WO2015158125A1 - 频谱资源重配置的触发方法、装置及电信设备 - Google Patents

频谱资源重配置的触发方法、装置及电信设备 Download PDF

Info

Publication number
WO2015158125A1
WO2015158125A1 PCT/CN2014/089351 CN2014089351W WO2015158125A1 WO 2015158125 A1 WO2015158125 A1 WO 2015158125A1 CN 2014089351 W CN2014089351 W CN 2014089351W WO 2015158125 A1 WO2015158125 A1 WO 2015158125A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum resource
network state
idle
change rule
primary system
Prior art date
Application number
PCT/CN2014/089351
Other languages
English (en)
French (fr)
Inventor
刘星
李岩
王斌
任龙涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015158125A1 publication Critical patent/WO2015158125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present invention relates to the field of communications, and in particular, to a triggering method, device, and telecommunication device for spectrum resource reconfiguration.
  • this spectrum allocation system that is fixedly assigned to the authorization system creates a situation in which the spectrum resources are extremely tight.
  • Cognitive radio technology breaks the traditional fixed spectrum allocation system, dynamically allocates spectrum between systems, and improves the efficiency of spectrum utilization.
  • IMT International Mobile Telecom
  • Such a secondary system opportunistically occupies the spectrum usage of the spectrum resources of the primary system, and must ensure effective protection for the primary user, that is, when the secondary system uses the primary system spectrum resources, it cannot cause harmful interference to the primary system user, which is cognitive radio. Prerequisites that technology can achieve. In order to achieve such a goal, first of all, the use spectrum and transmission parameters of the secondary system will be limited by the protection requirements of the primary system, and accurate decisions need to be made when initially determining these parameters. Second, the secondary system needs to know the presence of the primary user in time. In order to discover that the primary user on the spectrum resource occupied by the secondary system reappears, the spectrum resource is promptly withdrawn to avoid interference with the primary user.
  • the reconfiguration management node completes the reconfiguration decision, and then the reconfiguration reconfiguration command performs the spectrum reconfiguration.
  • the system needs to disconnect communication on the idle spectrum, which greatly affects the performance of the secondary system and the continuity of the service.
  • the mechanism in the related art is that the network satisfies corresponding trigger conditions (such as load overload, excessive interference, communication quality cannot meet system requirements, etc.) and then idle.
  • the application of spectrum resource configuration is a post-processing method. In the process of this spectrum reconfiguration decision, the secondary system is still in a problem state and also affects the performance of the secondary system.
  • the present invention provides a method, a device, and a telecommunication device for triggering the reconfiguration of spectrum resources in order to solve at least the above problems.
  • a triggering method for spectrum resource reconfiguration including: acquiring a first network state change rule of a secondary system and/or a second network state change rule of a primary system; A network state change rule and/or the second network state change rule pre-trigger spectrum resource reconfiguration.
  • acquiring a first network state change rule of the secondary system and/or a second network state change rule of the primary system comprising: acquiring first network state information of the secondary system and/or a number of the primary system And the second network state information is calculated according to the first network state information, and/or the second network state change rule is calculated according to the second network state information.
  • the first network state information comprises at least one of: network load information of the secondary system, and interference information of a user equipment of the secondary system.
  • the second network state information includes: spectrum resource usage information of the primary system.
  • the spectrum resource usage information includes at least one of: a frequency of the idle spectrum, a bandwidth, a signal type of the primary system to which the idle spectrum belongs, a transmitter location, a coverage, a transmission template, a transmission power, an antenna parameter, and a reception. Machine type, protection requirements, usage time, idle time.
  • the first network state change rule includes: a network load of the secondary system and/or a change rule of an interference state of a user equipment of the secondary system over time; and/or the second network state
  • the variation law includes: the variation of the spectrum resource usage status of the primary system with time.
  • the pre-triggering of the spectrum resource reconfiguration according to the first network state change rule and/or the second network state change rule includes: according to the first network state change rule and/or the second network state Change the law and make spectrum resource reconfiguration decisions in advance.
  • performing the spectrum resource reconfiguration decision in advance includes at least one of: assigning the idleness of the primary system to the secondary system before the secondary system is overloaded according to a load change rule of the secondary system a spectrum resource; according to the change rule of the interference state of the secondary system, before the interference level exceeds the pre-configured interference threshold, the secondary system is allocated the idle spectrum resource of the primary system in advance; according to the spectrum resource of the primary system Using the state change rule, prior to the regression of the primary user equipment of the primary system, all other idle spectrum resources of the primary system are allocated in advance for the secondary system using the corresponding idle spectrum resource; and the state of use of the spectrum resource according to the primary system is changed. Regularly, a relatively stable idle spectrum resource is selected for spectrum resource reconfiguration of the secondary system.
  • the relatively stable idle spectrum resource includes at least one of the following: a probability that the primary system idle spectrum resource is converted into a occupied spectrum is low, and a time when the primary system idle spectrum resource is converted into an occupied spectrum is later, The probability that the primary user equipment of the primary system idle spectrum resource reappears is low, and the primary user equipment of the primary system idle spectrum resource reappears later, and the idle spectrum resource of the primary system is still idle after a period of time T1, and the time period T2 The probability that the primary system idle spectrum resource is idle is high.
  • a triggering device for spectrum resource reconfiguration including: an obtaining module, configured to acquire a first network state change rule of a secondary system and/or a second network state change of the primary system a triggering module configured to pre-trigger spectrum resource reconfiguration according to the first network state change rule and/or the second network state change rule.
  • the obtaining module includes: an acquiring unit, configured to acquire first network state information of the secondary system and/or second network state information of the primary system; and a statistics unit configured to be according to the first The network state information collects the first network state change rule, and/or the second network state change rule according to the second network state information.
  • the first network state information comprises at least one of: network load information of the secondary system, and interference information of a user equipment of the secondary system.
  • the second network state information includes: spectrum resource usage information of the primary system.
  • the spectrum resource usage information includes at least one of: a frequency of the idle spectrum, a bandwidth, a signal type of the primary system to which the idle spectrum belongs, a transmitter location, a coverage, a transmission template, a transmission power, an antenna parameter, and a reception. Machine type, protection requirements, usage time, idle time.
  • the first network state change rule includes: a network load of the secondary system and/or a change rule of an interference state of a user equipment of the secondary system over time; and/or the second network state
  • the variation law includes: the variation of the spectrum resource usage status of the primary system with time.
  • the triggering module is configured to perform a spectrum resource reconfiguration decision in advance according to the first network state change rule and/or the second network state change rule.
  • the triggering module comprises at least one of: a first allocating unit configured to pre-allocate the secondary system according to a load change rule of the secondary system before the secondary system is overloaded The idle spectrum resource of the primary system; the second allocation unit is configured to allocate the idleness of the primary system to the secondary system before the interference level exceeds the pre-configured interference threshold according to the change rule of the interference state of the secondary system. a third allocation unit, configured to allocate the primary system to the secondary system using the corresponding idle spectrum resource before the primary user equipment of the primary system returns according to the change rule of the spectrum resource usage state of the primary system.
  • the fourth allocation unit is configured to select a relatively stable idle spectrum resource for the secondary system when performing spectrum resource reconfiguration according to the spectrum resource usage state change rule of the primary system.
  • the relatively stable idle spectrum resource includes at least one of the following: a probability that the primary system idle spectrum resource is converted into a occupied spectrum is low, and a time when the primary system idle spectrum resource is converted into an occupied spectrum is later, The probability that the primary user equipment of the primary system idle spectrum resource reappears is low, and the primary user equipment of the primary system idle spectrum resource reappears later, and the idle spectrum resource of the primary system is still idle after a period of time T1, and the time period T2 The probability that the primary system idle spectrum resource is idle is high.
  • a telecommunication device including: triggering apparatus for reconfiguring any of the above spectrum resources according to the embodiment of the present invention.
  • the network state change rule of the secondary system and/or the network state change rule of the primary system are acquired, and the spectrum resource is pre-triggered according to the network state change rule of the secondary system and/or the network state change rule of the primary system.
  • the configuration overcomes the defects triggered by the related technology in the related art and improves the performance of the system.
  • FIG. 1 is a flowchart of a method for triggering spectrum resource reconfiguration according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a triggering device for spectrum resource reconfiguration according to an embodiment of the present invention
  • FIG. 3 is an architectural diagram of a TVWS band CR technology according to the related art
  • FIG. 5 is a flowchart of a method for triggering spectrum resource reconfiguration according to a second preferred embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for triggering spectrum resource reconfiguration according to a preferred embodiment 3 of the present invention.
  • FIG. 7 is a flowchart of a method for triggering spectrum resource reconfiguration according to a preferred embodiment 4 of the present invention.
  • FIG. 8 is a flowchart of a method for triggering spectrum resource reconfiguration according to a preferred embodiment 5 of the embodiment of the present invention.
  • the user equipment may be any device in the communication system that uses the spectrum resource, such as a base station, where the base station may include a base station or a 3G network in a Long Term Evolution (LTE) system. Base station, base station in 2G network, and the like.
  • LTE Long Term Evolution
  • the primary system and the secondary system are not specific to a particular communication system, as long as the system utilizing the spectrum resources of another communication system can be a secondary system, and the system utilizing the spectrum resources by the secondary system can serve as the primary system.
  • a triggering method for spectrum resource reconfiguration is provided.
  • FIG. 1 is a flowchart of a method for triggering spectrum resource reconfiguration according to an embodiment of the present invention. As shown in FIG. 1, the method includes steps S102 to S104.
  • Step S102 Acquire a network state change rule of the secondary system and/or a network state change rule of the primary system.
  • Step S104 The spectrum resource reconfiguration is triggered in advance according to the network state change rule of the secondary system and/or the network state change rule of the primary system.
  • the network state change rule of the secondary system and/or the network state change rule of the primary system are acquired, and the spectrum is pre-triggered according to the network state change rule of the secondary system and/or the network state change rule of the primary system.
  • Resource reconfiguration overcomes the defects triggered by the related technology and improves the performance of the system.
  • the foregoing step S102 may be: directly obtaining the network state change rule of the secondary system and/or the primary system after the statistics, or obtaining the network state information, and obtaining the foregoing according to the network state information.
  • network state information of the secondary system and/or network state information of the primary system may be acquired; and network state of the secondary system is calculated according to network state information of the secondary system.
  • the law of change, and/or the change of the network state of the main system according to the network state information of the main system.
  • the network state change rule may also be acquired in a hybrid manner.
  • the secondary system acquires the network state information of the secondary system, and obtains the network state change rule of the secondary system according to the network state information statistics; the secondary system directly obtains the statistical state of the network state change of the primary system. The reverse is also true, and will not be repeated here.
  • the user equipment of the secondary system may periodically report the network status information, or report the network status information after the network status meets certain conditions, or report the network status information when the request is received.
  • the primary system can actively report the network status information of the primary system, for example, when the periodicity or the predetermined condition is met, or when the request is received, the response is reported.
  • the network status information of the secondary system may include at least one of the following: network load information of the secondary system, and interference information of the user equipment of the secondary system.
  • the network state information of the primary system may include: spectrum resource usage information of the primary system.
  • the spectrum resource usage information of the primary system includes at least one of the following: a frequency of the idle spectrum, a bandwidth, a signal type of the primary system to which the idle spectrum belongs, a transmitter location, a coverage, a transmission template, a transmission power, an antenna parameter, Receiver type, protection requirements, usage time, idle time.
  • the network state change rule of the secondary system includes: a network load of the secondary system and/or a change rule of the interference state of the user equipment of the secondary system over time; and/or, the main
