WO2014176824A1 - 一种液晶面板及显示装置 - Google Patents

一种液晶面板及显示装置 Download PDF

Info

Publication number
WO2014176824A1
WO2014176824A1 PCT/CN2013/078461 CN2013078461W WO2014176824A1 WO 2014176824 A1 WO2014176824 A1 WO 2014176824A1 CN 2013078461 W CN2013078461 W CN 2013078461W WO 2014176824 A1 WO2014176824 A1 WO 2014176824A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
auxiliary
region
sub
area
Prior art date
Application number
PCT/CN2013/078461
Other languages
English (en)
French (fr)
Inventor
秦广奎
铃木照晃
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/351,706 priority Critical patent/US20150009466A1/en
Publication of WO2014176824A1 publication Critical patent/WO2014176824A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy

Definitions

  • Liquid crystal panel and display device Liquid crystal panel and display device
  • Embodiments of the present invention relate to the field of liquid crystal display technologies, and in particular, to a liquid crystal panel and a display device. Background technique
  • the existing wide viewing angle LCD panels mainly include: an IPS (In-Plane Switching) panel and an Advanced Super Dimension Switch (AD-SDS) panel.
  • the biggest feature of the IPS panel is that the pixel electrode and the common electrode of the IPS panel are on the same surface, unlike the electrodes of other liquid crystal panels, which are arranged on the upper and lower sides.
  • ADS technology is a wide viewing angle technology developed by the liquid crystal molecular community to solve large-size, high-definition desktop displays and liquid crystal molecular TV applications. It is also known as a hard-screen technology.
  • the ADS mode liquid crystal display panel forms a multi-dimensional electric field by the electric field generated by the edge of the slit electrode in the same plane and the electric field generated between the slit electrode layer and the plate electrode layer, so that all the liquid crystals in the liquid crystal cell are directly above the slit electrode and above the electrode.
  • the molecules are capable of rotating, thereby improving the efficiency of the liquid crystal and increasing the light transmission efficiency.
  • FIG. 1 is a schematic diagram of a pixel structure of a first conventional liquid crystal panel, wherein the liquid crystal panel is an IPS panel, wherein a straight arrow indicates a direction of an electric field formed by the pixel electrode 110, and a curved arrow indicates a direction in which the liquid crystal molecule 120 rotates under an electric field.
  • a common electrode 130 is also disposed between adjacent pixel electrodes 110.
  • 2 is a graph showing transmittance versus voltage of a first conventional liquid crystal panel, wherein the transmittance of each curve varies from a full black to a full white at a corresponding viewing angle of the liquid crystal panel, and the polar angles of all the curves are For 60 degrees, the azimuth varies from 0 degrees to 150 degrees, and the step size is 30 degrees.
  • the transmittance of the liquid crystal panel changes from all black to all white.
  • the simulation results in a relationship between the transmission rate and the voltage (in volts). It can be seen from Fig. 2 that the relationship between the six transmittances and voltages corresponding to different viewing angles (the different polar angles are the same) is serious and the difference is large, and there is no good coincidence of 4 ⁇ , which leads to different viewing angles.
  • the gray scale curves are different, so the transmittance at the same voltage is different, that is, the gray scale is different, resulting in poor viewing angle.
  • the anisotropy state of the corresponding liquid crystal molecules at different viewing angles Different the color difference is also larger, so-called color shift ( invention content)
  • Embodiments of the present invention provide a liquid crystal panel including a liquid crystal layer and a pixel region; the pixel region includes a plurality of pixel units, wherein each of the pixel units includes: a first subsidiary region and a second subsidiary region In an initial state, an angle between a long axis direction of the liquid crystal molecules of the liquid crystal layer corresponding to the first subsidiary region and a long axis direction of the liquid crystal molecules of the liquid crystal layer corresponding to the second subsidiary region is 90 degrees
  • the first tributary area includes at least two sub-sub-areas, and the second affiliation area includes at least one sub-sub-area; the first sub-area and the sub-sub-area of the second sub-area are respectively provided for Applying at least two electrodes of a coplanar electric field to the liquid crystal layer, at least one of the two electrodes comprising a strip electrode; the two subsidiary sub-regions included in the first subsidiary region are a first sub-region and a second The sub-sub-region, the angle between the strip electrode of the
  • liquid crystal layer corresponding to the first subsidiary region is formed between a long axis direction of liquid crystal molecules in an initial state and strip electrodes of the first subsidiary sub-region and the second subsidiary sub-region
  • the angles are respectively a first angle and a second angle, and the first angle is equal to the second angle.
  • the second auxiliary area includes a third auxiliary sub-area and a fourth sub-sub-area; an angle between the strip electrode of the third sub-sub-area and the strip-shaped electrode of the fourth sub-sub-area More than 0 degrees less than 180 degrees.
  • liquid crystal layer corresponding to the second subsidiary region is formed between a long axis direction of liquid crystal molecules in an initial state and strip electrodes of the third subsidiary sub-region and the fourth subsidiary sub-region
  • the included angles are respectively a third angle and a fourth angle, and the third angle is equal to the fourth angle.
  • liquid crystal layer corresponding to the first subsidiary region is formed between a long axis direction of liquid crystal molecules in an initial state and strip electrodes of the first subsidiary sub-region and the second subsidiary sub-region
  • the angles are respectively the first angle and the second angle, and the first angle, the second angle, the third angle, and the fourth angle are all the same.
  • first sub-sub-area, the second sub-sub-area, the third sub-sub-area and the fourth sub-sub-area have the same area.
  • the first subsidiary The angle of the long-axis direction of the liquid crystal molecules corresponding to the liquid crystal layer in the initial state and the strip electrode in the subsidiary sub-area of the first subsidiary region is in the range of 3 to 30 degrees
  • the second subsidiary region Corresponding angles of the long-axis direction of the liquid crystal molecules in the initial state and the strip electrodes in the subsidiary sub-region of the second subsidiary region are in the range of 3 to 30 degrees;
  • the angle of the short axis direction of the liquid crystal molecule corresponding to the first tributary region in the initial state and the strip electrode of the subsidiary sub-region of the first tributary region is in the range of 3 to 35 degrees. 3 to 35 degrees.
  • one of the two electrodes in the first sub-region and the sub-sub-region of the second sub-region in the liquid crystal panel includes a strip electrode and the other is a plate electrode; when the liquid crystal layer When the liquid crystal molecules are positive liquid crystal molecules, the liquid crystal layer corresponding to the first tributary region has a long-axis direction of liquid crystal molecules in an initial state and a strip electrode in a subsidiary sub-region of the first tributary region The angle is in the range of 5 to 14 degrees, and the second auxiliary region corresponds to the strip electrode of the liquid crystal layer in the initial state and the strip electrode in the subsidiary sub-region of the second subsidiary region.
  • the angle range is 5 to 14 degrees; when the liquid crystal molecules of the liquid crystal layer are negative liquid crystal molecules, the short axis direction of the liquid crystal molecules in the initial state corresponding to the first subsidiary region and the first
  • the angle between the strip electrodes in the subsidiary sub-area of a subsidiary region ranges from 5 to 14 degrees, and the second subsidiary region corresponds to the short-axis direction of the liquid crystal molecules in the initial state and the second Strip electric in the sub-sub-area of the subsidiary area Angle ranging from 5 to 14 degrees.
