WO2015158062A1 - 一种狭缝电极、阵列基板及显示装置 - Google Patents

一种狭缝电极、阵列基板及显示装置 Download PDF

Info

Publication number
WO2015158062A1
WO2015158062A1 PCT/CN2014/083309 CN2014083309W WO2015158062A1 WO 2015158062 A1 WO2015158062 A1 WO 2015158062A1 CN 2014083309 W CN2014083309 W CN 2014083309W WO 2015158062 A1 WO2015158062 A1 WO 2015158062A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
slit
strip
electrodes
strip electrodes
Prior art date
Application number
PCT/CN2014/083309
Other languages
English (en)
French (fr)
Inventor
王强涛
崔贤植
方正
田允允
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/435,996 priority Critical patent/US9885926B2/en
Publication of WO2015158062A1 publication Critical patent/WO2015158062A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134327Segmented, e.g. alpha numeric display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a slit electrode, an array substrate including the slit electrode, and a display device. Background technique
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • TN Twisted Nematic
  • VA Vertical Alignment
  • IPS Planar direction conversion
  • ADS Advanced Super Dimension Switch
  • the display principle is to form an electric field between the pixel electrode and the common electrode, and the electric field drives the deflection of the liquid crystal molecules to achieve a bright display of the image.
  • the pixel electrode and/or the common electrode are formed as slit electrodes to reduce the frontal overlapping surface between the pixel electrode and the common electrode. It also increases the light transmittance of the pixel.
  • Fig. 1 shows a pixel electrode 10 provided by the prior art.
  • the pixel electrode 10 is provided with a plurality of slits, and the electrodes between the adjacent slits are strip electrodes, and the strip electrodes 100 have the same width d.
  • the process margin for producing the pixel electrode 10 shown in Fig. 1 is low.
  • process margin refers to the process interval when the product performance meets the requirements.
  • the process margin reflects the overall dispersion of the quality characteristics of the processed product under a steady state.
  • Product quality is a comprehensive reflection of process margin. This means the machining accuracy required for the process to be stable under standard conditions such as the operator, machine equipment, raw materials, operating methods, measuring methods and environment. Summary of the invention
  • one side of the present invention A slit electrode is provided.
  • a slit electrode includes: at least one slit electrode unit, the slit electrode unit includes a plurality of strip electrodes, and a slit is formed between two adjacent strip electrodes;
  • Each of the strip electrodes has a set average width, and an average width of at least two strip electrodes in the slit electrode unit is not equal.
  • the average widths of any two strip electrodes in the slit electrode unit are not equal, and the average width of each strip electrode is increased or decreased in the order of arrangement.
  • the difference between the average widths of every two adjacent strip electrodes is constant, and the average width of each strip electrode in the slit electrode unit is 2 ⁇ 4 ⁇ .
  • the widths of the strip electrodes are equal, or the width of the strip electrodes is increased or decreased in accordance with the direction in which they extend.
  • the slit electrode includes two slit electrode units, and the strip electrodes on the two slit electrode units are mirror images.
  • the extending directions of the strip electrodes in the slit electrode unit are parallel to each other, or the extending directions of the adjacent two strip electrodes have a set angle.
  • an extending direction of two adjacent strip electrodes has a set angle; wherein the slit electrode unit includes a strip electrode extending in a first direction a strip electrode group, and a second strip electrode group composed of strip electrodes extending in the second direction; the strip electrodes in the first strip electrode group and the second strip electrode group are spaced apart.
  • the slit electrode includes two slit electrodes, and each strip electrode of one of the two slit electrode units extends in the first direction, and the strip electrodes of the other strip The second direction extends.
  • the slit electrodes provided by the various embodiments of the present invention have higher process margins than the slit electrodes of the prior art.
  • an array substrate including the above slit electrode.
  • an array substrate includes: sub-pixel units distributed in an array, the sub-pixel units including a common electrode and a pixel electrode insulated from each other At least one of the common electrode and the pixel electrode is a slit electrode provided in accordance with any of the above various embodiments of the present invention.
  • the common electrode and the pixel electrode are located in different layers, and are insulated by an insulating layer therebetween.
  • the common electrode and the pixel electrode are slit electrodes; and the strip electrodes in the common electrode and the strip electrodes in the pixel electrode are arranged at intervals when viewed in a direction perpendicular to the array substrate There is no overlap between the two.
  • the common electrode and the pixel electrode are disposed in the same layer, and the strip electrodes in the common electrode and the strip electrodes in the pixel electrode are spaced apart.
  • Another aspect of the present invention provides a display device comprising the array substrate provided in any of the above various embodiments of the present invention.
  • the present invention provides a slit electrode, comprising: at least one slit electrode unit, the slit electrode unit includes a plurality of strip electrodes, and a slit between two adjacent strip electrodes; wherein each strip shape
  • the electrodes have a set average width, and the average widths of at least two of the strip electrode units are not equal.
  • FIG. 1 is a schematic structural view of a pixel electrode provided by the prior art
  • FIG. 2 is a schematic view showing the structure of a slit electrode according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the structure of a slit electrode according to another embodiment of the present invention
  • FIG. 4 is a comparison with an embodiment and a comparison according to the present invention, respectively. Corresponding product light transmittance and strip electrode width relationship diagram;
  • FIG. 5 is a schematic structural view of a slit electrode according to still another embodiment of the present invention
  • FIG. 6 is a schematic structural view of a slit electrode according to still another embodiment of the present invention
  • FIG. 7 is provided according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the pixel electrode and the common electrode shown in FIG. 7 in the AA direction;
  • FIG. 9 is a schematic structural view of a display device according to another embodiment of the present invention;
  • FIG. 10 is a cross section of FIG. 9 in the BB direction.
  • FIG. 11 is a schematic structural diagram of a display device according to still another embodiment of the present invention.
  • FIG. Figure 12 is another cross-sectional view of Figure 9 in the BB direction. detailed description
  • One aspect of the present invention provides a slit electrode to solve the problem of a low process margin of the prior slit electrode. Another aspect of the invention provides an array substrate including the slit electrodes. Another aspect of the present invention provides a display device including the array substrate.
  • a slit electrode includes: at least one slit electrode unit 1.
  • the slit electrode unit 1 includes: a plurality of strip electrodes 11 having slits between adjacent strip electrodes 11; wherein each strip electrode 11 has a set average width, and each slit electrode The average width of at least two strip electrodes 11 in unit 1 is not equal.
  • the slit electrode shown in Fig. 2 includes a slit electrode unit 1; the slit electrode shown in Fig. 3 includes two slit electrode units 1.