  • the network state change law of the system includes: the change law of the spectrum resource usage status of the main system with time.
  • the above change rule may be a time point at which the triggering of the spectrum resource reconfiguration condition occurs, a probability of occurrence of the condition, a length of time during which the condition continues, and the like.
  • the pre-trigger spectrum resource reconfiguration described in the foregoing step S104 may be triggered by a spectrum resource reconfiguration decision, or may trigger a complete spectrum resource reconfiguration process (which may include two steps of decision and reconfiguration). aspect).
  • step S104 the spectrum resource reconfiguration is triggered in advance, and the spectrum resource reconfiguration decision may be performed before the trigger condition occurs according to the network change rule, and the reconfiguration is performed before the trigger condition is satisfied.
  • the spectrum resource reconfiguration may be performed after the spectrum resource reconfiguration decision is completed and the trigger condition is met.
  • the foregoing step S104 may include: performing a spectrum resource reconfiguration decision in advance according to a network state change rule of the secondary system and/or a network state change rule of the primary system.
  • the pre-performed spectrum resource reconfiguration decision comprises at least one of the following:
  • the secondary system is allocated the idle spectrum resources of the primary system before the secondary system is overloaded.
  • the primary system idle spectrum resource may be allocated to the secondary system in advance according to the load change of the secondary system, predicting that an overload will occur at a certain time point, or the probability of overloading at a time point.
  • the idle spectrum resource of the primary system is allocated to the secondary system before the interference level exceeds the pre-configured interference threshold.
  • the secondary system can be predicted that the interference level is too high at a certain time point, or the probability of the interference level being too high at a time point is large, and the secondary system can be allocated in advance.
  • the primary system is idle spectrum resources.
  • the foregoing relatively stable idle spectrum resource may include at least one of the following: a probability that the primary system idle spectrum resource is converted into the occupied spectrum is low, and the primary system idle spectrum resource is converted into the occupied spectrum later, and the primary system is empty. The probability of re-occurrence of the primary user equipment to which the idle spectrum resource belongs is low, and the primary user equipment of the primary system idle spectrum resource reappears later, the idle spectrum resource is still idle after a period of time T1, and the idle spectrum resource of the primary system is idle after a period of time T2. The probability is higher.
  • a trigger device for spectrum resource reconfiguration is provided. It is anticipated that the device can be implemented by a computer program unit.
  • FIG. 2 is a structural block diagram of a triggering device for spectrum resource reconfiguration according to an embodiment of the present invention.
  • the device may include: an obtaining module 10 and a triggering module 20.
  • the obtaining module 10 is configured to acquire a network state change rule of the secondary system and/or a network state change rule of the primary system;
  • the triggering module 20 is connected to the acquiring module 10, and is set according to a network state change rule of the secondary system.
  • the network state change rule of the primary system pre-triggers spectrum resource reconfiguration.
  • the network state change rule of the secondary system and/or the network state change rule of the primary system are acquired, and the spectrum is pre-triggered according to the network state change rule of the secondary system and/or the network state change rule of the primary system.
  • Resource reconfiguration overcomes the defects triggered by the related technology and improves the performance of the system.
  • the obtaining module 10 may directly obtain the network state change rule of the secondary system and/or the primary system after the statistics, or obtain the network state information, and obtain the foregoing network according to the network state information.
  • the state of change of state may directly obtain the network state change rule of the secondary system and/or the primary system after the statistics, or obtain the network state information, and obtain the foregoing network according to the network state information.
  • the state of change of state may directly obtain the network state change rule of the secondary system and/or the primary system after the statistics, or obtain the network state information, and obtain the foregoing network according to the network state information.
  • the obtaining module 10 may include: an acquiring unit configured to acquire network state information of the secondary system and/or network state information of the primary system; and a statistical unit configured to be based on the secondary system The network status information statistics the network state change rule of the secondary system, and/or the network state change rule of the primary system according to the network state information of the primary system.
  • the obtaining module 10 may also acquire the network state change rule in a mixed manner. For example, the obtaining module 10 acquires the network state information of the secondary system, and obtains the network state change rule of the secondary system according to the network state information; the obtaining module 10 directly obtains the statistical state of the network state of the primary system. The reverse is also true, and will not be repeated here.
  • the user equipment of the secondary system may periodically report the network status information, or report the network status information after the network status meets certain conditions, or report the network status information when the request is received.
  • the primary system can actively report the network status information of the primary system, for example, when the periodicity or the predetermined condition is met, or when the request is received, the response is reported.
  • the network status information of the secondary system may include at least one of the following: network load information of the secondary system, and interference information of the user equipment of the secondary system.
  • the network state information of the primary system may include: spectrum resource usage information of the primary system.
  • the spectrum resource usage information of the primary system includes at least one of the following: a frequency of the idle spectrum, a bandwidth, a signal type of the primary system to which the idle spectrum belongs, a transmitter location, a coverage, a transmission template, a transmission power, an antenna parameter, Receiver type, protection requirements, usage time, idle time.
  • the network state change rule of the secondary system includes: a network load of the secondary system and/or a change rule of the interference state of the user equipment of the secondary system over time; and/or, the main
  • the network state change law of the system includes: the change law of the spectrum resource usage status of the main system with time.
  • the above change rule may be a time point at which the triggering of the spectrum resource reconfiguration condition occurs, a probability of occurrence of the condition, a length of time during which the condition continues, and the like.
  • the triggering module 20 may be a triggering spectrum resource reconfiguration decision, or may trigger a complete spectrum resource reconfiguration process (which may include both decision making and reconfiguration).
  • the triggering module 20 may be configured to perform a spectrum resource reconfiguration decision before the trigger condition occurs according to the network change rule, and perform reconfiguration before the trigger condition is met when the decision is completed; or may be set to After the spectrum resource reconfiguration decision is completed and the trigger condition is met, the spectrum resource reconfiguration is performed.
  • the triggering module 20 may be configured to perform a spectrum resource reconfiguration decision in advance according to a network state change rule of the secondary system and/or a network state change rule of the primary system.
  • the pre-performed spectrum resource reconfiguration decision comprises at least one of the following:
  • the secondary system is allocated the idle spectrum resources of the primary system before the secondary system is overloaded.
  • the primary system idle spectrum resource may be allocated to the secondary system in advance according to the load change of the secondary system, predicting that an overload will occur at a certain time point, or the probability of overloading at a time point.
  • the idle spectrum resource of the primary system is allocated to the secondary system before the interference level exceeds the pre-configured interference threshold.
  • the secondary system can be predicted that the interference level is too high at a certain time point, or the probability of the interference level being too high at a time point is large, and the secondary system can be allocated in advance.
  • the primary system is idle spectrum resources.
  • the foregoing relatively stable idle spectrum resource may include at least one of the following: a probability that the primary system idle spectrum resource is converted into the occupied spectrum is low, the primary system idle spectrum resource is converted into the occupied spectrum later, and the primary system idle spectrum resource belongs to the primary user.
  • the probability of re-occurrence of the device is low, the time when the primary user equipment of the primary system idle spectrum resource reappears is later, the idle spectrum resource is still idle after a period of time T1, and the probability that the primary system idle spectrum resource is idle after a period of time T2 is high.
  • a telecommunication device may include: any triggering device for reconfiguring a spectrum resource according to the foregoing embodiment of the present invention.
  • the triggering device for reconfiguring the spectrum resource may be implemented by a computer program unit, where the telecommunication device may include a storage medium and a processor, where the computer program unit may be stored in a storage medium, the processor The computer program element can be executed.
  • the above telecommunication device may further comprise a database.
  • a database may be further comprised in order to store the acquired information.
  • other common components of the above-described telecommunication device may be different, such as a communication interface employed, a communication protocol, a receiver for transmitting and receiving signals, and the like. For common components, they are not described here.
  • the network state change rule of the secondary system and/or the network state change rule of the primary system are acquired, and the spectrum resource is pre-triggered according to the network state change rule of the secondary system and/or the network state change rule of the primary system.
  • the configuration overcomes the defects triggered by the related technology in the related art and improves the performance of the system.
  • the reconfiguration management node refers to a functional entity responsible for the reconfiguration management of the secondary system spectrum resources, and may include any one of the following functional entities: a Spectrum Controller (referred to as SC) and a Central Control Point (Central Control Point). It is a CCP), a reconfiguration management module, a reconfiguration function module, a reconfiguration entity, an evolved positioning entity, an evolved positioning function, and a coexistence function.
  • SC Spectrum Controller
  • Central Control Point Central Control Point
  • Typical primary system idle spectrum resources such as the TVWS spectrum, include unused spectrum resources for the primary system in the 470 MHz-790 MHz range.
  • the TVWS spectrum is taken as an example for description.
  • the main system protection management node takes a group location database (Geo-Location DataBase, GLDB for short) as an example, and the reconfiguration management node where the inter-system inter-system interference coexists takes SC as an example.
  • the architecture of the TVWS band CR technology is shown in Figure 3.
  • the GLDB is responsible for primary system protection, providing primary system spectrum usage for secondary user equipment or secondary system management nodes to avoid interference from the primary system.
  • the secondary user equipment is provided with idle spectrum resources at its location, and the maximum transmit power allowed by the secondary system user equipment is calculated according to the primary system protection criteria.
  • the SC is a secondary system spectrum resource reconfiguration management node, which is responsible for coexistence management, priority management, and measurement management among each secondary user equipment.
  • the BS is a secondary user equipment, which can represent a base station under a cellular network system such as an LTE, a 3G system, a 2G system, or an access point under an IEEE 802 system such as WLAN, WRAN, Wimax, or the like.
  • a cellular network system such as an LTE, a 3G system, a 2G system, or an access point under an IEEE 802 system such as WLAN, WRAN, Wimax, or the like.
  • the SC performs an embodiment of a spectrum resource reconfiguration decision for BS1 based on load statistics.
  • FIG. 4 is a flowchart of a method for triggering spectrum resource reconfiguration according to a first embodiment of the present invention. As shown in FIG. 4, step S402 to step S410 are included.
  • step S402 the SC acquires and stores the load statistics reported by the BS1.
  • the BS1 can periodically report the current network load information, or report the network load information when the load value rises to the pre-configured threshold.
  • the pre-configured threshold may be set according to the capacity of the network, for example, setting the pre-configured threshold to a load amount of up to 90% of the maximum capacity.
  • the SC can grasp the change rule of the load with time. For example, the cell 1 of the cell of BS1 is obtained, and the load is close to full load or even overloaded at 12 noon to 14 o'clock on weekdays (Monday to Friday). The configuration of the idle spectrum resource needs to be triggered to meet the load requirement of the cell.
  • Step S404 according to the foregoing load statistics rule, the SC sets a timer to trigger the idle spectrum resource configuration process before the peak load occurs.
  • the timer can be set to 10 minutes before the peak load, for example 11:50, triggering spectrum resource configuration.
  • Step S406 according to the idle spectrum resource application message, the SC accesses the GLDB to obtain the primary system idle spectrum resource information at the location of the BS1 at this time.
  • the SC may transmit the location information of the BS1 and the antenna parameter information to the GLDB.
  • the GLDB can search for the usage of the primary user's spectrum resources at the corresponding location, determine the available frequency resources according to the spectrum resource usage, and calculate the maximum allowed transmit power on the available spectrum resources according to the antenna parameters of the BS1 and the primary user protection criteria. The above information determined is fed back to the SC.
  • the GLDB feeds back the above information to the SC.
  • the available spectrum resources are shown in Table 1.
  • Step S408 the SC performs a spectrum resource reconfiguration decision.
  • the SC considers the idle spectrum usage of other BSs in the SC for the idle spectrum resources acquired in Table 1, and excludes the idle spectrum resources that interfere with each other between the BSs, or the above-mentioned idle spectrum for the BS1.
  • the maximum allowable transmit power in the resource is further limited, so that BS1 is in idle spectrum resources.