  • two electrodes in the first sub-region and the sub-sub-region of the second sub-region in the liquid crystal panel each include a strip electrode, and the two electrodes are alternately arranged with each other;
  • the liquid crystal molecules are positive liquid crystal molecules
  • the liquid crystal layer corresponding to the first tributary region has a long-axis direction of liquid crystal molecules in an initial state and a strip electrode in a subsidiary sub-region of the first tributary region
  • the angle of the angle is 11 to 20 degrees
  • the second auxiliary region corresponds to the strip electrode of the liquid crystal layer in the initial state and the strip electrode in the subsidiary sub-region of the second subsidiary region.
  • the angle range is 11 to 20 degrees; when the liquid crystal molecules of the liquid crystal layer are negative liquid crystal molecules, the short axis direction of the liquid crystal molecules in the initial state of the liquid crystal layer corresponding to the first auxiliary region and the first
  • the angle between the strip electrodes in the subsidiary sub-area of a subsidiary area is 11 to 20 degrees, and the second auxiliary area corresponds to the short-axis direction of the liquid crystal molecules in the initial state and the second Strip electrode in the subsidiary sub-area of the satellite area Angle range of 11 to 20 degrees.
  • the present invention also provides a display device including the above liquid crystal panel.
  • FIG. 1 is a schematic view showing the structure of an electrode in a pixel unit of a first conventional liquid crystal panel
  • FIG. 2 is a graph showing transmittance versus voltage of a first conventional liquid crystal panel
  • FIG. 3a is a schematic view showing the structure of an electrode in a pixel unit of a liquid crystal panel according to Embodiment 1 of the present invention
  • FIG. 3b is a cross-sectional view taken along line A-A of FIG. 3a;
  • Figure 3c is a graph showing the relationship between the transmittance and the voltage of the liquid crystal panel according to Embodiment 1 of the present invention
  • Figure 4a is a schematic view showing the structure of the pixel unit of the liquid crystal panel according to Embodiment 2 of the present invention
  • Figure 4b is a schematic cross-sectional view taken along line B-B of Figure 4a;
  • 4c is a schematic view showing a modification of the pixel unit structure of the liquid crystal panel of the second embodiment. detailed description
  • Embodiments of the present invention provide a liquid crystal panel and a display device.
  • the liquid crystal panel includes a liquid crystal layer and a pixel area; the pixel area includes a plurality of pixel units, and each of the pixel units includes: a first auxiliary area and a second auxiliary area.
  • the long-axis direction of the liquid crystal molecules of the liquid crystal layer corresponding to the first subsidiary region and the liquid crystal molecules of the liquid crystal layer corresponding to the second subsidiary region The angle between the long axis directions is 90 degrees.
  • liquid crystal molecules in the following examples of the present invention are all described by taking a positive liquid crystal molecule as an example. Further, all of the angles associated with liquid crystal molecules mentioned in the present invention are obtained by liquid crystal molecules in an initial state.
  • the first satellite zone includes at least two subsidiary subzones
  • the second satellite zone includes at least one subsidiary subzone.
  • At least two electrodes for applying a coplanar electric field to the liquid crystal layer are respectively disposed in the subsidiary sub-regions of the first subsidiary region and the second subsidiary region, and at least one of the two electrodes includes a strip electrode.
  • the two subsidiary sub-regions included in the first subsidiary region are a first subsidiary sub-region and a second subsidiary sub-region, and the strip electrodes of the first subsidiary sub-region and the strip electrodes of the second subsidiary sub-region
  • the angle between the angles is greater than 0 degrees and less than 180 degrees.
  • Fig. 3a is a schematic view showing the structure of a pixel unit of a liquid crystal panel according to Embodiment 1 of the present invention
  • Fig. 3b is a cross-sectional view taken along line A-A of Fig. 3a.
  • the liquid crystal panel of the embodiment is an IPS panel.
  • the liquid crystal panel includes a liquid crystal layer and a pixel area.
  • the pixel area includes a plurality of pixel units, and the electrode structure in each pixel unit is as shown in FIG. 3a.
  • Each of the pixel units includes a pixel electrode 330 and a common electrode 350, wherein all of the pixel electrodes 330 are connected together, and all of the common electrodes 350 are also connected together, which is not shown in Fig. 3a.
  • the pixel unit includes: a first satellite area 310 and a second satellite area 320. It can be seen that in the initial state, the angle of the long-axis direction of the liquid crystal molecules of the liquid crystal layer corresponding to the first subsidiary region 310 and the second subsidiary region 320 is 90 degrees.
  • the first tributary area 310 further includes: a first affiliation sub-area 311 and a second affiliation sub-area 312; the second affiliation area 320 further includes: a third sub-sub-area 321 and a fourth sub-sub-area 322.
  • At least two electrodes for applying a coplanar electric field to the liquid crystal layer are respectively disposed in the subsidiary sub-regions of the first subsidiary region and the second subsidiary region, and at least one of the two electrodes includes a strip electrode .
  • the first sub-sub-region 311, the second sub-sub-region 312, the third sub-region 321 and the fourth sub-region 322 each comprise a coplanar electric field.
  • the two electrodes are the pixel electrode 330 and the common electrode 350, respectively, and further, the strip electrodes located in the same sub-sub-region have the same length direction, and the lengths of the strip electrodes in different sub-sub-regions The direction is different.
  • the first The angle between the strip electrodes in the two sub-sub-regions of a subsidiary region is greater than 0 degrees and less than 180 degrees, and the angle between the strip electrodes in the two subsidiary sub-regions of the second subsidiary region is greater than 0 degrees And less than 180 degrees.
  • the pixel electrode 330 and the common electrode 350 are alternately arranged at intervals.
  • the long-axis direction of the liquid crystal molecules 340 of the liquid crystal layer corresponding to the first auxiliary region 310 corresponds to the second subsidiary region 320
  • the liquid crystal molecules 340 of the liquid crystal layer have an angle of 90 degrees in the long axis direction.
  • a coplanar electric field is formed, and the long-axis direction of the liquid crystal molecules 340 of the liquid crystal layer corresponding to each of the subsidiary sub-regions is along the direction indicated by the curved arrow in the figure. Rotate to the direction of the electric field of the sub-sub-region (in the direction of the straight solid arrow in the figure).
  • the strip electrodes (corresponding to the pixel electrode 330 and the common electrode 350 in FIG. 3a) in the first subsidiary sub-region 311 have a first length direction (inclined in the first sub-region 311 in FIG. 3a) In the direction of the straight dashed arrow, the angle between the long axis directions of the liquid crystal molecules 340 of the liquid crystal layer corresponding to the first auxiliary sub-region 311 is the first angle (al in FIG. 3a).
  • the strip electrodes in the second sub-sub-region 312 have a second length direction (the direction of the straight dashed arrow in the second sub-sub-region 312 in FIG.
  • the strip electrode in the third subsidiary sub-region 321 has a third length direction (a straight dashed arrow direction inclined in the third sub-sub-region 321 in FIG. 3a), the third length direction and the third sub-sub The angle between the long-axis directions of the liquid crystal molecules 340 of the liquid crystal layer corresponding to the region 321 is the third angle (a3 in Fig. 3a).
  • the strip electrode in the fourth sub-sub-region 322 has a fourth length direction (the direction of the straight dashed arrow in the fourth sub-sub-region 322 in FIG. 3a), the fourth length direction and the fourth sub-sub
  • the angle between the long-axis directions of the liquid crystal molecules 340 of the liquid crystal layer corresponding to the region 322 is the fourth angle (a4 in Fig. 3a).
