WO2015158027A1 - 一种韧性组织结构及其3d打印成形设备和方法 - Google Patents

一种韧性组织结构及其3d打印成形设备和方法 Download PDF

Info

Publication number
WO2015158027A1
WO2015158027A1 PCT/CN2014/078240 CN2014078240W WO2015158027A1 WO 2015158027 A1 WO2015158027 A1 WO 2015158027A1 CN 2014078240 W CN2014078240 W CN 2014078240W WO 2015158027 A1 WO2015158027 A1 WO 2015158027A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
hydrogel
nozzle
tissue structure
forming
Prior art date
Application number
PCT/CN2014/078240
Other languages
English (en)
French (fr)
Inventor
王小红
许雨帆
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2015158027A1 publication Critical patent/WO2015158027A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses

Definitions

  • the invention belongs to the fields of tissue engineering, composite materials and medical devices, and relates to a toughness structure and a 3D printing forming apparatus and method thereof.
  • tough tissue Achilles tendon, fascia, ligament, urethra and gynecological pelvic support system
  • biomimetic material substitution mainly on biomimetic material substitution, autologous transplantation or allogeneic transplantation, but the alternative organisms used in these methods Poor compatibility, slow recovery of damage, and even immune rejection and viral infections, and adult treatment and repair is more difficult than childhood.
  • Regenerative medicine and tissue engineering have made it possible to repair and rebuild human connective tissue, involving biology, materials, and mechanics. Book
  • Tough tissue such as connective tissue
  • Connective tissue is one of the basic tissues of humans and higher animals, supporting, connecting, nourishing, and protecting.
  • Connective tissue is divided into loose connective tissue (such as subcutaneous tissue), dense connective tissue (such as tendon and ligament), adipose tissue and reticular tissue.
  • Connective tissue consists of cells, fibers, and extracellular matrices; cells are mainly macrophages, fibroblasts, plasma cells, and mast cells; fibers include collagen fibers, elastin fibers, and reticular fibers.
  • the connective tissue fibers can be artificially prepared, such as silk fibroin fibers into a mesh, as a site for adipose-derived mesenchymal stem cells, a connective tissue repair substitute for gynecological pelvic floor support systems [Li Q, et al.
  • the Da Vinci robot [Chen Guangfei et al., Robotics and Applications, 201 1, 4: 1 1]. It mainly consists of a doctor's console, imaging system and robotic arm. It is mainly used to realize surgery. Remote operation of the operation.
  • the system can only achieve traditional surgery (such as resection and suturing), and can not achieve real-time regeneration of the lesion, not Apply additive manufacturing (3D printing) technology;
  • the imaging system of this system is only ordinary video image signals, not medical scanned image signals (such as CT and magnetic resonance imaging). Therefore, the Da Vinci system has great limitations in the field of direct regeneration in tissues and organs.
  • the invention combines materials science, engineering, medical imaging and stem cell technology to achieve regeneration and direct replacement of diseased tissue in a clinical operation, and the resulting structure can simulate living tissue in macroscopic and microscopic morphology. It has outstanding effects on function and biocompatibility.
  • the tough structure is an excellent substitute for repairing connective tissue such as ligaments and Achilles tendons.
  • the method of preparing the structure can also provide ideas for the manufacture of complex organs.
  • the ductile structure is a three-dimensional structure comprising a fiber layer and a hydrogel layer; the fiber layer and the hydrogel layer are alternately arranged in a space; the fiber layer is a polymer a fiber, the polymer fiber is in an ordered or disordered state; the hydrogel layer is a polymer hydrogel, the polymer hydrogel contains or does not contain cells; and the mass volume of the polymer hydrogel
  • the concentration is from 0.1 to 20%; the size of the fibrous layer is greater than the size of its adjacent hydrogel layer in at least one direction of length, width and height.
  • the fiber layer has a thickness of 10 nm to 10 mm
  • the hydrogel layer has a thickness of 10 ⁇ m to 10 m.
  • the ordered arrangement of the fibrous layers is parallel, radial, cross-shaped, net-like, woven or loop-shaped.
  • the three-dimensional structure is a cube, a cylinder or a specific form that mimics tissue organs in the body.
  • the pores or gaps between the fibers of the fiber layer are 5 nm to 2 mm.
  • the cell contained in the hydrogel layer of the present invention is at least one of fibroblasts, macrophages, plasma cells, mast cells, adipocytes, mesenchymal cells and leukocytes; the cell density is l X 10 2 ⁇ l X 10 9 /mL.
  • the polymer fiber is made of polyester, polyurethane, polyethylene, polyamide, polypropylene, polyvinyl alcohol, polytetrafluoroethylene, expanded polytetrafluoroethylene, polylactic acid, silicone rubber, sodium carboxymethylcellulose, poly At least one of a lactic acid-glycolic acid copolymer, a polymethyl methacrylate, an acrylonitrile-butadiene-styrene copolymer, a saccharide, a silk fibroin, a collagen, and an elastin; Glue is at least at least of gelatin, sodium alginate, fibrinogen, collagen, matrigel, carrageenan, chitosan, agar, hyaluronic acid, matrigel, elastin, laminin, polyvinyl alcohol and polyethylene glycol.
  • Glue is at least at least of gelatin, sodium alginate, fibrinogen, collagen, matrigel, carrageenan, chitosan,
  • the invention provides a tough structure structure 3D printing forming apparatus, characterized in that: the apparatus comprises a multi-nozzle rapid prototyping system, a scanning imaging system, a conveying system and a control system; the conveying system has one end located in the multi-nozzle rapid prototyping system The other end passes through the scanning imaging system; the multi-nozzle rapid prototyping system includes an X-direction moving mechanism, a nozzle fixing device and a forming table; the nozzle fixing device is disposed on the X-direction moving mechanism and moves in the X-direction; The nozzle fixing device includes a forming printing assembly including a surgical assembly and a head assembly, and moving in an XY plane and a Z direction; the multi-head rapid prototyping system, the scanning imaging system, and the transmission system are respectively separated by data lines Control
  • the scanning system transmits the scanned signal to the control system, and the control system processes the command signal and sends the command signal to the rapid prototyping system and the transmission system.
  • the apparatus of the present invention is characterized in that: the apparatus further comprises at least one industrial robot mounted on a side of the forming table, each robot comprising a shaped printing assembly, the shaped printing assembly comprising a surgical component and The nozzle assembly moves and moves within the space.
  • the apparatus of the present invention is characterized in that: the nozzle fixing device adopts a square structure, and the square structure comprises a plurality of mutually parallel Y-direction moving mechanisms, and each of the Y-direction moving mechanisms is provided with a z-direction moving mechanism, The forming printing assembly is mounted on the z-direction moving mechanism; or the nozzle fixing device adopts a circular structure, the circular structure includes a plurality of radial moving mechanisms, and each of the radial moving mechanisms is provided with a z-direction moving mechanism, The shaped print assembly is mounted on a radial motion mechanism.
  • the nozzle assembly comprises at least one of a screw extrusion nozzle, an electrospinning nozzle and a spray nozzle, and a suction assembly and a clamping assembly;
  • the suction assembly comprises a vacuum pump, a suction nozzle, a connecting pipe and a dirt collecting box; one side of the vacuum pump is connected to the suction nozzle by a connecting pipe, and the other side is connected to the dirt collecting box by a connecting pipe.
  • the present invention also provides a method of preparing a tough tissue structure, characterized in that the method comprises an in vivo direct printing forming method or an in vitro printing forming method, the method comprising the steps of:
  • step c) according to the command signal of step a), transferring the patient to the underside of the rapid prototyping system by using the delivery system, using the surgical component to perform a minimally invasive incision of the lesion to reserve space for the print formation; Except for the component to absorb some or all of the diseased tissue;
  • step d) preparing a hydrogel layer: according to the three-dimensional model of step a), printing the prepared polymer hydrogel on the lesion by using the rapid prototyping system of the 3D printing forming device to obtain a hydrogel layer;
  • step e preparing a fibrous layer: according to the three-dimensional model of step a), printing the resulting fibrous layer on the formed hydrogel layer of step d) using the 3D printing forming apparatus, or laying the fibrous layer directly on the printed On the hydrogel layer;
  • step c) preparing a hydrogel layer: according to the three-dimensional model of step a), printing the prepared polymer hydrogel using the rapid prototyping system of the 3D printing forming apparatus, and obtaining a hydrogel layer on the forming table;
  • step d) preparing a fibrous layer: according to the three-dimensional model of step a), printing the fibrous layer on the formed hydrogel layer of step c) using the rapid prototyping system of the 3D printing forming apparatus, or laying the fibrous layer directly On the printed hydrogel layer; e) repeating steps c) to d) to finally obtain the toughness structure;
  • tough tissue structure implantation using a delivery system to transfer the patient under the rapid prototyping system, using the surgical component of the 3D printing device to perform a minimally invasive incision in the lesion, and aspirating some or all of the diseased tissue by the aspiration assembly;
  • the clamping assembly moves the tough tissue structure obtained in step e) into the lesion site; the wound is sutured, and the operation ends.
  • the present invention has the following advantages and outstanding technical effects:
  • the fiber layer and the hydrogel layer of the invention are alternately arranged, and the hydrogel layer may or may not contain a cell hydrogel scaffold, which greatly simulates the interaction of tough tissue cells, matrix and fiber in the body, and contributes to toughness. Regeneration and clinical application of tissue structure.
  • the fibrous layer of the present invention is arranged in an ordered or disordered manner, and can realize the arrangement of various states of the fiber.
  • the formed fibrous layer simulates the fiber state of the tough structure in the body in morphology, mechanics and biology, and is a hydrogel layer and Cell attachment provides physical support.
  • the invention realizes the resection, regeneration or modification of the diseased part of the patient during the operation, and the obtained structure can greatly approach the original tissue, physiologically realize the corresponding function, and the immune rejection is low, and the repair and regeneration of the tough tissue is good. select.
  • the 3D printing forming apparatus of the present invention can realize 3D printing in and out of animals, and provides an idea for forming complex tissues or organs in real time.
  • Figure 1 is a schematic diagram of the cubic toughness structure.
  • Figure 2 is a schematic view of the toughness structure of the cylinder.
  • Figures 3a, 3b, 3c, 3d, 3e, 3f and 3g are fibers arranged in parallel, in a radial arrangement, in a cross arrangement, in a mesh arrangement, in a textile arrangement, in a loop-like arrangement, and in a random arrangement of fibers, respectively.
  • Figure 4 is a schematic diagram of a 3D printing forming apparatus.
  • Figures 5a, 5b, 5c, and 5d are schematic illustrations of a square nozzle holder, a circular nozzle holder, a single nozzle assembly, and an industrial robot, respectively.
  • Figures 6a, 6b, 6c, 6d, 6e and 6f are schematic illustrations of a screw extrusion nozzle, an electrospinning nozzle, a spray nozzle, a suction assembly, a clamping assembly and a surgical assembly, respectively.
  • Figures 6g and 6h are schematic diagrams of the operation of the electrospinning nozzle and the spray nozzle, respectively.
  • Figure 7 is a control road diagram of the 3D printing forming apparatus.
  • the tough structure structure provided by the present invention is a three-dimensional structure including a fiber layer 101 and a hydrogel layer 102; the three-dimensional structure is a cube (Fig. 1), a cylinder (Fig. 2) or a simulated body.
  • Fig. 1 a cube
  • Fig. 2 a cylinder
  • Fig. 2 a simulated body.
