshalb erzielte er einen mittleren Belastungsgrenzwert von nur 270 MPa-m/s.
Die erfindungsgemäßen Gleitlagerwerkstoffe weisen also neben einer verbesserten Zerspanbarkeit gegenüber bekannten Gleitlagerwerkstoffen ohne Zusatz in überraschender weise eine signifikant verringerte Fressneigung auf. Sie sind deshalb sogar ohne Festschmierstoffe für Anwendungen unter Mangelschmierung in besonderer Weise geeignet.

Claims

Patentansprüche
1 . Gleitlagerwerkstoff mit einem Matrixwerkstoff, bestehend aus 0,5 - 5 Gew.-% Nickel, 0,25 - 2,5 Gew.-% Silizium, < 0,1 Gew.-% Blei, schmelzmetallurgisch bedingten Verunreinigungen und Rest Kupfer, mit wahlweise wenigstens einem Hartstoff und mit wahlweise wenigstens einem Festschmierstoff, gekennzeichnet durch,
wenigstens einen Zusatz von Tellur.
2. Gleitlagerwerkstoff nach Anspruch 1 , dadurch gekennzeichnet,
dass das Gewichtsverhältnis von Nickel zu Silizium zwischen 2,5 und 5 liegt.
3. Gleitlagerwerkstoff nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet,
dass der Zusatz mit einer Gesamtmenge zwischen 0,01 und 2,0 Gew.-% innerhalb des Matrixwerkstoffs dispergiert ist.
4. Gleitlagerwerkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,
dass der Zusatz in Form von Partikeln im Matrixwerkstoff vorliegt, wobei 90% der messbaren Partikel eine maximale Ausdehnung von 30 μιτι, bevorzugt von 15 μιτι, aufweisen.
5. Gleitlagerwerkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,
dass unterhalb eines Grenzwertes von 800 MPa-m/s, vorzugsweise unterhalb 850 MPa-m/s, kein adhäsiver Verschleiß auftritt.
6. Gleitlagerwerkstoff nach einem der vorstehenden Ansprüche, gekennzeichnet durch
wenigstens einen Hartstoff ausgewählt aus der Gruppe bestehend aus Si- liziden, Oxiden, Carbiden und Nitiriden, insbesondere AIN, AI2O3, S1O2, TiO2, ZrO2, M02C, MoSi2, SiC, B4C, Si3N4 und c-BN.
7. Gleitlagerwerkstoff nach einem der vorstehenden Ansprüche, gekennzeichnet durch
wenigstens einen Festschmierstoff ausgewählt aus der Gruppe bestehend aus h-BN und Graphite aufweisen.
8. Gleitlagerverbundwerkstoff mit einer Trägerschicht, einer Lagermetallschicht und mit einer auf der Lagermetallschicht aufgebrachten Gleitschicht, dadurch gekennzeichnet,
dass die Lagermetallschicht aus einem Gleitlagerwerkstoff nach einem der Patentansprüche 1 bis 7 besteht.
9. Gleitlagerverbundwerkstoff nach Anspruch 8, dadurch gekennzeichnet, dass die Lagermetallschicht eine Sinterschicht ist.
10. Gleitlagerverbundwerkstoff nach Anspruch 8, dadurch gekennzeichnet, dass zwischen der Lagermetallschicht und der Trägerschicht gegebenenfalls über eine Zwischenschicht eine Walzplattierverbindung besteht.
1 1 . Gleitlagerverbundwerkstoff nach Anspruch 8, dadurch gekennzeichnet, dass die Lagermetallschicht eine Gießschicht ist.
12. Gleitelement oder Gleitlager mit einem Gleitlagerwerkstoff nach einem der Patentansprüche 1 bis 7. Gleitelement oder Gleitlager gefertigt aus einem Gleitlagerverbundwerk- stoff nach einem der Patentansprüche 8 bis 10.
PCT/EP2015/058234 2014-04-16 2015-04-16 Bleifreier cuni2si-gleitlagerwerkstoff unter zugabe eines spanbrechend wirkenden metalls WO2015158806A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016562833A JP2017516915A (ja) 2014-04-16 2015-04-16 チップ−ブレーカ効果を有する金属添加された鉛不含のCuNi2Si滑り軸受材料
EP15717478.0A EP3131750A1 (de) 2014-04-16 2015-04-16 Bleifreier cuni2si-gleitlagerwerkstoff unter zugabe eines spanbrechend wirkenden metalls
KR1020167028452A KR20160145575A (ko) 2014-04-16 2015-04-16 칩 파쇄 효과가 있는 금속이 첨가된 무연 CuNi2Si 미끄럼 베어링 재료
CN201580019511.0A CN106163706A (zh) 2014-04-16 2015-04-16 加入具有切屑作用的金属的无铅CuNi2Si滑动轴承材料
US15/304,259 US20170037901A1 (en) 2014-04-16 2015-04-16 Lead-free cuni2si sliding bearing material with the addition of a metal having a chip-breaking effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014207331.6A DE102014207331B4 (de) 2014-04-16 2014-04-16 Bleifreier CuNi2Si-Gleitlagerwerkstoff unter Zugabe eines spanbrechend wirkenden Metalls
DE102014207331.6 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015158806A1 true WO2015158806A1 (de) 2015-10-22

