WO2015117398A1 - 重配置方法及装置 - Google Patents

重配置方法及装置 Download PDF

Info

Publication number
WO2015117398A1
WO2015117398A1 PCT/CN2014/089239 CN2014089239W WO2015117398A1 WO 2015117398 A1 WO2015117398 A1 WO 2015117398A1 CN 2014089239 W CN2014089239 W CN 2014089239W WO 2015117398 A1 WO2015117398 A1 WO 2015117398A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
statistical
configuration
result
reconfiguration
Prior art date
Application number
PCT/CN2014/089239
Other languages
English (en)
French (fr)
Inventor
刘星
李岩
苗婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015117398A1 publication Critical patent/WO2015117398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings

Definitions

  • the present invention relates to the field of communications, and in particular to a reconfiguration method and apparatus.
  • each communication station initiates a reconfiguration request to the configuration management node by its own standard, and the configuration management node performs information according to the current configurable resource situation information and the usage information of the configurable spectrum resources by other communication stations.
  • a decision is made to determine configuration parameters for the communication site that issued the reconfiguration configuration request.
  • the embodiment of the invention provides a reconfiguration method and device to solve at least the problem caused by the reconfiguration request in the related art.
  • a reconfiguration method comprising: a configuration management node transmitting a configuration message, wherein the configuration message is set to request communication station current network state information; and the configuration management node receives the configuration a response message of the message, wherein the response message carries the current network state information of the communication site; and the configuration management node performs a reconfiguration decision according to the current network state information.
  • the current network status information includes at least one of the following: physical layer measurement information, network performance statistics.
  • the configuration message includes at least one of the following: a measurement statistic identifier, configured to identify the configuration message, a measurement statistic object, configured to describe network state information to be measured and/or statistic, and a measurement statistic report configuration, configured to indicate the The way the communication site reports measurement results and/or statistical results.
  • a measurement statistic identifier configured to identify the configuration message
  • a measurement statistic object configured to describe network state information to be measured and/or statistic
  • a measurement statistic report configuration configured to indicate the The way the communication site reports measurement results and/or statistical results.
  • the measurement statistical object includes at least one of the following performance parameters: reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, coverage rate, reference signal carrier interference and noise ratio RS-CINR, physical downlink control channel signal Noise ratio PDCCH SINR, time advancement TA, physical resource block PRB utilization, physical downlink control channel PDCCH utilization, hardware processor occupancy, call congestion rate, E-RAB establishment blocking rate, potential RRC connection number, potential throughput Demand, traffic, traffic, number of users, interference value, RRC connection establishment success rate, E-RAB establishment success rate, RRC connection re-establishment success rate, wireless establishment success rate, ERAB abnormal call drop rate, RRC abnormal call drop Rate, system handover success rate, inter-system handover success rate, transmission rate, throughput, UE transition from Idle state to Active state, Attach delay, user plane delay, different system switching service interruption delay, each service Type of traffic, traffic under each wireless access technology.
  • the measurement statistics report configuration includes at least one of the following: a trigger condition for reporting the measurement result or the statistical result, a pre-configured threshold, a quantity reported by the measurement result or the statistical result, a measurement period, and a reporting period.
  • the triggering condition reported by the measurement result or the statistical result includes at least one of the following: after the measurement and/or the statistics are completed, the measurement result and/or the statistical result are reported in a single time; after the measurement and/or statistics are completed, the report is performed according to the report.
  • the measurement result and/or the statistical result are reported multiple times in the period of the period and/or the number of times of the report; when the measurement result and/or the statistical result exceeds the pre-configured threshold, the measurement result and/or the statistical result are reported in a single time; / or statistical results exceed When the threshold is pre-configured, the measurement result and/or the statistical result are reported multiple times according to the reporting period and/or the number of times of reporting; and the continuous or cumulative duration of the measurement result and/or the statistical result exceeding the pre-configured threshold exceeds When the time is pre-configured, the measurement result and/or the statistical result are reported; when the measurement result and/or the statistical result exceeds the pre-configured threshold, the current measurement result and/or the statistical result is reported, and when the measurement result and/or the statistical result When the pre-configured threshold is no longer exceeded, the current measurement result and/or the statistical result are reported; if the pre-configured threshold is multiple, when the measurement result and/or the statistical result exceeds the first pre-configured threshold,
  • the response message includes at least one of the following: a measurement statistic identifier, configured to identify the configuration message; a measurement result and/or a statistic result.
  • the configuration management node performs the reconfiguration decision according to the current network state information, and the configuration management node determines whether to perform network parameter reconfiguration according to the current network state information, combined with the current idle spectrum resource information, and the spectrum management policy. And/or the scheme of reconfiguring the network parameters.
  • a reconfiguration method comprising: a communication station receiving a configuration message, wherein the configuration message is set to a current communication state information of a communication station that the configuration management node requests to manage, and according to the Determining the current network status information to perform a reconfiguration decision; the communication station measures and/or statistics the current network status information according to the configuration message, and sends a response message of the configuration message, where the response message carries the current network status information.
  • the measuring, by the communication station, the current network status information according to the configuration message includes: the communication station performs measurement and/or statistics according to the network status parameter specified by the measurement statistical object information in the configuration message, and obtains the measurement. Results and / or statistical results.
  • the method further includes: when the measurement result and/or the statistics When the result satisfies the trigger condition of the report, the communication station generates the response message; the communication station sends the response message to the configuration management node.
  • a reconfiguration device which is located at a configuration management node, and includes: a first sending module, configured to send a configuration message, where the configuration message is set to request current network status information of the communication station a first receiving module, configured to receive a response message of the configuration message, where the response message carries the current network state information of the communication site; and a reconfiguration decision module is set to be based on the current network state information Make a reconfiguration decision.
  • a reconfiguration apparatus located at a communication station, comprising: a second receiving module configured to receive a configuration message, wherein the configuration message is set to be managed by a configuration management node Communicating the current network status information of the station, and performing a reconfiguration decision according to the current network status information; the measurement and statistics module is configured to measure and/or collect current network status information according to the configuration message; and the second sending module is configured as a sending station.
  • the response message of the configuration message where the response message carries the current network state information.
  • the configuration management node is configured to send a configuration message, where the configuration message is set to request the current network state information of the communication site; and the configuration management node receives the response message of the configuration message, where the response message Carrying the current network state information of the communication site; the configuration management node performs a reconfiguration decision according to the current network state information, and solves the problem caused by the non-standardization of the reconfiguration decision in the related technology, so that the reconfiguration decision It is more standardized, improves resource allocation rationality, improves spectrum efficiency, and reduces signaling interaction overhead and processing delay due to invalid configuration decisions.
  • FIG. 1 is a flow chart of a reconfiguration method according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a reconfiguration apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of another reconfiguration method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of another reconfiguration apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a cognitive system reconfiguration decision method according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a system architecture of a communication station operating in an idle spectrum mode of an active system using an active system according to a preferred embodiment of the present invention
  • FIG. 7 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment 4 of the present invention.
  • FIG. 11 is a schematic diagram of a network architecture of an LSA technology according to a preferred embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a system architecture of a communication station operating in a multi-system shared spectrum mode according to a preferred embodiment 5 of the present invention
  • FIG. 13 is a schematic diagram of a measurement statistical configuration and a decision process according to a preferred embodiment 5 of the present invention.
  • FIG. 1 is a flowchart of a reconfiguration method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S102 The configuration management node sends a configuration message, where the configuration message is set to request current network status information of the communication station.
  • Step S104 the configuration management node receives the response message of the configuration message, where the response message carries the current network state information of the communication site;
  • Step S106 The configuration management node performs a reconfiguration decision according to the current network state information.
  • the configuration management node sends a configuration message, and performs a reconfiguration decision according to the current network state information of the communication station carried in the response message of the configuration message, and changes the related technology according to the communication station.
  • the reconfiguration request is used to make the reconfiguration decision.
  • the reconfiguration decision is made by the current network state information of the communication site, so that the decision-making basis is more comprehensive, the resource configuration can be made more reasonable, and the reconfiguration decision in the related technology is not standardized.
  • the problem is that the reconfiguration decision is more standardized, the resource allocation is improved, the spectrum efficiency is improved, and the signaling interaction overhead and processing delay increased due to invalid configuration decisions are reduced.
  • the current network state information may include at least one of the following: physical layer measurement information, network performance statistics.
  • the configuration message may include at least one of the following: a measurement statistic identifier, configured to identify the configuration message; a measurement statistic object, configured to describe network state information to be measured and/or statistic; and a measurement statistic report configuration, set to indicate the location The manner in which the communication site reports measurement results and/or statistical results.
  • the measurement statistical object may include at least one of the following performance parameters: reference signal received power (RSRP), reference signal received quality (RSRQ), received signal strength indication (RSSI), coverage, reference signal carrier interference to noise ratio (RS- CINR), physical downlink control channel signal to interference and noise ratio (PDCCH SINR), time advance (TA), physical resource block (PRB) utilization, physical downlink control channel (PDCCH) utilization, hardware processor occupancy, call congestion Rate, E-RAB establishes blocking rate, potential RRC connection number, potential throughput demand, traffic volume, traffic volume, number of users, interference value, RRC connection establishment success rate, E-RAB establishment success rate, RRC connection re-establishment success Rate, wireless establishment success rate, ERAB abnormal call drop rate, RRC abnormal call drop rate, intra-system handover success rate, inter-system handover success rate, transmission rate, throughput, UE from idle (Idle) state to active (Active) state Conversion delay, Attach delay, user plane delay, inter-system handover service interruption delay, traffic of each service
  • the measurement statistics report configuration may include at least one of the following: a trigger condition for reporting the measurement result or the statistical result, a pre-configured threshold, a quantity reported by the measurement result or the statistical result, a measurement period, and a reporting period.
  • the triggering condition reported by the measurement result or the statistical result may include at least one of the following: after the measurement and/or the statistics are completed, the measurement result and/or the statistical result are reported in a single time; after the measurement and/or statistics are completed, according to the description
  • the measurement result and/or the statistical result are reported multiple times in the reporting period and/or the number of times of reporting; when the measurement result and/or the statistical result exceeds the pre-configured threshold, the measurement result and/or the statistical result are reported in a single time; And when the statistical result exceeds the pre-configured threshold, the measurement result and/or the statistical result are reported multiple times according to the reporting period and/or the number of times of reporting; and the measurement result and/or the statistical result exceeds the pre-configured threshold When the continuous or accumulated duration exceeds the pre-configured time, the measurement result and/or the statistical result is reported; when the measurement result and/or the statistical result exceeds the pre-configured threshold, the current measurement result and/or the statistical result is reported, and when the measurement is
  • the response message may include at least one of the following: a measurement statistic identifier, configured to identify the configuration message; a measurement result and/or a statistic result.
  • the configuration management node may perform the reconfiguration decision according to the current network state information.
  • the configuration management node may determine whether to perform the network parameter according to the current network state information, the current idle spectrum resource information, and the spectrum management policy.
  • a scheme of reconfiguration and/or reconfiguration of the network parameters may be performed.
  • a reconfiguration device is provided, which is located in the configuration management node, and is configured to implement the above-mentioned embodiments and preferred embodiments, and has not been described yet. Said.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of a reconfiguration apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes a first sending module 22, a first receiving module 24, and a reconfiguration decision module 26, and each module is as follows. Detailed instructions:
  • the first sending module 22 is configured to send a configuration message, where the configuration message is set to request current network status information of the communication station; the first receiving module 24 is configured to receive a response message of the configuration message, where the response The message carries the current network state information of the communication site; the reconfiguration decision module 26 is connected to the first receiving module 24, and is configured to perform a reconfiguration decision according to the current network state information.
  • FIG. 3 is a flowchart of another reconfiguration method according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step S302 The communication station receives the configuration message, where the configuration message is set to the current network state information of the communication site that the configuration management node requests to manage, and performs a reconfiguration decision according to the current network state information.
  • Step S304 the communication station measures and/or statistics the current network state information according to the configuration message, and sends a response message of the configuration message, where the response message carries the current network state information.
  • the communication station measures and/or the current network state information of the same level according to the configuration message of the configuration management node, and sends a response message carrying the current network state information, so that the configuration management node can carry according to the response message.