  • the fiber layer 101 and the hydrogel layer 102 are alternately arranged in a space; the fiber layer 101 is a polymer fiber, and the polymer fiber is in an ordered or disordered state; the polymer fiber is made of polyester, polyurethane, and poly Ethylene, polyamide, polypropylene, polyvinyl alcohol, polytetrafluoroethylene, expanded polytetrafluoroethylene, polylactic acid, silicone rubber, sodium carboxymethyl cellulose, polylactic acid-glycolic acid copolymer, polymethyl methacrylate At least one of an ester, an acrylonitrile-butadiene-styrene copolymer, a saccharide, a silk fibroin, a collagen, and an elastin.
  • the hydrogel layer 102 is a polymer hydrogel containing or not containing cells; the cells are fibroblasts, macrophages, plasma cells, mast cells, fat cells, mesenchyme At least one of cells and leukocytes; cell density is l X 10 2 ⁇ l X 10 9 / mL.
  • the polymer hydrogel is gelatin, sodium alginate, fibrinogen, collagen, matrigel, carrageenan, chitosan, agar, hyaluronic acid, matrigel, elastin, laminin, polyvinyl alcohol and poly At least one of ethylene glycol; the mass concentration of the polymer hydrogel is 0.1-20%; the size of the fibrous layer 101 is greater than the adjacent hydrogel in at least one direction of length, width and height. The size of layer 102.
  • the fiber layer has a thickness of 10 nm to 10 mm, and the hydrogel layer has a thickness of 10 ⁇ m to 10 m.
  • the ordered arrangement of the fibrous layers is parallel, radial, cross-shaped, mesh, woven or loop-shaped.
  • the pores or gaps between the fibers of the fiber layer are 5 nm to 2 mm.
  • the present invention provides a 3D printing forming apparatus for preparing a tough tissue structure, including a multi-nozzle rapid prototyping system 402, a scanning imaging system 401, a transport system 403, and a control system 404.
  • the delivery system 403 is located below the multi-nozzle rapid prototyping system 402 and the other end passes through the scanning imaging system 401;
  • the multi-nozzle rapid prototyping system 402 includes an X-direction motion mechanism, a showerhead fixture 406, and a forming station 405.
  • the nozzle fixing device is disposed on the X-direction moving mechanism and moves in the X direction, the X-direction moving mechanism includes an X-direction moving rail 502 and an X-direction motor 503 (see FIG.
  • the nozzle fixing device 406 includes forming a printing assembly 408, comprising a surgical assembly and a showerhead assembly, and moving in an XY plane and a Z-direction; the showerhead assembly comprising at least one of a screw extrusion nozzle, an electrospinning nozzle, and a spray nozzle, and suction In addition to components and clamping components.
  • the multi-head rapid prototyping system 402, the scanning imaging system 401, and the delivery system 403 are respectively connected to the control system 404 by data lines; the scanning imaging system 401 will The scanned signals are passed to control system 404, which is processed by control system 404 to obtain the command signals and to transmit the command signals to rapid profiling system 402 and transport system 403.
  • the apparatus of the present invention further includes at least one industrial robot 407 mounted on the side of the forming station 405, each robot including a shaped printing assembly 408 containing a surgical procedure Components and nozzle assemblies, and move within space.
  • the nozzle fixing device 406 adopts a square structure, and the square structure includes a plurality of mutually parallel Y-direction moving mechanisms, and a Z-direction moving mechanism is mounted on each of the Y-direction moving mechanisms, and the forming printing assembly 408 is mounted on the Z.
  • the Y-direction moving mechanism includes a Y-direction moving guide 505 and a Y-direction motor 506
  • the Z-direction moving mechanism includes a Z-direction moving guide 507 and a Z-direction motor 508.
  • the nozzle holder 406 has a circular structure including a plurality of radial movement mechanisms, each of which is provided with a Z-direction movement mechanism, and the formed print assembly 408 is mounted on the path.
  • the radial motion mechanism includes a radial motion guide 511 and a radial motor 512
  • the Z-direction motion mechanism includes a Z-direction motion guide 507 and a Z-direction motion motor 508.
  • the surgical assembly includes a scalpel 617, a medical suture 618, a motor 602, and a rotating arm 619; a scalpel 617 and a medical suture 618 are mounted on a rotating arm 619, respectively, which is driven by a motor 602.
  • the spray head assembly includes a motor 602, a cam 607, a cam drive shaft 608, a water spray can 610, a watering can holder clip 609 and a watering can nozzle 611; the motor 602 drives the cam 607 to rotate by means of a cam drive shaft 608.
  • the cam 607 is in contact with the top of the watering can 610.
  • the suction assembly comprises a vacuum pump 612, a suction nozzle 615, a connecting tube 613 and a dirt collection box 614; the vacuum pump 612 is connected by a connecting pipe 613 to the suction nozzle 615, and the other side is The connecting pipe 613 is attached to the dirt collecting box 614.
  • the screw squeezing head includes a screw 601, a motor 602, a retaining clip 603, an injector 604, and a nozzle 605. The motor is rotated by a screw to squeeze the syringe to extrude the material.
  • the electrospinning head comprises a screw 601, a motor 602, a retaining clip 603, a syringe 604 and a charged nozzle 606.
  • the motor rotates the syringe through a screw to extrude the material, and the material is formed under the action of an electric field.
  • the clamping assembly includes a clip 616 and a motor 602 that can transfer the shaped structure.
  • the present invention utilizes the above 3D printing forming apparatus to prepare a tough structure, the preparation method comprising an in-vivo direct printing forming method or an in vitro printing forming method, the method comprising the steps of:
  • Example 1 A ligament tissue structure was prepared in vitro using 3D printing technology and implanted in vivo.
  • Model design Design a three-dimensional model of the ligament tissue structure, and distribute the print path of the fiber layer and the hydrogel layer by the computer;
  • the 3D printing device is controlled by a computer. First, the cell-hydrogel material is extruded from the screw extrusion nozzle on the forming table, and a 2 mm thick hydrogel layer is obtained according to a predetermined path. Secondly, an electrospinning nozzle is used. The molten polycaprolactone fiber is formed, and the fibers are in a state of parallel arrangement and random arrangement to obtain a fiber layer of 200 ⁇ m thick; the above operation is repeated, and a ligament structure in which the hydrogel layer and the fiber layer are alternately arranged is obtained on the forming table;
  • Implantation process The scanned imaging system transmits the lesion signal to the control system for processing to obtain the command signal; under the command of the control signal, the surgical component of the 3D printing device incises the lesion, and the 3D printing device The aspiration component partially absorbs the ligament of the lesion, and then the clamping component of the 3D printing device will be in step 4) The obtained ligament tissue structure was transferred to the lesion site, and finally the wound was sutured with the medical suture glue of the 3D printing device, and the operation was finished.
  • Example 2 A ligament tissue structure was prepared in vitro using 3D printing technology and implanted into the body.
  • Model design The patient's ligament injury site is scanned by the scanning imaging system to obtain a three-dimensional model of the ligament tissue structure, and the printing path of the fiber layer and the hydrogel layer is distributed by the computer;
  • the hydrogel material is extruded by a screw extrusion nozzle, and a 2 mm thick hydrogel layer is obtained according to a predetermined path; secondly, a cell suspension is sprayed on the formed hydrogel layer by a spray nozzle;
  • the screw extrusion nozzle squeezes the polyurethane solution to obtain the fibers arranged in a network, and immediately extracts the tetraethylene glycol solution by using a phosphate solution, and removes the excess solution by the suction module to obtain a fiber layer of 200 ⁇ m thick; repeating the above operation Obtaining a ligament tissue structure in which hydrogel layers, cells and fibrous layers are alternately arranged;
  • Implantation process The scanned imaging system transmits the lesion signal to the control system for processing to obtain the command signal; under the command of the control signal, the surgical component of the 3D printing device incises the lesion, and the 3D printing device The suction component partially absorbs the ligament of the lesion, and then the ligament tissue structure obtained in step 5) is transferred to the lesion by the clamping component of the 3D printing device, and finally the suture is sutured with the medical suture of the 3D printing device. The surgery is over.
  • Example 3 A Achilles tendon was formed directly in the body using 3D printing techniques.
  • Model design Scanning the patient's ligament injury site by scanning imaging system, the computer prints the fiber and hydrogel layer print paths;
  • the computer controls the 3D printing device, firstly, the surgical component is used to make a minimally invasive incision on the lesion; then the suction component absorbs part of the lesion ligament tissue; At the incision site, the hydrogel material is extruded from the screw extrusion nozzle of the 3D printing device, and a 2 mm thick hydrogel layer is obtained according to a predetermined path. Secondly, the cell suspension is sprayed on the formed hydrogel layer by a spray nozzle assembly.
  • the extrusion nozzle squeezes the polylactic acid polyglycolic acid copolymer solution to obtain the radially arranged fibers, and immediately extracts the tetraethylene glycol solution by using the phosphate solution, and absorbs the excess liquid by the suction component to obtain a fiber layer of 200 ⁇ m thick.
  • the above operation was repeated to obtain an alternate arrangement of the hydrogel layer, the cell and the fibrous layer; after the formation, the wound was sutured with a medical suture, and the operation was completed.
  • Example 4 An Achilles tendon tissue structure was prepared in vitro using 3D printing techniques.
  • Model design design a three-dimensional model of the Achilles tendon tissue structure, and distribute the print path of the fiber layer and the hydrogel layer by the computer;
  • Forming process The computer controls the 3D printing device. First, the cell-hydrogel material is extruded by a screw extrusion nozzle, and a 5 mm thick hydrogel layer is obtained according to a predetermined path. Secondly, the collagen is sprayed by an electrospinning nozzle. In the acetic acid solution, a fiber layer is obtained on the hydrogel layer, the fiber morphology portions are arranged in a crosswise manner, and the portions are arranged in parallel to obtain a fiber layer of 2 mm thick; the above operation is repeated to obtain an Achilles tendon structure in which the hydrogel layer and the fiber layer are alternately arranged. .
  • Example 5 An Achilles tendon tissue structure was prepared in vitro using 3D printing techniques.
  • Model design design a three-dimensional model of the Achilles tendon structure, and distribute the print path of the hydrogel layer by the computer;
  • Forming process The rapid prototyping system of the 3D printing device is controlled by a computer. First, the cell-hydrogel material is extruded by a screw extrusion nozzle, and a 5 mm thick hydrogel layer is obtained according to a predetermined path; The silk woven fabric was placed above the hydrogel layer as a fiber layer; the above operation was repeated to obtain an Achilles tendon structure in which the hydrogel layer and the fiber layer were alternately arranged.
  • Example 6 A decidual tissue structure was formed directly in vivo using 3D printing techniques.
  • the 3D printing device is controlled by a computer, and the surgical component is used to make a minimally invasive incision on the lesion, and then the suction component removes the decidual tissue of the part of the lesion;
  • the screw extrusion nozzle of the printing device extrudes the hydrogel-cell material in the lesion, and obtains a 0.5 mm thick hydrogel layer according to a predetermined path; secondly, the molten ABS is printed by a screw extrusion nozzle to obtain a loop shape.
  • the fiber layer has a layer thickness of 0.5 mm; the above operation is repeated to obtain a structure in which the hydrogel layer, the cell and the fiber layer are alternately arranged to form a decidual structure; after the forming is completed, the wound is sutured with a medical suture, and the operation is finished.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Rehabilitation Therapy (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种韧性组织结构及其3D打印成形设备和方法。韧性组织结构为立体结构,包括纤维层和水凝胶层,纤维层和水凝胶层在空间内交替排列。纤维层的纤维为有序排列或无序排列,水凝胶层含或不含细胞。设备包括扫描成像系统、快速成形系统、传送系统和控制系统。韧性组织结构在力学上、形态上和生物学上能够模拟体内韧性组织的细胞、基质和纤维的组成状态,能用于跟腱、韧带、尿道、妇科盆底支撑系统等部位的韧性组织的直接修复和再生。设备能实现在临床手术中体内外直接打印、再生成或替换病变的韧性组织。