Family

ID=52991726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/058234 WO2015158806A1 (de) 2014-04-16 2015-04-16 Bleifreier cuni2si-gleitlagerwerkstoff unter zugabe eines spanbrechend wirkenden metalls

Country Status (7)

Country Link
US (1) US20170037901A1 (de)
EP (1) EP3131750A1 (de)
JP (1) JP2017516915A (de)
KR (1) KR20160145575A (de)
CN (1) CN106163706A (de)
DE (1) DE102014207331B4 (de)
WO (1) WO2015158806A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947880A (zh) * 2017-03-23 2017-07-14 东莞市顺鑫粉末冶金制品有限公司 一种含油轴承及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517721B1 (de) * 2016-01-28 2017-04-15 Miba Gleitlager Austria Gmbh Verfahren zur Herstellung eines Gleitlagerelementes
DE102017001846A1 (de) * 2017-02-25 2018-08-30 Wieland-Werke Ag Gleitelement aus einer Kupferlegierung
CN112281157B (zh) * 2020-10-30 2023-04-21 燕山大学 一种激光熔覆原位合成陶瓷相增强铜基熔覆层的制备方法
CN113278845A (zh) * 2021-05-04 2021-08-20 宁波华成阀门有限公司 一种阀门用铜合金及阀门制备方法
WO2023145424A1 (ja) * 2022-01-26 2023-08-03 日産自動車株式会社 摺動部材及び該摺動部材を備える内燃機関

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1224937B (de) * 1963-06-07 1966-09-15 Kurt Dies Dr Ing Verwendung von Kupferlegierungen fuer auf Gleitung, Reibung und Verschleiss beanspruchte Gegenstaende und Verfahren zur Herstellung derselben
WO2006120016A1 (de) * 2005-05-13 2006-11-16 Federal-Mogul Wiesbaden Gmbh & Co. Kg Gleitlagerverbundwerkstoff, verwendung und herstellungsverfahren
WO2010119091A2 (de) * 2009-04-16 2010-10-21 Federal-Mogul Wiesbaden Gmbh Gesinterter gleitlagerwerkstoff und gleitlagerelement
DE102011007362A1 (de) * 2011-04-14 2012-10-18 Federal-Mogul Wiesbaden Gmbh Verfahren zur Herstellung eines bleifreien Gleitlagermaterials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133357A (ja) * 1984-12-03 1986-06-20 Showa Alum Ind Kk 加工性および耐焼付性にすぐれた軸受用Cu合金
JPH11293368A (ja) * 1998-04-07 1999-10-26 Daido Metal Co Ltd 銅系摺動合金
DE102005023309B4 (de) * 2005-05-13 2009-10-01 Federal-Mogul Wiesbaden Gmbh Gleitlagerverbundwerkstoff, Verwendung und Herstellungsverfahren
WO2007034571A1 (en) * 2005-09-22 2007-03-29 Sanbo Shindo Kogyo Kabushiki Kaisha Free-cutting copper alloy containing very low lead
CN101289716B (zh) * 2008-05-15 2010-06-09 中铝洛阳铜业有限公司 一种镍硅青铜合金材料的加工工艺
WO2011125264A1 (ja) * 2010-04-07 2011-10-13 古河電気工業株式会社 銅合金展伸材、銅合金部品および銅合金展伸材の製造方法
AT509867B1 (de) * 2010-04-15 2011-12-15 Miba Gleitlager Gmbh Mehrschichtgleitlager mit einer antifrettingschicht