  • the current network status information of the communication station is reconfigured, and the reconfiguration decision is made according to the reconfiguration request sent by the communication station in the related art, and the configuration management node performs the reconfiguration decision by the current network status information of the communication station. Therefore, the basis for decision making is more comprehensive, the resource allocation can be made more reasonable, the problems caused by the non-standardization of the reconfiguration decision in the related technology are solved, the reconfiguration decision is more standardized, the resource allocation rationality is improved, the spectrum efficiency is improved, and the configuration is reduced. The signaling interaction overhead and processing delay increased by invalid decision.
  • the communication station may perform measurement and/or statistics according to network state parameters specified by the measurement statistical object information in the configuration message to obtain measurement results and/or statistical results.
  • the communication station may generate the response message when the measurement result and/or the statistical result satisfies the reported trigger condition; the communication station sends the response message to the configuration management node.
  • the triggering condition may be preset, or the configuration management node may be included in the configuration message and sent to the communication site.
  • FIG. 4 is a structural block diagram of another reconfiguration device according to an embodiment of the present invention.
  • the device includes a second receiving module 42, a measurement and statistics module 44, and a second sending module 46.
  • the second receiving module 42 is configured to receive a configuration message, where the configuration message is set to the current network state information of the communication site that the configuration management node requests to manage, and performs a reconfiguration decision according to the current network state information;
  • the second receiving module 42 is configured to measure and/or collect current network state information according to the configuration message.
  • the second sending module 46 is connected to the measurement and statistics module 44 and configured to send a response message of the configuration message.
  • the response message carries the current network status information.
  • FIG. 5 is a schematic flowchart of a cognitive system reconfiguration decision method according to a preferred embodiment of the present invention, as shown in FIG. A detailed description:
  • Step S502 the configuration management node sends a measurement statistics configuration message.
  • Step S506 the configuration management node receives the measurement statistics response message, and proceeds to step S506;
  • Step S508 performing a reconfiguration decision according to the measurement statistical response message.
  • the measurement statistics configuration message is set to request current network state information from the communication site, where the network state information includes: physical layer measurement information, and/or network performance statistics.
  • the measurement statistics configuration message includes one or more of the following information: a measurement statistics identifier, a measurement statistics object, and a measurement statistics report configuration.
  • the measurement statistic identifier refers to an identifier that uniquely represents the measurement statistic configuration.
  • the measurement statistical object may refer to network status information that needs to be measured or counted, and includes one or more of the following performance parameters: reference signal received power (RSRP), reference signal received quality (RSRQ), and received signal. Intensity indication (RSSI), coverage, reference signal carrier-to-interference-and-noise ratio (RS-CINR), physical Line control channel signal to interference and noise ratio (PDCCH SINR), time advance (TA), physical resource block (PRB) utilization, physical downlink control channel (PDCCH) utilization, hardware processor (DSP, or FPGA, or CPU, Or MPU) occupancy rate, call congestion rate, E-RAB establishment blocking rate, traffic volume, traffic volume, number of users, interference value, RRC connection establishment success rate, E-RAB establishment success rate, RRC connection re-establishment success rate, Wireless establishment success rate, ERAB abnormal call drop rate, RRC abnormal call drop rate, system handover success rate, inter-system handover success rate, transmission rate, throughput, UE transition from Idle state to Active state delay,
  • the measurement statistics report configuration is set to indicate the measurement result and/or the statistical result (also referred to as measurement measurement result in the text) to the configured communication site, and includes at least one of the following information: a trigger condition for measuring the statistical result report,
  • the pre-configured threshold is used to measure the number of reported statistics, the measurement period, and the reporting period.
  • the trigger condition reported by the measurement statistics may include one or more of the following:
  • the measurement result and/or the statistical result are reported in a single time
  • the measurement result and/or the statistical result are reported multiple times in a certain period
  • the measurement statistics are reported in a single time
  • the measurement statistics are reported multiple times in a certain period
  • the continuous or accumulated duration exceeds the pre-configured time, and the measurement statistics are reported;
  • the measurement statistical result 1 is reported, and when the measurement and/or the statistical result no longer exceeds the pre-configured threshold, the measurement statistical result 2 is reported;
  • the measurement statistical result 1 is reported; when the measurement and/or the statistical result is higher than the measurement statistical result 1 exceeds the pre-configured threshold value 2, the reported measurement is performed.
  • Statistical result 2 is reported; when the measurement and/or the statistical result is higher than the measurement statistical result 1 exceeds the pre-configured threshold value 2, the reported measurement is performed.
  • the measurement statistical response message is set to report the measurement result and/or the statistical result. It includes one or more of the following information: measurement statistics, measurement results, and statistical results.
  • the performing the reconfiguration decision according to the measurement statistics response message specifically: the configuration management node, according to the network state parameter measurement statistics provided in the measurement statistics response message, combining the current idle spectrum resource information and the spectrum management policy Determine whether to perform network parameter reconfiguration; and/or network parameter reconfiguration scheme.
  • the cognitive system reconfiguration decision method shown in FIG. 5 further includes:
  • Step S502 the communication station receives the measurement statistics configuration message.
  • Step S504 the communication station performs measurement and/or statistics according to the requirements of the measurement statistical object, generates a measurement statistical response message, and proceeds to step S506;
  • Step S506 sending the measurement statistical response message.
  • the communication station performs measurement and/or statistics according to the requirements of the measurement statistics object, as follows: the communication station performs measurement and/or statistics according to the network state parameter specified by the measurement statistics object information of the measurement statistics configuration message, Obtain measurement results and/or statistical results;
  • the method further includes: when the measurement result and/or the statistical result meets the trigger condition reported by the measurement statistics result, Generating a measurement statistics response message and transmitting the measurement statistics response message.
  • the configuration management node performs measurement and statistics configuration on the communication site, and each communication station measures and counts the network state parameters specified in the measurement and statistics configuration, and reports the measurement statistics response message, and the configuration management node satisfies the measurement statistics.
  • the reconfiguration decision is initiated when the event is triggered, which ensures the rationality of resource configuration, ensures that limited configurable spectrum resources are allocated to the communication site with the most urgent spectrum; and the configuration management node can make configuration decisions that better meet the requirements of each site, and improve spectrum efficiency. Reduce the signaling interaction overhead and processing delay due to invalid configuration decisions.
  • FIG. 6 is a schematic diagram of a system architecture of a communication station operating in an idle spectrum mode of an active system using a host system according to a preferred embodiment of the present invention. As shown in FIG. 6, the following preferred embodiments 1 to 4 will be specifically implemented for this mode of operation. The description of the example, the functional entities in the architecture are described as follows:
  • the configuration management node refers to a functional entity responsible for the management of the spectrum resource configuration of the secondary system, and may be any one of the following functional entities: a spectrum coordinator (SC), a central control node (CCP, Central Control Point), reconfiguration Reconfiguration Management module, Reconfiguration Function module, Reconfiguration Entity, advanced positioning entity, advanced positioning function, and coexistence function.
  • the configuration management node may be an operator-based management node that manages the configuration of each communication station of the operator; or the configuration management node may be a management node based on the radio access network, and manage each communication station in the wireless access network; or
  • the configuration management node can be a zone-based management node responsible for the configuration of each communication site within the jurisdiction.
  • Typical main systems such as broadcast television systems, have a large amount of available spectrum resources for broadcast television systems.
  • some broadcast television system spectrums are not used in some areas; some broadcast televisions Although the system spectrum is covered in a certain area, it is not used at some moments, and the overall utilization rate is low.
  • the fixed spectrum allocation method makes the above unused spectrum resources unable to be reused, for example, cannot be used by the IMT system.
  • IMT cognitive radio technology
  • TVWS TV White Space
  • Such a secondary system opportunistically occupies the spectrum usage of the spectrum resources of the primary system, and must ensure effective protection for the primary user, that is, when the secondary system uses the primary system spectrum resources, it cannot cause harmful interference to the primary system user, which is cognitive radio. Prerequisites that technology can achieve. In order to achieve such a goal, first of all, the use spectrum and transmission parameters of the secondary system will be limited by the protection requirements of the primary system, and accurate decisions need to be made when initially determining these parameters. Second, the secondary system needs to know the presence of the primary user in time. In order to discover that the primary user on the spectrum resource occupied by the secondary system reappears, the spectrum resource is promptly withdrawn to avoid interference with the primary user.
  • the primary system idle spectrum resource is the unused spectrum resource of the primary system in the range of 470MHz-790MHz.
  • the TVWS spectrum is taken as an example for description.
  • the primary user protection management node takes a geographical location information database (GLDB, Geo-Location Database) as an example, and a configuration management node in which secondary inter-system interference coexists takes SC as an example.
  • GLDB geographical location information database
  • SC configuration management node in which secondary inter-system interference coexists
  • the architecture of the TVWS band CR technology is shown in Figure 6, which is described below.
  • the GLDB is responsible for the primary system protection, providing the primary system spectrum usage for the communication site or secondary system management node to prevent the primary system from being interfered by the secondary system.
  • the communication station is provided with the idle spectrum resource at the location of the communication station, and the maximum transmission power allowed by the communication station is calculated according to the primary system protection criterion, and the communication station transmitting under the transmission power limitation does not cause interference to the primary system user. ;
  • the SC is a secondary system spectrum resource reconfiguration management node, which is responsible for coexistence management, priority management, and measurement management among each secondary user equipment.
  • the BS is a communication station, which can represent a base station under a cellular network system such as an LTE, a 3G system, a 2G system, an access point (AP, Access Point) such as a pico, a femto, or the like, or an IEEE802 system such as a WLAN, a WRAN, or a Wimax. Entry point.
  • a cellular network system such as an LTE, a 3G system, a 2G system, an access point (AP, Access Point) such as a pico, a femto, or the like, or an IEEE802 system such as a WLAN, a WRAN, or a Wimax. Entry point.
  • FIG. 7 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment of the present invention. As shown in FIG. 7 , when the BS runs on the idle spectrum f1 and the measurement result event is triggered and reported, the measurement statistics configuration and the decision process are specifically described as follows. :
  • Step S702 The SC sends a measurement statistics configuration message to the secondary user equipment BS.
  • measurement statistics It includes the following information: measurement statistics, measurement statistics, and measurement report configuration.
  • Step S704 The BS sends a measurement statistics configuration confirmation message to the SC, and measures the statistical object in the measurement statistics configuration message, and performs measurement and statistics;
  • the BS sends a measurement statistics configuration confirmation message to the SC, and is set to confirm to the SC that the measurement statistics configuration message has been successfully received.
  • the specific measurement process is that the BS sends the measurement configuration to the UE next to the UE and receives the measurement report of the UE.
  • the UE measurement report at the edge of the cell shows that within a certain area (such as a coordinate (X, Y) within a circle with a radius of 50 meters), the RSRP value of 40 users in 100 user measurements is below -105 dBm. If the number of users below -119dBm is 5, the proportion of users falling within the threshold of the weak field is 40%, which satisfies the trigger condition for reporting statistical results.
  • Step S706 The BS sends a measurement statistics response message to the SC.
  • the BS sends a measurement statistical response message to the SC, where the proportion of the user whose measurement result is within -105 dBm>RSRP>-119 dBm is 40%, and the area is: the coordinate (X, Y) is a circle with a radius of 50 m;
  • Step S708 The SC receives the measurement statistics response message and performs a reconfiguration decision.
  • the SC first determines the cause of the BS reconfiguration.
  • the measurement statistics object and the reported event configured in this embodiment are related to the coverage, respectively:
  • the meaning of the coverage-related parameters and the pre-configured threshold is: in a certain predefined area, when the measured RSRP value is less than the predefined threshold (such as -119dBm), the proportion of the total number of users in the area is greater than the predefined When the ratio (such as 30%), the network is considered to have a coverage hole at the corresponding position;
  • the meaning of covering the weak field related parameters and the pre-configured threshold is: in a certain predefined area, when the measured RSRP value is less than the predefined threshold (-105dBm), the proportion of the total number of users in the area is greater than the predefined When the ratio (such as 30%), the network is considered to have a weak field in the corresponding position;
  • the meaning of the coverage-related parameters and the pre-configuration threshold are: the user's TA value is measured, the proportion of users in the cell that exceeds the TA threshold, and the average downlink received power of the user exceeding the TA threshold.
  • the proportion of users exceeding the TA threshold is greater than the predefined. If the ratio of the downlink (eg, 30%) and the downlink average received power of the user exceeding the TA threshold is greater than a predefined threshold (eg, -75 dBm), the cell is considered to be in the coverage state.
  • the meaning of the pilot pollution related parameter and the pre-configured threshold is: when the user measures that the RSRP value exceeds a predefined threshold (such as -90dBm), it is considered to be a strong pilot, and the number of strong pilots is greater than or equal to a predefined number (such as four). And The pilot pollution is considered to be less than or equal to a predefined threshold (eg, 6 dB) when the difference between the strongest pilot field strength value and the field strength value of the strongest field strength in the non-strong pilot is less than or equal to a predefined threshold (eg, 6 dB).
  • a predefined threshold such as -90dBm
  • the measurement statistical response message reported by the BS satisfies the coverage weak field problem.
  • the SC runs a reconfiguration algorithm, based on the primary user protection and the coexistence between the secondary user equipments, calculates the transmit power value allowed by the BS, determines that the BS can further improve the transmit power, and implements the elimination of the coverage weak field, and obtains the transmission by calculation.
  • the power is increased from 30dBm to 40dBm.
  • the reference signal to interference and noise ratio RS-CINR the reference signal to interference and noise ratio RS-CINR
  • the physical downlink control channel signal to interference and noise ratio PDCCH SINR can also be used as a parameter for evaluating the coverage of the cell.
  • the measurement statistics report configuration information in the measurement statistics configuration message specifies a method for reporting the measurement statistics.
  • the other methods include one or more of the following:
  • FIG. 8 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment of the present invention.
  • the BS runs on the idle spectrum f1, periodically reports measurement statistics, and is triggered by the fact that the existing spectrum resources cannot meet the network requirements.
  • the measurement statistics configuration and decision process are described as follows:
  • Step S802 The SC sends a measurement statistics configuration message to the secondary user equipment BS.
  • measurement statistics It includes the following information: measurement statistics, measurement statistics, and measurement report configuration.