  • the above communication does not cause interference to other secondary user equipments; after the following inter-BS coexistence management, the idle spectrum resources and transmission power limits of BS1 are as shown in Table 2.
  • f1 is occupied by other BSs, BS1 cannot be used, and f1 is deleted. Since the neighboring other stations also use the idle spectrum f2, the maximum allowable transmission power of BS1 is reduced to 10 dBm by interference calculation.
  • the above spectrum resource configuration decision result is formed into a message that BS1 can recognize.
  • Step S410 the SC sends the spectrum resource configuration decision result (as shown in Table 2) to the BS1.
  • the SC performs an embodiment of a spectrum resource reconfiguration decision for BS1 based on interference statistics.
  • FIG. 5 is a flowchart of a method for triggering spectrum resource reconfiguration according to a second embodiment of the present invention. As shown in FIG. 5, step S502 to step S510 are included.
  • Step S502 the SC acquires and stores the communication performance statistics reported by the BS1.
  • the BS1 may periodically report the current network interference statistics, or report the network interference statistics when the interference rises to the preset threshold.
  • the pre-configured threshold can be set according to the communication performance requirement of the network, that is, the performance of the secondary system network is degraded due to the increase of the interference, the communication performance corresponds to a certain interference level, and the interference corresponding to the performance is low to a certain degree according to the system requirements.
  • the value is used as a pre-configured threshold.
  • the pre-configured threshold is set to the interference level corresponding to the call drop rate of 2%.
  • the SC grasps the change law of interference with time. For example, it derives Cell1 from BS1, and from 12:00 to 14:00 on weekdays (Monday to Friday), the interference level is higher than the pre-configuration.
  • the threshold the communication performance cannot meet the requirements of the operator, and the reconfiguration of the idle spectrum resources needs to be triggered to meet the communication performance requirements of the cell.
  • Step S504 according to the foregoing interference statistics rule, the SC sets a timer, and triggers the idle spectrum resource configuration process before the communication performance deteriorates.
  • the timer can be set to trigger the spectrum resource configuration 10 minutes before the communication performance deteriorates, for example, 11:50.
  • Step S506 the SC accesses the GLDB to obtain the primary system idle spectrum resource information at the location of the BS1 at the current time according to the idle spectrum resource application message.
  • the SC may transmit the location information of the BS and the antenna parameter information to the GLDB.
  • the maximum allowable transmit power on the resource is: 40dBm, 30dBm, 40dBm, 30dBm.
  • the GLDB feeds back the above information to the SC.
  • the following free spectrum resources are shown in Table 3.
  • Step S508 the SC performs a spectrum resource reconfiguration decision.
  • the SC considers the idle spectrum usage of other BSs in the SC, excludes the idle spectrum that interferes with each other between the BSs, or further performs the maximum allowed transmit power of the BS1 in the idle spectrum.
  • the limitation is that the communication of the BS1 on the idle spectrum does not cause interference to other secondary user equipments; after the inter-BS coexistence management, the free spectrum resources and the transmission power limit of the BS1 are as shown in Table 4.
  • f1 is occupied by other BSs, BS1 cannot be used, and f1 is deleted. Since the neighboring other stations also use the idle spectrum f2, the maximum allowable transmission power of BS1 is reduced to 10 dBm by interference calculation.
  • Step S510 The SC sends the spectrum resource configuration decision result (Table 4) to the BS1.
  • the secondary system uses the call drop rate as a parameter to measure system performance, and other parameters such as throughput of the idle spectrum cell, block error rate, coverage rate, RRC connection establishment success rate, and E-RAB establishment success rate.
  • the E-RAB establishes the blocking rate, the bit error rate, the transmission rate, and the handover success rate.
  • the abnormalities of these parameters can all reflect the degradation of the communication quality, which can be used as a reason for triggering the reconfiguration of the idle spectrum resources.
  • the SC analyzes the spectrum usage rule of the primary system according to the spectrum usage information of the primary system, predicts the future duty state of the primary system spectrum, and allocates the primary system idle spectrum resources to the secondary system according to the prediction result.
  • FIG. 6 is a flowchart of a method for triggering spectrum resource reconfiguration according to a preferred embodiment 3 of the embodiment of the present invention. As shown in FIG. 6, the method includes steps S602 to S608.
  • Step S602 the SC acquires and stores the primary system spectrum usage information.
  • the foregoing information may be obtained in the following manner: the GLDB may periodically send the current primary system spectrum usage information to the SC; or, when the primary system spectrum usage changes, send the primary system spectrum usage change information to the SC; or The SC periodically accesses the GLDB to read the spectrum usage information of the primary system, or when the SC subordinate BS1 applies for the idle spectrum resource, the SC accesses the GLDB to obtain the spectrum usage information of the primary system.
  • the primary system spectrum usage information of the GLDB period is transmitted, and the SC updates and stores the primary system spectrum information according to the information.
  • Step S604 the SC calculates the law according to the stored spectrum usage information of the main system, and predicts the state of the idle spectrum.
  • the SC may perform time prediction of re-occurrence of the primary user to which the idle spectrum belongs, and predict the method for modeling the channel states of the primary and secondary systems according to the service characteristics and the scheduling algorithm.
  • the specific prediction method refer to the related art, and details are not described herein.
  • the predicted result is that the primary user will reappear at channel T1 at time T1, so BS1 occupying the f1 resource will perform spectrum reconfiguration.
  • Step S606 Before the T1 time arrives, the SC triggers reconfiguration of the spectrum resource of the BS1.
  • the idle spectrum resource f1 is included, but according to the previous prediction, the primary user of f1 is about to return. Therefore, BS1 feeds back other idle spectrum resources except the f1 spectrum, and the corresponding maximum allowed transmit power requirement.
  • the above spectrum resource allocation decision result (as shown in Table 6) forms a message that BS1 can recognize.
  • Step S608 the SC sends the spectrum resource configuration decision result to the BS1.
  • the prediction of the replay time of the primary user to which the idle spectrum belongs is similar.
  • the similar idle spectrum state prediction further includes: prediction of the replay probability of the primary user to which the idle spectrum belongs, prediction of the transition probability of the primary system spectrum duty state, and spectrum of the primary system spectrum.
  • the prediction method can be referred to the related art, which is not described in detail in the embodiment of the present invention.
  • the SC may perform a spectrum resource reconfiguration decision for the secondary user equipment according to the load statistics and the prediction of the idle spectrum state of the primary system.
  • FIG. 7 is a flowchart of a method for triggering spectrum resource reconfiguration according to a preferred embodiment 4 of the embodiment of the present invention. As shown in FIG. 7, step S702 to step S708 are included.
  • Step S702 the SC acquires and stores the load statistics reported by the BS1, and the spectrum usage information of the main system.
  • the BS1 may periodically report the current network load information, or report the network load information when the load value rises to a preset threshold;
  • the pre-configured threshold can be set according to the capacity of the network. For example, the pre-configured threshold is set to 90% of the maximum capacity.
  • the SC grasps the change law of the load with time. For example, the Cell1 subordinate cell Cell1 is obtained, and the working day (Monday to Friday) is from 12 noon to 14:00, the load is close to full load or even overloaded, and the configuration of the idle spectrum resource needs to be triggered to meet the load demand of the cell.
  • Step S704 according to the foregoing load statistics rule, the SC sets a timer to trigger the idle spectrum resource configuration process before the peak load occurs.
  • the timer can be set to 10 minutes before the peak load, for example 11:50, triggering spectrum resource configuration.
  • Step S706 the SC performs a spectrum resource reconfiguration decision.
  • the idle spectrum is obtained. It can be obtained from the previously used spectrum information of the primary user. There are three idle spectrum resources of f1, f2, and f3 at the location of BS1.
  • the prediction process specifically, the SC performs the idle spectrum state transition probability prediction, and predicts the channel state of the primary and secondary systems respectively according to the service characteristics and the scheduling algorithm.
  • the prediction process specifically, the SC performs the idle spectrum state transition probability prediction, and predicts the channel state of the primary and secondary systems respectively according to the service characteristics and the scheduling algorithm.
  • the predicted result is that the probability that the channel states f1, f2, and f3 are converted to the occupied state are: 50%, 10%, and 20%, respectively.
  • f2 which determines that the channel state transition probability is small (that is, the probability that the primary user reappears is the lowest) is determined as the configured spectrum of BS1, as shown in Table 7.
  • Table 7 Information table as the configured spectrum of BS1
  • the above spectrum resource configuration decision result is formed into a message that BS1 can recognize.
  • Step S708 the SC sends the spectrum resource configuration decision result (as shown in Table 7) to the BS1.
  • the SC makes a transmission parameter reconfiguration decision for BS1 based on the interference statistics.
  • FIG. 8 is a flowchart of a method for triggering spectrum resource reconfiguration according to a preferred embodiment 5 of the embodiment of the present invention. As shown in FIG. 8, the method includes steps S802 to S810.
  • Step S802 the SC acquires and stores the communication performance statistics reported by the BS1.
  • the current network interference statistics are reported periodically, or the network interference statistics are reported when the interference rises to the preset threshold.
  • the pre-configured threshold can be set according to the communication performance requirements of the network, that is, the performance of the secondary system network is degraded due to the increase of the interference, and the communication performance corresponds to a certain interference level. According to the system requirements, the interference value corresponding to the performance is as low as a certain degree. Configure the threshold. For example, the pre-configured threshold is set to the interference level corresponding to the call drop rate of 2%. Through the reporting of interference statistics by BS1, the SC grasps the change law of interference with time. For example, it derives Cell1 from BS1, and from 12:00 to 14:00 on weekdays (Monday to Friday), the interference level is higher than the pre-configuration. The threshold, the communication performance cannot meet the requirements of the operator, and the reconfiguration of the idle spectrum resources needs to be triggered to meet the communication performance requirements of the cell.
  • Step S804 according to the above-mentioned interference statistical rule, the SC sets a timer to trigger the idle spectrum resource configuration process before the communication performance deteriorates.
  • the timer can be set to 10 minutes before the communication performance deteriorates, for example, 11:50, triggering spectrum resource configuration.
  • Step S806 according to the idle spectrum resource application message, the SC accesses the GLDB to obtain the primary system idle spectrum resource information at the location of the BS1 at this time, and the transmission parameter restriction.
  • the access process may be: the SC sends the location information of the BS, and the antenna parameter information is sent to the GLDB.
  • the maximum allowable transmit powers on each spectrum resource are: 40 dBm, 30 dBm, 40 dBm, 30 dBm.
  • the GLDB feeds back the above information to the SC.
  • the idle spectrum resources are shown in Table 8.
  • Step S808 the SC performs a spectrum resource reconfiguration decision.
  • the SC considers the idle spectrum usage of other BSs in the SC, excludes the idle spectrum that interferes with each other between the BSs, or further performs the maximum allowed transmit power of the BS1 in the idle spectrum. Restricting the communication of the BS1 on the idle spectrum, not to other secondary users
  • the equipment causes interference; after the following inter-BS coexistence management, the free spectrum resources and transmission power limits of BS1 are shown in Table 9.
  • f1 is occupied by other BSs, BS1 cannot be used, and f1 is deleted. Since the neighboring other stations also use the idle spectrum f2, the maximum allowable transmission power of BS1 is reduced to 10 dBm by interference calculation.
  • BS1 is working at f3.
  • BS1 has a maximum allowable transmit power of 30 dBm on f3, which is actually the transmit power that BS1 can increase on f3, ie BS1.
  • the maximum allowable transmit power limit on f3 is 33 dBm.
  • the SC decision can satisfy the communication performance requirement when the transmission power of BS1 on f3 is increased to 33 dBm, so it is decided to increase the power at f3.
  • the above spectrum resource configuration decision result is formed into a message that BS1 can recognize.
  • step S810 the SC sends the spectrum resource configuration decision result (Table 9) to BS1.
  • the secondary system uses the call drop rate as a parameter to measure system performance, and other parameters such as the throughput of the idle spectrum cell, the block error rate, the coverage rate, the RRC connection establishment success rate, and the E-RAB establishment success rate.
  • the E-RAB establishes the blocking rate, the bit error rate, the transmission rate, and the handover success rate.
  • the abnormalities of these parameters can all reflect the degradation of the communication quality, which can be used as a reason for triggering the reconfiguration of the idle spectrum resources.
  • the reconfiguration management node predicts the network state at the next moment by acquiring and storing the network information of the primary and secondary systems, and triggers the pre-spectrum based on the prediction result of the network information.
  • Resource reconfiguration decision such pre-reconfiguration decision can effectively protect the primary user while ensuring that the quality of the secondary system is not affected, reducing the probability of secondary system communication interruption caused by improper reconfiguration decision .
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the network state change rule of the secondary system and/or the network state change rule of the primary system are obtained, according to the network state change rule of the secondary system and/or the network state of the primary system.
  • the change law pre-triggers the spectrum resource reconfiguration, overcomes the defects triggered by the related technology and improves the performance of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种频谱资源重配置的触发方法、装置及电信设备。其中,频谱资源重配置的触发方法包括:获取次级系统的网络状态变化规律和/或主系统的网络状态变化规律;依据次级系统的网络状态变化规律和/或主系统的网络状态变化规律预先触发频谱资源重配置。通过本发明,克服了相关技术中事后触发的缺陷,提高了系统的性能。