  • the average widths of the strip electrodes 11 are not completely equal. That is, at least two of the strip electrodes have an average width that is unequal, and an average width of one of the at least two strip electrodes is a first average width and an average width of the other is a second average width.
  • the average width of at least two strip electrodes in the slit electrode unit is not equal, and such an arrangement can improve the precision range of the slit electrode and increase the process margin of the slit electrode.
  • the precision range in the fabrication process is wider, and the process margin of the slit electrode is higher.
  • the present invention performs a simulation test by software.
  • the slit electrode as the pixel electrode as an example, two kinds of liquid crystal display panels are designed, which correspond to the following embodiments and comparative examples;
  • Embodiment The liquid crystal display panel satisfies: the average width of each strip electrode is not equal to the average width of any other strip electrodes, and the structure of the liquid crystal display panel other than the pixel electrode is the same as that of the liquid crystal display panel in the comparative example.
  • the average width of the strip electrodes is in order of arrangement: 2.0 ⁇ m, 2.2 ⁇ m, 2.4 ⁇ m, 2.6 ⁇ m, 2.8 ⁇ m.
  • the liquid crystal display panel satisfies:
  • the average width of each strip electrode is equal to the average width of any other strip electrodes, and is 2.4 ⁇ m.
  • the process margins of the slit electrodes in the examples and the comparative examples were simulated, and the light transmittance of the slit electrodes and the capacitance storage ratio between the common electrodes were simulated and tested. As shown in Table 1 below.
  • Table 1 Simulation results of process margin, light transmittance and capacitance storage rate of the slit electrode
  • Fig. 4 is a graph showing the relationship between the light transmittance of the product and the strip electrode width corresponding to the above examples and comparative examples.
  • the process variation range of the comparative example is 2.2 to 2.6 ⁇ m, which can be expressed as 2.4 ⁇ 0.2 ⁇ m, and the process variation range according to the embodiment of the present invention is 2.0 to 2.8 ⁇ , which can be expressed as 2.4 ⁇ 0.4 ⁇ .
  • the precision range for making the slit electrode is increased by about one time, and the process margin is increased.
  • the average width of any one of the slit electrodes 1 is not completely equal to the average width of the other strip electrodes 11, and there are many implementations. the way.
  • the average width of the strip electrodes is changed once every n strip electrodes, wherein ⁇ is a positive integer.
  • the width of each strip electrode in the slit electrode unit may be increased or decreased according to the arrangement order.
  • the arrangement order the light transmittance of the corresponding region of each strip electrode is decreased or increased, and the change trend of the light transmittance is uniform. Therefore, there is no problem that the light transmittance of a certain region is large and the light transmittance of a certain region is small, so that the display effect is better.
  • the difference between the average widths of every two adjacent strip electrodes can be constant.
  • the average width of each strip electrode in the slit electrode unit ranges from 2 to 4 ⁇ m.
  • the width of the strip electrodes may be 2.2 ⁇ m, 2.4 ⁇ m, 2.6 ⁇ m, 2.8 ⁇ m, 3.0 ⁇ m, etc. in order of arrangement; or 2.3 ⁇ , 2.5 ⁇ , 2.7 ⁇ , 2.9 ⁇ , 3. ⁇ , etc.; or may also be 2.1 ⁇ , 2.3 ⁇ , 2.5 ⁇ , 2.7 ⁇ , 2.9 ⁇ , and the like.
  • the overall configuration of the electrodes is distributed in a long shape, the widths of the strip electrodes are equal, or the width of the strip electrodes is increased or decreased according to the direction in which they extend.
  • the two long sides of the pattern of the strip electrodes are straight lines, and the two long sides are parallel or non-parallel.
  • a slit electrode as shown in FIG. 3 can be designed, that is, the slit electrode includes two slit electrode units 1, and the strip electrodes 11 of the two slit electrode units 1 are formed. Mirror distribution.
  • the wider the average width of the strip electrodes in the slit electrode unit the smaller the light transmittance, the narrower the average width of the strip electrodes, and the higher the light transmittance.
  • the strip electrodes on the two slit electrode units are mirror images, if the average width of each strip electrode arranged from the edge to the center in one slit electrode unit is sequentially increased (or sequentially decreased), the other slit electrode The average width of each strip electrode arranged from the edge to the center in the cell is also sequentially increased (or sequentially decreased).
  • the strip electrodes of the present invention have an average width on the order of several micrometers, for example, an average width in the range of 2 to 4 ⁇ m, and a difference in width between the strip electrodes in the range of about 0.2 to 0.5 ⁇ m, and an average width of the strip electrodes.
  • the variation range is about one tenth of the average width of the strip electrodes, and the width of the strip electrodes is wider, and the strip electrodes having a smaller average width increase the local light transmittance compared with the prior art, and the average width is larger.
  • the large strip electrode reduces the local light transmittance, and the light transmittance of the pixel region corresponding to the same slit electrode unit as a whole is compared with the strip electrode arrangement of the average width of the prior art.
  • the light transmittance will not change much.
  • the transmission rate is more uniform.
  • the extending directions of the strip electrodes in the slit electrode unit are parallel to each other, or the extending direction of the adjacent strip electrodes has a set angle.
  • the extending direction of two adjacent strip electrodes has a set angle ⁇ , and when the slit electrodes are common electrodes (or pixel electrodes), strip electrodes and pixels arranged in different directions
  • the direction of the electric field between the electrodes (or the common electrode) is different, and the deflection directions of the liquid crystal molecules of the strip electrodes arranged in different directions are different, which can increase the viewing angle range of the liquid crystal display device, and achieve the purpose of wide viewing angle display.
  • the slit electrode unit 1 includes a first strip electrode group composed of a first strip electrode 31 extending in a first direction, and a second strip electrode 41 composed of a second strip electrode 41 extending in a second direction Strip electrode group.
  • the first strip electrode 31 of the first strip electrode group and the second strip electrode 41 of the second strip electrode group are arranged at intervals to ensure that the adjacent strip electrodes are arranged in different directions, adjacent to the adjacent two strips.
  • the liquid crystal molecules of the electrodes have different deflection directions, which further increases the viewing angle range of the liquid crystal display device.
  • a line segment with a single arrow indicates the direction in which the strip electrodes extend.
  • the line segment with an arrow indicates the angle at which the strip electrodes extend.
  • the angle ⁇ between the first direction and the second direction ranges from 3 to 20. .
  • the angle between the first direction and the second direction may be 3 to 11. .
  • the slit electrode includes two slit electrode units 1, and each slit electrode unit
  • the extending directions of the strip electrodes in 1 are parallel to each other.
  • Each of the first strip electrodes 31 of one of the two slit electrode units 1 extends in a first direction, and each of the second strip electrodes 41 in the other extends in a second direction.
  • a line segment with a single arrow indicates the direction in which the strip electrodes extend.