  • Step S804 measuring the statistical object (physical resource block utilization rate, call congestion rate) in the measurement configuration message, and performing measurement and statistics;
  • the specific measurement process is that the BS network management side counts the network resource utilization status (physical resource block utilization rate) and the probability of the UE calling congestion.
  • the statistical period is 60s once, for a total of 4 times.
  • the utilization rate of physical resource blocks is 80%, 83%, 83%, and 90%, respectively; the call congestion rates are: 1%, 1%, 2%, 2%. And the result obtained by each statistics forms a measurement statistical response message;
  • Step S806 The BS sends a measurement statistics response message to the SC four times.
  • the SC receives the 4 measurement statistical response messages sent by the BS, that is, the measurement statistics result;
  • Step S808 The SC receives the measurement statistics response message and performs a reconfiguration decision.
  • the SC When the SC receives the fourth measurement statistics sent by the BS, the physical resource block utilization rate is: 90%, and the congestion rate is 2%. It is determined that the existing spectrum resources of the network where the BS is located cannot meet the network requirements, and the reconfiguration needs to be triggered; The SC runs the reconfiguration algorithm, adds the idle spectrum resource configuration to the BS, and obtains the idle spectrum resource f2 for the BS by the acquisition of the idle spectrum resource at the location of the BS and the coexistence with other secondary user equipments, and the transmission power is 30 dBm.
  • the SC judges according to the measurement statistics of the BS, and the network needs to be reconfigured.
  • the BS does not need to perform the remaining measurement and statistics process and directly accepts the reconfiguration of the SC.
  • the network parameters that can reflect that the network resources cannot meet the demand and load overload include: PDCCH utilization, hardware processor (hardware processor (DSP, or FPGA, or CPU, Or MPU)) occupancy rate, ERAB establishes blocking rate, traffic volume, traffic volume, number of users. It can also be configured to measure statistical objects and report trigger reconfiguration decisions based on measurement statistics.
  • the measurement and statistics execution process after the BS receives the measurement and statistics configuration message sent by the SC, and may be obtained by the BS in conjunction with the subordinate UE to perform special measurement and statistics; or, for the network status information of the existing system network management side, BS You can directly report the statistics to the SC based on the statistics on the NMS. It is used for the measurement statistics execution process in other embodiments.
  • the STA may reply to the measurement statistics configuration confirmation message to confirm to the SC that the measurement statistics configuration message has been successfully received.
  • the other embodiments are also applicable.
  • FIG. 9 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment of the present invention.
  • the BS operates in the idle spectrum f1, and the BS performs a single measurement and reports, and the network has higher interference value due to the spectrum.
  • the measurement and configuration process is described as follows:
  • Step S902 The SC sends a measurement statistics configuration message to the secondary user equipment BS.
  • measurement statistics It includes the following information: measurement statistics, measurement statistics, and measurement report configuration.
  • Step S904 The BS measures the statistical object in the measurement statistics configuration message, and performs measurement and statistics;
  • Step S906 The BS sends a measurement statistics response message to the SC.
  • the BS sends a measurement statistical response message to the SC, which includes: the interference value is -102 dBm.
  • Step S908 The SC receives the measurement statistics response message and performs a reconfiguration decision.
  • the SC determines whether the reconfiguration is triggered, the interference value on the spectrum is -102dBm, which is higher than the interference tolerance threshold of -104dBm of the system; and under the current interference level, the required transmission power is 40dBm for the normal communication of the subordinate user (currently
  • the BS transmit power is 30 dBm).
  • the SC runs the reconfiguration algorithm. First, it examines whether the idle spectrum currently working by the BS allows the transmission power to be increased to meet the normal communication under the current channel conditions.
  • the SC accesses the GLDB to query the idle spectrum information of the current BS location, and there are f1, f2, and f3. Segment idle spectrum resources, corresponding to the maximum allowable transmit power: 40dBm, 30dBm, 30dBm. From the perspective of primary user protection, the BS is allowed to increase the transmit power to 40 dBm.
  • the SC further considers the coexistence between the secondary systems, the positional relationship between each secondary user equipment and the BS, the frequency isolation, the propagation model, and the calculation when the BS transmits at 40 dBm. Whether it will cause interference to other secondary user equipments, and conclude that it will not cause interference; therefore, the SC decision can solve the problem of excessive interference by reconfiguring the BS transmit power.
  • the SC can further consider reconfiguring the idle spectrum to f2 or f3 for the BS to implement the BS. Normal communication.
  • the specific process is similar to the step S808 of the preferred embodiment 2, and details are not described herein again.
  • the interference on the working spectrum of the BS is too large, which may cause the degradation of the communication quality of the BS network. Therefore, the degradation of the network communication performance may also indirectly reflect the excessive interference on the working spectrum. For example, by monitoring the SINR, whether the current quality of service meets the requirements can be obtained, and the SC receives the SINR value and determines whether to initiate reconfiguration. When the SINR is lower than the network tolerance value, the interference on the spectrum can be determined to be excessive. It is found that the interference is too large to trigger the reconfiguration. Similar parameters include: transmission rate, throughput, and delay (the terminal transitions from the idle state (Idle) to the active state (Active), or the attachment delay.
  • RRC connection establishment success rate E-RAB establishment success rate
  • RRC connection re-establishment success rate wireless establishment success rate
  • ERAB abnormal call drop rate RRC abnormality Call rate
  • system switching success rate system switching success rate
  • transmission rate throughput.
  • RRC connection establishment success rate E-RAB establishment success rate
  • RRC connection re-establishment success rate wireless establishment success rate
  • ERAB abnormal call drop rate RRC abnormality Call rate
  • system switching success rate system switching success rate
  • transmission rate throughput.
  • throughput throughput. It can also be configured to measure statistical objects and report trigger reconfiguration decisions based on measurement statistics. The flow is the same as the preferred embodiment, and details are not described herein again.
  • FIG. 10 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment of the present invention.
  • the SC when multiple secondary user equipments apply for idle spectrum resources, the SC performs measurement information response messages according to multiple BSs.
  • BS1 and BS2 which belong to the management of the SC. The following is a detailed description:
  • Step S1002 The SC sends a measurement statistics configuration message to the secondary user equipments BS1 and BS2.
  • the measurement statistics configuration messages sent by BS1 and BS2 are the same, including the following information: measurement statistics identifier, measurement statistics object, and measurement statistics report configuration.
  • Step S1004 BS1 and BS2 perform statistics on the specified network state parameter according to the measurement statistics configuration message.
  • the specific measurement process is that the BS network management side counts the network resource utilization status (physical resource block utilization rate) and the probability of the UE calling congestion.
  • the physical resource block utilization rates of BS1 and BS2 are 95% and 100%, respectively, and the measurement statistics result is formed into a measurement statistical response message.
  • Step S1006 BS1 and BS2 respectively send measurement statistical response messages to the SC.
  • BS1 and BS2 respectively send measurement statistical response messages to the SC, including: physical resource block utilization rate BS1: 95%; BS2: 100%;
  • Step S1008 The SC receives the measurement statistics response message and performs a reconfiguration decision.
  • the SC runs the reconfiguration algorithm. Due to the tight spectrum resources of BS1 and BS2, it is expected to configure idle spectrum resources for it.
  • the SC accesses the GLDB to obtain the idle spectrum resource information at the location of BS1 and BS2. The results are shown in the following table:
  • both BS1 and BS2 can be configured with only the idle spectrum f1, which can ensure that the two base stations transmit at the same time with the transmit power of 40 dBm without interfering with the primary user, but there may be co-channel interference between them, and the SC allocates resources among the decision BSs.
  • the BS2 physical resource utilization rate is higher. Therefore, the resource demand is more urgent, and the spectrum configuration requirement of the BS2 is preferentially satisfied, and the idle spectrum is allocated to the BS2.
  • BS1 and BS2 send a measurement statistical response message to the SC simultaneously or within a predefined period of time (such as 10s), and the SC performs resource allocation decision for BS1 and BS2, and the SC
  • the measured statistical response messages received within a defined period of time are not prioritized.
  • the SC can also independently make resource allocation decisions for each request, that is, if the measurement statistics response message is received, the judgment of whether to initiate reconfiguration is performed, and then the resource allocation decision is made. In this case, the SC will preferentially satisfy the first measurement statistics.
  • the resource configuration requirements of the communication site that responds to the message that responds to the message.
  • the LSA (Licensed Shared Access) technology gives a method for sharing the same spectrum resource between the LSA primary system and the LSA secondary system under the regulatory framework.
  • the same spectrum resource is called the LSA spectrum resource, that is, the spectrum resource shared by the authorization system and the LSA system; the authorization system refers to the original authorized user of the LSA spectrum resource; the LSA system refers to the authorization by the regulatory authority, and can be authorized.
  • the system shares users who use LSA spectrum resources.
  • FIG. 11 is a schematic diagram of a network architecture of an LSA technology according to a preferred embodiment of the present invention, as shown in FIG.
  • the LSA controller (Controller) is responsible for authorizing the system protection, providing the configuration management node with the spectrum usage of the primary system to prevent the authorized system from being interfered by the secondary system.
  • the configuration management node is provided with spectrum usage information of the authorization system in a certain area, and provides protection criteria for the authorized user in the area;
  • the configuration management node is responsible for the configuration of the authorized shared resource of each authorized access system, that is, according to the spectrum usage information of the authorized system on the relevant area provided by the LSA Controller, it is determined that the communication station of the LSA system can authorize the shared access spectrum (this patent will Both the authorized shared access spectrum and the primary system idle spectrum are referred to as configurable spectrums, and the transmission parameter limits of the relevant communication stations are determined according to the authorized system protection criteria.
  • the BS is a communication station, which can represent a base station under a cellular network system such as an LTE, a 3G system, a 2G system, an access point (AP, Access Point) such as a pico, a femto, or the like, or an IEEE802 system such as a WLAN, a WRAN, or a Wimax. Entry point.
  • a cellular network system such as an LTE, a 3G system, a 2G system, an access point (AP, Access Point) such as a pico, a femto, or the like, or an IEEE802 system such as a WLAN, a WRAN, or a Wimax. Entry point.
  • FIG. 12 is a schematic structural diagram of a system in which a communication station operates in a multi-system shared spectrum mode according to a preferred embodiment 5 of the present invention. As shown in FIG. 12, the preferred embodiment will describe a specific embodiment for the working mode. The functional entities in the details are as follows:
  • the existing IMT system uses static, radio access technology (RAT, Radio Access Technology) independent spectrum division.
  • RAT Radio Access Technology
  • This spectrum planning mechanism cannot keep up with network changes, load distribution changes, transmission environment changes, technology evolution changes, and operator policy changes. Therefore, the industry proposes a dynamic planning spectrum for inter-RAT cooperation, which improves spectrum utilization and alleviates the current situation of spectrum shortage.
  • the configuration management node is described by taking a multi-Rat Coordinator as an example, and its specific functions include cluster division; inter-cluster frequency planning; coexistence management of communication sites between different clusters;
  • the BS is a communication station, which can represent a base station under a cellular network system such as an LTE, a 3G system, a 2G system, an access point (AP, Access Point) such as a pico, a femto, or the like, or an IEEE802 system such as a WLAN, a WRAN, or a Wimax. Entry point.
  • a cellular network system such as an LTE, a 3G system, a 2G system, an access point (AP, Access Point) such as a pico, a femto, or the like, or an IEEE802 system such as a WLAN, a WRAN, or a Wimax. Entry point.
  • FIG. 13 is a schematic diagram of a measurement statistics configuration and a decision process according to a preferred embodiment 5 of the present invention. As shown in FIG. 13, the preferred embodiment does not match the ratio of the number of RAT spectrum resources to the proportion of traffic under each RAT in the same area. Trigger reconfiguration, as shown in Figure 13, where the BS is a multimode base station and supports both GSM and LTE networks, that is, it can serve both GSM users and LTE users.
  • the current resource allocation status is: GSM network 10 MHz, LTE network 10 MHz.
  • Step S1302 The SC sends a measurement statistics configuration message to the secondary user equipment BS.
  • measurement statistics It includes the following information: measurement statistics, measurement statistics, and measurement report configuration.
  • Step S1304 The BS performs statistics on the specified network state parameter according to the measurement statistics configuration message.
  • the GSM and LTE network traffic where the traffic volume reflects the user's demand for the spectrum resource, can be expressed by the product of the number of users under each RAT and the corresponding weight;
  • the weight is preset as follows: The demand for the spectrum of one GSM user is 1/5 of the demand for the spectrum of one LTE user. Therefore, the GSM corresponding weight is 1, and the LTE corresponding weight is 5. According to the statistical result, there are 100 users under the GSM network, the relative traffic is 100, there are 60 users under the LTE network, and the relative traffic is 300.
  • Step S1306 The BS sends a measurement statistics response message to the SC.
  • the BS sends a measurement statistics response message to the SC, where the GSM relative traffic is 100 and the LTE relative traffic is 300.
  • Step S1308 The SC receives the measurement statistical response message and performs a reconfiguration decision.
  • the LTE traffic is obviously larger than GSM, and the current network allocates 1:1 resources to each RAT, so the resource allocation cannot match the actual load, triggering Resource allocation reconfiguration.
  • the SC adjusts the inter-RAT resource allocation to match the load status. It is determined that the total spectrum resource of the BS is 20 MHz, the spectrum resource of the GSM network is adjusted to 5 MHz, and the spectrum resource of the LTE network is adjusted to 15 MHz.
  • the procedures described in the above embodiments 1 to 4 are also applicable to the communication station operating in a multi-system shared spectrum mode (such as IMT & GSM band sharing), the difference is that the communication station runs in the idle spectrum mode of the active system, and is used by the communication site.
  • the spectrum resource is the idle spectrum of the primary system. Therefore, the premise of the use is to meet the protection requirements of the primary system.
  • the management node When configuring the management node to make decisions, it is necessary to consider the transmission parameter limitation on the idle spectrum to ensure that the primary system user is not interfered;
  • the operator license spectrum is shared between different RATs, and there is no main system. Therefore, the configuration management node does not need to consider the protection of the main system user when making decisions, and only needs to coexist with other communication sites within the configurable spectrum. Therefore, the common way of the two dynamic spectrum sharing methods is to consider the coexistence between communication sites.
  • a storage medium in which the above software is stored, including but not limited to an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, thereby They may be stored in a storage device by a computing device, and in some cases, the steps shown or described may be performed in an order different than that herein, or separately fabricated into individual integrated circuit modules, or Implementing multiple modules or steps in them as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the reconfiguration method and apparatus provided by the embodiments of the present invention have the following beneficial effects: solving the problem caused by the non-standardization of the reconfiguration decision in the related art, achieving the standardization of the reconfiguration decision and improving the resource allocation. Sexuality, improve spectrum efficiency, reduce the effect of signaling interaction overhead and processing delay due to invalid configuration decisions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种重配置方法及装置,其中,该方法包括:配置管理节点发送配置消息,其中,所述配置消息设置为请求通信站点当前网络状态信息;所述配置管理节点接收所述配置消息的响应消息,其中,所述响应消息携带所述通信站点的所述当前网络状态信息;所述配置管理节点根据所述当前网络状态信息进行重配置决策。通过本发明,解决了相关技术中重配置决策不规范导致的问题,使得重配置决策更加规范,提升了资源配置合理性,提高频谱效率,减少由于配置决策无效所增加的信令交互开销及处理时延。