Description

频谱资源重配置的触发方法、装置及电信设备 技术领域
本发明涉及通信领域,具体而言,涉及一种频谱资源重配置的触发方法、装置及电信设备。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,频谱资源表现出极为紧张的局面;而另一方面在传统的固定频谱分配模式下,频谱资源的利用率却不高。
从某种意义上讲,是这种固定分配给授权系统的频谱分配制度造成了频谱资源极为紧张的局面。而认知无线电技术就打破了传统意义上的频谱固定分配制度,将频谱在系统间动态分配,提高了频谱的利用效率。
典型的,如随着人们日常通信需求的不断提高,已经不满足于简单的语音数据通信,视频流媒体业务在人们通信生活中的比重不断增加,这要求更大的带宽作为支撑,国际移动电话(International Mobile Telecom,简称为IMT)系统显现出前所未有的频谱紧张局面,而对于广播电视系统来讲,频谱资源在很大程度上存在着可利用的空间,如某些广播电视系统频谱在某些地区并未被使用;某些广播电视系统频谱在某地区虽有覆盖,但某些时刻没有被使用,整体利用率偏低。而固定的频谱分配方式使得上述未被使用的频谱资源无法重新利用,例如无法为IMT系统所用。通过认知无线电技术IMT系统通过对广播电视系统信息的获取,伺机的占用广电系统在空间和时间上未使用的频谱资源(TV White Space,简称为TVWS),从而提高广播电视系统频谱的利用率,改善了IMT系统频谱紧张的局面。
这种次级系统伺机占用主系统频谱资源的频谱使用方式,必须保证对主用户有效地保护,即次级系统使用主系统频谱资源时,不能对主系统用户造成有害干扰,这是认知无线电技术能够实现的前提条件。为了达到这样的目的,首先,次级系统的使用频谱及发射参数将受到主系统保护要求的限制,在最初确定这些参数时需要进行准确的决策;其次,次级系统需要及时获知主用户的出现,以便在发现次级系统所占用频谱资源上的主用户重新出现时,及时退出所述频谱资源,避免对主用户的干扰。
上述过程中,从发现主系统重新出现,到重配置管理节点完成重配置决策,再到下发重配命令执行频谱重配置的这段处理时间内,出于主系统保护的角度考虑,次级系统需要断开在空闲频谱上的通信,这会极大的影响次级系统的性能,及业务的连续性。另一方面,由于次级系统自身原因而触发的频谱资源重配置,相关技术中的机制是网络满足了相应的触发条件(如负载过载、干扰过大通信质量不能满足系统要求等)再进行空闲频谱资源的配置申请,是一种事后处理的方式,在这个频谱重配置决策的过程中,次级系统仍然处于问题状态,也对次级系统的性能造成了影响。
发明内容
针对相关技术中频谱资源重配置滞后的问题,本发明提供了一种频谱资源重配置的触发方法、装置及电信设备,以至少解决上述问题。
根据本发明的一个实施例,提供了一种频谱资源重配置的触发方法,包括:获取次级系统的第一网络状态变化规律和/或主系统的第二网络状态变化规律;依据所述第一网络状态变化规律和/或所述第二网络状态变化规律预先触发频谱资源重配置。
优选地,获取次级系统的第一网络状态变化规律和/或主系统的第二网络状态变化规律,包括:获取所述次级系统的第一网络状态信息和/或所述主系统的第二网络状态信息;依据所述第一网络状态信息统计所述第一网络状态变化规律,和/或依据所述第二网络状态信息统计所述第二网络状态变化规律。
优选地,所述第一网络状态信息包括以下至少之一:所述次级系统的网络负载信息、所述次级系统的用户设备的干扰信息。
优选地,所述第二网络状态信息包括:所述主系统的频谱资源使用情况信息。
优选地,所述频谱资源使用情况信息包括以下至少之一:空闲频谱的频点、带宽,空闲频谱所属主系统的信号类型、发射机位置、覆盖范围、发射模板、发射功率、天线参数、接收机类型、保护要求、使用时间、空闲时间。
优选地,所述第一网络状态变化规律包括:所述次级系统的网络负载和/或所述次级系统的用户设备的干扰状态随时间的变化规律;和/或所述第二网络状态变化规律包括:所述主系统的频谱资源使用状况随时间的变化规律。
优选地,依据所述第一网络状态变化规律和/或所述第二网络状态变化规律预先触发频谱资源重配置,包括:依据所述第一网络状态变化规律和/或所述第二网络状态变化规律,预先进行频谱资源重配置决策。
优选地,预先进行频谱资源重配置决策包括以下至少之一:依据所述次级系统的负载变化规律,在所述次级系统过载之前,预先为所述次级系统分配所述主系统的空闲频谱资源;依据所述次级系统的干扰状态变化规律,在干扰等级超过预配置干扰门限之前,预先为所述次级系统分配所述主系统的空闲频谱资源;依据所述主系统的频谱资源使用状态变化规律,在所述主系统的主用户设备回归之前,预先为使用对应空闲频谱资源的次级系统分配所述主系统的其他空闲频谱资源;依据所述主系统的频谱资源使用状态变化规律,为所述次级系统进行频谱资源重配置时选择相对稳定的空闲频谱资源。
优选地,所述相对稳定的空闲频谱资源包括以下至少之一:所述主系统空闲频谱资源转换为占用频谱的概率较低、所述主系统空闲频谱资源转换为占用频谱的时间较晚、所述主系统空闲频谱资源所属主用户设备重新出现的概率较低、所述主系统空闲频谱资源所属主用户设备重新出现的时间较晚、一段时间T1后主系统空闲频谱资源仍然空闲、一段时间T2后主系统空闲频谱资源空闲的概率较高。
根据本发明的另一个实施例,提供了一种频谱资源重配置的触发装置,包括:获取模块,设置为获取次级系统的第一网络状态变化规律和/或主系统的第二网络状态变化规律;触发模块,设置为依据所述第一网络状态变化规律和/或所述第二网络状态变化规律预先触发频谱资源重配置。
优选地,所述获取模块包括:获取单元,设置为获取所述次级系统的第一网络状态信息和/或所述主系统的第二网络状态信息;统计单元,设置为依据所述第一网络状态信息统计所述第一网络状态变化规律,和/或依据所述第二网络状态信息统计所述第二网络状态变化规律。
优选地,所述第一网络状态信息包括以下至少之一:所述次级系统的网络负载信息、所述次级系统的用户设备的干扰信息。
优选地,所述第二网络状态信息包括:所述主系统的频谱资源使用情况信息。
优选地,所述频谱资源使用情况信息包括以下至少之一:空闲频谱的频点、带宽,空闲频谱所属主系统的信号类型、发射机位置、覆盖范围、发射模板、发射功率、天线参数、接收机类型、保护要求、使用时间、空闲时间。
优选地,所述第一网络状态变化规律包括:所述次级系统的网络负载和/或所述次级系统的用户设备的干扰状态随时间的变化规律;和/或所述第二网络状态变化规律包括:所述主系统的频谱资源使用状况随时间的变化规律。
优选地,所述触发模块,设置为依据所述第一网络状态变化规律和/或所述第二网络状态变化规律,预先进行频谱资源重配置决策。
优选地,所述触发模块包括以下至少之一:第一分配单元,设置为依据所述次级系统的负载变化规律,在所述次级系统过载之前,预先为所述次级系统分配所述主系统的空闲频谱资源;第二分配单元,设置为依据所述次级系统的干扰状态变化规律,在干扰等级超过预配置干扰门限之前,预先为所述次级系统分配所述主系统的空闲频谱资源;第三分配单元,设置为依据所述主系统的频谱资源使用状态变化规律,在所述主系统的主用户设备回归之前,预先为使用对应空闲频谱资源的次级系统分配所述主系统的其他空闲频谱资源;第四分配单元,设置为依据所述主系统的频谱资源使用状态变化规律,为所述次级系统进行频谱资源重配置时选择相对稳定的空闲频谱资源。
优选地,所述相对稳定的空闲频谱资源包括以下至少之一:所述主系统空闲频谱资源转换为占用频谱的概率较低、所述主系统空闲频谱资源转换为占用频谱的时间较晚、所述主系统空闲频谱资源所属主用户设备重新出现的概率较低、所述主系统空闲频谱资源所属主用户设备重新出现的时间较晚、一段时间T1后主系统空闲频谱资源仍然空闲、一段时间T2后主系统空闲频谱资源空闲的概率较高。
根据本发明的另一实施例,提供了一种电信设备,包括:本发明实施例上述的任一频谱资源重配置的触发装置。
通过本发明,获取次级系统的网络状态变化规律和/或主系统的网络状态变化规律,依据上述次级系统的网络状态变化规律和/或上述主系统的网络状态变化规律预先触发频谱资源重配置,克服了相关技术中事后触发的缺陷,提高了系统的性能。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的频谱资源重配置的触发方法的流程图;
图2是根据本发明实施例的频谱资源重配置的触发装置的结构框图;
图3是根据相关技术的TVWS频段CR技术的架构图;
图4是根据本发明实施例优选实施方式一的频谱资源重配置的触发方法的流程图;
图5是根据本发明实施例优选实施方式二的频谱资源重配置的触发方法的流程图;
图6是根据本发明实施例优选实施方式三的频谱资源重配置的触发方法的流程图;
图7是根据本发明实施例优选实施方式四的频谱资源重配置的触发方法的流程图;以及
图8是根据本发明实施例优选实施方式五的频谱资源重配置的触发方法的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在以下实施例中,用户设备可以是通信系统中任一使用频谱资源的设备,例如基站等,此处的基站可以包括长期演进系统(Long-Term Evolution,简称LTE)中的基站、3G网络中的基站、2G网络中的基站等。主系统和次级系统不特指特定的通信系统,只要是利用另一通信系统的频谱资源的系统均可以是次级系统,被次级系统利用频谱资源的系统均可作为主系统。
