WO2015158376A1 - Verfahren zur überprüfung der funktionsfähigkeit eines partikelfilters - Google Patents

Verfahren zur überprüfung der funktionsfähigkeit eines partikelfilters Download PDF

Info

Publication number
WO2015158376A1
WO2015158376A1 PCT/EP2014/057724 EP2014057724W WO2015158376A1 WO 2015158376 A1 WO2015158376 A1 WO 2015158376A1 EP 2014057724 W EP2014057724 W EP 2014057724W WO 2015158376 A1 WO2015158376 A1 WO 2015158376A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
operating point
eff
particle
particle concentration
Prior art date
Application number
PCT/EP2014/057724
Other languages
English (en)
French (fr)
Inventor
Paul Rodatz
Michael Nienhoff
Tino Arlt
Thomas Schön
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to KR1020167031671A priority Critical patent/KR101888778B1/ko
Priority to PCT/EP2014/057724 priority patent/WO2015158376A1/de
Priority to US15/304,754 priority patent/US10132218B2/en
Priority to CN201480078009.2A priority patent/CN106460627B/zh
Publication of WO2015158376A1 publication Critical patent/WO2015158376A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for checking the functional capability of the exhaust train of a motor driving ⁇ generating motors arranged particulate filter.
  • the combustion of fuel in an internal combustion engine causes unwanted particles. Since these particles are harmful to health ⁇ , the legislation has set emission limits.
  • particle filters are used, in particular in the exhaust gas system of modern passenger car diesel engines. These are typically designed as wall-flow filters based on ceramic materials. Legislation also requires that the functionality of the filter be monitored by means of an "on-board diagnostic.”
  • a sensor is used to monitor the filtering capability of the wall-flow filter, which is located downstream of the particulate filter arranged and measures the concentration of particles in the exhaust gas. If the particulate filter is intact, a low particle concentration is measured. If the filter is damaged, an abnormally high concentration is Festge ⁇ represents.
  • the sensor If the current exceeds a threshold, it is changed to a regeneration mode.
  • the sensor is strongly heated by means of an electric heater, so that the accumulated soot burns and the current falls back to a lower level. Then the soot collection process starts from scratch.
  • the strength of the current between the electrodes depends on the particle load. At no or low load, the current is near zero and increases as the load increases. In order to be able to make a statement about the particle mass flow flowing past the sensor, the change of the
  • An intact particulate filter has a filter efficiency of over 99%.
  • a part of the gas flow can pass through the particle filter unhindered, so that the filter efficiency decreases.
  • the FiltersWe ⁇ ciency is independent of the concentration of particles upstream of the particulate filter.
  • a particulate filter is considered to be defective as soon as the mean particulate emissions at the exhaust system exit via a defined driving profile (eg NEDC) have a defined threshold
  • the filter efficiency is determined on the basis of a modeled particle concentration (soot concentration) upstream of the filter and the measured particle concentration downstream of the filter (via the particle sensor). The thus determined filter efficiency is then compared with the filter efficiency of the exhaust system, where the OBD threshold is defined in the travel profile just over ⁇ reached. If the measured efficiency is lower, there is a defective filter.
  • an offset tolerance in the measured particle concentration (soot concentration) can falsify the result of the filter efficiency determination. An offset in the positive direction causes the filter efficiency to be set too low and an intact filter to be classified as defective. Conversely, a negative offset can result in a defective filter not being recognized as such.
  • the present invention has for its object to provide a method of the type mentioned, with respect to the verification of the functioning of a
  • Particle filter provides particularly accurate results.
  • a systematic offset error (a permanent deviation) of a particle filter or a particle sensor used for such a method should be detected hereby.
  • This object is achieved in a method of the type indicated by the following steps:
  • the real filter efficiency is upstream of the particle concentration
  • Particulate filter This means that the filter efficiency calculated from the measured concentration upstream in a tole ⁇ ranzinate system at low and high concentrations is the same. This property makes the use to enable concentration offset detection. The effects of offset are naturally greatest at low concentrations and decrease with increasing concentration. At very high concentrations, offset deviation is almost negligible. This means that the determined filter efficiency approaches asymptotically to the true value. Therefore, a concentration variable efficiency indicates an offset error.
  • the method according to the invention evaluates the changes in filter efficiency during a large change in the raw emissions. In this way it is possible to detect an offset error in the concentration measurement. This can reduce or eliminate misdiagnosis in particulate filter monitoring or particulate filter inspection.
  • an offset error For the determination of an offset error, two criteria are used in the method according to the invention, namely the magnitude of the absolute difference between the determined filter efficiencies and the difference between the measured particle concentrations. If the absolute difference between the filter efficiencies exceeds a predetermined threshold, it is assumed that an offset error, because there is a variable over the concentration efficiency.
  • the first operating point is one with low particulate emissions.
  • a stabilization phase is expediently provided according to the invention.
  • an offset error is derived from the difference between the filter efficiencies (exceeded one Threshold), it can be determined whether a positive or negative offset is present depending on the sign of the difference between the filter efficiencies.
  • the method according to the invention is preferably used for determining the offset of a particle sensor used for measuring the particle concentration.
  • the method is carried out in particular for checking the operability of a soot filter.
  • FIGURE shows a schematic flow chart of a method for checking the functionality of a particulate filter.
  • the method is carried out as on-board diagnosis on a soot filter arranged in the exhaust gas line of a diesel engine. Downstream of the soot filter is a soot sensor for measuring soot concentration in the exhaust gas.
  • the soot concentration c_l in the exhaust gas downstream of the soot filter is measured at a first operating point in a first step (step 1).
  • a second step (step 2) the efficiency of the soot filter eff_l from the measured concentration and Rußkon ⁇ a modeled carbon black concentration (Rußemis- sions model) upstream of the soot filter is determined.
  • step 3 the operating point of the engine is changed so that the soot emissions upstream of the soot filter increase sharply. This is transferred to a second operating point. Now, again, the particle concentration c_2 in the exhaust gas measured downstream of the soot filter, at the selected second operating point (step 4).
  • the filter efficiency eff_2 at the second operating point is determined analogously to the procedure of the first operating point, so that now two filter efficiencies eff_l and eff_2 are available (step 5).
  • the absolute difference is now determined (step 6). If the absolute difference between the filter efficiencies exceeds a predetermined threshold, an offset error is detected (step 7). By taking into account this determined offset error then misdiagnosis in the soot filter monitoring or inspection can be reduced or eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Es wird ein Verfahren zur Überprüfung der Funktionsfähigkeit eines im Abgasstrang eines Kraftfahrzeugmotors angeordneten Partikelfilters beschrieben. Mit diesem Verfahren, mit dem die Änderungen des Filterwirkungsgrades während einer starken Änderung der Partikelrohemissionen bewertet werden, ist eine Erkennung eines Offset-Fehlers in der Konzentrationsmessung möglich. Hierdurch können Fehldiagnosen in der Partikelfilterüberwachung bzw. -überprüfung reduziert oder ausgeschlossen werden.