Description

重配置方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种重配置方法及装置。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,频谱资源表现出极为紧张的局面;而另一方面在传统的固定频谱分配模式下,频谱资源的利用率却不高。从某种意义上讲,是这种固定分配给授权系统的频谱分配制度造成了频谱资源极为紧张的局面。而认知无线电技术就打破了传统意义上的频谱固定分配制度,将频谱在系统间动态分配,提高了频谱的利用效率。典型的,如随着人们日常通信需求的不断提高,已经不满足于简单的语音数据通信,视频流媒体业务在人们通信生活中的比重不断增加,这要求更大的带宽作为支撑,国际移动电话(IMT,International Mobile Telecom)系统显现出前所未有的频谱紧张局面。
业界提出三个潜在可行的方案:1.动态规划IMT和GSM频谱;2.伺机借用主系统空闲频谱方案;3.授权共享接入方式(LSA,Licensed Shared Access)。
目前,上述三种技术下,各通信站点以各自的标准向配置管理节点发起重配置请求,配置管理节点根据当前的可配置资源情况信息,以及其它通信站点对可配置频谱资源的使用信息,进行决策,为所述发出重配配置请求的通信站点确定配置参数。
在这个过程中,由于没有规范不同的重配置请求的发起条件与内容,通信站点以各自的标准发起重配置请求,配置管理节点无法区分不同的请求原因以及各通信站点资源需求的程度。这将会引起如下问题:
1)无法保证资源配置合理性:无法保证有限的可配置频谱资源分配给最急需频谱的通信站点,也无法保证重配置网络整体性能最优;
2)由于配置管理节点无法准确知道各站点的重配原因或目标,重配置决策没有针对性,导致无效的重配,由于无效的重配,增加了重配交互的次数。因此会大量增加交互的信令开销以及处理时延。
针对相关技术中相关技术中重配置决策不规范导致的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种重配置方法及装置,以至少解决相关技术中重配置请求不规范导致的问题。
根据本发明的一个实施例,提供了一种重配置方法,包括:配置管理节点发送配置消息,其中,所述配置消息设置为请求通信站点当前网络状态信息;所述配置管理节点接收所述配置消息的响应消息,其中,所述响应消息携带所述通信站点的所述当前网络状态信息;所述配置管理节点根据所述当前网络状态信息进行重配置决策。
所述当前网络状态信息包括以下至少之一:物理层测量信息,网络性能统计信息。
所述配置消息包括以下至少之一:测量统计标识,设置为标识所述配置消息;测量统计对象,设置为描述需测量和/或统计的网络状态信息;测量统计报告配置,设置为指示所述通信站点上报测量结果和/或统计结果的方式。
所述测量统计对象包括以下性能参数至少之一:参考信号接收功率RSRP,参考信号接收质量RSRQ,接收信号强度指示RSSI,覆盖率,参考信号载波干扰噪声比RS-CINR,物理下行控制信道信干噪比PDCCH SINR,时间提前量TA,物理资源块PRB利用率,物理下行控制信道PDCCH利用率,硬件处理器占用率,呼叫拥塞率,E-RAB建立阻塞率,潜在RRC连接数,潜在吞吐量需求,话务量,业务量,用户数,干扰值,RRC连接建立成功率,E-RAB建立成功率,RRC连接重建立成功率,无线建立成功率,ERAB异常掉话率,RRC异常掉话率,系统内切换成功率,系统间切换成功率,传输速率,吞吐量,UE从Idle态到Active态转换时延,Attach时延,用户面时延,异系统切换业务中断时延,各业务类型的业务量,各无线接入技术下的业务量。
测量统计报告配置包括以下信息至少之一:测量结果或统计结果上报的触发条件,预配置门限,测量结果或统计结果上报的数量,测量周期,上报周期。
所述测量结果或统计结果上报的触发条件包括以下至少之一:完成测量和/或统计后,单次上报所述测量结果和/或统计结果;完成测量和/或统计后,按照所述上报周期和/或上报次数多次上报测量结果和/或统计结果;在测量结果和/或统计结果超过所述预配置门限时,单次上报所述测量结果和/或统计结果;在测量结果和/或统计结果超过 所述预配置门限时,按照所述上报周期和/或上报次数多次上报所述测量结果和/或统计结果;在测量结果和/或统计结果超过所述预配置门限的连续或累计时长超过预配置时间时,上报所述测量结果和/或统计结果;在测量结果和/或统计结果超过所述预配置门限时上报当前测量结果和/或统计结果,且当测量结果和/或统计结果不再超过所述预配置门限时上报当前测量结果和/或统计结果;在所述预配置门限为多个的情况下,当测量结果和/或统计结果超过第一预配置门限值时上报当前的第一测量结果和/或统计结果;当测量结果和/或统计结果超过第二预配置门限时,上报当前的第二测量结果和/或统计结果。
所述响应消息包括以下信息至少之一:测量统计标识,设置为标识所述配置消息;测量结果和/或统计结果。
所述配置管理节点根据所述当前网络状态信息进行重配置决策包括:所述配置管理节点根据所述当前网络状态信息,结合当前空闲频谱资源信息,及频谱管理策略,确定是否进行网络参数重配置和/或所述网络参数重配置的方案。
根据本发明的另一实施例,提供了一种重配置方法,包括:通信站点接收配置消息,其中,所述配置消息设置为配置管理节点请求其管理的通信站点当前网络状态信息,并根据所述当前网络状态信息进行重配置决策;所述通信站点根据所述配置消息测量和/或统计当前网络状态信息,并发送所述配置消息的响应消息,其中所述响应消息中携带所述当前网络状态信息。
所述通信站点根据所述配置消息测量和/或统计当前网络状态信息包括:所述通信站点根据所述配置消息中的测量统计对象信息所指定的网络状态参数进行测量和/或统计,得到测量结果和/或统计结果。
在所述通信站点根据所述配置消息的测量统计对象信息所指定的网络状态参数进行测量和/或统计,得到测量结果和/或统计结果之后,还包括:当所述测量结果和/或统计结果满足上报的触发条件时,所述通信站点生成所述响应消息;所述通信站点将所述响应消息发送给所述配置管理节点。
根据本发明的再一实施例,提供了一种重配置装置,位于配置管理节点,包括:第一发送模块,设置为发送配置消息,其中,所述配置消息设置为请求通信站点当前网络状态信息;第一接收模块,设置为接收所述配置消息的响应消息,其中,所述响应消息携带所述通信站点的所述当前网络状态信息;重配置决策模块,设置为根据所述当前网络状态信息进行重配置决策。
根据本发明的再一实施例,还提供了一种重配置装置,位于通信站点,包括:第二接收模块,设置为接收配置消息,其中,所述配置消息设置为配置管理节点请求其管理的通信站点当前网络状态信息,并根据所述当前网络状态信息进行重配置决策;测量统计模块,设置为根据所述配置消息测量和/或统计当前网络状态信息;第二发送模块,设置为发送所述配置消息的响应消息,其中所述响应消息中携带所述当前网络状态信息。
通过本发明实施例,采用配置管理节点发送配置消息,其中,所述配置消息设置为请求通信站点当前网络状态信息;所述配置管理节点接收所述配置消息的响应消息,其中,所述响应消息携带所述通信站点的所述当前网络状态信息;所述配置管理节点根据所述当前网络状态信息进行重配置决策的方式,解决了相关技术中重配置决策不规范导致的问题,使得重配置决策更加规范,提升了资源配置合理性,提高频谱效率,减少由于配置决策无效所增加的信令交互开销及处理时延。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种重配置方法的流程图;
图2是根据本发明实施例的一种重配置装置的结构框图;
图3是根据本发明实施例的另一种重配置方法的流程图;
图4是根据本发明实施例的另一种重配置装置的结构框图;
图5是根据本发明优选实施例的认知系统重配置决策方法的流程示意图;
图6是根据本发明优选实施例的通信站点运行于伺机使用主系统空闲频谱方式下的系统架构示意图;
图7是根据本发明优选实施例一的测量统计配置及决策流程示意图;
图8是根据本发明优选实施例二的测量统计配置及决策流程示意图;
图9是根据本发明优选实施例三的测量统计配置及决策流程示意图;
图10是根据本发明优选实施例四的测量统计配置及决策流程示意图;
图11是根据本发明优选实施例的LSA技术的网络架构示意图;
图12是根据本发明优选实施例五的通信站点运行于多系统共享频谱方式下的系统架构示意图;
图13是根据本发明优选实施例五的测量统计配置及决策流程示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中,提供了一种重配置方法,图1是根据本发明实施例的一种重配置方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,配置管理节点发送配置消息,其中,所述配置消息设置为请求通信站点当前网络状态信息;
步骤S104,所述配置管理节点接收所述配置消息的响应消息,其中,所述响应消息携带所述通信站点的所述当前网络状态信息;
步骤S106,所述配置管理节点根据所述当前网络状态信息进行重配置决策。
本实施例通过上述步骤,配置管理节点发送配置消息,并根据接收到的该配置消息的响应消息中携带的通信站点的当前网络状态信息,进行重配置决策,改变了相关技术中根据通信站点发送的重配置请求进行重配置决策的方式,由通信站点的当前网络状态信息进行重配置决策,从而使决策的依据更加全面,能够使得资源配置更加合理,解决了相关技术中重配置决策不规范导致的问题,使得重配置决策更加规范,提升了资源配置合理性,提高频谱效率,减少由于配置决策无效所增加的信令交互开销及处理时延。
所述当前网络状态信息可以包括以下至少之一:物理层测量信息,网络性能统计信息。
所述配置消息可以包括以下至少之一:测量统计标识,设置为标识所述配置消息;测量统计对象,设置为描述需测量和/或统计的网络状态信息;测量统计报告配置,设置为指示所述通信站点上报测量结果和/或统计结果的方式。