Description

一种韧性组织结构及其 3D打印成形设备和方法
技术领域
本发明属于组织工程、 复合材料及医疗器械领域, 涉及一种韧性组织结构及其 3D打印 成形设备和方法。
背景技术
目前, 韧性组织 (跟腱、 筋膜、 韧说带、 尿道和妇科盆底支撑系统等) 的损伤治疗和修复 主要依靠仿生材料替代、自体移植或异体移植,但这些方法采用的替代物的生物相容性不高, 损伤恢复较慢, 甚至面临免疫排斥和病毒传染问题, 并且成年人的治疗和修复比幼年更加困 难。 再生医学和组织工程为人类结缔组织的修复和再造提供了可能, 其中涉及到生物学、 材 料学、 机械学等学科。 书
韧性组织, 如结缔组织 (connective tissue;), 是人和高等动物的基本组织之一, 起支持、 连 接、 营养、保护等多种功能。 结缔组织分为疏松结缔组织(如皮下组织)、致密结缔组织(如 腱和韧带) 、 脂肪组织和网状组织。 结缔组织由细胞、 纤维和细胞外基质组成; 细胞主要有 巨噬细胞、 成纤维细胞、 浆细胞和肥大细胞; 纤维包括胶原纤维、 弹性纤维和网状纤维。
将 3D打印技术与组织工程技术相结合, 是目前解决复杂组织器官制造的有效途径。 国 外许多科研组在该领域有所探索和发展 [Boland T, et al. Biotechnology journal, 2006, 1(9):910; Cooper G, et al. Tissue Engineering Part A, 2010, 16(5): 1749 ; Fedorovich N, et al. Tissue Engineering Part C, 201 1, 18(1):33]。国内清华大学器官制造中心 (Center of Organ Manufacturing) 开发出系列 3D成形设备, 如熔融挤压设备、 单 (双) 喷头 (针头) 针低温沉积成形设备, 并成功制备出了简单的血管网、肝组织和骨修复材料等 [Wang X, et al. Trends in Biotechnology, 2007,25 :505; Wang X, et al. Tissue Engineering Part B, 2010, 16: 189; Wang X. Artificial organs, 2012,36:591]。
干细胞能为组织再生提供再生微环境, 目前已应用于骨、软骨、肌肉、骨髓基质、肌腱、 脂肪和其他结缔组织的修复 [Caplan A. Journal of cellular physiology, 2007,213(2):341]。 结缔组 织的纤维可人工制备, 如将蚕丝纤维纺织成网格, 作为脂肪间充质干细胞的场所, 用于妇科 盆底支撑系统的结缔组织修复替代物 [Li Q, et al. Cell and tissue research, 2013,354(2):471] , 该 方法能观测到细胞与丝素纤维的交互作用,但蚕丝的生物相容性和生物毒性需要进一步验证, 同时网格的宏观孔隙过大, 纤维间微观孔隙过小, 不适宜细胞生长; 同时成品轮廓的可重复 性低, 生产效率有待提高, 不适于批量生产。
目前世界上使用最广泛的手术机器人为达芬奇机器人 [陈广飞等, 机器人技术与应用, 201 1,4: 1 1] ,主要有医生控制台、成像系统和机械臂构成,主要用于实现外科手术的远程操作。 但该系统只能实现传统的手术 (如切除和缝合) , 并不能实现对病变部位的实时再生, 并未 应用增材制造 (3D打印)技术; 该系统的成像系统仅为普通视频图像信号, 并非医学扫描图像 信号 (如 CT和核磁共振成像)。 故达芬奇系统在组织器官体内直接再生领域的局限性很大。
通过以上分析, 将 3D 打印技术与组织器官相结合已成为医学和工程学的研究热点。 现 有的弹性组织的修复方法受到材料性能、 生物相容性和修复再生速度的影响, 并不能完全恢 复损伤组织的功能。 本发明 3D 打印技术应用于临床手术, 并将细胞与高分子复合, 能实现 病变部位的术中实时再生。 所成形的结构在形态结构上、 免疫生理方面都有良好的性能。 发明内容
本发明的目的是提供一种韧性组织结构及其 3D打印成形设备和方法。 该发明可将材料 学、 工程学、 医学成像学和干细胞等技术相结合, 在临床手术中实现对病人病变组织的再生 和直接替换, 所得结构在宏观微观形貌上可模拟活体组织, 同时在功能和生物相容性上效果 突出, 该韧性组织结构是修复韧带、 跟腱等结缔组织的优良替代物, 制备该结构的方法也能 为复杂器官制造提供思路。
本发明的技术方案如下:
一种韧性组织结构, 其特征在于: 所述韧性组织结构为立体结构, 包括纤维层和水凝胶 层; 所述纤维层和水凝胶层在空间内交替排列; 所述纤维层为高分子纤维, 该高分子纤维呈 有序或无序排列状态; 所述水凝胶层为高分子水凝胶, 该高分子水凝胶含或不含细胞; 所述 高分子水凝胶的质量体积浓度为 0.1~20%; 所述纤维层的尺寸在长度、 宽度和高度至少一个 方向上大于其相邻水凝胶层的尺寸。
上述技术方案中, 所述纤维层的厚度为 10nm~10mm, 所述水凝胶层的厚度为 10μιη~10ιηιη。 所述纤维层的有序排列状态为平行状、 放射状、 交叉状、 网状、 纺织状或环扣 状。 所述立体结构为立方体、 圆柱体或模拟体内组织器官的具体形态。 所述纤维层的纤维间 的孔隙或间隙尺寸为 5nm~2mm。
本发明所述水凝胶层所含细胞为成纤维细胞、巨噬细胞、浆细胞、肥大细胞、脂肪细胞、 间充质细胞和白细胞中的至少一种; 所述细胞密度为 l X 102 ~l X 109 /mL。所述高分子纤维 采用聚酯、 聚氨酯、 聚乙烯、 聚酰胺、 聚丙烯、 聚乙烯醇、 聚四氟乙烯、 膨体聚四氟乙烯、 聚乳酸、 硅橡胶、 羟甲基纤维素钠、 聚乳酸 -羟基乙酸共聚物、 聚甲基丙烯酸甲酯、 丙烯腈- 丁二烯-苯乙烯共聚物、 糖类、 丝素蛋白、 胶原蛋白和弹性蛋白中的至少一种; 所述高分子水 凝胶为明胶、 海藻酸钠、 纤维蛋白原、 胶原、 基质胶、 卡拉胶、 壳聚糖、 琼脂、 透明质酸、 基质胶、 弹性蛋白、 层粘素、 聚乙烯醇和聚乙二醇中的至少一种。
本发明提供的一种韧性组织结构的 3D 打印成形设备, 其特征在于: 所述设备包括多喷 头快速成形系统、 扫描成像系统、 传送系统和控制系统; 所述传送系统一端位于多喷头快速 成形系统下方, 另一端穿过扫描成像系统; 所述多喷头快速成形系统包括 X向运动机构、 喷 头固定装置和成形台; 所述喷头固定装置设置在 X向运动机构上, 并沿 X向运动; 所述喷头 固定装置包括成形打印组件, 所述成形打印组件含有外科手术组件和喷头组件, 并在 XY平 面和 Z向移动; 述所述多喷头快速成形系统、 扫描成像系统和传送系统由数据线路分别与控 制系统连接; 所述扫描成像系统将扫描所得信号传送至控制系统, 由控制系统处理后得到指 令信号并将指令信号发送至快速成形系统和传送系统。
本发明所述的设备中, 其特征在于: 所述设备还包括至少一个工业机器人, 该机器人安 装在所述成形台的侧边, 每个机器人包括成形打印组件, 成形打印组件含有外科手术组件和 喷头组件, 并在空间内运动。