  • first length direction, the second length direction, the third length direction, and the fourth length direction are different from each other, so as to correspond to different auxiliary sub-areas.
  • first angle a is equal to the second angle a2.
  • third angle a3 is equal to the fourth angle a4.
  • the first angle, the second angle, the third angle, and the fourth angle are all equal.
  • the first angle, the second angle, and the third angle And the fourth angle ranges from 3 to 30 degrees.
  • the above angle ranges from 11 degrees to 20 degrees.
  • the liquid crystal molecules in Fig. 3a are described by taking a positive liquid crystal as an example, and the liquid crystal molecules of the liquid crystal layer may also be negative liquid crystal molecules.
  • the liquid crystal molecules are negative liquid crystal molecules
  • the angle between the short-axis direction of the liquid crystal molecules of the satellite region and the length direction of the strip electrodes of the two subsidiary regions of the second subsidiary region is in the range of 3 to 35 degrees, for example, the above angle The value ranges from 11 degrees to 20 degrees.
  • the areas of the first sub-sub-region 311, the second sub-sub-region 312, the third sub-region 321 and the fourth sub-region 322 are equal.
  • 3c is a graph showing transmittance versus voltage of a liquid crystal panel according to Embodiment 1 of the present invention, wherein the polar angles of the six curves in the figure are both 60 degrees, and the azimuth angle (Phi in the figure) is from 0 degrees to 150 degrees.
  • the change in step size is 30 degrees, that is, the polar angle is 60 degrees, and the azimuth angles are 0 degrees, 30 degrees, 60 degrees, 90 degrees, 120 degrees, and 150 degrees, respectively. From black to full white, a curve of transmission and voltage (in volts) is obtained by simulation. A total of six curves in the figure are obtained. It can be seen from Fig.
  • Fig. 4a is a plan view showing a pixel structure of a liquid crystal panel according to Embodiment 2 of the present invention
  • Fig. 4b is a cross-sectional view taken along line B-B of Fig. 4a.
  • the embodiment is described based on Embodiment 1.
  • the liquid crystal panel in this embodiment is an ADS panel.
  • the ADS panel includes a liquid crystal layer and a pixel area, and the pixel area includes a plurality of pixel units, and each pixel unit is disposed.
  • the pixel electrode 430 and the common electrode 450 are examples of the common electrode 450.
  • each pixel unit in this embodiment includes: a first auxiliary area 410 and a second attached area 420.
  • the first subsidiary area 410 further includes: a first auxiliary sub-area 411 and a second sub-sub-area 412;
  • the second auxiliary area 420 further includes: a third sub-sub-area 421 and a fourth sub-area 422.
  • the first subsidiary sub-region 411, the second sub-sub-region 412, and the third sub-region 421 And the fourth sub-sub-region 422 each includes at least two electrodes for applying a coplanar electric field to the liquid crystal layer, the two electrodes each including a strip electrode (the electrode including the strip electrode in the second embodiment) It is the slit electrode in ADS mode, and the other is a plate electrode.
  • the two electrodes are a common electrode and one is a pixel electrode.
  • the common electrode 450 is a plate electrode
  • the pixel electrode 430 includes a strip electrode.
  • the common electrode may also include a strip.
  • the electrode, the corresponding pixel electrode is a plate electrode.
  • the long-axis direction of the liquid crystal molecules 440 of the liquid crystal layer corresponding to the first subsidiary region 410 corresponds to the second subsidiary region 420
  • the liquid crystal molecules 440 of the liquid crystal layer have an angle of 90 degrees in the long axis direction.
  • a coplanar electric field is formed, and the long-axis direction of the liquid crystal molecules 440 in the liquid crystal layer corresponding to each of the subsidiary sub-regions is along the subsidiary sub-region The direction of the electric field rotates.
  • the long axis direction of the liquid crystal molecules 440 of the liquid crystal layer corresponding to the first subsidiary region 410 in this embodiment and the strips of the two subsidiary sub-regions of the first subsidiary region 410 The angle between the electrodes is the same; the long axis direction of the liquid crystal molecules 440 of the liquid crystal layer corresponding to the second subsidiary region 420 is between the strip electrodes of the two subsidiary regions of the second subsidiary region 420 The angle is the same.
  • the long axis direction of the liquid crystal molecules 440 of the liquid crystal layer corresponding to the first subsidiary region 410 and the strip electrodes of the two subsidiary sub-regions of the first subsidiary region 410 are sandwiched
  • the angle is equal to the angle between the long-axis direction of the liquid crystal molecules 440 of the liquid crystal layer corresponding to the second subsidiary region 420 and the strip electrodes of the two subsidiary sub-regions of the second subsidiary region 420.
  • An angle between the long axis direction of the liquid crystal molecules 440 of the liquid crystal layer corresponding to the second subsidiary region 420 and the strip electrodes of the two subsidiary sub-regions of the second subsidiary region 420 Values range from 3 to 30 degrees. For example, the above angles range from 5 to 14 degrees.
  • the liquid crystal molecule in FIG. 4a is exemplified by a positive liquid crystal. It should be noted that the liquid crystal molecule may also be a negative liquid crystal. Specifically, when the liquid crystal molecule is a negative liquid crystal molecule, the liquid crystal of the first subsidiary region An angle between a short-axis direction of the molecule and a strip electrode of the two subsidiary sub-regions of the first subsidiary region, and a short-axis direction of the liquid crystal molecules of the second subsidiary region and the second subsidiary region The angle between the strip electrodes of the two subsidiary sub-areas ranges from 3 to 35 degrees. For example, the above clip The angle ranges from 5 to 14 degrees.
  • the areas of the first sub-sub-region 411, the second sub-sub-region 412, the third sub-region 421, and the fourth sub-region 422 are also equal.
  • FIG. 4c is a schematic diagram showing a modification of the pixel structure of the liquid crystal panel according to Embodiment 2, and a diagram thereof
  • the pixel structure of 4a is different in that two subsidiary sub-regions of the second subsidiary region, that is, the third subsidiary sub-region 421 and the fourth sub-sub-region 422 are separately disposed on both sides of the first subsidiary region 410.
  • FIG. 4c only shows a variation, and the present invention does not limit the positional relationship between different subsidiary sub-regions included in the pixel region, for example, two attachments of the first subsidiary region 410. Sub-areas can also be separated.
  • first affiliation area and the second affiliation area in the pixel area of the present invention both contain two sub-areas, and it should be noted that the first tributary area may be two or more sub-areas, and the second affiliation area is also It can be one or more sub-sub-regions, so that three or more different liquid crystal orientations can be formed during display, thereby forming a multi-domain display, improving the viewing angle of the liquid crystal panel, and solving the color shift problem.
  • the present invention further provides a display device comprising the liquid crystal panel according to the above embodiment, and the display device can be a liquid crystal television, a liquid crystal display, a notebook computer, a tablet computer, a smart phone or the like.
  • the pixel unit of the pixel region of the liquid crystal panel includes a first auxiliary region and a second auxiliary region.
  • the angle between the long axis directions of the liquid crystal molecules in the two subsidiary regions is At 90 degrees
  • the first subsidiary region includes two subsidiary sub-regions
  • the second subsidiary region includes one or two subsidiary sub-regions
  • the auxiliary sub-regions of the first subsidiary region and the second subsidiary region are respectively provided for applying to the liquid crystal layer
  • At least two electrodes of the coplanar electric field at least one of the at least two electrodes comprising a strip electrode; an angle between the strip electrodes in the two subsidiary sub-regions of the first tributary region being greater than 0 degrees and less than 180 degrees