所述测量统计对象可以包括以下性能参数至少之一:参考信号接收功率(RSRP),参考信号接收质量(RSRQ),接收信号强度指示(RSSI),覆盖率,参考信号载波干扰噪声比(RS-CINR),物理下行控制信道信干噪比(PDCCH SINR),时间提前量(TA),物理资源块(PRB)利用率,物理下行控制信道(PDCCH)利用率,硬件处理器占用率,呼叫拥塞率,E-RAB建立阻塞率,潜在RRC连接数,潜在吞吐量需求,话务量,业务量,用户数,干扰值,RRC连接建立成功率,E-RAB建立成功率,RRC连接重建立成功率,无线建立成功率,ERAB异常掉话率,RRC异常掉话率,系统内切换成功率,系统间切换成功率,传输速率,吞吐量,UE从空闲(Idle)态到激活(Active)态转换时延,Attach时延,用户面时延,异系统切换业务中断时延,各业务类型的业务量,各无线接入技术下的业务量。
测量统计报告配置可以包括以下信息至少之一:测量结果或统计结果上报的触发条件,预配置门限,测量结果或统计结果上报的数量,测量周期,上报周期。
所述测量结果或统计结果上报的触发条件可以包括以下至少之一:完成测量和/或统计后,单次上报所述测量结果和/或统计结果;完成测量和/或统计后,按照所述上报周期和/或上报次数多次上报测量结果和/或统计结果;在测量结果和/或统计结果超过所述预配置门限时,单次上报所述测量结果和/或统计结果;在测量结果和/或统计结果超过所述预配置门限时,按照所述上报周期和/或上报次数多次上报所述测量结果和/或统计结果;在测量结果和/或统计结果超过所述预配置门限的连续或累计时长超过预配置时间时,上报所述测量结果和/或统计结果;在测量结果和/或统计结果超过所述预配置门限时上报当前测量结果和/或统计结果,且当测量结果和/或统计结果不再超过所述预配置门限时上报当前测量结果和/或统计结果;在所述预配置门限为多个的情况下,当测量结果和/或统计结果超过第一预配置门限值时上报当前的第一测量结果和/或统计结果;当测量结果和/或统计结果超过第二预配置门限时,上报当前的第二测量结果和/或统计结果。
所述响应消息可以包括以下信息至少之一:测量统计标识,设置为标识所述配置消息;测量结果和/或统计结果。
所述配置管理节点根据所述当前网络状态信息进行重配置决策具体可以如下:所述配置管理节点根据所述当前网络状态信息,结合当前空闲频谱资源信息,及频谱管理策略,确定是否进行网络参数重配置和/或所述网络参数重配置的方案。
对应于上述的一种重配置方法,在本实施例中提供了一种重配置装置,位于配置管理节点,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘 述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的一种重配置装置的结构框图,如图2所示,该装置包括第一发送模块22、第一接收模块24和重配置决策模块26,下面对各个模块进行详细说明:
第一发送模块22,设置为发送配置消息,其中,所述配置消息设置为请求通信站点当前网络状态信息;第一接收模块24,设置为接收所述配置消息的响应消息,其中,所述响应消息携带所述通信站点的所述当前网络状态信息;重配置决策模块26,与第一接收模块24相连,设置为根据所述当前网络状态信息进行重配置决策。
在本实施例中,还提供了另一种重配置方法,图3是根据本发明实施例的另一种重配置方法的流程图,如图3所示,该方法包括如下步骤:
步骤S302,通信站点接收配置消息,其中,所述配置消息设置为配置管理节点请求其管理的通信站点当前网络状态信息,并根据所述当前网络状态信息进行重配置决策;
步骤S304,所述通信站点根据所述配置消息测量和/或统计当前网络状态信息,并发送所述配置消息的响应消息,其中所述响应消息中携带所述当前网络状态信息。
本实施例通过上述步骤,通信站点根据配置管理节点的配置消息测量和/或同级当前网络状态信息,并发送携带该当前网络状态信息的响应消息,从而配置管理节点能够根据该响应消息中携带的通信站点的当前网络状态信息,进行重配置决策,改变了相关技术中根据通信站点发送的重配置请求进行重配置决策的方式,配置管理节点由通信站点的当前网络状态信息进行重配置决策,从而使决策的依据更加全面,能够使得资源配置更加合理,解决了相关技术中重配置决策不规范导致的问题,使得重配置决策更加规范,提升了资源配置合理性,提高频谱效率,减少由于配置决策无效所增加的信令交互开销及处理时延。
所述通信站点可以根据所述配置消息中的测量统计对象信息所指定的网络状态参数进行测量和/或统计,得到测量结果和/或统计结果。
当所述测量结果和/或统计结果满足上报的触发条件时,所述通信站点可以生成所述响应消息;所述通信站点将所述响应消息发送给所述配置管理节点。其中该触发条件可以是预设的,也可以是配置管理节点包含在上述配置消息中下发给通信站点的。
对应于上述另一种重配置方法,在本实施例中还提供了另一种重配置装置,位于通信站点,图4是根据本发明实施例的另一种重配置装置的结构框图,如图4所示,该装置包括第二接收模块42、测量统计模块44和第二发送模块46,下面对各个模块进行详细说明:
第二接收模块42,设置为接收配置消息,其中,所述配置消息设置为配置管理节点请求其管理的通信站点当前网络状态信息,并根据所述当前网络状态信息进行重配置决策;测量统计模块44,与第二接收模块42相连,设置为根据所述配置消息测量和/或统计当前网络状态信息;第二发送模块46,与测量统计模块44相连,设置为发送所述配置消息的响应消息,其中所述响应消息中携带所述当前网络状态信息。
下面结合优选实施例进行说明,以下优选实施例结合了上述实施例及其优选实施方式。
在以下优选实施例中,提供了一种认知系统重配置决策方法与系统,图5是根据本发明优选实施例的认知系统重配置决策方法的流程示意图,如图5所示,下面进行详细描述:
步骤S502,配置管理节点发送测量统计配置消息;
步骤S506,所述配置管理节点接收测量统计响应消息,并进行步骤S506;
步骤S508,根据所述测量统计响应消息执行重配置决策。
其中,所述测量统计配置消息,设置为向通信站点请求当前网络状态信息,其中网络状态信息包括:物理层测量信息,和/或,网络性能统计信息。
所述测量统计配置消息,包括以下信息中的一项或多项:测量统计标识,测量统计对象,测量统计报告配置。
所述测量统计标识,指,唯一表示所述测量统计配置的标识。
所述测量统计对象,可以指,需测量或统计的网络状态信息;其中,包括以下性能参数中的一项或多项:参考信号接收功率(RSRP),参考信号接收质量(RSRQ),接收信号强度指示(RSSI),覆盖率,参考信号载波干扰噪声比(RS-CINR),物理下 行控制信道信干噪比(PDCCH SINR),时间提前量(TA),物理资源块(PRB)利用率,物理下行控制信道(PDCCH)利用率,硬件处理器(DSP,或FPGA,或CPU,或MPU)占用率,呼叫拥塞率,E-RAB建立阻塞率,话务量,业务量,用户数,干扰值,RRC连接建立成功率,E-RAB建立成功率,RRC连接重建立成功率,无线建立成功率,ERAB异常掉话率,RRC异常掉话率,系统内切换成功率,系统间切换成功率,传输速率,吞吐量,UE从Idle态到Active态转换时延,Attach时延,用户面时延,异系统切换业务中断时延,各业务类型的业务量,各无线接入技术下的业务量。
所述测量统计报告配置,设置为向被配置通信站点指示测量结果和/或统计结果(文中也简称为测量统计结果)上报的方式,包括以下信息至少之一:测量统计结果上报的触发条件,预配置门限,测量统计结果上报的数量,测量周期,上报周期。
所述测量统计结果上报的触发条件,可以包括以下一项或多项:
优选的,完成测量和/或统计后,单次上报测量结果和/或统计结果;
优选的,完成测量和/或统计后,以一定的周期多次上报测量结果和/或统计结果;
优选的,当测量和/或统计结果超过预配置门限值时,单次上报所述测量统计结果;
优选的,当测量和/或统计结果超过预配置门限值时,以一定的周期多次上报所述测量统计结果;
优选的,当测量和/或统计结果超过预配置门限值的连续或累计时长超过预配置时间时,上报所述测量统计结果;
优选的,当测量和/或统计结果超过预配置门限值时上报所述测量统计结果1,当测量和/或统计结果不再超过预配置门限值时上报所述测量统计结果2;
优选的,当测量和/或统计结果超过预配置门限值1时上报所述测量统计结果1;当测量和/或统计结果高于测量统计结果1超过预配置门限值2时,上报测量统计结果2。
所述测量统计响应消息,设置为测量结果和/或统计结果的上报。其中包括以下信息中的一项或多项:测量统计标识,测量结果,统计结果。
所述根据所述测量统计响应消息执行重配置决策,具体为:所述配置管理节点根据所述测量统计响应消息中提供的网络状态参数测量统计结果,结合当前空闲频谱资源信息,及频谱管理策略,确定是否进行网络参数重配置;和/或网络参数重配置方案。
如图5所示的认知系统重配置决策方法,还包括:
步骤S502,通信站点接收测量统计配置消息;
步骤S504,所述通信站点按照测量统计对象的要求,执行测量和/或统计,生成测量统计响应消息,并进行步骤S506;
步骤S506,发送所述测量统计响应消息。
所述通信站点按照测量统计对象的要求,执行测量和/或统计,具体如下:所述通信站点根据所述测量统计配置消息的测量统计对象信息所指定的网络状态参数进行测量和/或统计,得到测量结果和/或统计结果;
所述方法在所述通信站点完成状态参数测量和/或统计,得到测量结果和/或统计结果后,还包括,当所述测量结果和/或统计结果满足测量统计结果上报的触发条件时,生成测量统计响应消息,并发送所述测量统计响应消息。
本优选实施例中通过配置管理节点对通信站点进行测量统计配置,各通信站点对测量统计配置中规定的网络状态参数进行测量与统计,并上报测量统计响应消息,配置管理节点在测量统计结果满足触发事件时发起重配置决策,能够保证资源配置的合理性,保证有限的可配置频谱资源分配给最急需频谱的通信站点;配置管理节点能够做出更符合各站点需求的配置决策,提高频谱效率,减少由于配置决策无效所增加的信令交互开销及处理时延。
图6是根据本发明优选实施例的通信站点运行于伺机使用主系统空闲频谱方式下的系统架构示意图,如图6所示,下面的优选实施例一到四将针对这种工作方式进行具体实施例的描述,架构中的功能实体具体介绍如下:
配置管理节点指负责次级系统频谱资源配置管理的功能实体,可以是以下功能实体中的任一项:频谱协调器(SC,Spectrum Coordinator),中心控制节点(CCP,Central Control Point),重配管理模块(Reconfiguration Management module)、重配功能模块(Reconfiguration Function module)、重配实体(Reconfiguration Entity)、先进的定位实体、先进的定位功能、共存功能。配置管理节点可以是基于运营商的管理节点,管理运营商下属各通信站点的配置;或者配置管理节点可以是基于无线接入网的管理节点,管理该无线接入网内的各通信站点;或者配置管理节点可以是基于区域的管理节点,负责所管辖区域范围内各通信站点的配置。