本发明所述的设备中, 其特征在于: 所述喷头固定装置采用方形结构, 方形结构包括多 条相互平行的 Y向运动机构,在每条 Y向运动机构上装有 z向运动机构,所述成形打印组件 安装在 z向运动机构上; 或所述喷头固定装置采用圆形结构, 该圆形结构包括多条径向运动 机构,在每条径向运动机构上装有 z向运动机构,所述成形打印组件安装在径向运动机构上。
本发明所述的设备中, 所述喷头组件包括螺杆挤压喷头、 电纺丝喷头和喷雾喷头至少一 种, 以及吸除组件和夹持组件; 所述吸除组件含真空泵、 吸除嘴、 连接管和污物收集箱; 所 述真空泵一侧由连接管连在吸除嘴上, 另一侧由连接管连在污物收集箱上。
本发明还提供了一种制备韧性组织结构的方法, 其特征在于, 该方法包括体内直接打印 成形方法或体外打印成形方法, 所述方法包括如下步骤:
1) 体内直接打印成形:
a)由计算机设计所述韧性组织结构的三维模型, 或者由扫描成像系统扫描病变部位得到 韧性组织结构的三维模型, 并由计算机分配打印成形路径; 利用所述扫描成像系统将病变部 位扫描所得信号传送至控制系统进行处理得到指令信号, 并将指令信号发送至快速成形系统 和传送系统;
b) 将配制好的质量体积浓度为 0.1~20%的高分子水凝胶和高分子纤维原材料分别装载到 所述 3D打印设备的不同喷头组件中, 该水凝胶含或不含细胞;
c) 依据步骤 a)的指令信号, 利用所述传送系统将病人转移至快速成形系统下方, 利用外 科手术组件进行病变部位微创切口, 为打印成形预留空间; 由所述喷头组件中的吸除组件吸 除部分或全部病变组织;
d) 制备水凝胶层: 依据步骤 a)的三维模型, 利用所述 3D打印成形设备的快速成形系统 打印配制好的高分子水凝胶于病变部位, 得到水凝胶层;
e)制备纤维层:依据步骤 a)的三维模型,在步骤 d)的已成形的水凝胶层上,利用所述 3D 打印成形设备打印得到纤维层, 或将纤维层直接铺设在已打印的水凝胶层上;
f) 利用所述传送系统将病人转移至扫描成像系统得到成形部位的反馈信号并由计算机 处理, 决定后续打印步骤;
g) 重复步骤 d)~f), 最终得到所述韧性组织结构;
h) 利用所述传送系统将病人转移至快速成形系统下方, 利用医用缝合胶进行创口缝合, 手术结束;
2) 体外打印成形: a)由计算机设计所述韧性组织结构的立体模型, 或者由医学成像技术扫描病变部位得到 所述韧性组织结构的三维模型, 并由计算机分配打印成形路径;
b) 将配制好的质量体积浓度为 0.1~20%的高分子水凝胶和高分子纤维原材料分别装载到 所述 3D打印设备的不同喷头中, 该水凝胶含或不含细胞;
c)制备水凝胶层: 依据步骤 a)的三维模型, 利用所述 3D打印成形设备的快速成形系统 打印配制好的高分子水凝胶, 在成形台上得到水凝胶层;
d) 制备纤维层:依据步骤 a)的三维模型,在步骤 c)的已成形的水凝胶层上,利用所述 3D 打印成形设备的快速成形系统打印得到纤维层, 或将纤维层直接铺设在已打印水凝胶层上; e) 重复步骤 c)~d), 最终得到所述韧性组织结构;
f) 韧性组织结构植入: 利用传送系统将病人转移至快速成形系统下方, 利用所述 3D打 印设备的外科手术组件进行病变部位微创切口, 由吸除组件吸除部分或全部病变组织; 利用 所述夹持组件将步骤 e)所得韧性组织结构移入病变部位; 进行创口缝合, 手术结束。
本发明与现有技术相比, 有以下优点及突出性的技术效果:
①本发明的纤维层和水凝胶层交替排列, 水凝胶层可含或不含细胞的水凝胶支架, 极大 模拟了体内韧性组织细胞、基质和纤维的交互作用,有助于韧性组织结构的再生和临床应用。
②本发明的纤维层有序或无序排列, 可实现纤维的多种状态的排列, 成形的纤维层在形 态、 力学和生物学上模拟了体内韧性组织的纤维状态, 为水凝胶层和细胞贴附提供了物理支 撑。
③本发明实现在手术中对病人病变部位的切除、 再生或修饰, 所得结构在形态可极大逼 近原始组织, 生理上实现相应功能, 且免疫排斥较低, 为韧性组织器官修复和再生的良好选 择。
④本发明的 3D打印成形装置, 可实现在动物体内外的 3D打印, 为实时成形复杂组织或 器官提供了思路。
附图说明
图 1为立方体韧性组织结构示意图。
图 2为圆柱体韧性组织结构示意图。
图 3a、 图 3b、 图 3c、 图 3d、 图 3e、 图 3f和图 3g分别为平行排列、 放射排列、 交叉排 列、 网状排列、 纺织物状排列、 环扣状排列和纤维随机排列的纤维示意图。
图 4为 3D打印成形设备示意图。
图 5a、 5b、 5c和 5d分别为方形的喷头固定装置、 圆形的喷头固定装置、 单个喷头组件 和工业机器人的示意图。
图 6a、 图 6b、 图 6c、 图 6d、 图 6e和图 6f分别为螺杆挤压喷头、 电纺丝喷头、 喷雾喷 头、 吸除组件、 夹持组件和外科手术组件的示意图。
图 6g和 6h分别为电纺丝喷头和喷雾喷头工作示意图。
图 7为 3D打印成形设备控制路线图。 图中: 101-纤维层; 102-水凝胶层; 401-扫描成像系统; 402-多喷头快速成形系统; 403- 传送系统; 404-控制系统; 405-成形台; 406-喷头固定装置; 407-工业机器人; 408-喷头组件; 409-导轨支架; 410-手术台; 411-手术台运动导轨; 502-X向运动导轨; 503-X向电机; 504- 方形支撑架; 505-Y向运动导轨; 506-Y向电机; 507-Z向运动导轨; 508-Z向电机; 509-喷 头放置板; 510-圆形支撑架; 511-径向运动导轨; 512-径向电机; 601-螺杆; 602-电机; 603- 固定夹; 604-注射器; 605-喷嘴; 606-带电喷嘴; 607-凸轮; 608-凸轮传动轴; 609-喷壶固定 夹; 610-喷壶; 611-喷壶喷嘴; 612-真空泵; 613-连接管; 614-污物收集箱; 615-吸除嘴; 616- 夹子; 617-手术刀; 618-医用缝合胶; 619-旋转柄。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
如图 1所示, 本发明提供的一种韧性组织结构为立体结构, 包括纤维层 101和水凝胶层 102; 所述立体结构为立方体 (图 1 ) 、 圆柱体 (图 2) 或模拟体内组织器官的具体形态。 所 述纤维层 101和水凝胶层 102在空间内交替排列; 所述纤维层 101为高分子纤维, 该高分子 纤维呈有序或无序排列状态; 高分子纤维采用聚酯、 聚氨酯、 聚乙烯、 聚酰胺、 聚丙烯、 聚 乙烯醇、 聚四氟乙烯、 膨体聚四氟乙烯、 聚乳酸、 硅橡胶、 羟甲基纤维素钠、 聚乳酸-羟基乙 酸共聚物、 聚甲基丙烯酸甲酯、 丙烯腈 -丁二烯-苯乙烯共聚物、 糖类、 丝素蛋白、 胶原蛋白 和弹性蛋白中的至少一种。 所述水凝胶层 102为高分子水凝胶, 该高分子水凝胶含或不含细 胞; 所述细胞为成纤维细胞、 巨噬细胞、 浆细胞、 肥大细胞、 脂肪细胞、 间充质细胞和白细 胞中的至少一种; 细胞密度为 l X 102 ~l X 109个/mL。 所述高分子水凝胶为明胶、 海藻酸钠、 纤维蛋白原、 胶原、 基质胶、 卡拉胶、 壳聚糖、 琼脂、 透明质酸、 基质胶、 弹性蛋白、 层粘 素、 聚乙烯醇和聚乙二醇中的至少一种; 所述高分子水凝胶的质量体积浓度为 0.1~20%; 所 述纤维层 101的尺寸在长度、 宽度和高度至少一个方向上大于其相邻水凝胶层 102的尺寸。 所述纤维层的厚度为 10nm~10mm, 所述水凝胶层的厚度为 10μιη~10ιηιη。 所述纤维层的有序 排列状态为平行状、 放射状、 交叉状、 网状、 纺织状或环扣状。 所述纤维层的纤维间的孔隙 或间隙尺寸为 5nm~2mm。