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种液晶面板及显示装置。液晶面板包括液晶层和像素区,像素区包含多个像素单元,每个像素单元包括第一附属区(310)和第二附属区(320)。在初始状态,第一附属区(310)对应的液晶层的液晶分子的长轴方向和第二附属区(320)对应的液晶层的液晶分子的长轴方向间夹角为90度。第一附属区(310)包括两个附属子区,第二附属区(320)包括一个或者两个附属子区。第一附属区(310)和第二附属区(320)的附属子区中分别设置有用于向液晶层施加共面电场的至少两个电极,该至少两个电极中至少一个是条状电极。第一附属区(310)的两个附属子区中的平行条状电极之间的夹角大于0度且小于180度。液晶面板及显示装置改善了现有液晶面板视角较差及不同视角下色偏移严重的问题。

Description

一种液晶面板及显示装置 技术领域
本发明的实施例涉及液晶显示技术领域, 特别涉及一种液晶面板及显示 装置。 背景技术
现有的宽视角液晶面板主要包括: 平面转换 IPS ( In-Plane Switching )面 板和高级超维场转换(AD-SDS, Advanced Super Dimension Switch, 筒称 ADS ) 面板。 IPS面板最大的特点就是 IPS面板的像素电极和公共电极都在 同一个面上, 而不像其它液晶面板的电极是在上下两面, 立体排列。 ADS技 术是液晶分子界为解决大尺寸、 高清晰度桌面显示器和液晶分子电视应用而 开发的广视角技术, 也就是现在俗称的硬屏技术的一种。 ADS模式液晶显示 面板通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极 层间产生的电场形成多维电场, 使液晶盒内狭缝电极间、 电极正上方所有取 向液晶分子都能够产生旋转, 从而提高了液晶工作效率并增大了透光效率。
图 1是第一种现有液晶面板的像素结构示意图,该液晶面板为 IPS面板, 其中, 直线箭头表示像素电极 110所形成电场的方向, 曲线箭头表示液晶分 子 120在电场作用下旋转的方向, 在相邻像素电极 110之间还设置有公共电 极 130。 图 2是第一种现有液晶面板的透过率与电压关系曲线, 其中, 每条 曲线对应的透过率变化范围为液晶面板在相应视角从全黑至全白, 所有曲线 的极角均为 60度, 方位角从 0度到 150度之间变化, 变化步长为 30度。 即 在极角为 60度, 方位角 (图中 Phi )分别为 0度、 30度、 60度、 90度、 120 度和 150度时分别令液晶面板的透过率从全黑至全白变化, 模拟得到透过率 和电压(单位伏) 的一条关系曲线。 从图 2可以看到, 不同视角 (极角相同 时即不同方位角)对应的 6条透过率与电压关系曲线, 严重, 差异较大, 没有 4艮好的重合性, 这就导致不同视角下的灰阶曲线不同, 因此会造成在同 一电压下的透过率不同, 也就是灰阶不同, 从而导致视角较差。 另一方面, 由于不同视角下的透过率不同, 不同视角下对应的液晶分子的各向异性状态 不同, 颜色差异也较大, 即所谓的 色偏移 ( 发明内容
本发明的实施例提供一种液晶面板, 包括液晶层和像素区; 所述像素区 包含多个像素单元, 其中, 所述每个所述像素单元都包括: 第一附属区和第 二附属区; 在初始状态, 所述第一附属区对应的所述液晶层的液晶分子的长 轴方向和所述第二附属区对应的所述液晶层的液晶分子的长轴方向间夹角为 90度; 所述第一附属区包括至少两个附属子区, 所述第二附属区包括至少一 个附属子区; 所述第一附属区和所述第二附属区的附属子区中分别设置有用 于向所述液晶层施加共面电场的至少两个电极, 所述两个电极中至少一个包 含条状电极; 所述第一附属区包括的两个附属子区为第一附属子区和第二附 属子区, 所述第一附属子区的条状电极与所述第二附属子区的条状电极之间 的夹角大于 0度且小于 180度。
进一步地, 所述第一附属区对应的所述液晶层在初始状态时的液晶分子 的长轴方向与所述第一附属子区和所述第二附属子区的条状电极之间形成的 夹角分别为第一夹角和第二夹角, 所述第一夹角等于所述第二夹角。
进一步地, 所述第二附属区包括第三附属子区和第四附属子区; 所述第 三附属子区的条状电极与所述第四附属子区的条状电极之间的夹角大于 0度 小于 180度。
进一步地, 所述第二附属区对应的所述液晶层在初始状态时的液晶分子 的长轴方向与所述第三附属子区和所述第四附属子区的条状电极之间形成的 夹角分别为第三夹角和第四夹角, 所述第三夹角等于所述第四夹角。
进一步地, 所述第一附属区对应的所述液晶层在初始状态时的液晶分子 的长轴方向与所述第一附属子区和所述第二附属子区的条状电极之间形成的 夹角分别为第一夹角和第二夹角, 所述第一夹角、 第二夹角、 第三夹角、 第 四夹角都是相同的。
进一步地, 所述第一附属子区、 所述第二附属子区、 所述第三附属子区 和所述第四附属子区的面积相等。
进一步地, 当所述液晶层的液晶分子为正性液晶分子时, 所述第一附属 区对应的所述液晶层在初始状态时的液晶分子的长轴方向与所述第一附属区 的附属子区中的条状电极的夹角范围为 3至 30度,所述第二附属区对应的所 述液晶层在初始状态时的液晶分子的长轴方向与所述第二附属区的附属子区 中的条状电极的夹角范围为 3至 30度;当所述液晶层的液晶分子为负性液晶 分子时, 所述第一附属区对应的所述液晶层在初始状态时的液晶分子的短轴 方向与所述第一附属区的附属子区域的条状电极的夹角范围为 3至 35度,所 述第二附属区对应的所述液晶层在初始状态时的液晶分子的短轴方向与所述 第二附属区的附属子区中的条状电极的夹角范围为 3至 35度。
进一步地, 所述液晶面板中所述第一附属区和所述第二附属区的附属子 区中的两个电极中的一个包含条状电极, 另一个为板状电极; 当所述液晶层 的液晶分子为正性液晶分子时, 所述第一附属区对应的所述液晶层在初始状 态时的液晶分子的长轴方向与所述第一附属区的附属子区中的条状电极的夹 角范围为 5至 14度,所述第二附属区对应的所述液晶层在初始状态时的液晶 分子的长轴方向与所述第二附属区的附属子区中的条状电极的夹角范围为 5 至 14度; 当所述液晶层的液晶分子为负性液晶分子时,所述第一附属区对应 的所述液晶层在初始状态时的液晶分子的短轴方向与所述第一附属区的附属 子区中的条状电极的夹角范围为 5至 14度,所述第二附属区对应的所述液晶 层在初始状态时的液晶分子的短轴方向与所述第二附属区的附属子区中的条 状电极的夹角范围为 5至 14度。