Description

Beschreibung
Verfahren zur Überprüfung der Funktionsfähigkeit eines
Partikelfilters
Die vorliegende Erfindung betrifft ein Verfahren zur Überprüfung der Funktionsfähigkeit eines im Abgasstrang eines Kraftfahr¬ zeugmotors angeordneten Partikelfilters. Bei der Verbrennung von Kraftstoff in einem Verbrennungsmotor entstehen ungewollt Partikel. Da diese Partikel gesundheits¬ schädlich sind, hat der Gesetzgeber Emissionsgrenzwerte festgelegt. Um diese Partikelgrenzwerte einhalten zu können, werden insbesondere im Abgasstrang von modernen PKW-Dieselmoto- ren Partikelfilter eingesetzt. Diese sind typischerweise als Wandstromfilter auf Basis von Keramikwerkstoffen ausgeführt. Der Gesetzgeber verlang zudem, dass die Funktionsfähigkeit des Filters überwacht wird, und zwar mithilfe einer sogenannten „On Board Diagnose". Um diese Anforderungen an die Überwachung zu erfüllen, wird ein Sensor zur Überwachung der Filterfähigkeit des Wandstromfilters eingesetzt. Dieser Partikelsensor wird stromab des Partikelfilters angeordnet und misst die Konzentration an Partikeln im Abgas. Falls der Partikelfilter intakt ist, wird eine geringe Partikelkonzentration gemessen. Wenn der Filter geschädigt ist, wird eine abnorm hohe Konzentration festge¬ stellt.
Bei einem derartigen Verfahren zur Überprüfung der Funktionsfähigkeit eines Partikelfilters ist eine korrekte Messung des Partikelsensors entscheidend, da anderenfalls falsche Ergeb¬ nisse in Bezug auf die Partikelfilter-Diagnose erreicht werden. Die Problematik besteht nun darin, auf zuverlässige Weise zu erkennen, ob der Sensor korrekt misst. Bei derartigen Partikelsensoren (Rußsensoren) , welche nach dem resistiven Prinzip arbeiten, wird zwischen zwei Elektroden eine Spannung angelegt. Befindet sich ein solcher Rußsensor in einer rußhaltigen Umgebung, lagert sich zwischen den Elektroden Ruß an. Da Ruß im Wesentlichen aus C-Atomen besteht und Kohlenstoff ein elektrischer Leiter ist, kann zwischen den Elektroden ein Strom fließen. Im normalen Betriebsmodus lagert sich kontinuierlich Ruß auf der Oberfläche des Sensorelementes an. Dies führt dazu, dass der Strom ebenfalls kontinuierlich ansteigt. Überschreitet der Strom eine Schwelle, wird in einen Regenerationsmodus gewechselt. Dabei wird der Sensor mittels einer elektrischen Heizung stark erhitzt, so dass der angelagerte Ruß abbrennt und der Strom auf ein niedrigeres Niveau zurückfällt. Danach beginnt der Rußsammlungsprozess von vorne.
Die Stärke des Stromes zwischen den Elektroden ist von der Partikelbeladung abhängig. Bei keiner oder niedriger Beladung ist der Strom nahe Null und nimmt mit steigender Beladung zu. Um eine Aussage über den Partikelmassenstrom, der am Sensor vorbeifließt, treffen zu können, muss die Änderung des
Stromsignals ausgewertet werden. Anhand der Änderungsrate des Stromsignals kann eine Korrelation zum Partikelmassenstrom gefunden werden. Die Auswertung der Stromänderung ermöglicht die Bewertung des Partikelmassenstromes in einem beschränkten Zeitraum.
Ein intakter Partikelfilter hat einen Filterwirkungsgrad von über 99 %. Durch eine Rissbildung in der Keramik kann ein Teil der Gasströmung den Partikelfilter ungehindert durchqueren, so dass der Filterwirkungsgrad sinkt. Dabei ist der Filterwir¬ kungsgrad unabhängig von der Partikelkonzentration stromauf des Partikelfilters. Ein Partikelfilter gilt als fehlerhaft, sobald die mittleren Partikelemissionen am Ausgang der Abgasanlage über ein definiertes Fahrprofil (z.B. NEDC) eine definierte Schwelle