如图 4所示, 本发明提供的一种制备韧性组织结构的 3D打印成形设备, 包括多喷头快 速成形系统 402、 扫描成像系统 401、 传送系统 403和控制系统 404。 所述传送系统 403—端 位于多喷头快速成形系统 402下方, 另一端穿过扫描成像系统 401 ; 所述多喷头快速成形系 统 402包括 X向运动机构、 喷头固定装置 406和成形台 405。 所述喷头固定装置设置在 X向 运动机构上, 并沿 X向运动, 所述 X向运动机构包括 X向运动导轨 502和 X向电机 503(见 图 5); 所述喷头固定装置 406包括成形打印组件 408, 所述成形打印组件 408含有外科手术 组件和喷头组件, 并在 XY平面和 Z向移动; 所述喷头组件包括螺杆挤压喷头、 电纺丝喷头 和喷雾喷头至少一种, 以及吸除组件和夹持组件。 述所述多喷头快速成形系统 402、 扫描成 像系统 401和传送系统 403由数据线路分别与控制系统 404连接; 所述扫描成像系统 401将 扫描所得信号传送至控制系统 404, 由控制系统 404处理后得到指令信号并将指令信号发送 至快速成形系统 402和传送系统 403。
如图 4和图 5d所示, 本发明的设备还包括至少一个工业机器人 407, 该机器人安装在所 述成形台 405的侧边, 每个机器人包括成形打印组件 408, 成形打印组件 408含有外科手术 组件和喷头组件, 并在空间内运动。
如图 5a所示, 喷头固定装置 406采用方形结构, 方形结构包括多条相互平行的 Y向运 动机构, 在每条 Y向运动机构上装有 Z向运动机构, 所述成形打印组件 408安装在 Z向运动 机构上, 其中 Y向运动机构包括 Y向运动导轨 505和 Y向电机 506, Z向运动机构包括 Z向 运动导轨 507和 Z向电机 508。 如图 5b所示, 喷头固定装置 406采用圆形结构, 该圆形结构 包括多条径向运动机构, 在每条径向运动机构上装有 Z向运动机构, 所述成形打印组件 408 安装在径向运动机构上,其中径向运动机构包括径向运动导轨 511和径向电机 512, Z向运动 机构包括 Z向运动导轨 507和 Z向运动电机 508。
如图 6f所示, 外科手术组件包括手术刀 617、 医用缝合胶 618、 电机 602和旋转臂 619; 手术刀 617和医用缝合胶 618分别安装在旋转臂 619上, 该旋转臂由电机 602驱动。 如图 6c 和 6h所示, 喷雾喷头组件包括电机 602、 凸轮 607、 凸轮带动轴 608、 喷壶 610、 喷壶固定夹 609和喷壶喷嘴 611 ; 所述电机 602依靠凸轮传动轴 608带动凸轮 607旋转, 所述凸轮 607与 喷壶 610顶部接触。 如图 6d所示, 吸除组件含真空泵 612、 吸除嘴 615、 连接管 613和污物 收集箱 614; 所述真空泵 612—侧由连接管 613连在吸除嘴上 615, 另一侧由连接管 613连在 污物收集箱 614上。 如图 6a所示, 螺杆挤压喷头包括螺杆 601、 电机 602、 固定夹 603、 注 射器 604和喷嘴 605, 电机通过螺杆旋转挤压注射器, 使得材料挤出。 如图 3b和 3g所示, 电纺丝喷头包括螺杆 601、 电机 602、 固定夹 603、 注射器 604和带电喷嘴 606, 电机通过螺 杆旋转挤压注射器, 使得材料挤出, 材料在电场作用下在成形台上成形。 如图 6e所示, 夹持 组件包括夹子 616和电机 602, 夹子可对成形结构体进行转移。
本发明利用上述 3D 打印成形设备制备韧性组织结构, 该制备方法包括体内直接打印成 形方法或体外打印成形方法, 所述方法包括如下步骤:
1) 体内直接打印成形:
a)由计算机设计所述韧性组织结构的三维模型, 或者由扫描成像系统扫描病变部位得到 韧性组织结构的三维模型, 并由计算机分配打印成形路径; 利用所述扫描成像系统将病变部 位扫描所得信号传送至控制系统 404进行处理得到指令信号, 并将指令信号发送至快速成形 系统 402和传送系统 403 ; b) 将配制好的质量体积浓度为 0.1~20%的高分子水凝胶和高分子 纤维原材料分别装载到所述 3D打印设备的不同喷头组件中, 该水凝胶含或不含细胞; c) 依 据步骤 a)的指令信号, 利用所述传送系统 403将病人转移至快速成形系统 402下方, 利用外 科手术组件进行病变部位微创切口, 为打印成形预留空间; 由所述喷头组件中的吸除组件吸 除部分或全部病变组织; d) 制备水凝胶层: 依据步骤 a)的三维模型, 利用所述 3D打印成形 设备的快速成形系统打印配制好的高分子水凝胶于病变部位,得到水凝胶层; e) 制备纤维层: 依据步骤 a)的三维模型, 在步骤 d)的已成形的水凝胶层上, 利用所述 3D打印成形设备打印 得到纤维层, 或将纤维层直接铺设在已打印的水凝胶层上; f) 利用所述传送系统 403将病人 转移至扫描成像系统 401得到成形部位的反馈信号并由计算机处理,决定后续打印步骤; g) 重 复步骤 d)~f),最终得到所述韧性组织结构; h) 利用所述传送系统 403病人转移至快速成形系 统 402下方, 利用医用缝合胶进行创口缝合, 手术结束;
2) 体外打印成形:
a)由计算机设计所述韧性组织结构的立体模型, 或者由医学成像技术扫描病变部位得到 所述韧性组织结构的三维模型, 并由计算机分配打印成形路径; b) 将配制好的质量体积浓度 为 0.1~20%的高分子水凝胶和高分子纤维原材料分别装载到所述 3D打印设备的不同喷头中, 该水凝胶含或不含细胞; c) 制备水凝胶层: 依据步骤 a)的三维模型, 利用所述 3D打印成形 设备的快速成形系统打印配制好的高分子水凝胶,在成形台上得到水凝胶层; d) 制备纤维层: 依据步骤 a)的三维模型, 在步骤 c)的已成形的水凝胶层上, 利用所述 3D打印成形设备的快 速成形系统打印得到纤维层,或将纤维层直接铺设在已打印水凝胶层上; e) 重复步骤 c)~d), 最终得到所述韧性组织结构; f)韧性组织结构植入: 利用传送系统 403将病人转移至快速成 形系统 402下方, 利用所述 3D打印设备的外科手术组件进行病变部位微创切口, 由吸除组 件吸除部分或全部病变组织; 利用所述夹持组件将步骤 e)所得韧性组织结构移入病变部位; 进行创口缝合, 手术结束。
下面举出几个具体的实施例, 以进一步理解本发明。
实施例 1 : 利用 3D打印技术在体外制备一种韧带组织结构, 并植入体内。
1) 细胞和水凝胶的准备: 提取人成纤维细胞, 将成纤维细胞传代培养备用; 将明胶粉末 溶于磷酸盐缓冲液中制备质量体积分数为 15%的水凝胶; 将成纤维细胞混入上述水凝胶, 得 到细胞浓度为 l x lO6个 /mL的细胞 -水凝胶材料体系; 将该细胞-水凝胶材料装入 3D打印的螺 杆挤压喷头中;
2) 纤维材料的制备: 加热聚己内酯使之融化, 将融化的聚己内酯装入 3D打印的电纺丝 喷头备用;
3) 模型设计: 设计韧带组织结构的三维模型, 由计算机分配纤维层和水凝胶层的打印路 径;