  • the line segment with an arrow indicates the angle at which the strip electrodes extend.
  • the angle between the first direction and the second direction is ⁇ .
  • the strip electrodes in the slit electrodes may be electrically connected to the ends of the strip electrodes on the same side by wires.
  • the slit electrode may be a common electrode and/or a pixel electrode in a liquid crystal display panel.
  • a direct current signal is applied to the common electrode, and a gray scale signal is applied to the pixel electrode, and an electric field is generated between the two to control the deflection of the liquid crystal molecules to realize image display.
  • an array substrate comprising: sub-pixel units distributed in an array, the sub-pixel unit comprising: a common electrode and a pixel electrode, at least one of the common electrode and the pixel electrode being the slit electrode.
  • FIG. 7 is a schematic structural diagram of a pixel electrode and a common electrode in a display device according to an embodiment of the present invention.
  • Figure 8 is the view shown in Figure 7 A cross-sectional view of the pixel electrode and the common electrode in the AA direction.
  • the common electrode 3 and the pixel electrode 4 on the base substrate 6 are located in different layers, and the common electrode 3 is located below the pixel electrode 4, which is insulated by an insulating layer 5, which is provided according to various embodiments of the present invention.
  • the slit electrode, the pixel electrode 4 includes a pixel strip electrode 411 between the slits, and the common electrode 3 is a planar electrode.
  • Embodiment 2 The common electrode and the pixel electrode are located in different layers, the common electrode is located above the pixel electrode, and the two are insulated by an insulating layer, and the common electrode is a slit electrode provided according to various embodiments of the present invention, and the pixel electrode is a surface Electrode.
  • FIG. 9 is a schematic plan view of the common electrode 3 and the pixel electrode 4, and FIG. 10 is a cross-sectional view of FIG. 9 in the BB direction, in which the common electrode 3 and the pixel electrode 4 are located at different layers.
  • the common electrode 3 is located under the pixel electrode 4, and is insulated by an insulating layer 5 therebetween.
  • the pixel electrode 4 and the common electrode 3 are slit electrodes provided according to various embodiments of the present invention.
  • the pixel electrode 4 includes a plurality of pixel strip electrodes 41 1
  • the common electrode 3 includes a plurality of common strip electrodes 311.
  • one embodiment is as follows: As shown in FIG. 11 , one of the relatively rectangular pixel units of each common strip electrode 311 may be disposed. The edge is inclined by 5°, and each pixel strip electrode 411 is inclined by 13° with respect to the edge of the rectangular pixel unit. The angle between the common strip electrode 31 1 and the pixel strip electrode 41 1 is about 8°. This angle ensures that the common strip electrode 311 and the pixel strip electrode 411 are almost parallel, and does not cause a dark state of the liquid crystal display device to leak light.
  • Embodiment 4 The common electrode and the pixel electrode are located in different layers, the common electrode is located above the pixel electrode, and the two are insulated by an insulating layer, and the pixel electrode and the common electrode are slit electrodes provided according to various embodiments of the present invention.
  • the projection of the common electrode and the pixel electrode on the array substrate has no overlapping area.
  • Embodiment 3 and Embodiment 4 Compared with Embodiment 1 and Embodiment 2, the overlapping area between the pixel electrode and the common electrode is reduced, and the positive electric field between the two is reduced, thereby reducing the two The capacitance between the two improves the display efficiency of the image.
  • the common electrode and the pixel electrode are located in different layers, and both are slit electrodes, the slit in the common electrode and the slit in the pixel electrode are wider, and a common electrode is fabricated. And the process margin of the pixel electrode will be significantly improved.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the common electrode 3 and the pixel electrode 4 are slit electrodes provided in accordance with various embodiments of the present invention.
  • FIG. 12 a second sectional view of Fig. 9 in the BB direction, in which the common electrode 3 and the pixel electrode 4 are disposed in the same layer.
  • the common strip electrode 311 in the common electrode 3 and the pixel strip electrode 411 in the pixel electrode 4 are spaced apart and kept insulated from each other.
  • the average strip width of the common strip electrode 311 in the common electrode 3 and the pixel strip electrode 41 1 in the pixel electrode 4 may not be equal.
  • the average width of each of the common strip electrodes 311 and the pixel strip electrodes 411 is incremented or decremented in the order of arrangement.
  • the process variation range is large, and the precision range of the slit electrode is increased. About doubled, the process margin increased.
  • the product is mass-produced, it is easier to obtain a good product with a light transmittance that meets the demand, thereby achieving cost savings.
  • Another aspect of the present invention also provides a display device comprising the above array substrate provided in accordance with various embodiments of the present invention.
  • the display device includes a first substrate and a second substrate disposed opposite to each other, one of the first substrate and the second substrate is a substrate including a pixel electrode and a common electrode, and the other is a substrate including a black matrix and a color filter. At least one of the pixel electrode and the common electrode is a slit electrode provided in accordance with any of the various embodiments of the present invention.
  • the display device includes: a first substrate and a second substrate disposed opposite to each other, and one of the first substrate and the second substrate is a substrate including a pixel electrode, a common electrode, a black matrix, and a color filter; the first substrate A liquid crystal layer is disposed between the second substrate; at least one of the pixel electrode and the common electrode is a slit electrode provided in accordance with any of the various embodiments of the present invention.
  • the display device may further be: based on the display devices of the above two structures, further comprising: A pixel electrode and a common electrode are disposed on the substrate opposite to the substrate on which the pixel electrode and the common electrode are located.
  • the display devices provided in accordance with various embodiments of the present invention are merely a few examples, and any display device including slit electrodes provided in accordance with various embodiments of the present invention is within the scope of the present invention.
  • the display device may be a display device such as a liquid crystal display panel, a liquid crystal display, or a liquid crystal television.
  • a slit electrode includes: at least one slit electrode unit, the slit electrode unit includes a plurality of strip electrodes; wherein, each strip electrode in the slit electrode unit The average width is not exactly the same.
  • This arrangement of the slit electrodes can increase the accuracy range of the slit electrodes and increase the process margin of the slit electrodes. It has been verified that the common electrode and/or the pixel electrode are formed by using the slit electrode provided by the present invention, and when the light transmittance reaches 98%, the precision range of the slit electrode is increased by about one time, and the process margin is improved. When the product is mass-produced, it is easier to obtain a good product with a light transmittance that meets the demand, thereby achieving cost savings. It is within the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and the modifications