可以预料的是,本发明下述实施例的方法和装置可以通过计算机程序单元实现,本领域技术人员有能力根据该方法和装置的应用场景及系统,编写相应的计算机程序单元。
根据本发明实施例,提供了一种频谱资源重配置的触发方法。
图1是根据本发明实施例的频谱资源重配置的触发方法的流程图,如图1所示,该方法包括步骤S102至步骤S104。
步骤S102,获取次级系统的网络状态变化规律和/或主系统的网络状态变化规律。
步骤S104,依据次级系统的网络状态变化规律和/或主系统的网络状态变化规律预先触发频谱资源重配置。
通过本发明实施例,获取次级系统的网络状态变化规律和/或主系统的网络状态变化规律,依据上述次级系统的网络状态变化规律和/或上述主系统的网络状态变化规律预先触发频谱资源重配置,克服了相关技术中事后触发的缺陷,提高了系统的性能。
在本发明实施例中,上述的步骤S102,可以是直接获取统计后的次级系统和/或主系统的网络状态变化规律,也可以是获取网络状态信息,并根据网络状态信息统计得到上述的网络状态变化规律。
在本发明实施例的一个优选实施方式中,上述步骤S102,可以获取次级系统的网络状态信息和/或主系统的网络状态信息;依据次级系统的网络状态信息统计次级系统的网络状态变化规律,和/或依据主系统的网络状态信息统计主系统的网络状态变化规律。
在上述步骤S102中,也可以采用混合方式获取上述网络状态变化规律。例如,次级系统获取次级系统的网络状态信息,根据该网络状态信息统计得到次级系统的网路状态变化规律;次级系统直接获取统计好的主系统的网络状态变化规律。反之亦然,在此不再赘述。
次级系统的用户设备可以周期性的上报网络状态信息,也可以在网络状态满足一定条件后再上报网络状态信息,还可以是在接收到请求的情况下上报网络状态信息。主系统可以主动上报主系统的网络状态信息,例如周期性或满足预定条件时主动上报,也可以是在接收到请求时,响应该请求上报。
在本发明实施例的一个实施方式中,次级系统的网络状态信息可以包括以下至少之一:次级系统的网络负载信息、次级系统的用户设备的干扰信息。
在本发明实施例的一个实施方式中,主系统的网络状态信息可以包括:主系统的频谱资源使用情况信息。
优选地,主系统的频谱资源使用情况信息包括以下至少之一:空闲频谱的频点、带宽,空闲频谱所属主系统的信号类型、发射机位置、覆盖范围、发射模板、发射功率、天线参数、接收机类型、保护要求、使用时间、空闲时间。
在本发明实施例的一个实施方式中,次级系统的网络状态变化规律包括:次级系统的网络负载和/或次级系统的用户设备的干扰状态随时间的变化规律;和/或,主系统的网络状态变化规律包括:主系统的频谱资源使用状况随时间的变化规律。
上述的变化规律,可以是触发频谱资源重配置条件出现的时间点、该条件出现的概率、该条件持续的时间长度等。
在本发明实施例中,上述步骤S104中所述的预先触发频谱资源重配置,可以是触发频谱资源重配置决策,也可以是触发完整的频谱资源重配置过程(可以包括决策和重配置两个方面)。
在本发明实施例中,上述步骤S104,预先触发频谱资源重配置,可以是根据网络变化规律,在触发条件出现前,进行频谱资源重配置决策,在决策完成时到触发条件满足前进行重配置;也可以是在频谱资源重配置决策完成后、触发条件满足后进行频谱资源重配置。
在本发明实施例的一个优选实施方式中,上述步骤S104可以包括:依据次级系统的网络状态变化规律和/或主用系统的网络状态变化规律,预先进行频谱资源重配置决策。
优选地,预先进行频谱资源重配置决策包括以下至少之一:
(1)依据次级系统的负载变化规律,在次级系统过载之前,预先为次级系统分配主系统的空闲频谱资源。
例如,可以根据次级系统的负载变化,预测到在某一时间点将会出现过载,或者在莫一时间点过载的概率等,可以预先为次级系统分配主系统空闲频谱资源。
(2)依据次级系统的干扰状态变化规律,在干扰等级超过预配置干扰门限之前,预先为次级系统分配主系统的空闲频谱资源。
例如,可以根据次级系统的干扰变化,预测到在某一时间点将会出现干扰等级过高,或者在莫一时间点干扰等级过高的概率很大等情况,可以预先为次级系统分配主系统空闲频谱资源。
(3)依据主系统的频谱资源使用状态变化规律,在主系统的主用户设备回归之前,预先为使用对应空闲频谱资源的次级系统分配主系统的其他空闲频谱资源。
(4)依据主系统的频谱资源使用状态变化规律,为次级系统进行频谱资源重配置时选择相对稳定的空闲频谱资源。
上述相对稳定的空闲频谱资源可以包括以下至少之一、主系统空闲频谱资源转换为占用频谱的概率较低、主系统空闲频谱资源转换为占用频谱的时间较晚、主系统空 闲频谱资源所属主用户设备重新出现的概率较低、主系统空闲频谱资源所属主用户设备重新出现的时间较晚、一段时间T1后空闲频谱资源仍然空闲、一段时间T2后主系统空闲频谱资源空闲的概率较高。
当然,也可以综合考虑上述集中情况,例如,同时参考次级系统的网络负荷和干扰,预先分配主系统的空闲频谱资源。也可以同时参考次级系统的干扰和主系统的频谱资源使用变化规律,预先触发频谱资源重配置。其他情况,在此不再赘述。
根据本发明实施例,提供了一种频谱资源重配置的触发装置。可以预料的是该装置可以通过计算机程序单元实现。
图2是根据本发明实施例的频谱资源重配置的触发装置的结构框图,如图2所示,该装置可以包括:获取模块10和触发模块20。其中,获取模块10,设置为获取次级系统的网络状态变化规律和/或主系统的网络状态变化规律;触发模块20,与获取模块10相连接,设置为依据次级系统的网络状态变化规律和/或主系统的网络状态变化规律预先触发频谱资源重配置。
通过本发明实施例,获取次级系统的网络状态变化规律和/或主系统的网络状态变化规律,依据上述次级系统的网络状态变化规律和/或上述主系统的网络状态变化规律预先触发频谱资源重配置,克服了相关技术中事后触发的缺陷,提高了系统的性能。
在本发明实施例中,获取模块10,可以是直接获取统计后的次级系统和/或主系统的网络状态变化规律,也可以是获取网络状态信息,并根据网络状态信息统计得到上述的网络状态变化规律。
在本发明实施例的一个优选实施方式中,获取模块10可以包括:获取单元,设置为获取次级系统的网络状态信息和/或主系统的网络状态信息;统计单元,设置为依据次级系统的网络状态信息统计次级系统的网络状态变化规律,和/或依据主系统的网络状态信息统计主系统的网络状态变化规律。
上述获取模块10,也可以采用混合方式获取上述网络状态变化规律。例如,获取模块10获取次级系统的网络状态信息,根据该网络状态信息统计得到次级系统的网路状态变化规律;获取模块10直接获取统计好的主系统的网络状态变化规律。反之亦然,在此不再赘述。
次级系统的用户设备可以周期性的上报网络状态信息,也可以在网络状态满足一定条件后再上报网络状态信息,还可以是在接收到请求的情况下上报网络状态信息。 主系统可以主动上报主系统的网络状态信息,例如周期性或满足预定条件时主动上报,也可以是在接收到请求时,响应该请求上报。
在本发明实施例的一个实施方式中,次级系统的网络状态信息可以包括以下至少之一:次级系统的网络负载信息、次级系统的用户设备的干扰信息。
在本发明实施例的一个实施方式中,主系统的网络状态信息可以包括:主系统的频谱资源使用情况信息。
优选地,主系统的频谱资源使用情况信息包括以下至少之一:空闲频谱的频点、带宽,空闲频谱所属主系统的信号类型、发射机位置、覆盖范围、发射模板、发射功率、天线参数、接收机类型、保护要求、使用时间、空闲时间。
在本发明实施例的一个实施方式中,次级系统的网络状态变化规律包括:次级系统的网络负载和/或次级系统的用户设备的干扰状态随时间的变化规律;和/或,主系统的网络状态变化规律包括:主系统的频谱资源使用状况随时间的变化规律。
上述的变化规律,可以是触发频谱资源重配置条件出现的时间点、该条件出现的概率、该条件持续的时间长度等。
在本发明实施例中,上述触发模块20,可以是触发频谱资源重配置决策,也可以是触发完整的频谱资源重配置过程(可以包括决策和重配置两个方面)。
在本发明实施例中,上述触发模块20,可以设置为根据网络变化规律,在触发条件出现前,进行频谱资源重配置决策,在决策完成时到触发条件满足前进行重配置;也可以设置为在频谱资源重配置决策完成后、触发条件满足后进行频谱资源重配置。
在本发明实施例的一个优选实施方式中,上述触发模块20可以设置为依据次级系统的网络状态变化规律和/或主用系统的网络状态变化规律,预先进行频谱资源重配置决策。
优选地,预先进行频谱资源重配置决策包括以下至少之一:
(1)依据次级系统的负载变化规律,在次级系统过载之前,预先为次级系统分配主系统的空闲频谱资源。
例如,可以根据次级系统的负载变化,预测到在某一时间点将会出现过载,或者在莫一时间点过载的概率等,可以预先为次级系统分配主系统空闲频谱资源。
(2)依据次级系统的干扰状态变化规律,在干扰等级超过预配置干扰门限之前,预先为次级系统分配主系统的空闲频谱资源。