4) 成形过程: 由计算机控制 3D打印设备, 首先由螺杆挤压喷头挤出细胞-水凝胶材料于 成形台上, 按照预定路径, 得到 2mm厚的水凝胶层; 其次由电纺丝喷头成形熔融的聚己内酯 纤维, 纤维为平行排列和随机排列两种状态, 得到 200μιη厚的纤维层; 重复上述操作, 在成 形台上得到水凝胶层和纤维层交替排列的韧带组织结构;
5 ) 植入过程: 经扫描成像系统将病变部位信号传输至控制系统进行处理得到指令信号; 在控制信号的指挥下, 由 3D打印设备的外科手术组件对病变部位进行切口, 并由 3D打印设 备的吸除组件将病变部位的韧带进行部分吸除, 之后由 3D打印设备的夹持组件将步骤 4)中 得到的韧带组织结构转移至病变部位, 最后用 3D打印设备的医用缝合胶进行创口缝合, 手 术结束。
实施例 2: 利用 3D打印技术在体外制备一种韧带组织结构, 并植入体内。
1) 细胞悬浮液的准备: 提取人成纤维细胞, 将成纤维细胞传代培养备用, 制备该细胞的 细胞悬浮液, 细胞浓度为 l x lO6个 /mL, 将该细胞悬浮液装入 3D打印设备的喷雾式喷头;
2) 水凝胶的准备: 将明胶粉末溶于磷酸盐缓冲液中制备质量体积分数为 15%的水凝胶, 将水凝胶装入 3D打印设备的螺杆挤压喷头中;
3) 纤维材料的制备: 将聚氨酯材料溶于四乙二醇溶液中, 得到质量体积分数为 10%的溶 液, 将该溶液装入 3D打印设备的螺杆挤压喷头中;
4) 模型设计: 由扫描成像系统扫描病人韧带损伤部位, 得到韧带组织结构的三维模型, 由计算机分配纤维层和水凝胶层的打印路径;
5) 成形过程: 由螺杆挤压喷头挤出水凝胶材料, 按照预定路径, 得到 2mm厚的水凝胶 层; 其次由喷洒式喷头在已成形的水凝胶层喷洒细胞悬浮液; 之后利用螺杆挤压喷头挤压聚 氨酯溶液, 得到网状排列的纤维, 并立即用磷酸盐溶液萃取移除四乙二醇溶液, 由吸除组件 吸除多余溶液, 得到 200μιη厚的纤维层; 重复上述操作, 得到水凝胶层、 细胞和纤维层交替 排列的韧带组织结构;
6) 植入过程: 经扫描成像系统将病变部位信号传输至控制系统进行处理得到指令信号; 在控制信号的指挥下, 由 3D打印设备的外科手术组件对病变部位进行切口, 并由 3D打印设 备的吸除组件将病变部位的韧带进行部分吸除, 之后由 3D打印设备的夹持组件将步骤 5)中 得到的韧带组织结构转移至病变部位, 最后用 3D打印设备的医用缝合胶进行创口缝合, 手 术结束。
实施例 3 : 利用 3D打印技术直接在体内成形一种跟腱。
1) 细胞悬浮液的准备: 提取人成纤维细胞和脂肪干细胞, 将这两种细胞传代培养备用, 制备这两种细胞的细胞悬浮液, 细胞浓度为 l x lO6个 /mL, 将该细胞悬浮液装入 3D打印设备 的喷雾式式喷头;
2) 水凝胶的准备: 将海藻酸钠和明胶粉末分别溶于磷酸盐缓冲液中制备质量体积分数为 5%的水凝胶, 该水凝胶装入 3D打印设备的螺杆挤压喷头中;
3) 纤维材料的制备: 将聚乳酸聚乙醇酸共聚物材料溶于 1,4-二氧六环溶液中, 得到质量 体积分数为 5%的溶液, 将该溶液装入 3D打印设备的螺杆挤压喷头中;
4) 模型设计: 由扫描成像系统扫描病人韧带损伤部位, 由计算机分配纤维层和水凝胶层 的打印路径;
5) 成形过程: 依据扫描成像系统得到的病变部位信号, 由计算机控制 3D打印设备, 首 先由外科手术组件对病变部位进行微创切口; 再由吸除组件吸除部分病变部位韧带组织; 在 病变切口部位, 由 3D打印设备的螺杆挤压喷头挤出水凝胶材料, 按照预定路径, 得到 2mm 厚的水凝胶层; 其次由喷雾式喷头组件在已成形的水凝胶层喷涂细胞悬浮液; 之后利用螺杆 挤压喷头挤压聚乳酸聚乙醇酸共聚物溶液, 得到放射状排列的纤维, 立即用磷酸盐溶液萃取 移除四乙二醇溶液, 并利吸除组件吸除多余液体, 得到 200μιη厚的纤维层; 重复上述操作, 得到水凝胶层、 细胞和纤维层交替排列结构; 成形结束后, 利用医用缝合胶缝合伤口, 手术 结束。
实施例 4: 利用 3D打印技术在体外制备一种跟腱组织结构。
1) 细胞和水凝胶的准备: 提取人成纤维细胞和肌腱细胞, 将这两种细胞传代培养备用; 将明胶粉末溶于磷酸盐缓冲液中, 得到质量体积分数为 10%的水凝胶; 将上述两种细胞混入 上述水凝胶, 得到细胞浓度为 l x lO7个 /mL的细胞 -水凝胶材料体系; 将该细胞-水凝胶材料装 入 3D打印的螺杆挤压喷头中;
2) 纤维材料的制备: 将胶原粉末溶解于醋酸, 得到质量体积分数为 0.5%的溶液, 将该 溶液装入 3D打印电纺丝喷头备用;
3) 模型设计: 设计跟腱组织结构的三维模型, 由计算机分配纤维层和水凝胶层的打印路 径;
4) 成形过程: 由计算机控制 3D打印设备, 首先由螺杆挤压喷头挤出细胞-水凝胶材料, 按照预定路径, 得到 5mm厚的水凝胶层; 其次由电纺丝喷头喷涂上述胶原的醋酸溶液, 在上 述水凝胶层上得到纤维层, 纤维形态部分交叉排列, 部分平行排列, 得到 2mm厚的纤维层; 重复上述操作, 得到水凝胶层和纤维层交替排列的跟腱组织结构。
实施例 5: 利用 3D打印技术在体外制备一种跟腱组织结构。
1) 细胞和水凝胶的准备: 提取人成纤维细胞、 肌腱细胞和脂肪间充质干细胞, 将这三种 细胞传代培养备用; 将明胶粉末溶于磷酸盐缓冲液中, 得到质量体积分数为 10%的水凝胶; 将上述两种细胞混入上述水凝胶, 得到细胞浓度为 l x lO7个 /mL的细胞 -水凝胶材料体系; 将 该细胞-水凝胶材料装入 3D打印的螺杆挤压喷头中;
2) 纤维材料的制备: 采购蚕丝纺织物, 并按需裁剪;
3) 模型设计: 设计跟腱组织结构的三维模型, 由计算机分配水凝胶层的打印路径;
4) 成形过程: 由计算机控制所述 3D打印设备的快速成形系统, 首先由螺杆挤压喷头挤 出细胞-水凝胶材料, 按照预定路径, 得到 5mm厚的水凝胶层; 其次将若干层将蚕丝纺织物 置于水凝胶层上方, 作为纤维层; 重复上述操作, 得到水凝胶层和纤维层交替排列的跟腱组 织结构。
实施例 6: 利用 3D打印技术直接在体内成形一种腱膜组织结构。
1) 细胞和水凝胶的准备: 提取人成纤维细胞和肌腱细胞, 将这两种细胞传代培养备用; 将明胶粉末溶于磷酸盐缓冲液中, 得到质量体积分数为 10%的水凝胶; 将上述两种细胞混入 上述水凝胶, 得到细胞浓度为 l x lO7个 /mL的细胞 -水凝胶材料体系; 将该细胞-水凝胶材料装 入 3D打印的螺杆挤压喷头中;
2) 纤维材料的制备: 将融化的丙烯腈-丁二烯-苯乙烯共聚物 (ABS)置于 3D打印的螺杆挤 压喷头中, 待用; 3) 模型设计: 设计跟腱组织结构的三维模型, 由计算机分配纤维层和水凝胶层的打印路 径;
4) 成形过程: 依据扫描成像系统得到的病变部位信号, 由计算机控制 3D打印设备, 由 外科手术组件对病变部位进行微创切口, 再由吸除组件吸除部分病变部位腱膜组织; 由 3D 打印设备的螺杆挤压喷头在病变部位挤出水凝胶 -细胞材料,按照预定路径,得到 0.5mm厚的 水凝胶层;其次由螺杆挤压喷头打印成形熔融态的 ABS,得到环扣状的纤维层,层厚 0.5mm; 重复上述操作, 得到水凝胶层、 细胞和纤维层交替排列结构腱膜组织结构; 成形结束后, 利 用医用缝合胶缝合伤口, 手术结束。