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种解决现有狭缝电极的工艺余量较低的问题的狭缝电极及包括所述狭缝电极的阵列基板及显示装置,该狭缝电极包括:至少一个狭缝电极单元(1),所述狭缝电极单元(1)包括多个条状电极(11),相邻两个条状电极(11)之间具有狭缝;其中,每一条状电极(11)具有设定的平均宽度,所述狭缝电极单元(1)中的至少两个条状电极(22)的平均宽度不相等。

Description

一种狭缝电极、 阵列基板及显示装置 技术领域
本发明涉及显示技术领域, 尤其涉及一种狭缝电极、 包括所述狭 缝电极的阵列基板及显示装置。 背景技术
目前, 薄膜晶体管液晶显示器( Thin Film Transistor Liquid Crystal Display, TFT-LCD ) 的显示模式主要有扭曲向列 ( Twisted Nematic, TN )模式、 垂直取向 ( Vertical Alignment, VA )模式、 平面方向转换 ( In-Plane-Switching, IPS )模式和高级超维场转换 ( ADvanced Super Dimension Switch, ADS )模式或其改进技术等。
无论哪一种模式的薄膜晶体管液晶显示器, 显示原理都是在像素 电极和公共电极之间形成电场, 电场驱动液晶分子偏转实现图像的明 暗显示。
现有技术为了降低像素电极和公共电极正对交叠面之间的电容, 将像素电极和 /或公共电极制作为狭缝电极, 以减少像素电极和公共电 极之间的正对交叠面, 并且还能够提高像素的光透过率。
以像素电极为例说明, 参见图 1 , 图 1示出了现有技术提供的像素 电极 10。
像素电极 10设置有多个狭缝, 相邻狭缝之间的电极为条状电极, 条状电极 100的宽度一致均为 d。 制作图 1所示的像素电极 10的工艺 余量较低。
所谓工艺余量是指当产品性能达到要求时的工艺区间。 例如在现 有技术中, 一旦条状电极宽度变化>0.2 11 , 产品性能不满足要求, 则 称该 0.2μιη为 "工艺余量" 。 工艺余量反映某一工艺在稳定状态下, 所加工的产品质量特性值的总体离散程度。 产品质量是工艺余量的综 合反映。 也就是说在操作者、 机器设备、 原材料、 操作方法、 测量方 法和环境等标准条件下, 工序呈稳定状态时所需要的加工精度。 发明内容
为了解决现有狭缝电极的工艺余量较低的问题, 本发明的一个方 面提供了一种狭缝电极。
根据本发明的一个实施例, 一种狭缝电极包括: 至少一个狭缝电 极单元, 所述狭缝电极单元包括多个条状电极, 相邻两个条状电极之 间具有狭缝; 其中, 每一个条状电极具有设定的平均宽度, 所述狭缝 电极单元中的至少两个条状电极的平均宽度不相等。
根据本发明的另一个实施例, 所述狭缝电极单元中任意两个条状 电极的所述平均宽度不相等, 各条状电极的平均宽度按照排列次序递 增或递减。
根据本发明的另一个实施例, 每两个相邻的条状电极的平均宽度 之间的差值是恒定的, 并且所述狭缝电极单元中的各条状电极的平均 宽度范围为 2〜4μιη。
根据本发明的另一个实施例, 所述条状电极的宽度处处相等, 或 者所述条状电极的宽度按照自身的延伸方向递增或递减。
根据本发明的另一个实施例, 所述狭缝电极包括两个狭缝电极单 元, 两个狭缝电极单元上的条状电极呈镜像分布。
根据本发明的另一个实施例, 所述狭缝电极单元中的各条状电极 的延伸方向相互平行, 或者相邻两个条状电极的延伸方向具有设定夹 角。
才艮据本发明的另一个实施例, 相邻两个条状电极的延伸方向具有 设定夹角; 其中, 所述狭缝电极单元中包括由沿第一方向延伸的条状 电极组成的第一条状电极组, 和由沿第二方向延伸的条状电极组成的 第二条状电极组; 所述第一条状电极组和第二条状电极组中的条状电 极间隔排列。
根据本发明的另一个实施例, 所述狭缝电极包括两个狭缝电极单 述两个狭缝电极单元中的一个的各条状电极沿第一方向延伸, 另一个 的各条状电极沿第二方向延伸。
通过软件模拟结果可知, 与现有技术的狭缝电极相比, 本发明的 各个实施例提供的狭缝电极的工艺余量较高。
本发明的另一个方面提供了一种包括上述狭缝电极的阵列基板。 根据本发明的一个实施例, 一种阵列基板包括: 呈阵列分布的亚 像素单元, 所述亚像素单元包括相互绝缘的公共电极和像素电极, 所 述公共电极和像素电极中的至少一个为根据本发明的上述各个实施例 中任一方式提供的狭缝电极。
根据本发明的另一个实施例 , 所述公共电极和像素电极位于不同 层, 二者之间通过绝缘层相绝缘。
根据本发明的另一个实施例, 所述公共电极和像素电极为狭缝电 极; 所述公共电极中的条状电极和像素电极中的条状电极从垂直于阵 列基板的方向上观看时间隔排列, 二者之间无重叠区域。
根据本发明的另一个实施例, 所述公共电极和像素电极同层设置, 公共电极中的条状电极和像素电极中的条状电极间隔排列。
本发明的另一个方面提供了一种显示装置, 所述显示装置包括根 据本发明的上述各个实施例中任一方式提供的阵列基板。
本发明提供了一种狭缝电极, 包括: 至少一个狭缝电极单元, 所 述狭缝电极单元包括多个条状电极, 相邻两个条状电极之间具有狭缝; 其中, 每一条状电极具有设定的平均宽度, 所述狭缝电极单元中的至 少两个条状电极的平均宽度不相等。 这样的设置方式可以提高制作狭 缝电极的精度范围, 提高狭缝电极的工艺余量。 在制作所述狭缝电极 时, 其制作过程中的精度范围较宽, 狭缝电极的工艺余量较高。 附图说明
图 1为现有技术提供的像素电极结构示意图;
图 2为根据本发明的一个实施例提供的狭缝电极结构示意图; 图 3为根据本发明的另一个实施例提供的狭缝电极结构示意图; 图 4 为分别与根据本发明的实施例和比较例对应的产品光透过率 与条状电极宽度关系图;
图 5为根据本发明的又一个实施例提供的狭缝电极结构示意图; 图 6为根据本发明的再一个实施例提供的狭缝电极结构示意图; 图 7 为根据本发明的一个实施例提供的显示装置中像素电极和公 共电极的结构示意图;
图 8为图 7所示的像素电极和公共电极在 AA方向的截面图; 图 9为根据本发明的另一个实施例提供的显示装置结构示意图; 图 10为图 9在 BB方向的一种截面图;
图 11为根据本发明的又一个实施例提供的显示装置结构示意图; 图 12为图 9在 BB方向的另一种截面图。 具体实施方式
本发明的一个方面提供了一种狭缝电极, 以解决现有狭缝电极的 工艺余量较低的问题。 本发明的另一个方面提供了一种包括所述狭缝 电极的阵列基板。 本发明的另一个方面提供了一种包括所述阵列基板 的显示装置。