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1224937B (de) * 1963-06-07 1966-09-15 Kurt Dies Dr Ing Verwendung von Kupferlegierungen fuer auf Gleitung, Reibung und Verschleiss beanspruchte Gegenstaende und Verfahren zur Herstellung derselben
WO2006120016A1 (de) * 2005-05-13 2006-11-16 Federal-Mogul Wiesbaden Gmbh & Co. Kg Gleitlagerverbundwerkstoff, verwendung und herstellungsverfahren
WO2010119091A2 (de) * 2009-04-16 2010-10-21 Federal-Mogul Wiesbaden Gmbh Gesinterter gleitlagerwerkstoff und gleitlagerelement
DE102011007362A1 (de) * 2011-04-14 2012-10-18 Federal-Mogul Wiesbaden Gmbh Verfahren zur Herstellung eines bleifreien Gleitlagermaterials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947880A (zh) * 2017-03-23 2017-07-14 东莞市顺鑫粉末冶金制品有限公司 一种含油轴承及其制备方法

Also Published As

Publication number Publication date
US20170037901A1 (en) 2017-02-09
JP2017516915A (ja) 2017-06-22
DE102014207331A1 (de) 2015-10-22
KR20160145575A (ko) 2016-12-20
EP3131750A1 (de) 2017-02-22
CN106163706A (zh) 2016-11-23
DE102014207331B4 (de) 2017-01-26

Similar Documents

Publication Publication Date Title
DE102014207331B4 (de) Bleifreier CuNi2Si-Gleitlagerwerkstoff unter Zugabe eines spanbrechend wirkenden Metalls
EP3255161B1 (de) Sondermessinglegierung und legierungsprodukt
EP3132065B1 (de) Bleifreier cufe2p-gleitlagerwerkstoff mit spanbrecher
DE3817350C2 (de)
EP2927335B1 (de) Aluminiumbronzelegierung, Herstellungsverfahren und Produkt aus Aluminiumbronze
EP1989337B1 (de) Messinglegierung sowie synchronring
EP3286348B1 (de) Bleifreie sondermessinglegierung sowie sondermessinglegierungsprodukt
DE3640698C2 (de)
DE102005023308B4 (de) Gleitlagerverbundwerkstoff, Verwendung und Herstellungsverfahren
EP2673389A1 (de) Gleitlagerverbundwerkstoff
WO2017024326A1 (de) Mehrschichtgleitlagerelement
EP3417083B1 (de) Gleitelement aus einer kupfer-zink-legierung
DE60025866T2 (de) Lagerkäfig
DE102010029158B4 (de) Gleitlagerlegierung auf Aluminiumbasis und Vorrichtung zum Gießen derselben
EP3366793A1 (de) Gleitelement aus einer kupferlegierung
EP3992317A1 (de) Bleifreie cu-zn-basislegierung
EP3665313B1 (de) Sondermessinglegierung und sondermessinglegierungsprodukt
EP3003714A2 (de) Gleitlagerverbundwerkstoff mit aluminium-lagermetallschicht
DE102013210663A1 (de) Gleitlagerverbundwerkstoff mit Aluminium-Zwischenschicht
DE102022002927B4 (de) Knetwerkstoff aus einer Kupfer-Zink- Legierung, Halbzeug aus einemKnetwerkstoff und Verfahren zur Herstellung von solchem Halbzeug
DE102011116918B4 (de) Werkzeug mit geometrisch bestimmter Schneide zur spanabhebenden Finishbearbeitung einer Werkstückoberfläche, Werkzeugschneidengeometrie, Verfahren und Werkstück mit einer endbearbeiteten Funktionsoberfläche

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15717478

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167028452

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016562833

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15304259

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016023239

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015717478

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015717478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016023239

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161005