WO2015156442A1 - 3d 비디오 현미경 장치 - Google Patents

3d 비디오 현미경 장치 Download PDF

Info

Publication number
WO2015156442A1
WO2015156442A1 PCT/KR2014/003382 KR2014003382W WO2015156442A1 WO 2015156442 A1 WO2015156442 A1 WO 2015156442A1 KR 2014003382 W KR2014003382 W KR 2014003382W WO 2015156442 A1 WO2015156442 A1 WO 2015156442A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
prism
subject
lens
image sensor
Prior art date
Application number
PCT/KR2014/003382
Other languages
English (en)
French (fr)
Inventor
양희봉
Original Assignee
(주)썸텍
양희봉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)썸텍, 양희봉 filed Critical (주)썸텍
Priority to CN201480057159.5A priority Critical patent/CN105659139A/zh
Priority to US14/785,097 priority patent/US9835841B2/en
Priority to JP2016559416A priority patent/JP2017509925A/ja
Priority to EP14889176.5A priority patent/EP3067730A4/en
Publication of WO2015156442A1 publication Critical patent/WO2015156442A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0012Surgical microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention relates to a video microscope device that can be widely used in the medical field and various industrial fields for surgery by expanding a portion that is difficult to see or invisible to the eye through a monitor, and more specifically, to a monitor.
  • the subject eg, the affected part of the patient, various mechanical devices, semiconductor elements, etc.
  • the present invention relates to a 3D video microscope device capable of easily adjusting chromaticity and magnification of a displayed subject by removing chromatic aberrations.
  • a microscope is a device that enlarges a subject.
  • an observer took an eye to an eyepiece to see a subject.
  • technology advances the display of a subject on a monitor so that the observer can restrain the eye (e.g., eye with an eye).
  • Video microscope devices are being released that allow the user to zoom in on the subject without having to act in the presence of the camera.
  • the 3D video microscope device according to the present invention is expected to be mainly used in the medical field used for surgery, hereinafter will be described based on the medical field.
  • the 3D video microscope device of the present invention can be utilized in various industrial fields.
  • a medical surgical microscope is a type of medical device that allows a surgeon to look at a human body that is invisible or difficult to see in a doctor's eye in surgery, ophthalmology, neurosurgery, otolaryngology, spinal surgery and gynecology. to,
  • the surgeon proceeds while observing the affected part of the patient, which is taken through a surgical microscope, and the assistant, observer, and caregiver associated with the patient can monitor the affected part and the progress of the patient in the operating room and outside through the monitor. Will be.
  • the image displayed by the monitor is simply displayed as a two-dimensional image, it is difficult to accurately observe and confirm the surgical site.
  • the surgical microscope apparatus includes an image sensor (eg, CCD, CMOS) for processing an image of an object and an image of the formed object to be displayed on a monitor, a convex lens for forming an image of the object on an image sensor; And a variable displacement lens arranged between the convex lens and the image sensor to adjust the magnification of the subject image.
  • an image sensor eg, CCD, CMOS
  • the surgical microscope apparatus uses a convex lens to form an image of a subject.
  • the convex lens has a convex shape and a refraction property of the image light passing through it, thereby causing the subject to be curved or protruded into the monitor. Is displayed in the shape.
  • One simple way to adjust the viewing angle is to adjust the distance between the subject and the lens that allows the subject to form an image sensor inside the microscope.
  • the present invention is an invention devised to solve the problem of the surgical microscope device according to the prior art as described above,
  • the subject displayed on the monitor is displayed flat without curvature, thus eye fatigue even when staring at the monitor for a long time.
  • the prism superimposes two prisms with different refractive indices to provide high quality subject image using a colorless prism without chromatic aberration,
  • magnification of the subject itself can be arbitrarily and conveniently adjusted under the microscope by selectively placing the magnification lens on the axis connecting the displacement lens and the image sensor.
  • a mottling prism for allowing the input subject image to form an image on the image sensor with chromatic aberration removed;
  • variable displacement lenses configured to transfer the image of the subject passing through the chromophoric prism to the image sensor at a predetermined magnification.