例如,可以根据次级系统的干扰变化,预测到在某一时间点将会出现干扰等级过高,或者在莫一时间点干扰等级过高的概率很大等情况,可以预先为次级系统分配主系统空闲频谱资源。
(3)依据主系统的频谱资源使用状态变化规律,在主系统的主用户设备回归之前,预先为使用对应空闲频谱资源的次级系统分配主系统的其他空闲频谱资源。
(4)依据主系统的频谱资源使用状态变化规律,为次级系统进行频谱资源重配置时选择相对稳定的空闲频谱资源。
上述相对稳定的空闲频谱资源可以包括以下至少之一:主系统空闲频谱资源转换为占用频谱的概率较低、主系统空闲频谱资源转换为占用频谱的时间较晚、主系统空闲频谱资源所属主用户设备重新出现的概率较低、主系统空闲频谱资源所属主用户设备重新出现的时间较晚、一段时间T1后空闲频谱资源仍然空闲、一段时间T2后主系统空闲频谱资源空闲的概率较高。
当然,也可以综合考虑上述集中情况,例如,同时参考次级系统的网络负荷和干扰,预先分配主系统的空闲频谱资源。也可以同时参考次级系统的干扰和主系统的频谱资源使用变化规律,预先触发频谱资源重配置。其他情况,在此不再赘述。
根据本发明实施例,提供了一种电信设备,该电信设备可以包括:本发明实施例上述的任一频谱资源重配置的触发装置。
在本发明实施例的一个实施方式中,上述频谱资源重配置的触发装置可以通过计算机程序单元实现,该电信设备可以包括存储介质和处理器,上述计算机程序单元可以存储在存储介质中,处理器可以执行该计算机程序单元。
为了存储获取到的信息,上述电信设备还可以包括数据库。当然,根据应用的网络不同,上述电信设备的其他通用部件可能有所不同,例如采用的通信接口、通信协议、收发信号的接收器等。对于通用部件,在此不再赘述。
通过本发明,获取次级系统的网络状态变化规律和/或主系统的网络状态变化规律,依据上述次级系统的网络状态变化规律和/或上述主系统的网络状态变化规律预先触发频谱资源重配置,克服了相关技术中事后触发的缺陷,提高了系统的性能。
下面结合一个实例,对本发明实施例的优选实施方式进行描述。
重配置管理节点指负责次级系统频谱资源重配置管理的功能实体,可以包括以下功能实体中的任一项:频谱协调器(Spectrum Controller,简称为SC)、中心控制节点(Central Control Point,简称为CCP)、重配管理模块(Reconfiguration Management module)、重配功能模块(Reconfiguration Function module)、重配实体(Reconfiguration Entity)、演进的定位实体、演进的定位功能、共存功能。
典型的主系统空闲频谱资源,例如TVWS频谱,包括470MHz-790MHz范围内主系统未使用的频谱资源。在本发明实施例中,以TVWS频谱为例进行描述。主系统保护管理节点以组位置数据库(Geo-Location DataBase,简称为GLDB)为例,次级系统间干扰共存的重配置管理节点以SC为例。TVWS频段CR技术的架构如图3所示。
GLDB负责主系统保护,为次级用户设备或次级系统管理节点提供主系统频谱使用情况,避免主系统受到次级系统的干扰。优选地,为次级用户设备提供其所在位置上的空闲频谱资源,并根据主系统保护准则,计算次级系统用户设备所允许的最大发射功率。
SC为次级系统频谱资源重配置管理节点,负责各次级用户设备间的共存管理,优先级管理,及测量管理。
BS为次级用户设备,其可代表LTE、3G系统、2G系统等蜂窝网系统下的基站,或者WLAN,WRAN,Wimax等IEEE802系统下的接入点。
下面结合图3所示的架构对本发明实施例的优选实施方式进行描述。
优选实施方式一
在该优选实施方式中,SC基于负载统计信息,为BS1做频谱资源重配置决策的实施例。
图4是根据本发明实施例优选实施方式一的频谱资源重配置的触发方法的流程图,如图4所示,包括步骤S402至步骤S410。
步骤S402,SC获取并存储BS1上报的负载统计信息。
在该优选实施方式中,BS1可以周期上报当前网络负载信息,或者负载值上升到预配置门限时上报网络负载信息。
优选地,可以依据网络的容量设定预配置门限,例如设定预配置门限为负载量达到最大容量的90%。
通过BS1对负载统计信息的上报,SC可以掌握负载随时间的变化规律,例如,得出BS1下属小区Cell1,工作日(周一到周五)的中午12点到14点,负载接近满载甚至过载,需要触发空闲频谱资源的配置,以满足小区的负载需求。
步骤S404,根据上述负载统计规律,SC设定定时器,在负载高峰来临之前,触发空闲频谱资源配置过程。
例如,定时器可以设定为负载高峰前10分钟,例如11点50分,触发频谱资源配置。
步骤S406,根据空闲频谱资源申请消息,SC访问GLDB获取此时刻BS1所在位置上的主系统空闲频谱资源信息。
在该优选实施方式中,SC可以发送BS1的位置信息、天线参数信息给GLDB。GLDB可以查找存储的对应位置上的主用户频谱资源使用情况,根据频谱资源使用情况确定可用频率资源,根据BS1的天线参数及各主用户保护准则计算出可用频谱资源上的最大允许发射功率,将确定的上述信息反馈给SC。
例如,GLDB发现存在f1、f2、f3、f4=710MHz四段可用频谱资源,且根据BS1的天线参数,及各主用户保护准则计算得出各频谱资源上的最大允许发射功率分别为:40dBm,50dBm,40dBm,30dBm。GLDB将上述信息反馈给SC。可用频谱资源如表1所示。
表1 可用频谱资源列表
Figure PCTCN2014089351-appb-000001
步骤S408,SC进行频谱资源重配置决策。
在该优选实施方式中,SC针对表1中所获取到的空闲频谱资源,考虑SC下属其他BS的空闲频谱使用情况,排除BS间彼此干扰的空闲频谱资源,或者对所述BS1在上述空闲频谱资源中的最大允许发射功率进行进一步限制,使BS1在空闲频谱资源 上的通信,不会对其他次级用户设备造成干扰;经过如下BS间共存管理后,BS1的空闲频谱资源及发射功率限制如表2所示。
表2 空闲频谱资源及发射功率限制列表
Figure PCTCN2014089351-appb-000002
例如,f1由于其他BS的占用,BS1无法使用,删除f1;由于邻近其他BS也使用空闲频谱f2,通过干扰计算,BS1的最大允许发射功率降低为10dBm。
将上述频谱资源配置决策结果形成BS1能识别的消息。
步骤S410,SC将频谱资源配置决策结果(如表2所示)发送给BS1。
优选实施方式二
在该优选实施方式中,SC基于干扰统计信息,为BS1做频谱资源重配置决策的实施例。
图5是根据本发明实施例优选实施方式二的频谱资源重配置的触发方法的流程图,如图5所示,包括步骤S502至步骤S510。
步骤S502,SC获取并存储BS1上报的通信性能统计信息。
在该优选实施方式中,BS1可以周期上报当前网络干扰统计信息,或者干扰升高到预设置门限时上报网络干扰统计信息。
优选地,预配置门限可以依据网络的通信性能要求进行设定,即由于干扰上升造成次级系统网络性能下降,通信性能对应一定的干扰等级,根据系统要求,性能低到一定程度所对应的干扰值作为预配置门限。例如,设定预配置门限为掉话率达到2%时所对应的干扰等级。通过BS1对干扰统计信息的上报,SC掌握了干扰随时间的变化规律,例如,得出BS1下属小区Cell1,工作日(周一到周五)的中午12点到14点,干扰等级高于预配置门限,通信性能不能达到运营商要求,需要触发空闲频谱资源的重新配置,以满足小区的通信性能需求。
步骤S504,根据上述干扰统计规律,SC设定定时器,在通信性能恶化来临之前,触发空闲频谱资源配置过程。
例如,定时器可以设定为通信性能恶化前10分钟,例如11点50分,触发频谱资源配置。
步骤S506,SC根据空闲频谱资源申请消息,访问GLDB获取此时刻BS1所在位置上的主系统空闲频谱资源信息。
在该优选实施方式中,SC可以发送BS的位置信息、天线参数信息给GLDB。GLDB查找存储的该位置上的主用户频谱资源使用情况,发现存在f1、f2、f3、f4=710MHz四段可用频谱资源,且根据BS1的天线参数,及各主用户保护准则计算得出各频谱资源上的最大允许发射功率分别为:40dBm,30dBm,40dBm,30dBm。GLDB将上述信息反馈给SC。如下面空闲频谱资源如表3所示。
表3 空闲频谱资源列表
Figure PCTCN2014089351-appb-000003
步骤S508,SC进行频谱资源重配置决策。
SC针对表3中所获取到的空闲频谱资源,考虑SC下属其他BS的空闲频谱使用情况,排除BS间彼此干扰的空闲频谱,或者对所述BS1在上述空闲频谱中的最大允许发射功率进行进一步限制,使所述BS1在空闲频谱上的通信,不会对其他次级用户设备造成干扰;经过如下BS间共存管理后,BS1的空闲频谱资源及发射功率限制如表4所示。
表4 空闲频谱资源及发射功率限制列表
Figure PCTCN2014089351-appb-000004
例如,f1由于其他BS的占用,BS1无法使用,删除f1;由于邻近其他BS也使用空闲频谱f2,通过干扰计算,BS1的最大允许发射功率降低为10dBm。
将上述频谱资源配置决策结果形成BS1能识别的消息;