以下将结合附图对本发明提供的各个实施例进行说明。
参见图 2和图 3 , 根据本发明的实施例提供的狭缝电极包括: 至少 一个狭缝电极单元 1。 所述狭缝电极单元 1 包括: 多个条状电极 11 , 相邻两个条状电极 11之间具有狭缝; 其中, 每一个条状电极 11 具有 设定的平均宽度, 每一个狭缝电极单元 1 中的至少两个条状电极 11的 平均宽度不相等。
图 2所示的狭缝电极包括一个狭缝电极单元 1 ; 图 3所示的狭缝电 极包括两个狭缝电极单元 1。
由图 2和图 3中任一个所示的狭缝电极可知, 条状电极 11的平均 宽度不完全相等。 也就是说, 至少有两个条状电极平均宽度不相等, 所述至少两个条状电极中的一个的平均宽度为第一平均宽度, 另一个 的平均宽度为第二平均宽度。
根据该实施例所述的狭缝电极单元中的至少两个条状电极的平均 宽度不相等, 这样的设置方式可以提高制作狭缝电极的精度范围, 提 高狭缝电极的工艺余量。 在制作所述狭缝电极时, 其制作过程中的精 度范围较宽, 狭缝电极的工艺余量较高。
为了说明根据本发明的实施例提供的狭缝电极具有较高的工艺余 量, 本发明通过软件进行了模拟测试。 以狭缝电极为像素电极为例, 设计了两种结构的液晶显示面板, 对应下述实施例和比较例;
实施例: 液晶显示面板满足: 每一个条状电极的平均宽度与其他 任一个条状电极的平均宽度不相等, 液晶显示面板除像素电极之外的 其他结构与比较例中的液晶显示面板结构相同; 条状电极的平均宽度 按照排列顺序依次为: 2.0μιη、 2.2μιη、 2.4μιη、 2.6μιη、 2.8μιη。
比较例: 液晶显示面板满足: 每一个条状电极的平均宽度与其他 任一个条状电极的平均宽度相等, 并且为 2.4μιη。 对实施例和比较例中的狭缝电极的工艺余量进行了模拟测试, 并 且对狭缝电极的光透过率、 与公共电极之间的电容存储率进行了模拟 测试, 得到的模拟测试结果如下表一所示。
表一: 狭缝电极的工艺余量、 光透过率和电容存储率模拟结果
Figure imgf000007_0001
图 4 为上述实施例和比较例对应的产品光透过率与条状电极宽度 关系图。
当产品光透过率满足需求时, 比较例的工艺变动范围为 2.2〜2.6μιη, 可以表示为 2.4 ± 0.2μιη, 根据本发明的实施例工艺变动范 围为 2.0〜2.8μιη, 可以表示为 2.4 ± 0.4μιη。 制作狭缝电极的精度范围增 大了约一倍, 工艺余量提高。 产品在量产时更易于获得光透过率满足 需求的良品, 从而实现成本的节约。
在上述图 2和图 3所示的狭缝电极中, 狭缝电极单元 1 中的任一 个条状电极 11的平均宽度与其他条状电极 11的平均宽度不完全相等, 且有较多的实施方式。
例如, 按照每一个狭缝电极单元中的各条状电极 11的排列顺序, 每间隔 η个条状电极, 条状电极的平均宽度变化一次, 其中 η为正整 数。
狭缝电极单元中的各条状电极的宽度可以按照排列顺序递增或递 减, 按照排列顺序, 各条状电极的对应区域的光透过率递减或递增, 光透过率的变化趋势是一致的, 因此在视觉上不会出现突然某一区域 光透过率较大而某一区域光透过率较小的问题, 从而实现显示效果较 佳的目的。
每两个相邻的条状电极的平均宽度之间的差值可以是恒定的。
所述狭缝电极单元中的各条状电极的平均宽度范围为 2〜4μιη。 具 体实施时, 可以采用以下几种实施方式: 条状电极的宽度按照排列次 序依次可以为 2.2μιη、 2.4μιη、 2.6μιη、 2.8μιη、 3.0μιη等; 或者可以为 2.3μηι、 2.5μηι、 2.7μηι、 2.9μηι、 3. Ιμηι等; 或者还可以为 2.1μηι、 2.3μηι、 2.5μηι、 2.7μηι、 2.9μηι等。 电极的整体 构呈长 ^状分布, 所述条状 极的宽度处处相等, 或者 所述条状电极的宽度按照自身的延伸方向递增或递减。
也就是说, 条状电极的图案的两个长边为直线, 两个长边相互平 行或者不平行。
在上述任一实施方式的基础上, 可以设计出如图 3 所示的狭缝电 极, 即狭缝电极包括两个狭缝电极单元 1 , 两个狭缝电极单元 1中的条 状电极 11呈镜像分布。
狭缝电极单元内的条状电极平均宽度越宽, 光透过率越小, 条状 电极平均宽度越窄, 光透过率越大。 两个狭缝电极单元上的条状电极 呈镜像分布时, 若一个狭缝电极单元中从边缘到中心排列的各条状电 极的平均宽度依次递增 (或依次递减) , 则另一个狭缝电极单元中从 边缘到中心排列的各条状电极的平均宽度也依次递增 (或依次递减) 。 因此狭缝电极的光透过率由边缘到中心逐渐递减 (或递增) , 狭缝电 极的光透过率有规律地呈微小梯度的变化, 整体上狭缝电极的光透过 率不会有突然的变化, 不会影响图像的显示效果。 并且, 本发明的条 状电极的平均宽度在几微米量级, 例如, 平均宽度范围为 2〜4μιη, 条 状电极之间的宽度差值在约 0.2〜0.5μιη范围内 ,条状电极平均宽度的变 化范围约占条状电极平均宽度的十分之一, 并且条状电极的宽度范围 较宽, 平均宽度较小的条状电极相比较现有技术增加了局部光透过率, 平均宽度较大的条状电极相比较现有技术降低了局部光透过率, 整体 上同一狭缝电极单元对应的像素区域的光透过率相比较现有技术等平 均宽度的条状电极排布对应的光透过率不会有较大改变。 透过率更加均匀。
在上述任一实施方式的狭缝电极中, 所述狭缝电极单元中的各条 状电极的延伸方向相互平行, 或者相邻两个条状电极的延伸方向具有 设定夹角。
参见图 5 , 相邻两个条状电极的延伸方向具有设定夹角 α , 当狭缝 电极为公共电极 (或像素电极) 时, 不同方向排列的条状电极与像素 电极 (或公共电极) 之间的电场方向不同, 靠近不同方向排列的条状 电极的液晶分子的偏转方向不同, 可以增加液晶显示装置的视角范围, 实现广视角显示的目的。
具体地, 狭缝电极单元 1 中包括由沿第一方向延伸的第一条状电 极 31组成的第一条状电极组,和由沿第二方向延伸的第二条状电极 41 组成的第二条状电极组。
第一条状电极组中的第一条状电极 31和第二条状电极组中的第二 条状电极 41间隔排列, 保证相邻两个条状电极排列方向不同, 靠近相 邻两个条状电极的液晶分子的偏转方向不同, 进一步增加了液晶显示 装置的视角范围。
在图 5 中, 带单箭头的线段表示条状电极的延伸方向。 带 箭头 的线段表示条状电极延伸方向的夹角。 第一方向和第二方向之间的夹 角 α的范围为 3〜20。 。 例如, 第一方向和第二方向之间的夹角可以为 3〜11。 。
参见图 6 , 狭缝电极包括两个狭缝电极单元 1 , 每一狭缝电极单元