进一步地, 所述液晶面板中所述第一附属区和所述第二附属区的附属子 区中的两个电极都包含条状电极, 所述两个电极相互交错设置; 当所述液晶 层的液晶分子为正性液晶分子时, 所述第一附属区对应的所述液晶层在初始 状态时的液晶分子的长轴方向与所述第一附属区的附属子区中的条状电极的 夹角范围为 11至 20度, 所述第二附属区对应的所述液晶层在初始状态时的 液晶分子的长轴方向与所述第二附属区的附属子区中的条状电极的夹角范围 为 11至 20度; 当所述液晶层的液晶分子为负性液晶分子时, 所述第一附属 区对应的所述液晶层在初始状态时的液晶分子的短轴方向与所述第一附属区 的附属子区中的条状电极的夹角范围为 11至 20度, 所述第二附属区对应的 所述液晶层在初始状态时的液晶分子的短轴方向与所述第二附属区的附属子 区中的条状电极的夹角范围为 11至 20度。 本发明还提供一种显示装置, 其包括上述的液晶面板。 附图说明
图 1是第一种现有液晶面板的像素单元中电极结构示意图;
图 2是第一种现有液晶面板的透过率与电压关系曲线;
图 3a是本发明实施例 1所述液晶面板的像素单元中电极结构示意图; 图 3b是图 3a中 A-A向的截面图;
图 3c是本发明实施例 1所述液晶面板的透过率与电压关系曲线; 图 4a是本发明实施例 2的液晶面板的像素单元结构示意图;
图 4b是图 4a中 B-B向的截面示意图;
图 4c是本实施例 2所述液晶面板的像素单元结构的一种变形示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 以下实施例用于说明本发 明, 但不用来限制本发明的范围。
本发明的实施例提供一种液晶面板及显示装置。 其中, 所述液晶面板包 括液晶层和像素区; 所述像素区包括多个像素单元, 每个像素单元都包括: 第一附属区和第二附属区。
在初始状态, 即所述液晶层未受到电场作用时, 所述第一附属区对应的 所述液晶层的液晶分子的长轴方向和所述第二附属区对应的所述液晶层的液 晶分子的长轴方向间夹角为 90度。
筒单起见, 本发明下述实施例中的液晶分子都是以正性液晶分子为例进 行说明的。 并且, 本发明提到的所有与液晶分子相关的夹角都是液晶分子在 初始状态下得到的。
所述第一附属区包括至少两个附属子区, 所述第二附属区包括至少一个 附属子区。 所述第一附属区和所述第二附属区的附属子区中分别设置有用于向所述 液晶层施加共面电场的至少两个电极, 所述两个电极中至少一个包含条状电 极。
所述第一附属区包括的两个附属子区为第一附属子区和第二附属子区, 所述第一附属子区的条状电极与所述第二附属子区的条状电极之间的夹角大 于 0度且小于 180度。
当所述第一附属区和所述第二附属区的附属子区中相应的至少两个电极 之间存在电压差时, 即形成向所述液晶层施加的所述共面电场, 在所述共面 电场作用下, 各附属子区对应的液晶层中的液晶分子向着所述共面电场的电 场方向旋转, 从而可以改善现有液晶面板视角较差及不同视角下色偏移严重 的问题。
实施例 1
图 3a是本发明实施例 1所述液晶面板的像素单元结构示意图, 图 3b是 图 3a中 A-A向的截面图。 本实施例所述液晶面板为 IPS面板, 所述液晶面 板包括液晶层和像素区, 像素区包含多个像素单元, 每个像素单元中电极结 构如图 3a所示。 每个像素单元都包含像素电极 330和公共电极 350, 其中所 有的像素电极 330都连接在一起, 所有的公共电极 350也都连接在一起, 只 是图 3a中未示出。
所述像素单元包括: 第一附属区 310和第二附属区 320。 可以看到在初 始状态, 第一附属区 310和第二附属区 320对应的液晶层的液晶分子的长轴 方向的夹角为 90度。 所述第一附属区 310进一步包括: 第一附属子区 311 和第二附属子区 312; 所述第二附属区 320进一步包括: 第三附属子区 321 和第四附属子区 322。
所述第一附属区和所述第二附属区的附属子区中分别设置有用于向所述 液晶层施加共面电场的至少两个电极, 所述两个电极中至少一个电极包含条 状电极。 例如, 在图 3a中, 所述第一附属子区 311、 所述第二附属子区 312、 所述第三附属子区 321和所述第四附属子区 322均包括能形成共面电场的两 个电极, 这两个电极都包含条状电极。 在本实施例中, 这两个电极分别为像 素电极 330和公共电极 350, 进一步地, 位于同一附属子区中的条状电极具 有相同的长度方向, 不同附属子区中的条状电极的长度方向不同。 例如, 第 一附属区的两个附属子区中的条状电极之间的夹角大于 0度且小于 180度, 第二附属区的两个附属子区中的条状电极之间的夹角大于 0度且小于 180度。 并且, 所述像素电极 330和所述公共电极 350交替间隔设置。
当所述像素电极 330和所述公共电极 350之间不存在电压差时, 所述第 一附属区 310对应的所述液晶层的液晶分子 340的长轴方向和所述第二附属 区 320对应的所述液晶层的液晶分子 340的长轴方向间夹角为 90度。当所述 像素电极 330和所述公共电极 350之间存在电压差时, 形成共面电场, 每个 附属子区对应的液晶层的液晶分子 340的长轴方向均沿图中曲线箭头所示方 向向该附属子区的电场方向 (图中直实线箭头方向)旋转。
在初始状态,所述第一附属子区 311中的条状电极(对应于图 3a中的像 素电极 330和公共电极 350 )具有第一长度方向 (图 3a中第一附属子区 311 中倾斜的直虚线箭头方向) , 所述第一长度方向与所述第一附属子区 311对 应的液晶层的液晶分子 340的长轴方向间夹角为第一夹角 (图 3a中的 al )。 所述第二附属子区 312中的条状电极具有第二长度方向(图 3a中第二附属子 区 312中倾斜的直虚线箭头方向 ) , 所述第二长度方向与所述第二附属子区 312对应的液晶层的液晶分子 340的长轴方向间夹角为第二夹角(图 3a中的 a2 )。 所述第三附属子区 321中的条状电极具有第三长度方向(图 3a中第三 附属子区 321中倾斜的直虚线箭头方向) , 所述第三长度方向与所述第三附 属子区 321对应的液晶层的液晶分子 340的长轴方向间夹角为第三夹角 (图 3a中的 a3 ) 。 所述第四附属子区 322 中的条状电极具有第四长度方向 (图 3a中第四附属子区 322中倾斜的直虚线箭头方向), 所述第四长度方向与所 述第四附属子区 322对应的液晶层的液晶分子 340的长轴方向间夹角为第四 夹角 (图 3a中的 a4 )。
进一步地, 所述第一长度方向、 所述第二长度方向、 所述第三长度方向 和所述第四长度方向互不相同, 从而对应不同的附属子区。 例如, 所述第一 夹角 al等于所述第二夹角 a2。 进一步地, 所述第三夹角 a3等于所述第四夹 角 a4。
一种实施方式中, 所述第一夹角、 所述第二夹角、 所述第三夹角和所述 第四夹角均相等。
进一步地, 本实施例中, 所述第一夹角、 所述第二夹角、 所述第三夹角 和所述第四夹角的取值范围均为 3至 30度, 例如, 上述夹角的取值范围为 11度至 20度。