Claims

权 利 要 求 书
1、 一种韧性组织结构, 其特征在于: 所述韧性组织结构为立体结构, 包括纤维层 (101) 和水凝胶层 (102) ; 所述纤维层 (101)和水凝胶层 (102)在空间内交替排列; 所述纤维层 (101)为 高分子纤维, 该高分子纤维呈有序或无序排列状态; 所述水凝胶层 (102)为高分子水凝胶, 该 高分子水凝胶含或不含细胞;所述高分子水凝胶的质量体积浓度为 0.1~20%;所述纤维层 (101) 的尺寸在长度、 宽度和高度至少一个方向上大于其相邻水凝胶层 (102)的尺寸。
2、 如权利要求 1 所述的一种韧性组织结构, 其特征在于: 所述纤维层的厚度为 lOnm-lOmm, 所述水凝胶层的厚度为 10μιη~10ιηιη。
3、 如权利要求 1或 2所述的一种韧性组织结构, 其特征在于: 所述纤维层的有序排列状 态为平行状、 放射状、 交叉状、 网状、 纺织状或环扣状。
4、 如权利要求 1所述的一种韧性组织结构, 其特征在于: 所述立体结构为立方体、 圆柱 体或模拟体内组织器官的具体形态。
5、 如权利要求 1所述的一种韧性组织结构, 其特征在于: 所述纤维层的纤维间的孔隙或 间隙尺寸为 5nm~2mm。
6、 如权利要求 1所述的一种韧性组织结构, 其特征在于: 所述水凝胶层所含细胞为成纤 维细胞、 巨噬细胞、 浆细胞、 肥大细胞、 脂肪细胞、 间充质细胞和白细胞中的至少一种; 所 述细胞密度为 l X 102 ~l X 109 /mL。
7、 如权利要求 1所述的一种韧性组织结构, 其特征在于: 所述高分子纤维采用聚酯、 聚 氨酯、 聚乙烯、 聚酰胺、 聚丙烯、 聚乙烯醇、 聚四氟乙烯、 膨体聚四氟乙烯、 聚乳酸、 硅橡 胶、 羟甲基纤维素钠、 聚乳酸 -羟基乙酸共聚物、 聚甲基丙烯酸甲酯、 丙烯腈-丁二烯-苯乙烯 共聚物、 糖类、 丝素蛋白、 胶原蛋白和弹性蛋白中的至少一种; 所述高分子水凝胶为明胶、 海藻酸钠、 纤维蛋白原、 胶原、 基质胶、 卡拉胶、 壳聚糖、 琼脂、 透明质酸、 基质胶、 弹性 蛋白、 层粘素、 聚乙烯醇和聚乙二醇中的至少一种。
8、 如权利要求 1所述的一种韧性组织结构的 3D打印成形设备, 其特征在于: 所述设备 包括多喷头快速成形系统 (402)、 扫描成像系统 (401)、 传送系统 (403)和控制系统 (404) ; 所述 传送系统 (403)—端位于多喷头快速成形系统 (402) 下方, 另一端穿过扫描成像系统 (401); 所 述多喷头快速成形系统 (402)包括 X 向运动机构、 喷头固定装置 (406)和成形台 (405); 所述喷 头固定装置设置在 X向运动机构上, 并沿 X向运动;所述喷头固定装置 (406)包括成形打印组 件 (408), 所述成形打印组件 (408)含有外科手术组件和喷头组件, 并在 XY平面和 Z向移动; 述所述多喷头快速成形系统 (402)、扫描成像系统 (401)和传送系统 (403)由数据线路分别与控制 系统 (404)连接; 所述扫描成像系统 (401)将扫描所得信号传送至控制系统 (404), 由控制系统 (404)处理后得到指令信号并将指令信号发送至快速成形系统 (402)和传送系统 (403)。
9、 如权利要求 8所述的一种韧性组织结构的 3D打印成形设备, 其特征在于: 所述设备 还包括至少一个工业机器人 (407), 该机器人安装在所述成形台 (405)的侧边, 每个机器人包括 成形打印组件 (408), 成形打印组件 (408)含有外科手术组件和喷头组件, 并在空间内运动。
10、 如权利要求 8所述的一种韧性组织结构的 3D打印成形设备, 其特征在于: 所述喷 头固定装置 (406)采用方形结构,方形结构包括多条相互平行的 Y向运动机构,在每条 Y向运 动机构上装有 Z向运动机构, 所述成形打印组件 (408)安装在 Z向运动机构上。
11、 如权利要求 8所述的一种韧性组织结构的 3D打印成形设备, 其特征在于: 所述喷 头固定装置 (406)采用圆形结构, 该圆形结构包括多条径向运动机构, 在每条径向运动机构上 装有 Z向运动机构, 所述成形打印组件 (408)安装在径向运动机构上。
12、 如权利要求 8~11任一权利要求所述的一种韧性组织结构的 3D打印成形设备, 其特 征在于: 所述喷头组件包括螺杆挤压喷头、 电纺丝喷头和喷雾喷头至少一种, 以及吸除组件 和夹持组件。
13、 如权利要求 12所述的一种韧性组织结构的 3D打印成形设备, 其特征在于: 所述吸 除组件含真空泵 (612)、 吸除嘴 (615)、 连接管 (613)和污物收集箱 (614); 所述真空泵 (612)—侧 由连接管 (613)连在吸除嘴上 (615), 另一侧由连接管 (613)连在污物收集箱 (614)上。
14、 一种采用如权利要求 8或 9所述 3D打印成形设备制备韧性组织结构的方法, 其特 征在于, 该方法包括体内直接打印成形方法或体外打印成形方法, 所述方法包括如下步骤:
1) 体内直接打印成形:
a)由计算机设计所述韧性组织结构的三维模型, 或者由扫描成像系统扫描病变部位得到 韧性组织结构的三维模型, 并由计算机分配打印成形路径; 利用所述扫描成像系统将病变部 位扫描所得信号传送至控制系统 (404)进行处理得到指令信号, 并将指令信号发送至快速成形 系统 (402)和传送系统 (403);
b) 将配制好的质量体积浓度为 0.1~20%的高分子水凝胶和高分子纤维原材料分别装载到 所述 3D打印设备的不同喷头组件中, 该水凝胶含或不含细胞;
c) 依据步骤 a)的指令信号,利用所述传送系统 (403)将病人转移至快速成形系统 (402)下方, 利用外科手术组件进行病变部位微创切口, 为打印成形预留空间; 由所述喷头组件中的吸除 组件吸除部分或全部病变组织;
d) 制备水凝胶层: 依据步骤 a)的三维模型, 利用所述 3D打印成形设备的快速成形系统 打印配制好的高分子水凝胶于病变部位, 得到水凝胶层;
e)制备纤维层:依据步骤 a)的三维模型,在步骤 d)的已成形的水凝胶层上,利用所述 3D 打印成形设备打印得到纤维层, 或将纤维层直接铺设在已打印的水凝胶层上;
f) 利用所述传送系统 (403)将病人转移至扫描成像系统 (401)得到成形部位的反馈信号并 由计算机处理, 决定后续打印步骤;
g) 重复步骤 d)~f), 最终得到所述韧性组织结构; h) 利用所述传送系统 (403)将病人转移至快速成形系统 (402)下方, 利用医用缝合胶进行 创口缝合, 手术结束;
2) 体外打印成形:
a)由计算机设计所述韧性组织结构的立体模型, 或者由医学成像技术扫描病变部位得到 所述韧性组织结构的三维模型, 并由计算机分配打印成形路径;
b) 将配制好的质量体积浓度为 0.1~20%的高分子水凝胶和高分子纤维原材料分别装载到 所述 3D打印设备的不同喷头中, 该水凝胶含或不含细胞;
c)制备水凝胶层: 依据步骤 a)的三维模型, 利用所述 3D打印成形设备的快速成形系统 打印配制好的高分子水凝胶, 在成形台上得到水凝胶层;
d) 制备纤维层:依据步骤 a)的三维模型,在步骤 c)的已成形的水凝胶层上,利用所述 3D 打印成形设备的快速成形系统打印得到纤维层, 或将纤维层直接铺设在已打印水凝胶层上; e) 重复步骤 c)~d), 最终得到所述韧性组织结构;
f) 韧性组织结构植入: 利用传送系统 (403)将病人转移至快速成形系统 (402)下方, 利用所 述 3D打印设备的外科手术组件进行病变部位微创切口, 由吸除组件吸除部分或全部病变组 织;利用所述夹持组件将步骤 e)所得韧性组织结构移入病变部位;进行创口缝合,手术结束。
PCT/CN2014/078240 2014-04-18 2014-05-23 一种韧性组织结构及其3d打印成形设备和方法 WO2015158027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410158895.1A CN103919629B (zh) 2014-04-18 2014-04-18 一种韧性组织结构及其3d打印成形设备和方法
CN201410158895.1 2014-04-18