1中的各条状电极的延伸方向相互平行。所述两个狭缝电极单元 1 中的 一个中的各第一条状电极 31沿第一方向延伸, 另一个中的各第二条状 电极 41沿第二方向延伸。
在图 6 中, 带单箭头的线段表示条状电极的延伸方向。 带 箭头 的线段表示条状电极延伸方向的夹角。 第一方向和第二方向之间的夹 角为 β 。
狭缝电极中的各条状电极之间可以通过引线将各条状电极位于同 一侧的端部电连接。
所述狭缝电极可以为液晶显示面板中的公共电极和 /或像素电极。 具体实施时, 为公共电极施加直流电信号, 为像素电极施加灰阶 信号, 二者之间产生电场控制液晶分子的偏转实现图像显示。
根据本发明的一个方面提供一种阵列基板, 包括: 呈阵列分布的 亚像素单元, 亚像素单元包括: 公共电极和像素电极, 公共电极和像 素电极中的至少一个为上述狭缝电极。
阵列基板上公共电极和像素电极至少包括如下几种实施方式: 实施方式一: 参见图 7和图 8 , 图 7为根据本发明一个实施例提供 的显示装置中像素电极和公共电极的结构示意图, 图 8为图 7所示的 像素电极和公共电极在 AA方向的截面图。
衬底基板 6上的公共电极 3和像素电极 4位于不同层,公共电极 3 位于像素电极 4下方, 二者之间通过绝缘层 5相绝缘, 像素电极 4为 根据本发明的各个实施例提供的狭缝电极, 像素电极 4 包括狭缝之间 的像素条状电极 411 , 公共电极 3为面状电极。
实施方式二: 公共电极和像素电极位于不同层, 公共电极位于像 素电极上方, 二者之间通过绝缘层相绝缘, 公共电极为根据本发明的 各个实施例提供的狭缝电极, 像素电极为面状电极。
实施方式三: 参见图 9和图 10 , 图 9为公共电极 3和像素电极 4 的俯视示意图, 图 10为图 9在 BB方向的一种截面图, 其中公共电极 3和像素电极 4位于不同层, 公共电极 3位于像素电极 4下方, 二者之 间通过绝缘层 5相绝缘, 像素电极 4和公共电极 3为根据本发明的各 个实施例提供的狭缝电极。
具体地, 像素电极 4包括多个像素条状电极 41 1 , 公共电极 3包括 多个公共条状电极 311。
公共条状电极 31 1和像素条状电极 411之间可以存在交叠区域, 也可以无交叠区域, 图 9和图 10所示的公共条状电极 311和像素条状 电极 41 1之间无交叠区域。
公共条状电极 31 1和像素条状电极 411之间存在交叠区域时, 其 中一种实施方式为: 如图 1 1所示, 可以设置各公共条状电极 311相对 矩形状的像素单元的一个边缘倾斜 5° ,各像素条状电极 411相对所述 矩形状的像素单元的该边缘倾斜 13° 。 公共条状电极 31 1和像素条状 电极 41 1之间的夹角为 8° 左右。该角度保证公共条状电极 311和像素 条状电极 411 几乎平行, 不会引起液晶显示装置暗态漏光等现象。 当 公共条状电极 311 和像素条状电极 411之间的夹角过大或者公共条状 电极 31 1 和像素条状电极 41 1 与像素单元的边缘倾斜角过大时, 在相 同电场强度下, 容易出现光透过率变小、 图像的亮度不太均匀、 色偏 较大等问题。
实施方式四: 公共电极和像素电极位于不同层, 公共电极位于像 素电极上方, 二者之间通过绝缘层相绝缘, 像素电极和公共电极为根 据本发明的各个实施例提供的狭缝电极。 优选地, 公共电极和像素电 极在阵列基板上的投影无重叠区域。 实施方式三和实施方式四相比较实施方式一和实施方式二, 减少 了像素电极和公共电极之间的正对交叠面积 , 减少了二者之间的正对 电场, 从而减少了二者之间的电容, 提高了图像的显示效率, 由于公 共电极和像素电极位于不同层, 且二者均为狭缝电极, 公共电极中的 狭缝和像素电极中的狭缝会较宽, 制作公共电极和像素电极的工艺余 量会明显提高。
实施方式五:
参见图 9 ,公共电极 3和像素电极 4均为根据本发明的各个实施例 提供的狭缝电极。
参见图 12为图 9在 BB方向的第二种截面图, 其中公共电极 3和 像素电极 4同层设置。
公共电极 3 中的公共条状电极 311和像素电极 4 中的像素条状电 极 411间隔排列, 保持相互绝缘。
公共电极 3 中的公共条状电极 311和像素电极 4 中的像素条状电 极 41 1 的平均宽度可以不相等。 各个公共条状电极 311 和像素条状电 极 411的平均宽度按照排列顺序递增或递减。
根据本发明实施例提供的上述像素电极和公共电极的设置方式, 由于其公共电极和 /或像素电极为上述提供的狭缝电极, 工艺变动范围 较大, 制作狭缝电极的精度范围增大了约一倍, 工艺余量提高。 产品 在量产时更易于获得光透过率满足需求的良品, 从而实现成本的节约。
本发明的另一个方面还提供一种显示装置, 包括上述根据本发明 的各个实施例提供的阵列基板。
具体地, 显示装置包括相对设置的第一基板和第二基板, 第一基 板和第二基板中的一个为包括像素电极和公共电极的基板, 另一个为 包括黑矩阵和彩色滤光片的基板, 像素电极和公共电极中的至少一个 为根据本发明的各个实施例中任一方式提供的狭缝电极。
可替换地, 显示装置包括: 相对设置的第一基板和第二基板, 第 一基板和第二基板中的一个为包括像素电极、 公共电极、 黑矩阵和彩 色滤光片的基板; 第一基板和第二基板之间设置有液晶层; 像素电极 和公共电极中的至少一个为根据本发明的各个实施例中任一方式提供 的狭缝电极。
显示装置还可以为: 在上述两种结构的显示装置的基础上还包括: 在与像素电极和公共电极所在基板相对的基板上设置的像素电极和公 共电极。
当然, 根据本发明的各个实施例提供的显示装置仅是列举有限的 几个示例, 任何包括根据本发明的各个实施例提供的狭缝电极的显示 装置均在本发明范围之内。
根据本发明的各个实施例提供的显示装置可以为液晶显示面板、 液晶显示器、 液晶电视等显示装置。
根据本发明的一个方面提供一种狭缝电极, 包括: 至少一个狭缝 电极单元, 所述狭缝电极单元包括多个条状电极; 其中, 所述狭缝电 极单元中的各条状电极的平均宽度不完全相同。 狭缝电极的这种设置 可以提高狭缝电极的精度范围, 提高狭缝电极的工艺余量。 通过验证 得知, 采用本发明提供的狭缝电极制作公共电极和 /或像素电极, 光透 过率达到 98%时, 制作狭缝电极的精度范围增大了约一倍, 工艺余量 提高。 产品在量产时更易于获得光透过率满足需求的良品, 从而实现 成本的节约。 脱离本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于 本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型。