典型的主系统如广播电视系统,对于广播电视系统来讲,频谱资源在很大程度上存在着可利用的空间,如某些广播电视系统频谱在某些地区并未被使用;某些广播电视系统频谱在某地区虽有覆盖,但某些时刻没有被使用,整体利用率偏低。而固定的频谱分配方式使得上述未被使用的频谱资源无法重新利用,例如无法为IMT系统所用。通过认知无线电技术(IMT)系统通过对广播电视系统信息的获取,伺机的占用广电系统在空间和时间上未使用的频谱资源(TVWS,TV White Space),从而提高广播电视系统频谱的利用率,改善了IMT系统频谱紧张的局面。
这种次级系统伺机占用主系统频谱资源的频谱使用方式,必须保证对主用户有效地保护,即次级系统使用主系统频谱资源时,不能对主系统用户造成有害干扰,这是认知无线电技术能够实现的前提条件。为了达到这样的目的,首先,次级系统的使用频谱及发射参数将受到主系统保护要求的限制,在最初确定这些参数时需要进行准确的决策;其次,次级系统需要及时获知主用户的出现,以便在发现次级系统所占用频谱资源上的主用户重新出现时,及时退出所述频谱资源,避免对主用户的干扰。
相应的,主系统空闲频谱资源,称为TVWS频谱,即470MHz-790MHz范围内主系统未使用的频谱资源。本优选实施例中,以TVWS频谱为例进行描述。主用户保护管理节点以地理位置信息数据库(GLDB,Geo-Location Database)为例,次级系统间干扰共存的配置管理节点以SC为例。TVWS频段CR技术的架构如图6所示,介绍如下。
GLDB负责主系统保护,为通信站点或次级系统管理节点提供主系统频谱使用情况,避免主系统受到次级系统的干扰。具体的,为通信站点提供其所在位置上的空闲频谱资源,并根据主系统保护准则,计算通信站点所允许的最大发射功率,通信站点在该发射功率限制下发射不会对主系统用户造成干扰;
SC为次级系统频谱资源重配置管理节点,负责各次级用户设备间的共存管理,优先级管理,及测量管理。
BS为通信站点,其可代表LTE,3G系统,2G系统等蜂窝网系统下的基站,接入点(AP,Access Point)如pico,femto等,或者WLAN,WRAN,Wimax等IEEE802系统下的接入点。
实施例一
图7是根据本发明优选实施例一的测量统计配置及决策流程示意图,如图7所示,BS运行于空闲频谱f1,测量统计结果事件触发上报情况下,测量统计配置及决策流程具体描述如下:
步骤S702:SC向次级用户设备BS发送测量统计配置消息;
其中包括如下信息:测量统计标识,测量统计对象,测量统计报告配置。
具体的如表1所示:
表1
Figure PCTCN2014089239-appb-000001
步骤S704:BS向SC发送测量统计配置确认消息,并对测量统计配置消息中测量统计对象,进行测量与统计;
BS向SC发送测量统计配置确认消息,设置为向SC确认已经成功收到测量统计配置消息。
具体测量过程为,BS向下属UE发送测量配置,并接收UE的测量报告。处在小区边缘处UE测量报告显示,某一区域内(如坐标(X,Y)为圆心50米为半径的圆内)100个用户测量值中40个用户的RSRP值在为-105dBm以下,低于-119dBm的用户数为5个,则落在覆盖弱场门限内的用户数比例为40%,满足测量统计结果上报触发条件。
步骤S706:BS向SC发送测量统计响应消息;
BS向SC发送测量统计响应消息,其中包括:测量结果在-105dBm>RSRP>-119dBm内的用户比例为40%,区域为:坐标(X,Y)为圆心50米为半径的圆内;
步骤S708:SC收到测量统计响应消息,进行重配置决策。
SC首先判断BS重配置原因,本实施例中所配置的测量统计对象及上报事件与覆盖相关,分别为:
覆盖空洞相关参数及预配置门限的含义为:在某一预定义的区域范围内,当测量得到RSRP值小于预定义门限(如-119dBm)的用户数量占区域内总用户数量的比例大于预定义比例(如30%)时,认为网络在对应位置上出现覆盖空洞;
覆盖弱场相关参数及预配置门限的含义为:在某一预定义的区域范围内,当测量得到RSRP值小于预定义门限(-105dBm)的用户数量占区域内总用户数量的比例大于预定义比例(如30%)时,认为网络在对应位置出现覆盖弱场;
越区覆盖相关参数及预配置门限的含义为:测量统计用户TA值,小区内超过TA门限的用户比例,以及计算超过TA门限的用户下行平均接收功率,则超过TA门限的用户比例大于预定义比例(如30%),且超过TA门限的用户下行平均接收功率大于预定义门限(如-75dBm)时,认为小区处于越区覆盖状态。
导频污染相关参数及预配置门限的含义为:当用户测量得到RSRP值超过预定义门限(如-90dBm)时认为是强导频,强导频数目大于等于预定义数目(如4个),且 最强导频场强值与非强导频中场强最大的场强值的差小于等于预定义门限(如6dB),则认为导频污染。
根据上面对覆盖问题的描述,BS上报的测量统计响应消息满足覆盖弱场问题。
SC运行重配置算法,基于主用户保护及次级用户设备间共存,计算BS所允许增大的发射功率值,确定BS可以进一步提高发射功率,以实现对覆盖弱场的消除,通过计算得到发射功率由30dBm增大到40dBm。
注:1、当存在多个SC时,为防止不同SC下的BS间相互干扰,SC为BS计算所允许增大的发射功率值时,还需要进一步考虑与相邻SC下属BS间的干扰。
2、与RSRP相似,参考信号信干噪比RS-CINR,物理下行控制信道信干噪比PDCCH SINR也可以作为评估小区覆盖状况的参数。
3、本实施例中,测量统计配置消息中的测量统计报告配置信息规定了一种测量统计结果的上报方式,其他的方式还包括以下一项或多项:
a)完成测量和/或统计后,单次上报测量结果和/或统计结果;
b)完成测量和/或统计后,以一定的周期多次上报测量结果和/或统计结果;
c)当测量和/或统计结果超过预配置门限值时,单次上报所述测量统计结果;
d)当测量和/或统计结果超过预配置门限值时,以一定的周期多次上报所述测量统计结果;
e)当测量和/或统计结果超过预配置门限值的连续或累计时长超过预配置时间时,上报所述测量统计结果;
f)当测量和/或统计结果超过预配置门限值时上报所述测量统计结果1,当测量和/或统计结果不再超过预配置门限值时上报所述测量统计结果2。
g)当测量和/或统计结果超过预配置门限值1时上报所述测量统计结果1;当测量和/或统计结果高于测量统计结果1超过预配置门限值2时,上报测量统计结果2。
实施例二
图8是根据本发明优选实施例二的测量统计配置及决策流程示意图,如图8所示,BS运行于空闲频谱f1,周期上报测量统计结果,并由于现有频谱资源无法满足网络需求触发重配置的场景下,测量统计配置及决策流程具体描述如下:
步骤S802:SC向次级用户设备BS发送测量统计配置消息;
其中包括如下信息:测量统计标识,测量统计对象,测量统计报告配置。
具体的如表2所示:
表2
Figure PCTCN2014089239-appb-000002
步骤S804:测量统计配置消息中测量统计对象(物理资源块利用率、呼叫拥塞率),进行测量与统计;
具体测量过程为,BS网管侧统计网络资源利用状态(物理资源块利用率),及UE呼叫拥塞的概率。统计的周期为60s一次,共4次,结果如下:
物理资源块利用率分别为80%,83%,83%,90%;呼叫拥塞率分别为:1%,1%,2%,2%。并把每一次统计得到的结果形成测量统计响应消息;
步骤S806:BS向SC发送4次发送测量统计响应消息;
SC接收到BS发送的4次测量统计响应消息,即测量统计结果;
步骤S808:SC收到测量统计响应消息,进行重配置决策。
当SC接收到BS发送的第4次测量统计结果后,即物理资源块利用率为:90%,拥塞率2%。判断得到BS所在网络现有频谱资源无法满足网络需求,需要触发重配置; SC运行重配置算法,为BS增加空闲频谱资源配置,通过BS所在位置上空闲频谱资源的获取,以及与其他次级用户设备的共存考虑,确定为BS配置空闲频谱资源f2,发射功率为30dBm。
注:1、如果测量还未到测量统计配置中指定的次数之前,SC根据BS的测量统计响应判断,网络需要重配,则BS无需执行其余的测量统计过程,直接接受SC的重配置。
2、与物理资源块利用率、呼叫拥塞率相似,能够反映网络资源不能满足需求、负载过载的网络参数还包括:PDCCH利用率,硬件处理器(硬件处理器(DSP,或FPGA,或CPU,或MPU))占用率,ERAB建立阻塞率,话务量,业务量,用户数。同样可以配置为测量统计对象,并根据测量统计结果上报触发重配置决策。
3、针对BS收到SC下发测量统计配置消息后的测量统计执行过程,可以由BS联合下属UE进行专门的测量统计获得;或者,针对现有系统网管侧已做统计的网络状态信息,BS可以根据网管侧的统计结果直接上报给SC。对于其他实施例中的测量统计执行过程均使用。
4、BS成功接收测量统计配置消息后,可选的可以回复测量统计配置确认消息,用以向SC确认已经成功接收所述测量统计配置消息,其他实施例中同样适用。
实施例三
图9是根据本发明优选实施例三的测量统计配置及决策流程示意图,如图9所示,BS运行于空闲频谱f1,BS执行单次测量统计并上报,网络由于频谱上的干扰值高于预配置门限触发重配置的场景下,测量统计配置流程具体描述如下:
步骤S902:SC向次级用户设备BS发送测量统计配置消息;
其中包括如下信息:测量统计标识,测量统计对象,测量统计报告配置。
具体的如表3所示:
表3
Figure PCTCN2014089239-appb-000003
步骤S904:BS对测量统计配置消息中测量统计对象,进行测量与统计;
具体测量过程为,BS测量RSSI、RSRP值,两者在相同带宽上测量,因此N为1,测量并计算得到:RSSI-RSRP=-102dBm。
步骤S906:BS向SC发送测量统计响应消息;
BS向SC发送测量统计响应消息,其中包括:干扰值为-102dBm。
步骤S908:SC收到测量统计响应消息,进行重配置决策。
SC判断是否触发重配置,频谱上的干扰值-102dBm,高于系统-104dBm的干扰容忍门限;以及在当前干扰水平下,要实现对下属用户的正常通信,所需的发射功率为40dBm(当前BS发射功率为30dBm)。