步骤S510:SC将频谱资源配置决策结果(表4)发送给BS1。
在该优选实施方式中,次级系统以掉话率作为衡量系统性能的参数,其他参数如空闲频谱小区的吞吐量、误块率、覆盖率、RRC连接建立成功率、E-RAB建立成功率、E-RAB建立阻塞率、误码率,传输速率,切换成功率,这些参数的异常均可以反映通信质量的下降,都可以作为触发空闲频谱资源重配置的原因。
优选实施方式三
在该优选实施方式中,SC根据主系统频谱使用情况信息,分析主系统频谱使用规律,对主系统频谱的未来占空状态进行预测,并依据预测结果为次级系统分配主系统空闲频谱资源。
图6是根据本发明实施例优选实施方式三的频谱资源重配置的触发方法的流程图,如图6所示,包括步骤S602至步骤S608。
步骤S602,SC获取并存储主系统频谱使用情况信息。
在该优选实施方式中,可以按照以下方式获取上述信息:GLDB可以周期发送当前主系统频谱使用情况信息给SC;或者,当主系统频谱使用情况有变化时向SC发送主系统频谱使用变化信息;或者SC周期访问GLDB,读取主系统频谱使用情况信息,或者,当SC下属BS1申请空闲频谱资源时,SC访问GLDB获取主系统频谱使用情况信息。
在该优选实施方式中,GLDB周期的发送主系统频谱使用情况信息,SC根据该信息更新存储主系统频谱信息。
步骤S604,SC根据存储到的主系统频谱使用情况信息,统计其规律,预测空闲频谱状态。
优选地,SC可以进行空闲频谱所属主用户重新出现的时间预测,采用根据业务特性和调度算法分别对主、次系统的信道状态进行建模的方法进行预测。具体预测方法参见相关技术,本发明实施例对此不再赘述。得到预测结果为,信道f1在T1时刻所述主用户将重新出现,因此占用f1资源的BS1将进行频谱重配置。
步骤S606,T1时刻到达前,SC触发对BS1的频谱资源重配置。
访问GLDB获取BS1所在位置上的可用信道列表,及保护要求,如表5所示。
表5 BS1所在位置上可用信道列表
位置 频率MHz 带宽MHz 最大允许
发射功率
L1 f1=530 8 40dBm
L1 f2=560 8 30dBm
L1 f3=480 8 40dBm
L1 f4=710 8 30dBm
其中包含空闲频谱资源f1,但根据此前的预测,f1的主用户即将回归,因此,为BS1反馈除f1频谱外的其他空闲频谱资源,及相应的最大允许发射功率要求。
将上述频谱资源配置决策结果(如表6所示)形成BS1能识别的消息。
表6 BS1所在位置上除f1频谱外的其他空闲频谱资源列表
Figure PCTCN2014089351-appb-000005
步骤S608,SC将频谱资源配置决策结果发送给BS1。
上述步骤S604中为空闲频谱所属主用户重新出现时间的预测,类似的空闲频谱状态预测还包括:空闲频谱所属主用户重新出现概率的预测,主系统频谱占空状态转换概率预测,主系统频谱占空状态转换时间预测,预测方法均可参见相关技术,本发明实施例对此不再赘述。
优选实施方式四
在该优选实施方式中,SC可以依据负载统计信息,及主系统空闲频谱状态的预测,为该次级用户设备做频谱资源重配置决策。
图7是根据本发明实施例优选实施方式四的频谱资源重配置的触发方法的流程图,如图7所示,包括步骤S702至步骤S708。
步骤S702,SC获取并存储BS1上报的负载统计信息,及主系统频谱使用信息。
在该优选实施方式中,BS1可以周期上报当前网络负载信息,或者负载值上升到预设置门限时上报网络负载信息;
预配置门限可以依据网络的容量进行设定,例如设定预配置门限为负载量达到最大容量的90%。通过BS1对负载统计信息的上报,SC掌握了负载随时间的变化规律, 例如,得出BS1下属小区Cell1,工作日(周一到周五)的中午12点到14点,负载接近满载甚至过载,需要触发空闲频谱资源的配置,以满足小区的负载需求。
步骤S704,根据上述负载统计规律,SC设定定时器,在负载高峰来临之前,触发空闲频谱资源配置过程。
例如,定时器可以设定为负载高峰前10分钟,例如11点50分,触发频谱资源配置。
步骤S706,SC进行频谱资源重配置决策;
首先,获取空闲频谱,由之前获取到的主用户频谱使用信息可以得出,BS1所在位置上存在f1、f2、f3三段空闲频谱资源。
其次,预测主系统空闲频谱状态;预测过程,具体的,SC进行空闲频谱状态转换概率预测,采用根据业务特性和调度算法分别对主、次系统的信道状态进行建模的方法进行预测。具体预测方法可以参见相关技术,本发明实施例不再赘述。得到预测结果为,信道f1、f2、f3信道状态转换为占用状态的概率分别为:50%、10%、20%。
因此确定信道状态转换概率较小(即主用户重新出现的概率最低)的f2作为BS1的配置频谱,如表7所示。
表7 作为BS1的配置频谱的信息表
Figure PCTCN2014089351-appb-000006
将上述频谱资源配置决策结果形成BS1能识别的消息。
步骤S708,SC将频谱资源配置决策结果(如表7所示)发送给BS1。
优选实施方式五
在该优选实施方式中,SC基于干扰统计信息,为BS1作发射参数重配置决策。
图8是根据本发明实施例优选实施方式五的频谱资源重配置的触发方法的流程图,如图8所示,包括步骤S802至步骤S810。
步骤S802,SC获取并存储BS1上报的通信性能统计信息。
BS1工作于空闲频谱f3=480MHz,发射功率为30dBm。周期上报当前网络干扰统计信息,或者干扰升高到预设置门限时上报网络干扰统计信息。
预配置门限可以依据网络的通信性能要求进行设定,即由于干扰上升造成次级系统网络性能下降,通信性能对应一定的干扰等级,根据系统要求,性能低到一定程度所对应的干扰值作为预配置门限。例如设定预配置门限为掉话率达到2%时所对应的干扰等级。通过BS1对干扰统计信息的上报,SC掌握了干扰随时间的变化规律,例如,得出BS1下属小区Cell1,工作日(周一到周五)的中午12点到14点,干扰等级高于预配置门限,通信性能不能达到运营商要求,需要触发空闲频谱资源的重新配置,以满足小区的通信性能需求。
步骤S804,根据上述干扰统计规律,SC设定定时器,在通信性能恶化来临之前,触发空闲频谱资源配置过程。
定时器可以设定为通信性能恶化前10分钟,例如11点50分,触发频谱资源配置。
步骤S806,根据空闲频谱资源申请消息,SC访问GLDB获取此时刻BS1所在位置上的主系统空闲频谱资源信息,及发射参数限制。
访问过程可以是:SC发送BS的位置信息,天线参数信息给GLDB,GLDB查找存储的该位置上的主用户频谱资源使用情况,发现存在f1、f2、f3、f4=710MHz四段可用频谱资源,且根据BS1的天线参数,及各主用户保护准则计算得出各频谱资源上的最大允许发射功率分别为:40dBm,30dBm,40dBm,30dBm。GLDB将上述信息反馈给SC。空闲频谱资源如表8所示。
表8 空闲频谱资源列表
Figure PCTCN2014089351-appb-000007
步骤S808,SC进行频谱资源重配置决策。
SC针对表8中所获取到的空闲频谱资源,考虑SC下属其他BS的空闲频谱使用情况,排除BS间彼此干扰的空闲频谱,或者对所述BS1在上述空闲频谱中的最大允许发射功率进行进一步限制,使所述BS1在空闲频谱上的通信,不会对其他次级用户 设备造成干扰;经过如下BS间共存管理后,BS1的空闲频谱资源及发射功率限制如表9所示。
表9 空闲频谱资源及发射功率限制表
Figure PCTCN2014089351-appb-000008
例如,f1由于其他BS的占用,BS1无法使用,删除f1;由于邻近其他BS也使用空闲频谱f2,通过干扰计算,BS1的最大允许发射功率降低为10dBm。
BS1正工作于f3,目前通过主用户保护考虑,及次级系统间共存考虑后,BS1在f3上最大允许发射功率30dBm的限制,实际上是BS1在f3上可以增大的发射功率,即BS1在f3上的最大允许发射功率限制为33dBm。SC决策当BS1在f3上的发射功率增大到33dBm后能够满足通信性能需求,因此决定在f3上升高功率。
将上述频谱资源配置决策结果形成BS1能识别的消息。
步骤S810,SC将频谱资源配置决策结果(表9)发送给BS1。
在本优选实施方式中,次级系统以掉话率作为衡量系统性能的参数,其他参数如空闲频谱小区的吞吐量、误块率、覆盖率、RRC连接建立成功率、E-RAB建立成功率、E-RAB建立阻塞率、误码率,传输速率,切换成功率,这些参数的异常均可以反映通信质量的下降,都可以作为触发空闲频谱资源重配置的原因。
从以上的描述中,可以看出,本发明实现了如下技术效果重配置管理节点通过对主次系统网络信息的获取与存储,预测下一时刻的网络状态,基于网络信息的预测结果触发预先频谱资源重配置决策,这样的预先重配置决策可以有效实现主用户保护的同时,也保障了次级系统的服务质量不受影响,减少了由于重配置决策不当而造成的次级系统通信中断的概率。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,获取次级系统的网络状态变化规律和/或主系统的网络状态变化规律,依据上述次级系统的网络状态变化规律和/或上述主系统的网络状态变化规律预先触发频谱资源重配置,克服了相关技术中事后触发的缺陷,提高了系统的性能。