Publications (1)

Publication Number Publication Date
WO2015158027A1 true WO2015158027A1 (zh) 2015-10-22

Family

ID=51138196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078240 WO2015158027A1 (zh) 2014-04-18 2014-05-23 一种韧性组织结构及其3d打印成形设备和方法

Country Status (2)

Country Link
CN (1) CN103919629B (zh)
WO (1) WO2015158027A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758642A (zh) * 2019-01-25 2019-05-17 上海交通大学医学院附属第九人民医院 一种新型水凝胶注射交联装置
CN114292743A (zh) * 2021-11-25 2022-04-08 浙江大学 一种电场辅助下的打印装置、水凝胶微球的制备方法及应用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9604407B2 (en) 2013-12-03 2017-03-28 Xerox Corporation 3D printing techniques for creating tissue engineering scaffolds
CN104210106B (zh) * 2014-09-04 2017-05-31 宁波高新区乐轩锐蓝智能科技有限公司 多打印头的3d打印机的打印头、打印机构及3d打印机
CN104207859B (zh) * 2014-09-16 2016-09-28 清华大学 利用旋转堆积法制备组织器官的方法及专用设备
CN104385639A (zh) * 2014-10-20 2015-03-04 合肥斯科尔智能科技有限公司 一种具有三维打印功能的产品修补系统
CN104593258B (zh) * 2015-01-27 2016-11-30 上海泉众机电科技有限公司 一种用于建立三维体组织的装置
CN105012049B (zh) * 2015-06-03 2017-06-27 西安交通大学 打印喷头系统和可调软质空心管支架的混合喷雾打印工艺
US11013827B2 (en) 2016-04-30 2021-05-25 Bvw Holding Ag Microstructured haptotaxic implant
WO2017190149A1 (en) * 2016-04-30 2017-11-02 Bvw Holding Ag Microstructured haptotaxic implant
CN106222085B (zh) * 2016-07-28 2019-03-12 西安交通大学 一种高精度的生物复合3d打印装置及打印方法
CN106361431A (zh) * 2016-08-29 2017-02-01 杭州捷诺飞生物科技有限公司 基于生物3d打印技术的切割修复一体化手术机器人
CN106256332B (zh) * 2016-08-31 2017-10-31 桐庐洲济医疗器械有限公司 前交叉韧带重建集合移植肌腱编织装置
CN110478527A (zh) * 2018-05-14 2019-11-22 上海交通大学医学院附属第九人民医院 一种负载软骨细胞抗炎半月板支架的生物三维打印制备方法
CN109675115A (zh) * 2019-01-10 2019-04-26 上海大学 一种纤维增强复合水凝胶人工血管结构及其成型方法
CN110237304A (zh) * 2019-06-26 2019-09-17 上海市第六人民医院 一种多级结构支架及其制备方法
CN110901059A (zh) * 2019-11-12 2020-03-24 清华大学 一种3d打印体模的装置和方法
CA3175869A1 (en) * 2020-03-22 2021-09-30 Collplant Ltd. Collagen-based formulations usable as soft tissue fillers and/or implants
CN114533231B (zh) * 2022-04-27 2022-11-29 杭州锐健马斯汀医疗器材有限公司 球囊体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083194A1 (en) * 2001-04-12 2002-10-24 Therics, Inc. Method and apparatus for engineered regenerative biostructures
WO2010030964A2 (en) * 2008-09-12 2010-03-18 The Brigham And Women's Hospital, Inc. 3-dimensional multi-layered hydrogels and methods of making the same
WO2012122105A1 (en) * 2011-03-07 2012-09-13 Wake Forest University Health Sciences Delivery system
CN203315406U (zh) * 2013-05-15 2013-12-04 南京斯瑞奇医疗用品有限公司 一种peg水凝胶结构
CN203829093U (zh) * 2014-04-18 2014-09-17 清华大学 一种韧性组织结构的3d打印成形设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030151167A1 (en) * 2002-01-03 2003-08-14 Kritchman Eliahu M. Device, system and method for accurate printing of three dimensional objects
US8858632B2 (en) * 2006-03-23 2014-10-14 Formae, Inc. Implants for replacing hyaline cartilage, with hydrogel reinforced by three-dimensional fiber arrays
CN100404080C (zh) * 2006-03-24 2008-07-23 清华大学 一种基于仿生过程的水凝胶快速成形工艺方法
WO2008070186A2 (en) * 2006-12-06 2008-06-12 The Trustees Of Columbia University In The City Of New York Scaffold apparatus for promoting tendon-to-bone fixation
US20110098826A1 (en) * 2009-10-28 2011-04-28 The Trustees Of The University Of Pennsylvania Disc-Like Angle-Ply Structures for Intervertebral Disc Tissue Engineering and Replacement
CN101884573B (zh) * 2010-05-27 2012-05-02 清华大学 复杂器官前体三维受控成形机用多喷头喷射装置
CN102166378B (zh) * 2011-01-13 2013-08-21 北京化工大学 引导组织再生膜及其制备方法
CN102319126A (zh) * 2011-07-21 2012-01-18 清华大学 固定式多喷头复杂器官前体三维受控成形系统
CN102505184B (zh) * 2011-10-20 2014-04-09 清华大学 一种组织工程纤维束结构体及其制备方法
JP6018477B2 (ja) * 2011-11-11 2016-11-02 Hoya株式会社 人工骨−軟骨複合体及びその製造方法
SG10201609579QA (en) * 2012-05-15 2016-12-29 Technion Res & Dev Foundation Fiber-Reinforced Hydrogel Composites And Methods Of Forming Fiber-Reinforced Hydrogel Composites
CN102755203B (zh) * 2012-07-13 2015-01-21 清华大学 一种喷射与喷涂相结合的复杂组织器官制造系统
CN103431925B (zh) * 2013-05-03 2015-08-12 清华大学 一种多自由度气动多喷头复杂组织器官制造系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083194A1 (en) * 2001-04-12 2002-10-24 Therics, Inc. Method and apparatus for engineered regenerative biostructures
WO2010030964A2 (en) * 2008-09-12 2010-03-18 The Brigham And Women's Hospital, Inc. 3-dimensional multi-layered hydrogels and methods of making the same
WO2012122105A1 (en) * 2011-03-07 2012-09-13 Wake Forest University Health Sciences Delivery system
CN203315406U (zh) * 2013-05-15 2013-12-04 南京斯瑞奇医疗用品有限公司 一种peg水凝胶结构
CN203829093U (zh) * 2014-04-18 2014-09-17 清华大学 一种韧性组织结构的3d打印成形设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758642A (zh) * 2019-01-25 2019-05-17 上海交通大学医学院附属第九人民医院 一种新型水凝胶注射交联装置
CN109758642B (zh) * 2019-01-25 2024-02-20 上海交通大学医学院附属第九人民医院 一种水凝胶注射交联装置
CN114292743A (zh) * 2021-11-25 2022-04-08 浙江大学 一种电场辅助下的打印装置、水凝胶微球的制备方法及应用

Also Published As

Publication number Publication date
CN103919629B (zh) 2016-09-28
CN103919629A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2015158027A1 (zh) 一种韧性组织结构及其3d打印成形设备和方法
Wu et al. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering
Jiang et al. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique
Cross et al. Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces
Ayres et al. Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function
Yan et al. Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations
Deng et al. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering
Zhang et al. Electrospun silk biomaterial scaffolds for regenerative medicine
Maghdouri-White et al. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues
Walker et al. Processing and production of bioresorbable polymer scaffolds for tissue engineering
Xing et al. Engineering complex anisotropic scaffolds beyond simply uniaxial alignment for tissue engineering
Liu et al. Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology
Zhang et al. Applications of electrospun scaffolds with enlarged pores in tissue engineering
Kazemnejad et al. Current state of cartilage tissue engineering using nanofibrous scaffolds and stem cells
WO2015026299A1 (en) 3-dimensional bioscaffolds
CN107823714A (zh) 用于制备组织工程骨软骨支架的成形系统及生物3d打印成形方法
Ladd et al. Electrospun nanofibers in tissue engineering
CN103127548A (zh) 促进神经缺损修复的人工神经导管的制备方法
CN106390208A (zh) 一种含多级孔结构的三维立体支架材料及制备与应用
Safinsha et al. Composite scaffolds in tissue engineering
CN203829093U (zh) 一种韧性组织结构的3d打印成形设备
McCarthy et al. Understanding and utilizing textile-based electrostatic flocking for biomedical applications
Ma et al. Integrated design and fabrication strategies based on bioprinting for skeletal muscle regeneration: current status and future perspectives
KR101585328B1 (ko) 스캐폴드 지지체 제조용 하이브리드 바이오 프린트 장치 및 이를 이용한 제조 방법
Balusamy et al. Design and development of electrospun nanofibers in regenerative medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889212

Country of ref document: EP

Kind code of ref document: A1