SC运行重配置算法,首先考察BS当前工作的空闲频谱是否允许增加发射功率,以满足当前信道条件下的正常通信;SC访问GLDB查询当前BS所在位置上空闲频谱信息,存在f1、f2、f3三段空闲频谱资源,对应的最大允许发射功率为:40dBm、30dBm、30dBm。从主用户保护的角度看,允许BS提高发射功率至40dBm,SC进一步考虑次级系统间共存,通过各次级用户设备与BS间的位置关系,频率隔离,传播模型,计算当BS以40dBm发射时,是否会对其他次级用户设备造成干扰,结论为不会造成干扰;因此SC判决可以通过重配置BS发射功率的方法解决目前干扰过高的问题。
注:如果在主用户保护的要求下,无法满足BS提高发射功率的需求,则BS无法继续使用所述空闲频谱f1,SC可进一步考虑为BS重配置空闲频谱至f2或f3,来实现BS的正常通信。具体过程与优选实施例二的步骤S808类似,这里不再赘述。
另外,BS工作频谱上干扰过大,会造成BS网络通信质量的下降,因此网络通信性能的下降,也可以间接反应工作频谱上的干扰过大。例如,通过对SINR的监测可以获得当前服务质量是否满足要求,SC接收SINR值并判断是否发起重配置,当SINR低于网络容忍值时,进而可以判断频谱上的干扰过大,这也是一种发现干扰过大触发重配置的方式,类似的参数还包括:传输速率,吞吐量,时延(终端从空闲态(Idle)到激活态(Active)转换时延,或者附着(Attach)时延,或者用户面时延,或者异系统切换业务中断时延),RRC连接建立成功率,E-RAB建立成功率,RRC连接重建立成功率,无线建立成功率,ERAB异常掉话率,RRC异常掉话率,系统内切换成功率,系统间切换成功率,传输速率,吞吐量。同样可以配置为测量统计对象,并根据测量统计结果上报触发重配置决策。流程与本优选实施例相同,这里不再赘述。
实施例四
图10是根据本发明优选实施例四的测量统计配置及决策流程示意图,如图10所示,当存在多个次级用户设备申请空闲频谱资源,SC根据多个BS的测量统计响应消息,综合考虑进行协调分配频谱资源,如图10所示,存在BS1、BS2两个次级用户设备,同属于SC的管理。下面做具体描述:
步骤S1002:SC向次级用户设备BS1、BS2发送测量统计配置消息;
为BS1、BS2发送的测量统计配置消息相同,其中包括如下信息:测量统计标识,测量统计对象,测量统计报告配置。
具体的如表4所示:
表4
Figure PCTCN2014089239-appb-000004
Figure PCTCN2014089239-appb-000005
步骤S1004:BS1、BS2根据测量统计配置消息进行指定网络状态参数的统计;
具体测量过程为,BS网管侧统计网络资源利用状态(物理资源块利用率),及UE呼叫拥塞的概率。得到BS1、BS2物理资源块利用率分别为95%、100%,将上述测量统计结果形成测量统计响应消息。
步骤S1006:BS1、BS2分别向SC发送测量统计响应消息;
BS1、BS2分别向SC发送测量统计响应消息,其中包括:物理资源块利用率BS1:95%;BS2:100%;
步骤S1008:SC收到测量统计响应消息,进行重配置决策。
SC运行重配置算法,由于BS1、BS2频谱资源紧张,预计为其配置空闲频谱资源;SC访问GLDB获取BS1、BS2所在位置上的空闲频谱资源信息,结果如下表所示:
表5
设备 位置 频率MHz 带宽MHz 最大允许发射功率
BS1 L1 f1=530 8 40dBm
BS2 L2 f1=530 8 40dBm
由上表可以看出,BS1与BS2都只有空闲频谱f1可以配置,可以保证两基站同时以40dBm的发射功率发射不干扰主用户,但彼此间可能存在同频干扰,SC在决策BS间资源分配时,考虑BS上报的触发原因,BS2物理资源利用率更高一些,因此,对资源需求更加急迫,优先满足BS2的频谱配置需求,将空闲频谱分配给BS2。
步骤S1010-S1014:SC向BS2发送空闲频谱分配决策结果,即空闲频谱f1=530MHz,带宽8MHz,最大允许发射功率为40dBm。供BS2选择确定其最终的运行参数,BS2根据自身需求,确定发射功率为30dBm。将配置结果反馈给SC。
步骤S1016-S1020:SC根据BS2的配置结果,进一步对BS1进行资源分配决策,为保证BS1在f1上发射不干扰BS2,则需要将发射功率限制到20dBm,因此BS1的空闲频谱配置结果为空闲频谱f1=530MHz,带宽8MHz,最大允许发射功率为20dBm。发送给BS1。
注:在本优选实施例中,BS1与BS2同时或在预定义的一段时间内(如10s),向SC发送了测量统计响应消息,SC为BS1、BS2统一进行资源配置决策,SC对于在预定义的一段时间内收到的测量统计响应消息并不区分先后顺序。当然SC也可以独立的为每一个请求进行资源分配决策,即收到测量统计响应消息就进行是否发起重配置的判断,进而进行资源分配决策,这种情况下,SC将优先满足先发送测量统计响应消息的通信站点的资源配置需求。
上述实施例一至四所述方案也适用于授权共享接入(LSA,License Share Access)技术下的测量统计配置,上报,及决策流程。
LSA(Licensed Shared Access;授权共享接入)技术就给出了在监管框架下,LSA主系统和LSA次级系统共享使用同一频谱资源的方法。所述同一频谱资源称之为LSA频谱资源,也就是授权系统和LSA系统共享使用的频谱资源;授权系统是指LSA频谱资源的原有授权用户;LSA系统是指被监管机构授权,可以与授权系统共享使用LSA频谱资源的用户。图11是根据本发明优选实施例的LSA技术的网络架构示意图,如图11所示,介绍如下。
LSA控制器(Controller)负责授权系统保护,为配置管理节点提供主系统频谱使用情况,避免授权系统受到次级系统的干扰。具体的,为配置管理节点提供一定区域范围内的授权系统频谱使用情况信息,并提供授权用户在该区域上的保护准则;
配置管理节点,负责各授权接入系统的授权共享资源配置,即根据LSA Controller提供的相关区域上的授权系统频谱使用信息,确定LSA系统下属通信站点可进行授权共享接入频谱(本专利中将授权共享接入频谱与主系统空闲频谱都称为可配置频谱),再根据授权系统保护准则确定相关通信站点的发射参数限制。
BS为通信站点,其可代表LTE,3G系统,2G系统等蜂窝网系统下的基站,接入点(AP,Access Point)如pico,femto等,或者WLAN,WRAN,Wimax等IEEE802系统下的接入点。
实施例五
图12是根据本发明优选实施例五的通信站点运行于多系统共享频谱方式下的系统架构示意图,如图12所示,本优选实施例将针对这种工作方式进行具体实施例的描述,架构中的功能实体具体介绍如下:
现有的IMT系统采用静态的、各无线接入技术(RAT,Radio Access Technology)独立的频谱划分使用。使得这种频谱规划机制无法跟上网络变化、负载分布变化、传输环境变化、技术演进变化、运营商策略变化。因而,业界提出多个RAT间协作的动态规划频谱,提高频谱利用率,缓解频谱不足的现状。配置管理节点以多无线接入技术协调器(Multi-Rat Coordinator)为例描述,其具体功能包括簇的划分;簇间频率规划;不同簇间各通信站点的共存管理;
BS为通信站点,其可代表LTE,3G系统,2G系统等蜂窝网系统下的基站,接入点(AP,Access Point)如pico,femto等,或者WLAN,WRAN,Wimax等IEEE802系统下的接入点。
图13是根据本发明优选实施例五的测量统计配置及决策流程示意图,如图13所示,本优选实施例针对同一区域范围内,各RAT频谱资源数量比例与各RAT下业务量比例不匹配触发重配置,如图13所示的流程,其中BS为一多模基站,同时支持GSM和LTE网络,即可以同时服务GSM用户和LTE用户。当前资源分配状态为:GSM网络10MHz,LTE网络10MHz。下面做具体描述:
步骤S1302:SC向次级用户设备BS发送测量统计配置消息;
其中包括如下信息:测量统计标识,测量统计对象,测量统计报告配置。
具体如下表:
表6
Figure PCTCN2014089239-appb-000006
步骤S1304:BS根据测量统计配置消息进行指定网络状态参数的统计;
根据测量统计配置消息中给出的测量统计对象,GSM、LTE网络业务量,这里业务量反应用户对频谱资源的需求的量,可以用各RAT下用户数与对应权值的乘积表示;本优选实施例中,按如下预置权值:一个GSM用户对频谱的需求为一个LTE用户对频谱的需求的1/5。因此GSM对应权值为1,LTE对应权值为5,则根据统计结果,GSM网络下有100个用户,相对业务量为100,LTE网络下有60个用户,相对业务量为300。
步骤S1306:BS向SC发送测量统计响应消息;
BS向SC发送测量统计响应消息,其中包括:GSM相对业务量为100,LTE相对业务量为300。
步骤S1308:SC收到测量统计响应消息,进行重配置决策。
则业务量比例V=100/(60*5)=1/3,LTE业务量明显大于GSM,且目前网络对各RAT的资源分配为1:1,因此资源分配并不能与实际负载匹配,触发资源分配重配置。
SC调整RAT间资源分配,以匹配负载状态。确定BS总频谱资源20MHz不变,GSM网络频谱资源调整为5MHz;LTE网络频谱资源调整为15MHz。
注:上述实施例一至四所述流程同样适用于通信站点运行于多系统共享频谱方式(比如IMT&GSM频段共享),区别在于,通信站点运行于伺机使用主系统空闲频谱方式下,由于通信站点使用的频谱资源为主系统空闲频谱,因此使用的前提是满足主系统保护要求,配置管理节点做决策时需要考虑空闲频谱上的发射参数限制,以保证不干扰主系统用户;而多系统共享频谱方式下,使用运营商授权频谱,在不同RAT间共享,不存在主系统,因此配置管理节点做决策时无需考虑主系统用户保护,只需在可配置频谱范围内考虑与其他通信站点间的共存。因此两种动态频谱共享的方式的共同点在于都需要考虑通信站点间的共存。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施例中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而, 可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种重配置方法及装置,具有以下有益效果:解决了相关技术中重配置决策不规范导致的问题,达到了使得重配置决策更加规范,提升资源配置合理性,提高频谱效率,减少由于配置决策无效所增加的信令交互开销及处理时延的效果。