Claims (19)

  1. 一种频谱资源重配置的触发方法,包括:
    获取次级系统的第一网络状态变化规律和/或主系统的第二网络状态变化规律;
    依据所述第一网络状态变化规律和/或所述第二网络状态变化规律预先触发频谱资源重配置。
  2. 根据权利要求1所述的方法,其中,获取次级系统的第一网络状态变化规律和/或主系统的第二网络状态变化规律,包括:
    获取所述次级系统的第一网络状态信息和/或所述主系统的第二网络状态信息;
    依据所述第一网络状态信息统计所述第一网络状态变化规律,和/或依据所述第二网络状态信息统计所述第二网络状态变化规律。
  3. 根据权利要求2所述的方法,其中,所述第一网络状态信息包括以下至少之一:所述次级系统的网络负载信息、所述次级系统的用户设备的干扰信息。
  4. 根据权利要求2或3所述的方法,其中,所述第二网络状态信息包括:所述主系统的频谱资源使用情况信息。
  5. 根据权利要求4所述的方法,其中,所述频谱资源使用情况信息包括以下至少之一:空闲频谱的频点、带宽,空闲频谱所属主系统的信号类型、发射机位置、覆盖范围、发射模板、发射功率、天线参数、接收机类型、保护要求、使用时间、空闲时间。
  6. 根据权利要求1所述的方法,其中,
    所述第一网络状态变化规律包括:所述次级系统的网络负载和/或所述次级系统的用户设备的干扰状态随时间的变化规律;和/或
    所述第二网络状态变化规律包括:所述主系统的频谱资源使用状况随时间的变化规律。
  7. 根据权利要求1所述的方法,其中,依据所述第一网络状态变化规律和/或所述第二网络状态变化规律预先触发频谱资源重配置,包括:
    依据所述第一网络状态变化规律和/或所述第二网络状态变化规律,预先进行频谱资源重配置决策。
  8. 根据权利要求7所述的方法,其中,预先进行频谱资源重配置决策包括以下至少之一:
    依据所述次级系统的负载变化规律,在所述次级系统过载之前,预先为所述次级系统分配所述主系统的空闲频谱资源;
    依据所述次级系统的干扰状态变化规律,在干扰等级超过预配置干扰门限之前,预先为所述次级系统分配所述主系统的空闲频谱资源;
    依据所述主系统的频谱资源使用状态变化规律,在所述主系统的主用户设备回归之前,预先为使用对应空闲频谱资源的次级系统分配所述主系统的其他空闲频谱资源;
    依据所述主系统的频谱资源使用状态变化规律,为所述次级系统进行频谱资源重配置时选择相对稳定的空闲频谱资源。
  9. 根据权利要求8所述的方法,其中,所述相对稳定的空闲频谱资源包括以下至少之一:所述主系统空闲频谱资源转换为占用频谱的概率较低、所述主系统空闲频谱资源转换为占用频谱的时间较晚、所述主系统空闲频谱资源所属主用户设备重新出现的概率较低、所述主系统空闲频谱资源所属主用户设备重新出现的时间较晚、一段时间T1后所述主系统空闲频谱资源仍然空闲、一段时间T2后所述主系统空闲频谱资源空闲的概率较高。
  10. 一种频谱资源重配置的触发装置,包括:
    获取模块,设置为获取次级系统的第一网络状态变化规律和/或主系统的第二网络状态变化规律;
    触发模块,设置为依据所述第一网络状态变化规律和/或所述第二网络状态变化规律预先触发频谱资源重配置。
  11. 根据权利要求10所述的装置,其中,所述获取模块包括:
    获取单元,设置为获取所述次级系统的第一网络状态信息和/或所述主系统的第二网络状态信息;
    统计单元,设置为依据所述第一网络状态信息统计所述第一网络状态变化规律,和/或依据所述第二网络状态信息统计所述第二网络状态变化规律。
  12. 根据权利要求11所述的装置,其中,所述第一网络状态信息包括以下至少之一:所述次级系统的网络负载信息、所述次级系统的用户设备的干扰信息。
  13. 根据权利要求11或12所述的装置,其中,所述第二网络状态信息包括:所述主系统的频谱资源使用情况信息。
  14. 根据权利要求13所述的装置,其中,所述频谱资源使用情况信息包括以下至少之一:空闲频谱的频点、带宽,空闲频谱所属主系统的信号类型、发射机位置、覆盖范围、发射模板、发射功率、天线参数、接收机类型、保护要求、使用时间、空闲时间。
  15. 根据权利要求10所述的装置,其中,
    所述第一网络状态变化规律包括:所述次级系统的网络负载和/或所述次级系统的用户设备的干扰状态随时间的变化规律;和/或
    所述第二网络状态变化规律包括:所述主系统的频谱资源使用状况随时间的变化规律。
  16. 根据权利要求10所述的装置,其中,所述触发模块,设置为依据所述第一网络状态变化规律和/或所述第二网络状态变化规律,预先进行频谱资源重配置决策。
  17. 根据权利要求16所述的装置,其中,所述触发模块包括以下至少之一:
    第一分配单元,设置为依据所述次级系统的负载变化规律,在所述次级系统过载之前,预先为所述次级系统分配所述主系统的空闲频谱资源;
    第二分配单元,设置为依据所述次级系统的干扰状态变化规律,在干扰等级超过预配置干扰门限之前,预先为所述次级系统分配所述主系统的空闲频谱资源;
    第三分配单元,设置为依据所述主系统的频谱资源使用状态变化规律,在所述主系统的主用户设备回归之前,预先为使用对应空闲频谱资源的次级系统分配所述主系统的其他空闲频谱资源;
    第四分配单元,设置为依据所述主系统的频谱资源使用状态变化规律,为所述次级系统进行频谱资源重配置时选择相对稳定的空闲频谱资源。
  18. 根据权利要求17所述的装置,其中,所述相对稳定的空闲频谱资源包括以下至少之一:所述主系统空闲频谱资源转换为占用频谱的概率较低、所述主系统空 闲频谱资源转换为占用频谱的时间较晚、所述主系统空闲频谱资源所属主用户设备重新出现的概率较低、所述主系统空闲频谱资源所属主用户设备重新出现的时间较晚、一段时间T1后所述主系统空闲频谱资源仍然空闲、一段时间T2后所述主系统空闲频谱资源空闲的概率较高。
  19. 一种电信设备,包括:权利要求10至18中任一项所述的装置。
PCT/CN2014/089351 2014-04-18 2014-10-23 频谱资源重配置的触发方法、装置及电信设备 WO2015158125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410158883.9A CN105025492A (zh) 2014-04-18 2014-04-18 频谱资源重配置的触发方法、装置及电信设备
CN201410158883.9 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015158125A1 true WO2015158125A1 (zh) 2015-10-22

Family

ID=54323453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089351 WO2015158125A1 (zh) 2014-04-18 2014-10-23 频谱资源重配置的触发方法、装置及电信设备

Country Status (2)

Country Link
CN (1) CN105025492A (zh)
WO (1) WO2015158125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170315A (zh) * 2018-12-29 2021-07-23 索尼集团公司 频谱装置、无线通信系统、无线通信方法和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478758A (zh) * 2008-12-26 2009-07-08 北京邮电大学 一种动态频谱分配的方法和系统
CN102075944A (zh) * 2010-12-07 2011-05-25 南京邮电大学 认知网络中基于多Agent协作的可用资源管理系统及方法
CN102624465A (zh) * 2011-01-30 2012-08-01 中兴通讯股份有限公司 一种认知无线电的感知辅助的方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932919B1 (ko) * 2007-09-05 2009-12-21 한국전자통신연구원 동적 채널 할당을 위한 채널 집합 관리 방법 및 시스템
CN101883364B (zh) * 2010-06-23 2013-04-03 中国人民解放军理工大学 一种基于多信道机结构的cmr及频谱分配方法
CN103686865B (zh) * 2012-09-26 2018-11-09 索尼公司 网络资源使用的决策装置和方法
CN103281734B (zh) * 2013-04-25 2017-02-22 西安电子科技大学 一种分布式认知无线网络中主动频谱切换的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478758A (zh) * 2008-12-26 2009-07-08 北京邮电大学 一种动态频谱分配的方法和系统
CN102075944A (zh) * 2010-12-07 2011-05-25 南京邮电大学 认知网络中基于多Agent协作的可用资源管理系统及方法
CN102624465A (zh) * 2011-01-30 2012-08-01 中兴通讯股份有限公司 一种认知无线电的感知辅助的方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170315A (zh) * 2018-12-29 2021-07-23 索尼集团公司 频谱装置、无线通信系统、无线通信方法和存储介质
US11943631B2 (en) 2018-12-29 2024-03-26 Sony Group Corporation Spectrum device, wireless communication system, wireless communication method and storage medium

Also Published As

Publication number Publication date
CN105025492A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
US8023898B2 (en) Communication systems
US9854447B2 (en) Method and device for configuring cognitive radio system spectrum resources
JP6469868B2 (ja) 免許不要スペクトルにおけるジョイント協調及び共存のための方法並びにシステム
US8676211B2 (en) Systems and methods for selective communications network access
US8543121B2 (en) Systems and methods for usage-based radio resource management of self-optimizing cells
WO2015127880A1 (zh) 一种基站频率资源配置方法及网络设备
CN109743779B (zh) 一种共享基站的资源分配方法及装置
JP2015529042A (ja) 基地局トランシーバのための装置、方法、およびコンピュータ・プログラム
US20130022013A1 (en) Method for providing information such that different types of access points can coexist
JP2012517147A (ja) マルチチャネル動的周波数選択
WO2015117398A1 (zh) 重配置方法及装置
US9326159B2 (en) Representative device selection method in coexistence scheme
US9655024B2 (en) Method and apparatus for controlling handover in cognitive radio system
US10349384B2 (en) Spectrum controller for cellular and WiFi networks
CN110870346A (zh) 无线通信系统中基站负载分配的设备和方法
WO2013060205A1 (zh) 一种实现资源重配的方法和系统
JP6112420B2 (ja) 無線基地局装置、無線資源管理方法、無線資源管理プログラム、無線通信装置、及び無線通信システム
CN102958060A (zh) 一种触发无线资源重配的方法及装置
WO2015158125A1 (zh) 频谱资源重配置的触发方法、装置及电信设备
WO2022121759A1 (zh) 室内无源系统和有源系统同频组网的频谱共享方法及系统
CN114793364A (zh) 一种下行干扰避免的调度方法、设备、装置及存储介质
CN114189308A (zh) 用户终端控制方法、基站及存储介质
JP2017092762A (ja) 基地局装置、中継装置、制御方法
WO2010096964A1 (zh) 使用频谱的方法、设备及系统
Huang et al. A game theory approach for self-coexistence analysis among IEEE 802.22 networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889640

Country of ref document: EP

Kind code of ref document: A1