图 3a中的液晶分子是以正性液晶为例进行说明的,所述液晶层的液晶分 子也可以是负性液晶分子。 当液晶分子为负性液晶分子时, 第一附属区的液 晶分子的短轴方向与所述第一附属区的两个附属子区的条状电极的长度方向 之间的夹角, 以及第二附属区的液晶分子的短轴方向与所述第二附属区的两 个附属子区的条状电极的长度方向之间的夹角的取值范围均为 3至 35度,例 如, 上述夹角的取值范围为 11度至 20度。
另一实施方式中, 所述第一附属子区 311、所述第二附属子区 312、所述 第三附属子区 321和所述第四附属子区 322的面积均相等。
图 3c是本发明实施例 1所述液晶面板的透过率与电压关系曲线, 其中, 图中 6条曲线的极角均为 60度, 方位角 (图中 Phi )从 0度到 150度之间变 化, 变化步长为 30度, 即在极角为 60度, 方位角分别为 0度、 30度、 60 度、 90度、 120度和 150度时分别令液晶面板的透过率从全黑至全白变化, 模拟得到透过率和电压 (单位伏) 的一条关系曲线, 共模拟得到图中 6条曲 线。 从图 3c可以看到, 不同视角 (极角相同时即不同方位角)对应的 6条透 过率与电压关系曲线, 其重合度明显高于现有技术的液晶面板, 这表示不同 视角下的灰阶曲线接近,透过率接近,对应的液晶分子的各向异性状态接近, 从而改善了现有液晶面板视角较差及不同视角下色偏移严重的问题。 实施例 2
图 4a是本发明实施例 2的液晶面板的像素结构平面图, 图 4b是图 4a 中 B-B向的截面图。 本实施例基于实施例 1进行描述, 本实施例中的液晶面 板为 ADS面板, 参见图 4b, 所述 ADS面板包括液晶层和像素区, 像素区包 含多个像素单元, 每个像素单元设置有像素电极 430和公共电极 450。
参见图 4a, 本实施例中每个像素单元都包括: 第一附属区 410和第二附 属区 420。 所述第一附属区 410进一步包括: 第一附属子区 411和第二附属 子区 412; 所述第二附属区 420进一步包括: 第三附属子区 421和第四附属 子区 422。
所述第一附属子区 411、 所述第二附属子区 412、 所述第三附属子区 421 和所述第四附属子区 422均包括用于向所述液晶层施加共面电场的至少两个 电极, 这两个电极一个包含条状电极(本实施例 2中的包含条状电极的电极 就是 ADS模式中的狭缝电极) , 另一个为板状电极。 具体的这两个电极一 个是公共电极, 一个是像素电极, 在本实施例中,公共电极 450为板状电极, 像素电极 430包含条状电极,需要说明的是,公共电极也可以包含条状电极, 对应的像素电极就为板状电极。
当所述像素电极 430和所述公共电极 450之间不存在电压差时, 所述第 一附属区 410对应的所述液晶层的液晶分子 440的长轴方向和所述第二附属 区 420对应的所述液晶层的液晶分子 440的长轴方向间夹角为 90度。当所述 像素电极 430和所述公共电极 450之间存在电压差时, 形成共面电场, 每个 附属子区对应的所述液晶层中的液晶分子 440的长轴方向均沿该附属子区的 电场方向旋转。
类似于实施例 1 , 在初始状态, 本实施例所述第一附属区 410对应的所 述液晶层的液晶分子 440的长轴方向与所述第一附属区 410的两个附属子区 的条状电极之间的夹角相同; 所述第二附属区 420对应的所述液晶层的液晶 分子 440的长轴方向与所述第二附属区 420的两个附属子区的条状电极之间 的夹角相同。 例如, 本实施例中, 所述第一附属区 410对应的所述液晶层的 液晶分子 440的长轴方向与所述第一附属区 410的两个附属子区的条状电极 之间的夹角, 等于所述第二附属区 420对应的所述液晶层的液晶分子 440的 长轴方向与所述第二附属区 420的两个附属子区的条状电极之间的夹角。
本实施例中在初始状态, 所述第一附属区 410对应的所述液晶层的液晶 分子 440的长轴方向与所述第一附属区 410的两个附属子区的条状电极之间 的夹角, 以及所述第二附属区 420对应的所述液晶层的液晶分子 440的长轴 方向与所述第二附属区 420的两个附属子区的条状电极之间的夹角的取值范 围均为 3至 30度。 例如, 上述夹角的取值范围为 5至 14度。
图 4a中的液晶分子是以正性液晶为例进行说明的,需要说明的是该液晶 分子也可以为负性液晶, 具体地, 当液晶分子为负性液晶分子时, 第一附属 区的液晶分子的短轴方向与所述第一附属区的两个附属子区的条状电极之间 的夹角, 以及所述第二附属区的液晶分子的短轴方向与所述第二附属区的两 个附属子区的条状电极之间的夹角的取值范围均为 3至 35度。例如,上述夹 角的取值范围为 5至 14度。
同时, 本实施例中, 所述第一附属子区 411、 所述第二附属子区 412、 所 述第三附属子区 421和所述第四附属子区 422的面积也均相等。
另夕卜,图 4a中还示出了设置于所述像素区周围的栅线 460和数据线 470。 图 4c是本实施例 2所述液晶面板的像素结构的一种变形示意图,其与图
4a所述像素结构的不同在于, 所述第二附属区的两个的附属子区, 即第三附 属子区 421和第四附属子区 422分离设置于所述第一附属区 410的两侧。 需 要说明的是, 图 4c只是给出了一种变形,本发明并不限定所述像素区所包括 的不同附属子区之间的位置关系, 比如, 所述第一附属区 410的两个附属子 区也可以分离设置。
另外, 本发明所述像素区中第一附属区和第二附属区都包含两个附属子 区域, 需要说明的是第一附属区可以是两个或者更多的子区域, 第二附属区 也可以是一个以上的附属子区域, 这样都能在显示时形成 3个以上的互不相 同的液晶取向, 进而形成多畴显示, 提高液晶面板的视角, 4艮好地解决了色 偏问题。 实施例 3
本发明还提供一种显示装置, 所述显示装置包括上述实施例所述的液晶 面板, 所述显示装置可以液晶电视、 液晶显示器、 笔记本电脑、 平板电脑、 智能手机等。 本发明实施例所述液晶面板及显示装置, 令液晶面板像素区的像素单元 包括第一附属区和第二附属区, 在初始状态, 两个附属区中的液晶分子的长 轴方向间夹角呈 90度,第一附属区包括两个附属子区,第二附属区包括一个 或者两个附属子区, 第一附属区和第二附属区的附属子区中分别设置有用于 向液晶层施加共面电场的至少两个电极, 所述至少两个电极中至少一个包含 条状电极; 第一附属区的两个附属子区中的条状电极之间的夹角大于 0度且 小于 180度, 当所述两个电极形成共面电场时, 每个附属子区中的液晶分子 的长轴方向均向该附属子区的电场方向旋转, 从而可以改善现有液晶面板视 角较差及不同视角下色偏移严重的问题。 以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的保 护范围应由权利要求限定。