(OBD-Grenzwert) überschreiten. Dieser Partikelfilter muss auch zuverlässig im Feld detektiert werden. Dazu wird anhand einer modellierten Partikelkonzentration (Rußkonzentration) stromauf des Filters und der gemessenen Partikelkonzentration stromab des Filters (über den Partikelsensor) der Filterwirkungsgrad ermittelt. Der auf diese Weise bestimmte Filterwirkungsgrad wird dann mit dem Filterwirkungsgrad der Abgasanlage verglichen, bei dem der OBD-Grenzwert im definierten Fahrprofil gerade über¬ schritten wird. Ist der gemessene Wirkungsgrad niedriger, liegt ein defekter Filter vor. Bei diesem bekannten Verfahren kann eine Offset-Toleranz in der gemessenen Partikelkonzentration (Rußkonzentration) das Ergebnis der Filterwirkungsgradbestimmung verfälschen. Ein Offset in die positive Richtung führt dazu, dass der Filterwirkungsgrad zu niedrig bestimmt und ein intakter Filter als defekt eingestuft wird. Umgekehrt kann ein negativer Offset dazu führen, dass ein defekter Filter nicht als solcher erkannt wird.
Bisher sind keine Verfahren bekannt, um einen systematischen Offset-Fehler eines Partikelsensors (Rußsensors) zu erkennen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, das hinsichtlich der Überprüfung der Funktionsfähigkeit eines
Partikelfilters besonders exakte Ergebnisse liefert. Insbe- sondere soll hiermit ein systematischer Offset-Fehler (eine bleibende Abweichung) eines Partikelfilters bzw. eines für ein derartiges Verfahren verwendeten Partikelsensors erkannt werden . Diese Aufgabe wird erfindungsgemäß bei einem Verfahren der angegebenen Art durch die folgenden Schritte gelöst:
Messen der Partikelkonzentration im Abgas stromab des
Partikelfilters an einem ersten Betriebspunkt;
Ermitteln des Filterwirkungsgrades aus der gemessenen
Partikelkonzentration und der modellierten
Partikelkonzentration stromauf des Partikelfilters;
Wechseln des Betriebspunktes des Motors auf einen zweiten Betriebspunkt, so dass die Partikelemissionen stromauf des Partikelfilters stark ansteigen; Messen der Partikelkonzentration im Abgas stromab des
Partikelfilters am zweiten Betriebspunkt;
Ermitteln des Filterwirkungsgrades am zweiten Betriebspunkt analog zur Vorgehensweise am ersten Betriebspunkt;
Ermitteln der absoluten Differenz zwischen den Filterwirkungsgraden; und
Feststellen eines Offset-Fehlers , wenn die absolute Differenz zwischen den Filterwirkungsgraden eine festgelegte Schwelle überschreitet.
Wie vorstehend erwähnt, ist der reale Filterwirkungsgrad un- abhängig von der Partikelkonzentration stromauf des
Partikelfilters. Das bedeutet, dass der aus der gemessenen Konzentration ermittelte Filterwirkungsgrad in einem tole¬ ranzfreien System bei niedrigen und hohen Konzentrationen stromauf identisch ist. Diese Eigenschaft macht sich die Er- findung zunutze, um eine Konzentrations-Offset-Erkennung zu ermöglichen. Die Auswirkungen des Offsets sind naturgemäß bei kleinen Konzentrationen am größten und nehmen mit zunehmender Konzentration ab. Bei sehr hohen Konzentrationen ist eine Offset-Abweichung nahezu vernachlässigbar. Das bedeutet, dass der ermittelte Filterwirkungsgrad asymptotisch auf den wahren Wert zuläuft. Daher deutet ein über die Konzentration variabler Wirkungsgrad auf einen Offset-Fehler hin. Mit dem erfindungsgemäßen Verfahren erfolgt eine Bewertung der Änderungen des Filterwirkungsgrades während einer starken Änderung der Rohemissionen. Auf diese Weise ist eine Erkennung eines Offset-Fehlers in der Konzentrationsmessung möglich. Hierdurch können Fehldiagnosen in der Partikelfilterüberwachung bzw. Partikelfilterüberprüfung reduziert oder ausgeschlossen werden .