Claims

权 利 要 求
1. 一种狭缝电极, 其特征在于, 包括: 至少一个狭缝电极单元, 所述狭缝电极单元包括多个条状电极, 相邻两个条状电极之间具有狭 缝;
其中, 每一个条状电极具有设定的平均宽度, 所述狭缝电极单元 中的至少两个条状电极的平均宽度不相等。
2. 根据权利要求 1所述的狭缝电极, 其特征在于, 所述狭缝电极 单元中任意两个条状电极的所述平均宽度不相等, 各条状电极的平均 宽度按照排列次序递增或递减。
3. 根据权利要求 2所述的狭缝电极, 其特征在于, 每两个相邻的 条状电极的平均宽度之间的差值是恒定的; 所述狭缝电极单元中的各 条状电极的平均宽度范围为 2〜4μιη。
4. 根据权利要求 3所述的狭缝电极, 其特征在于, 所述条状电极 的宽度处处相等, 或者所述条状电极的宽度按照自身的延伸方向递增 或递减。
5. 根据权利要求 2所述的狭缝电极, 其特征在于, 所述狭缝电极 包括两个狭缝电极单元, 两个狭缝电极单元上的条状电极相互呈镜像 分布。
6. 根据权利要求 1〜5任一所述的狭缝电极, 其特征在于, 每个狭 电极的延伸方向具有设定夹角。
7. 根据权利要求 6所述的狭缝电极, 其特征在于, 相邻两个条状 电极的延伸方向具有设定夹角;
其中所述狭缝电极单元中包括由沿第一方向延伸的条状电极组成 的第一条状电极组, 和由沿第二方向延伸的条状电极组成的第二条状 电极组;
所述第一条状电极组和第二条状电极组中的条状电极间隔排列。
8. 根据权利要求 7所述的狭缝电极, 其特征在于, 所述第一方向 和第二方向之间的夹角为 3〜20。 。
9. 根据权利要求 6所述的狭缝电极, 其特征在于, 所述狭缝电极 包括两个狭缝电极单元, 每个狭缝电极单元中的各条状电极的延伸方 向相互平行;
其中所述两个狭缝电极单元中的一个的各条状电极沿第一方向延 伸, 另一个的各条状电极沿第二方向延伸。
10. 一种阵列基板,其特征在于, 包括:呈阵列分布的亚像素单元, 所述亚像素单元包括相互绝缘的公共电极和像素电极, 所述公共电极 和像素电极至少之一为权利要求 1-9中任一项所述的狭缝电极。
11. 根据权利要求 10所述的阵列基板, 其特征在于, 所述公共电 极和像素电极位于不同层, 二者之间通过绝缘层相绝缘。
12. 根据权利要求 11所述的阵列基板, 其特征在于, 所述公共电 极和像素电极为狭缝电极; 所述公共电极中的条状电极和像素电极中 的条状电极从垂直于所述阵列基板的方向上观看时间隔排列。
13. 根据权利要求 10所述的阵列基板, 其特征在于, 所述公共电 极和像素电极同层设置且均为狭缝电极, 公共电极中的条状电极和像 素电极中的条状电极间隔排列。
14. 一种显示装置, 其特征在于, 包括权利要求 10-13中任一项所 述的阵列基板。
PCT/CN2014/083309 2014-04-18 2014-07-30 一种狭缝电极、阵列基板及显示装置 WO2015158062A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/435,996 US9885926B2 (en) 2014-04-18 2014-07-30 Slit electrode, array substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410158760.5A CN103969897A (zh) 2014-04-18 2014-04-18 一种狭缝电极、阵列基板及显示装置
CN201410158760.5 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015158062A1 true WO2015158062A1 (zh) 2015-10-22