Claims

权利要求书
1、一种液晶面板,包括液晶层和像素区;所述像素区包含多个像素单元, 其中, 所述每个所述像素单元都包括: 第一附属区和第二附属区;
在初始状态, 所述第一附属区对应的所述液晶层的液晶分子的长轴方向 和所述第二附属区对应的所述液晶层的液晶分子的长轴方向间夹角为 90度; 所述第一附属区包括至少两个附属子区, 所述第二附属区包括至少一个 附属子区;
所述第一附属区和所述第二附属区的附属子区中分别设置有用于向所述 液晶层施加共面电场的至少两个电极, 所述两个电极中至少一个电极包含条 状电极;
所述第一附属区包括的两个附属子区为第一附属子区和第二附属子区, 所述第一附属子区的条状电极与所述第二附属子区的条状电极之间的夹角大 于 0度且小于 180度。
2、 如权利要求 1所述的液晶面板, 其中,
所述第一附属区对应的所述液晶层在初始状态时的液晶分子的长轴方向 与所述第一附属子区和所述第二附属子区的条状电极之间形成的夹角分别为 第一夹角和第二夹角, 所述第一夹角等于所述第二夹角。
3、 如权利要求 1所述的液晶面板, 其中,
所述第二附属区包括第三附属子区和第四附属子区;
所述第三附属子区的条状电极与所述第四附属子区的条状电极之间的夹 角大于 0度且小于 180度。
4、 如权利要求 3所述的液晶面板, 其中,
所述第二附属区对应的所述液晶层在初始状态时的液晶分子的长轴方向 与所述第三附属子区和所述第四附属子区的条状电极之间形成的夹角分别为 第三夹角和第四夹角, 所述第三夹角等于所述第四夹角。
5、如权利要求 4所述的液晶面板, 其中, 所述第一附属区对应的所述液 晶层在初始状态时的液晶分子的长轴方向与所述第一附属子区和所述第二附 属子区的条状电极之间形成的夹角分别为第一夹角和第二夹角, 所述第一夹 角、 第二夹角、 第三夹角、 第四夹角均为相同夹角。
6、 如权利要求 3-5中任一项所述的液晶面板, 其中,
所述第一附属子区、 所述第二附属子区、 所述第三附属子区和所述第四 附属子区的面积相等。
7、 如权利要求 1-6中任一项所述的液晶面板, 其中,
当所述液晶层的液晶分子为正性液晶分子时, 所述第一附属区对应的所 述液晶层在初始状态时的液晶分子的长轴方向与所述第一附属区的附属子区 中的条状电极的夹角范围为 3至 30度,所述第二附属区对应的所述液晶层在 初始状态时的液晶分子的长轴方向与所述第二附属区的附属子区中的条状电 极的夹角范围为 3至 30度;
当所述液晶层的液晶分子为负性液晶分子时, 所述第一附属区对应的所 述液晶层在初始状态时的液晶分子的短轴方向与所述第一附属区的附属子区 域的条状电极的夹角范围为 3至 35度,所述第二附属区对应的所述液晶层在 初始状态时的液晶分子的短轴方向与所述第二附属区的附属子区中的条状电 极的夹角范围为 3至 35度。
8、如权利要求 7所述的液晶面板, 其中, 所述液晶面板中所述第一附属 区和所述第二附属区的附属子区中的两个电极中的一个包含条状电极, 另一 个为板状电极;
当所述液晶层的液晶分子为正性液晶分子时, 所述第一附属区对应的所 述液晶层在初始状态时的液晶分子的长轴方向与所述第一附属区的附属子区 中的条状电极的夹角范围为 5至 14度,所述第二附属区对应的所述液晶层在 初始状态时的液晶分子的长轴方向与所述第二附属区的附属子区中的条状电 极的夹角范围为 5至 14度;
当所述液晶层的液晶分子为负性液晶分子时, 所述第一附属区对应的所 述液晶层在初始状态时的液晶分子的短轴方向与所述第一附属区的附属子区 中的条状电极的夹角范围为 5至 14度,所述第二附属区对应的所述液晶层在 初始状态时的液晶分子的短轴方向与所述第二附属区的附属子区中的条状电 极的夹角范围为 5至 14度。
9、如权利要求 7所述的液晶面板, 其中, 所述液晶面板中所述第一附属 区和所述第二附属区的附属子区中的两个电极都包含条状电极, 所述两个电 极相互交错设置; 当所述液晶层的液晶分子为正性液晶分子时, 所述第一附属区对应的所 述液晶层在初始状态时的液晶分子的长轴方向与所述第一附属区的附属子区 中的条状电极的夹角范围为 11至 20度, 所述第二附属区对应的所述液晶层 在初始状态时的液晶分子的长轴方向与所述第二附属区的附属子区中的条状 电极的夹角范围为 11至 20度;
当所述液晶层的液晶分子为负性液晶分子时, 所述第一附属区对应的所 述液晶层在初始状态时的液晶分子的短轴方向与所述第一附属区的附属子区 中的条状电极的夹角范围为 11至 20度, 所述第二附属区对应的所述液晶层 在初始状态时的液晶分子的短轴方向与所述第二附属区的附属子区中的条状 电极的夹角范围为 11至 20度。
10、 一种显示装置, 包括权利要求 1至 9中任一项所述的液晶面板。
PCT/CN2013/078461 2013-04-28 2013-06-28 一种液晶面板及显示装置 WO2014176824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/351,706 US20150009466A1 (en) 2013-04-28 2013-06-28 Liquid crystal panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310155715.XA CN103257490B (zh) 2013-04-28 2013-04-28 一种液晶面板及显示装置
CN201310155715.X 2013-04-28