Für das Feststellen eines Offset-Fehlers finden bei dem erfindungsgemäßen Verfahren zwei Kriterien Verwendung, nämlich die Größe der absoluten Differenz zwischen den ermittelten Filterwirkungsgraden und der Unterschied zwischen den gemessenen Partikelkonzentrationen. Überschreitet die absolute Differenz zwischen den Filterwirkungsgraden eine festgelegte Schwelle, wird von einem Offset-Fehler ausgegangen, weil hier ein über die Konzentration variabler Wirkungsgrad vorliegt.
Vorzugsweise ist der erste Betriebspunkt ein solcher mit niedrigen Partikelemissionen. Vor der Messung der Partikelkonzentrationen wird zweckmäßigerweise erfindungsgemäß eine Stabilisierungsphase vorgesehen.
Wenn ein Offset-Fehler aus der Differenz zwischen den Filterwirkungsgraden abgeleitet wird (Überschreiten einer Schwelle) , kann abhängig vom Vorzeichen der Differenz zwischen den Filterwirkungsgraden bestimmt werden, ob ein positiver oder negativer Offset anliegt. Das erfindungsgemäße Verfahren wird vorzugsweise zur Ermittlung des Offsets eines zum Messen der Partikelkonzentration verwendeten Partikelsensors eingesetzt.
Das Verfahren wird insbesondere zur Überprüfung der Funkti- onsfähigkeit eines Rußfilters durchgeführt.
Die Erfindung wird nachfolgend anhand eines
Ausführungsbeispieles in Verbindung mit der Zeichnung im Einzelnen erläutert. Die einzige Figur zeigt ein schematisches Ablaufdiagram eines Verfahrens zur Überprüfung der Funktionsfähigkeit eines Partikelfilters.
Das Verfahren wird als On Board Diagnose an einem im Abgasstrang eines Dieselmotors angeordneten Rußfilter durchgeführt. Stromab des Rußfilters befindet sich ein Rußsensor zum Messen der Rußkonzentration im Abgas.
Zur Überprüfung der Funktionsfähigkeit des Rußfilters wird in einem ersten Schritt (Schritt 1) die Rußkonzentration c_l im Abgas stromab des Rußfilters an einem ersten Betriebspunkt gemessen. In einem zweiten Schritt (Schritt 2) wird der Wirkungsgrad eff_l des Rußfilters aus der gemessenen Rußkon¬ zentration und einer modellierten Rußkonzentration (Rußemis- sions-Modell ) stromauf des Rußfilters ermittelt.
In Schritt 3 wird der Betriebspunkt des Motors gewechselt, so dass die Rußemissionen stromauf des Rußfilters stark ansteigen. Hierbei wird auf einen zweiten Betriebspunkt übergegangen. Es wird jetzt wiederum die Partikelkonzentration c_2 im Abgas stromab des Rußfilters gemessen, und zwar am gewählten zweiten Betriebspunkt (Schritt 4). Der Filterwirkungsgrad eff_2 am zweiten Betriebspunkt wird analog zur Vorgehensweise der am ersten Betriebspunkt ermittelt, so dass nunmehr zwei Filter- Wirkungsgrade eff_l und eff_2 zur Verfügung stehen (Schritt 5) .
Zwischen den beiden Filterwirkungsgraden wird nunmehr die absolute Differenz ermittelt (Schritt 6) . Wenn die absolute Differenz zwischen den Filterwirkungsgraden eine festgelegte Schwelle überschreitet, wird ein Offset-Fehler festgestellt (Schritt 7). Durch Berücksichtigung dieses ermittelten Offset-Fehlers können dann Fehldiagnosen in der Rußfilter-Überwachung oder -Überprüfung reduziert oder ausgeschlossen werden .