Claims (13)

  1. 一种重配置方法,包括:
    配置管理节点发送配置消息,其中,所述配置消息设置为请求通信站点当前网络状态信息;
    所述配置管理节点接收所述配置消息的响应消息,其中,所述响应消息携带所述通信站点的所述当前网络状态信息;
    所述配置管理节点根据所述当前网络状态信息进行重配置决策。
  2. 根据权利要求1所述的方法,其中,所述当前网络状态信息包括以下至少之一:物理层测量信息,网络性能统计信息。
  3. 根据权利要求1所述的方法,其中,所述配置消息包括以下至少之一:
    测量统计标识,设置为标识所述配置消息;
    测量统计对象,设置为描述需测量和/或统计的网络状态信息;
    测量统计报告配置,设置为指示所述通信站点上报测量结果和/或统计结果的方式。
  4. 根据权利要求3所述的方法,其中,所述测量统计对象包括以下性能参数至少之一:
    参考信号接收功率RSRP,参考信号接收质量RSRQ,接收信号强度指示RSSI,覆盖率,参考信号载波干扰噪声比RS-CINR,物理下行控制信道信干噪比PDCCH SINR,时间提前量TA,物理资源块PRB利用率,物理下行控制信道PDCCH利用率,硬件处理器占用率,呼叫拥塞率,E-RAB建立阻塞率,潜在RRC连接数,潜在吞吐量需求,话务量,业务量,用户数,干扰值,RRC连接建立成功率,E-RAB建立成功率,RRC连接重建立成功率,无线建立成功率,ERAB异常掉话率,RRC异常掉话率,系统内切换成功率,系统间切换成功率,传输速率,吞吐量,UE从Idle态到Active态转换时延,Attach时延,用户面时延,异系统切换业务中断时延,各业务类型的业务量,各无线接入技术下的业务量。
  5. 根据权利要求3所述的方法,其中,测量统计报告配置包括以下信息至少之一:
    测量结果或统计结果上报的触发条件,预配置门限,测量结果或统计结果上报的数量,测量周期,上报周期。
  6. 根据权利要求5所述的方法,其中,所述测量结果或统计结果上报的触发条件包括以下至少之一:
    完成测量和/或统计后,单次上报所述测量结果和/或统计结果;
    完成测量和/或统计后,按照所述上报周期和/或上报次数多次上报测量结果和/或统计结果;
    在测量结果和/或统计结果超过所述预配置门限时,单次上报所述测量结果和/或统计结果;
    在测量结果和/或统计结果超过所述预配置门限时,按照所述上报周期和/或上报次数多次上报所述测量结果和/或统计结果;
    在测量结果和/或统计结果超过所述预配置门限的连续或累计时长超过预配置时间时,上报所述测量结果和/或统计结果;
    在测量结果和/或统计结果超过所述预配置门限时上报当前测量结果和/或统计结果,且当测量结果和/或统计结果不再超过所述预配置门限时上报当前测量结果和/或统计结果;
    在所述预配置门限为多个的情况下,当测量结果和/或统计结果超过第一预配置门限值时上报当前的第一测量结果和/或统计结果;当测量结果和/或统计结果超过第二预配置门限时,上报当前的第二测量结果和/或统计结果。
  7. 根据权利要求1所述的方法,其中,所述响应消息包括以下信息至少之一:
    测量统计标识,设置为标识所述配置消息;
    测量结果和/或统计结果。
  8. 根据权利要求1所述的方法,其中,所述配置管理节点根据所述当前网络状态信息进行重配置决策包括:
    所述配置管理节点根据所述当前网络状态信息,结合当前空闲频谱资源信息,及频谱管理策略,确定是否进行网络参数重配置和/或所述网络参数重配置的方案。
  9. 一种重配置方法,包括:
    通信站点接收配置消息,其中,所述配置消息设置为配置管理节点请求其管理的通信站点当前网络状态信息,并根据所述当前网络状态信息进行重配置决策;
    所述通信站点根据所述配置消息测量和/或统计当前网络状态信息,并发送所述配置消息的响应消息,其中所述响应消息中携带所述当前网络状态信息。
  10. 根据权利要求9所述的方法,其中,所述通信站点根据所述配置消息测量和/或统计当前网络状态信息包括:
    所述通信站点根据所述配置消息中的测量统计对象信息所指定的网络状态参数进行测量和/或统计,得到测量结果和/或统计结果。
  11. 根据权利要求10所述的方法,其中,在所述通信站点根据所述配置消息的测量统计对象信息所指定的网络状态参数进行测量和/或统计,得到测量结果和/或统计结果之后,还包括:
    当所述测量结果和/或统计结果满足上报的触发条件时,所述通信站点生成所述响应消息;
    所述通信站点将所述响应消息发送给所述配置管理节点。
  12. 一种重配置装置,位于配置管理节点,包括:
    第一发送模块,设置为发送配置消息,其中,所述配置消息设置为请求通信站点当前网络状态信息;
    第一接收模块,设置为接收所述配置消息的响应消息,其中,所述响应消息携带所述通信站点的所述当前网络状态信息;
    重配置决策模块,设置为根据所述当前网络状态信息进行重配置决策。
  13. 一种重配置装置,位于通信站点,包括:
    第二接收模块,设置为接收配置消息,其中,所述配置消息设置为配置管理节点请求其管理的通信站点当前网络状态信息,并根据所述当前网络状态信息进行重配置决策;
    测量统计模块,设置为根据所述配置消息测量和/或统计当前网络状态信息;
    第二发送模块,设置为发送所述配置消息的响应消息,其中所述响应消息中携带所述当前网络状态信息。
PCT/CN2014/089239 2014-07-25 2014-10-23 重配置方法及装置 WO2015117398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410359995.0A CN105282768A (zh) 2014-07-25 2014-07-25 重配置方法及装置
CN201410359995.0 2014-07-25

Publications (1)

Publication Number Publication Date
WO2015117398A1 true WO2015117398A1 (zh) 2015-08-13

Family

ID=53777216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089239 WO2015117398A1 (zh) 2014-07-25 2014-10-23 重配置方法及装置

Country Status (2)

Country Link
CN (1) CN105282768A (zh)
WO (1) WO2015117398A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118188A1 (zh) * 2016-01-05 2017-07-13 中兴通讯股份有限公司 一种分配频谱资源的方法及系统
CN113259881A (zh) * 2021-05-07 2021-08-13 隆讯(徐州)智能科技有限公司 一种实现自适应业务模型的NB-IoT物联网终端系统与方法
CN113938931A (zh) * 2021-12-17 2022-01-14 网络通信与安全紫金山实验室 应用于接入网的信息处理方法、系统、装置及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544819B (zh) * 2016-06-29 2022-04-19 中兴通讯股份有限公司 一种用于可编程器件的业务实现方法、装置和通信终端
CN107769843B (zh) * 2016-08-23 2020-05-01 中兴通讯股份有限公司 一种线路重配置方法及装置
CN108155968B (zh) * 2016-12-05 2020-06-05 大唐移动通信设备有限公司 一种基站下行正交振幅调制256qam的配置方法和装置
CN108616907B (zh) * 2016-12-28 2022-08-12 上海诺基亚贝尔股份有限公司 一种用于lte用户的移动性管理的方法、设备与系统
CN107124768B (zh) * 2017-04-13 2019-12-06 中国联合网络通信集团有限公司 一种功率分配的方法及装置
CN110677870B (zh) * 2018-07-03 2021-06-22 华为技术有限公司 过载控制方法和装置
CN111615221B (zh) * 2019-02-22 2021-12-28 大唐移动通信设备有限公司 一种连接重建立方法及基站
CN111432431A (zh) * 2020-04-07 2020-07-17 深圳市札记网络科技有限公司 基于大数据的电子商务交易平台及电子商务交易信息收集方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037768A (zh) * 2008-03-19 2011-04-27 诺基亚西门子通信公司 用于接入网络元件的自动重配置的机制
CN102364893A (zh) * 2011-10-21 2012-02-29 南京邮电大学 一种基于认知网络的重配置管理平面及重配置方法
CN103874113A (zh) * 2014-03-19 2014-06-18 成都西加云杉科技有限公司 无线网络维护方法、装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114151A1 (en) * 2011-02-23 2012-08-30 Research In Motion Limited Dynamically enabling coordinated multi-point transmissions by assigning dynamic component carriers
CN102857973A (zh) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 一种认知无线电系统资源重配的方法及系统
CN102958174A (zh) * 2011-08-26 2013-03-06 中兴通讯股份有限公司 频谱资源重配方法、装置及系统
CN103067926A (zh) * 2011-10-24 2013-04-24 中兴通讯股份有限公司 一种实现资源重配的方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037768A (zh) * 2008-03-19 2011-04-27 诺基亚西门子通信公司 用于接入网络元件的自动重配置的机制
CN102364893A (zh) * 2011-10-21 2012-02-29 南京邮电大学 一种基于认知网络的重配置管理平面及重配置方法
CN103874113A (zh) * 2014-03-19 2014-06-18 成都西加云杉科技有限公司 无线网络维护方法、装置和系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118188A1 (zh) * 2016-01-05 2017-07-13 中兴通讯股份有限公司 一种分配频谱资源的方法及系统
CN113259881A (zh) * 2021-05-07 2021-08-13 隆讯(徐州)智能科技有限公司 一种实现自适应业务模型的NB-IoT物联网终端系统与方法
CN113259881B (zh) * 2021-05-07 2024-04-30 隆讯(徐州)智能科技有限公司 一种实现自适应业务模型的NB-IoT物联网终端系统与方法
CN113938931A (zh) * 2021-12-17 2022-01-14 网络通信与安全紫金山实验室 应用于接入网的信息处理方法、系统、装置及存储介质

Also Published As

Publication number Publication date
CN105282768A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
EP3174329B1 (en) Re-allocation request method, and re-allocation method and device
WO2015117398A1 (zh) 重配置方法及装置
US11968650B2 (en) Methods and apparatus for opportunistic radio resource allocation in multi-carrier communication systems
US10178553B2 (en) Protection mechanisms for multi-tiered spectrum access systems
US10631303B2 (en) Cumulative interference allocation
US20150173100A1 (en) Apparatuses, methods, and computer programs for base station tranceivers
US20180213407A1 (en) Spectrum sharing method and device
US9344912B2 (en) Method and apparatus for transceiving neighbor network information in wireless communication system
WO2015180637A1 (zh) 基站控制方法、基站控制装置、无线通信系统及电子设备
WO2015109841A1 (zh) 认知无线电系统频谱资源配置方法和装置
Gerasimenko et al. Characterizing performance of load-aware network selection in multi-radio (WiFi/LTE) heterogeneous networks
JP2010109980A (ja) 無線セルラーネットワークにおけるスペクトル使用方法およびその装置
WO2012053208A1 (en) Wireless communication system, base station, management server, and wireless communication method
CN105611539B (zh) 动态频谱配置方法、装置和系统
TW201616913A (zh) 通訊裝置,基礎結構設備,行動通訊網路及方法
WO2015197537A1 (en) Technique for sharing frequencies
CN105792224A (zh) 一种网络间干扰协调方法
CN104144019A (zh) 一种次级系统无线性能监测触发频谱感知的方法及系统
WO2013029416A1 (zh) 一种触发无线资源重配的方法及装置
EP3412062B1 (en) Low power node which preferably allocates pcell on carrier in frequency band shared with macro node
US20210076280A1 (en) System and method for providing assistance data to a radio access network
US10292170B2 (en) Method and device for adaptive discovery of licensed-shared-access system interference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882012

Country of ref document: EP

Kind code of ref document: A1