Publications (1)

Publication Number Publication Date
WO2014176824A1 true WO2014176824A1 (zh) 2014-11-06

Family

ID=48961494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078461 WO2014176824A1 (zh) 2013-04-28 2013-06-28 一种液晶面板及显示装置

Country Status (3)

Country Link
US (1) US20150009466A1 (zh)
CN (1) CN103257490B (zh)
WO (1) WO2014176824A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529613A (zh) * 2013-10-22 2014-01-22 京东方科技集团股份有限公司 一种阵列基板及其制造方法、显示装置
CN108957874B (zh) * 2018-07-10 2022-04-22 昆山龙腾光电股份有限公司 液晶显示装置及其驱动方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266118B1 (en) * 1998-05-29 2001-07-24 Hyundai Electronics Industries Co., Ltd. Liquid crystal display of high aperture ratio and high transmittance having multi-domain having transparent conductive pixel and counter electrodes on the same substrate
CN1637472A (zh) * 2003-12-29 2005-07-13 Lg.菲利浦Lcd株式会社 具有多个区域的共平面开关模式液晶显示装置
KR20070072129A (ko) * 2005-12-30 2007-07-04 엘지.필립스 엘시디 주식회사 멀티도메인 횡전계모드 액정표시소자
CN202049313U (zh) * 2011-05-16 2011-11-23 京东方科技集团股份有限公司 一种阵列基板及薄膜晶体管液晶显示器
CN102707499A (zh) * 2012-05-31 2012-10-03 福建华映显示科技有限公司 画素结构及数组基板
CN102914928A (zh) * 2012-10-30 2013-02-06 京东方科技集团股份有限公司 阵列基板及显示装置
CN203178637U (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266118B1 (en) * 1998-05-29 2001-07-24 Hyundai Electronics Industries Co., Ltd. Liquid crystal display of high aperture ratio and high transmittance having multi-domain having transparent conductive pixel and counter electrodes on the same substrate
CN1637472A (zh) * 2003-12-29 2005-07-13 Lg.菲利浦Lcd株式会社 具有多个区域的共平面开关模式液晶显示装置
KR20070072129A (ko) * 2005-12-30 2007-07-04 엘지.필립스 엘시디 주식회사 멀티도메인 횡전계모드 액정표시소자
CN202049313U (zh) * 2011-05-16 2011-11-23 京东方科技集团股份有限公司 一种阵列基板及薄膜晶体管液晶显示器
CN102707499A (zh) * 2012-05-31 2012-10-03 福建华映显示科技有限公司 画素结构及数组基板
CN102914928A (zh) * 2012-10-30 2013-02-06 京东方科技集团股份有限公司 阵列基板及显示装置
CN203178637U (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶面板及显示装置

Also Published As

Publication number Publication date
CN103257490A (zh) 2013-08-21
CN103257490B (zh) 2017-02-08
US20150009466A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP5552518B2 (ja) 液晶表示装置
US7502086B2 (en) In-plane switching mode liquid crystal display device and method for manufacturing the same
US9329440B2 (en) Pixel structure
WO2015062310A1 (zh) 一种液晶显示面板、显示装置及其驱动方法
US20150146125A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and thin film transistor array substrate
US7492429B2 (en) In-plane switching liquid crystal display with bent electrodes
WO2015051663A1 (zh) 阵列基板及其驱动方法、显示装置
WO2015158062A1 (zh) 一种狭缝电极、阵列基板及显示装置
US10877327B2 (en) Pixel structure
WO2015010422A1 (zh) 液晶显示面板和显示装置
TWI518422B (zh) 顯示面板
CN107037645A (zh) 主像素电极、像素单元及液晶显示面板
WO2013086906A1 (zh) Tft阵列基板及其制作方法和显示装置
WO2013127199A1 (zh) Tft-lcd阵列基板及显示装置
US20140049741A1 (en) Array substrate, liquid crystal panel and display device
WO2014166166A1 (zh) 阵列基板、液晶显示面板及显示装置
US9454046B2 (en) Liquid crystal display device and method for manufacturing the same
WO2017049865A1 (zh) 阵列基板、显示装置及其制作方法
US10101615B2 (en) Array substrate and manufacturing method thereof, liquid crystal panel and display device
US9766510B2 (en) Pixel unit and array substrate
US20160187736A1 (en) Array substrate, display panel and display device
KR20090126466A (ko) 프린지 필드 스위칭 액정 표시소자
WO2014176824A1 (zh) 一种液晶面板及显示装置
US9459496B2 (en) Display panel and display device
US9482911B2 (en) Display panel and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14351706

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13883463

Country of ref document: EP

Kind code of ref document: A1