Claims

Patentansprüche
1. Verfahren zur Überprüfung der Funktionsfähigkeit eines im Abgasstrang eines Kraftfahrzeugmotors angeordneten
Partikelfilters mit den folgenden Schritten:
Messen der Partikelkonzentration (c_l)im Abgas stromab des Partikelfilters an einem ersten Betriebspunkt; Ermitteln des Filterwirkungsgrades (eff_l) aus der gemessenen Partikelkonzentration (c_l) und der modellierten
Partikelkonzentration stromauf des Partikelfilters;
Wechseln des Betriebspunktes des Motors auf einen zweiten Betriebspunkt, so dass die Partikelemissionen stromauf des Partikelfilters stark ansteigen;
Messen der Partikelkonzentration (c_2) im Abgas stromab des Partikelfilters am zweiten Betriebspunkt;
Ermitteln des Filterwirkungsgrades (eff_2) am zweiten Be¬ triebspunkt analog zur Vorgehensweise am ersten Betriebspunkt;
Ermitteln der absoluten Differenz zwischen den Filterwir- kungsgraden (eff_l und eff_2); und
Feststellen eines Offset-Fehlers , wenn die absolute Differenz zwischen den Filterwirkungsgraden (eff_l und eff_2) eine festgelegte Schwelle überschreitet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der erste Betriebspunkt ein solcher mit niedrigen
Partikelemissionen ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass vor der Messung der Partikelkonzentration am ersten und zweiten Betriebspunkt eine Stabilisierungsphase vorgesehen wird .
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass abhängig vom Vorzeichen der Differenz zwischen den Filterwirkungsgraden (eff_l, eff_2) bestimmt wird, ob ein positiver oder negativer Offset anliegt.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es zur Ermittlung des Offsets eines zum Messen der Partikelkonzentration verwendeten
Partikelsensors eingesetzt wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es zur Überprüfung der Funktions¬ fähigkeit eines Rußfilters durchgeführt wird.
PCT/EP2014/057724 2014-04-16 2014-04-16 Verfahren zur überprüfung der funktionsfähigkeit eines partikelfilters WO2015158376A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167031671A KR101888778B1 (ko) 2014-04-16 2014-04-16 입자 필터의 기능을 점검하기 위한 방법
PCT/EP2014/057724 WO2015158376A1 (de) 2014-04-16 2014-04-16 Verfahren zur überprüfung der funktionsfähigkeit eines partikelfilters
US15/304,754 US10132218B2 (en) 2014-04-16 2014-04-16 Exhaust system for a motor vehicle
CN201480078009.2A CN106460627B (zh) 2014-04-16 2014-04-16 用于检测颗粒过滤器的功能能力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/057724 WO2015158376A1 (de) 2014-04-16 2014-04-16 Verfahren zur überprüfung der funktionsfähigkeit eines partikelfilters