Family

ID=51239581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083309 WO2015158062A1 (zh) 2014-04-18 2014-07-30 一种狭缝电极、阵列基板及显示装置

Country Status (3)

Country Link
US (1) US9885926B2 (zh)
CN (1) CN103969897A (zh)
WO (1) WO2015158062A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104216178B (zh) * 2014-09-09 2017-09-15 京东方科技集团股份有限公司 一种阵列基板及液晶显示装置
CN105093749B (zh) * 2015-08-14 2018-07-10 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
CN109283754A (zh) * 2017-07-21 2019-01-29 京东方科技集团股份有限公司 一种像素结构、阵列基板及液晶显示装置
US11126060B2 (en) * 2017-10-02 2021-09-21 Liqxtal Technology Inc. Tunable light projector
CN114397784A (zh) * 2018-08-02 2022-04-26 上海天马微电子有限公司 显示面板和3d打印系统
TWI778262B (zh) * 2019-02-13 2022-09-21 源奇科技股份有限公司 可調式光投射器
CN110441965B (zh) * 2019-08-23 2022-05-20 京东方科技集团股份有限公司 一种阵列基板、显示面板以及显示装置
CN110618564B (zh) * 2019-10-30 2022-06-24 京东方科技集团股份有限公司 电极结构、阵列基板及显示装置
CN110967853A (zh) * 2019-12-31 2020-04-07 成都中电熊猫显示科技有限公司 显示面板、显示装置及显示面板的驱动方法
CN111443533A (zh) * 2020-04-24 2020-07-24 深圳市华星光电半导体显示技术有限公司 像素单元及液晶显示装置
CN111474776B (zh) * 2020-05-11 2021-07-06 深圳市华星光电半导体显示技术有限公司 液晶显示面板及显示装置
CN114815416B (zh) * 2021-01-27 2023-10-03 京东方科技集团股份有限公司 阵列基板和显示面板
CN114815409B (zh) * 2022-04-25 2023-09-05 广州华星光电半导体显示技术有限公司 阵列基板及其制备方法、显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033369A (zh) * 2009-09-25 2011-04-27 北京京东方光电科技有限公司 Ffs型tft-lcd阵列基板的像素结构
US20110181824A1 (en) * 2010-01-28 2011-07-28 Mitsubishi Electric Corporation Liquid crystal display device
CN103311253A (zh) * 2012-12-24 2013-09-18 上海中航光电子有限公司 薄膜晶体管阵列基板及其制作方法以及液晶显示装置
CN203825339U (zh) * 2014-04-18 2014-09-10 京东方科技集团股份有限公司 一种狭缝电极、阵列基板及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040106506A (ko) * 2002-05-10 2004-12-17 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 액정 디스플레이 장치
KR101308163B1 (ko) * 2006-06-30 2013-09-12 엘지디스플레이 주식회사 표시장치의 화소 전극 구조
WO2013183505A1 (ja) * 2012-06-05 2013-12-12 シャープ株式会社 液晶表示装置
US9977294B2 (en) * 2012-06-25 2018-05-22 Industry-University Cooperation Foundation Hanyang University Liquid crystal display device
CN102866543B (zh) * 2012-09-13 2015-05-06 京东方科技集团股份有限公司 像素单元、阵列基板以及液晶显示装置
CN103018980A (zh) * 2012-12-31 2013-04-03 信利半导体有限公司 一种广视角液晶显示器及显示方法
US9464229B2 (en) * 2013-05-22 2016-10-11 Dic Corporation Liquid crystal display device
US20160187739A1 (en) * 2013-07-29 2016-06-30 Sharp Kabushiki Kaisha Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033369A (zh) * 2009-09-25 2011-04-27 北京京东方光电科技有限公司 Ffs型tft-lcd阵列基板的像素结构
US20110181824A1 (en) * 2010-01-28 2011-07-28 Mitsubishi Electric Corporation Liquid crystal display device
CN103311253A (zh) * 2012-12-24 2013-09-18 上海中航光电子有限公司 薄膜晶体管阵列基板及其制作方法以及液晶显示装置
CN203825339U (zh) * 2014-04-18 2014-09-10 京东方科技集团股份有限公司 一种狭缝电极、阵列基板及显示装置

Also Published As

Publication number Publication date
CN103969897A (zh) 2014-08-06
US9885926B2 (en) 2018-02-06
US20170038647A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2015158062A1 (zh) 一种狭缝电极、阵列基板及显示装置
JP3826217B2 (ja) フリンジフィールドスイッチングモード液晶表示装置
US9429805B2 (en) Array substrate, display panel and display device
WO2015085700A1 (zh) 一种彩膜基板及液晶显示装置
WO2013146635A1 (ja) 液晶駆動方法及び液晶表示装置
US9454047B2 (en) Liquid crystal display panel, method of driving the same and display device
US20140167274A1 (en) Array substrate and display device
WO2013127199A1 (zh) Tft-lcd阵列基板及显示装置
TWI537641B (zh) 扇出導線結構及其顯示面板
WO2016065798A1 (zh) 阵列基板及其制造方法、显示装置
CN105068340B (zh) 阵列基板、显示装置及其制作方法
US11567370B2 (en) Display substrate and manufacturing method thereof, and display device
CN104062818A (zh) 一种液晶显示装置及其制造方法
WO2019179484A1 (zh) 显示面板以及制备显示面板的方法
CN102629036B (zh) 阵列基板以及显示器件
US20160041435A1 (en) Liquid crystal display device
CN102998857B (zh) 一种狭缝电极、阵列基板及显示装置
CN104849923B (zh) 一种像素单元阵列和液晶显示装置
CN104020607A (zh) 显示面板及显示装置
CN104570458B (zh) 液晶显示面板及液晶显示装置
WO2014176824A1 (zh) 一种液晶面板及显示装置
JP2011154101A (ja) 液晶表示パネルおよび液晶表示装置
WO2015172484A1 (zh) 阵列基板及其制造方法、显示装置
CN102707513B (zh) 阵列基板和显示装置
KR101957920B1 (ko) 고속 응답 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14435996

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 1205A VOM 30.03.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14889307

Country of ref document: EP

Kind code of ref document: A1