Publications (1)

Publication Number Publication Date
WO2015158376A1 true WO2015158376A1 (de) 2015-10-22

Family

ID=50513916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/057724 WO2015158376A1 (de) 2014-04-16 2014-04-16 Verfahren zur überprüfung der funktionsfähigkeit eines partikelfilters

Country Status (4)

Country Link
US (1) US10132218B2 (de)
KR (1) KR101888778B1 (de)
CN (1) CN106460627B (de)
WO (1) WO2015158376A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10132218B2 (en) 2014-04-16 2018-11-20 Continental Automotive Gmbh Exhaust system for a motor vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113420813B (zh) * 2021-06-23 2023-11-28 北京市机械工业局技术开发研究所 一种车辆尾气检测设备颗粒物过滤棉状态的诊断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031370A1 (de) * 2007-08-30 2009-03-04 Robert Bosch Gmbh Abgassensor
EP2407774A1 (de) * 2010-07-12 2012-01-18 NGK Insulators, Ltd. Feststoffdetektor und Verfahren zur Detektion von Feststoffen
EP2546484A1 (de) * 2010-03-10 2013-01-16 Isuzu Motors, Ltd. Dpf-ausfallerkennungsverfahren und dpf-ausfallerkennungsvorrichtung
DE112011104812T5 (de) * 2011-02-01 2013-10-31 Toyota Jidosha Kabushiki Kaisha Controller einer Verbrennungsmaschine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325812A (ja) 2004-05-17 2005-11-24 Honda Motor Co Ltd フィルタの故障判定装置
US8151560B2 (en) * 2005-12-06 2012-04-10 Ford Global Technologies, Llc System and method for monitoring particulate filter performance
JP2007315275A (ja) 2006-05-25 2007-12-06 Nissan Motor Co Ltd 排気浄化フィルタ故障診断装置及び方法
DE102006029990A1 (de) * 2006-06-29 2008-01-03 Robert Bosch Gmbh Verfahren zur Diagnose eines Partikelfilters und Vorrichtung zur Durchführung des Verfahrens
US7500358B2 (en) * 2006-08-11 2009-03-10 Fleetguard, Inc Apparatus, system, and method for enhancing soot filter protection
US8136351B2 (en) * 2009-03-31 2012-03-20 Woodward, Inc. System and method for filtering diesel engine exhaust particulates
JP5365550B2 (ja) 2010-03-03 2013-12-11 トヨタ自動車株式会社 パティキュレートフィルタの故障診断装置
WO2011135718A1 (ja) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 パティキュレートフィルタの故障検出装置及び故障検出方法
JP5533362B2 (ja) 2010-07-05 2014-06-25 トヨタ自動車株式会社 Pmセンサの故障検出装置
US9062576B2 (en) * 2010-12-22 2015-06-23 Caterpillar Inc. Exhaust particulate filter system and operating method therefor
JP2013019389A (ja) 2011-07-13 2013-01-31 Toyota Motor Corp パティキュレートフィルタの故障診断装置
KR20130037553A (ko) 2011-10-06 2013-04-16 현대자동차주식회사 배기가스 처리방법
CN106460627B (zh) 2014-04-16 2019-04-30 大陆汽车有限公司 用于检测颗粒过滤器的功能能力的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031370A1 (de) * 2007-08-30 2009-03-04 Robert Bosch Gmbh Abgassensor
EP2546484A1 (de) * 2010-03-10 2013-01-16 Isuzu Motors, Ltd. Dpf-ausfallerkennungsverfahren und dpf-ausfallerkennungsvorrichtung
EP2407774A1 (de) * 2010-07-12 2012-01-18 NGK Insulators, Ltd. Feststoffdetektor und Verfahren zur Detektion von Feststoffen
DE112011104812T5 (de) * 2011-02-01 2013-10-31 Toyota Jidosha Kabushiki Kaisha Controller einer Verbrennungsmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10132218B2 (en) 2014-04-16 2018-11-20 Continental Automotive Gmbh Exhaust system for a motor vehicle

Also Published As

Publication number Publication date
CN106460627A (zh) 2017-02-22
US20170037753A1 (en) 2017-02-09
KR20160144477A (ko) 2016-12-16
US10132218B2 (en) 2018-11-20
KR101888778B1 (ko) 2018-08-14
CN106460627B (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
DE102010006708B4 (de) Diagnoseverfahren eines Rußsensors
DE102007059523B4 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102007014761B4 (de) Verfahren zum Betreiben eines sammelnden Partikelsensors und Vorrichtung zur Durchführung des Verfahrens
DE102014209840A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102006029990A1 (de) Verfahren zur Diagnose eines Partikelfilters und Vorrichtung zur Durchführung des Verfahrens
DE102012210525A1 (de) Verfahren zur Funktionskontrolle eines Sensors zur Detektion von Teilchen und Sensor zur Detektion von Teilchen
DE102014209810A1 (de) Verfahren und Vorrichtung zur Erkennung einer Ruß- und Aschebeladung eines Partikelfilters
DE102009003091A1 (de) Verfahren und Vorrichtung zur Überwachung eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Bauteils
WO2015127949A1 (de) Verfahren zur alterungsbestimmung eines oxidationskatalysators in einem abgasnachbehandlungssystem einer brennkraftmaschine, verfahren zur ascheerkennung in einem partikelfilter eines abgasnachbehandlungssystems, steuereinrichtung und brennkraftmaschine
DE102010027975A1 (de) Verfahren und Vorrichtung zur Eigendiagnose einer Abgassonde
DE102013206451A1 (de) Verfahren zur Überwachung der Filterfähigkeit eines Partikelfilters
EP3204750B1 (de) Verfahren zur funktionskontrolle eines sensors zur detektion von teilchen, computerprogramm, elektronisches speichermedium und elektronisches steuergerät
DE102006057528A1 (de) System und Verfahren zum Überwachen von Partikelfilterleistung
DE102013206391B4 (de) Verfahren zur Überprüfung der Funktionsfähigkeit eines Partikelfilters
WO2015158376A1 (de) Verfahren zur überprüfung der funktionsfähigkeit eines partikelfilters
DE102009001538B4 (de) Verfahren zum Betreiben eines Partikelfilters sowie Partikelfilter
DE102010028852A1 (de) Verfahren und Vorrichtung zur Diagnose eines Abgasreinigungssystems für eine Brennkraftmaschine
WO2018130459A1 (de) Verfahren und vorrichtung zur beladungsdiagnose eines partikelfilters
DE102013218900A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102016211712B4 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit eines Partikelsensors
DE102016101259A1 (de) System zum Schätzen einer Partikelanzahl
DE102013216899A1 (de) Verfahren und Vorrichtung zum Betrieb eines sammelnden Partikelsensors
WO2015158375A1 (de) Verfahren zur überwachung der filterfähigkeit eines partikelfilters
EP4222358B1 (de) Verfahren zur überwachung eines in einem abgasbereich einer brennkraftmaschine angeordneten sensors
DE102021113763A1 (de) Verfahren zum Erkennen einer Regenerationsnotwendigkeit für einen Abgaspartikelfilter sowie Abgasanlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14718388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15304754

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167031671

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14718388

Country of ref document: EP

Kind code of ref document: A1