  • a forward magnification lens selectively disposed on a virtual axis connecting the image sensor and the variable magnification lens to adjust a magnification of a subject formed on the image sensor.
  • the molar color prism is characterized in that the forward and backward adjustment is possible.
  • the subject is displayed on the image sensor by using a prism rather than a convex lens, the subject displayed on the monitor is flatly displayed without protruding or entering curved, so that dizziness of the eyes is observed even for a long time.
  • Disadvantages of prisms that are small and have large chromatic aberrations are solved by using a chromic aberration-free prism with no chromatic aberration by superimposing the first and second prisms with different refractive indices, and when the viewing direction and viewing distance of the affected part through the microscope are changed. It is a very useful invention for the development of the medical industry as a surgical 3D microscope device that can obtain a high quality 3D stereoscopic image by simply moving the prism back and forth to adjust the viewing angle.
  • FIG. 1 is a perspective view showing the main part of the surgical 3D microscope device according to the present invention.
  • Figure 2 is a block diagram showing a surgical 3D microscope device according to the present invention and an image processing apparatus for processing the image taken here and output to a monitor.
  • image sensor 20 molar color prism
  • variable lens 40 fixed lens
  • the same reference numerals in particular, the tens and ones digits, or the same digits, tens, ones, and alphabets refer to members having the same or similar functions, and unless otherwise specified, each member in the figures The member referred to by the reference numeral may be regarded as a member conforming to these criteria.
  • the surgical 3D microscope device comprises an image sensor 10, a color matching prism 20, a variable lens 30, a regular lens 40.
  • the image sensor 10 generates image data by processing an input image (input in the form of light) of the subject and transmits the generated image data to the main body.
  • the main body outputs and displays the image data transmitted from the image sensor 10 to the monitor.
  • the image sensor 10 includes a CCD device, a CMOS device, and the like, and the present invention is a microscope for providing a 3D stereoscopic image.
  • the image sensor 10 is provided with a pair of left eye images of a subject (illusion) viewed from the left. It receives and processes the right eye image seen from the right side.
  • the color prisms 20 transfer an image of an input subject to the image sensor 10 to form an image.
  • a convex lens is generally used as an image forming member for forming an image of the subject on the image sensor 10.
  • the convex lens has a characteristic of a convex shape, so that the image of the subject displayed on the monitor It is displayed in a curved, protruding (or entering) form unlike the real world, causing dizziness when viewed for a long time.
  • the prism has no problem of causing dizziness by allowing the image of the subject to be imaged on the image sensor 10 and displayed on the monitor in a flat and realistic shape without bending.
  • prisms have a disadvantage in that chromatic aberration is larger than convex lenses. That is, the prism is an image of an input subject, and the difference in refractive index according to the color (wavelength) of light is generally larger than that of a convex lens, so that the surroundings of the subject displayed on the monitor appear to be iridescent.
  • the present invention removes chromatic aberration by using a molten color prism 20 having a first prism 21 and a second prism 22 having different refractive indices.
  • the molar color prism 20 has a rear surface of the first prism 21 and a front surface of the second prism 22 having a flat structure, and are in close contact with each other.
  • the front surface of the first prism 21 has a left image and a right image of a subject. It has an angled structure protruding from the center to receive each input, and the rear of the second prism 22 is a pair of image sensors, respectively, the left image and the right image of the subject input to both front sides of the first prism 21. It has an angular structure with a concave center in the center for delivery to 10.
  • the chromophoric prism 20 has a focal length f suitable for surgery, and the material according to the refractive indices of the first prism 21 and the second prism 22 to remove chromatic aberration while the focal length f is implemented. , Angles ⁇ 1 and ⁇ 2 are determined.
  • the miniaturization of the microscope and the ease of internal mounting are enhanced to minimize the volume of the chromic color prism 20 (particularly, the length in the front and rear direction), and the processing of the first prism 21 and the second prism 22 is easy and external. It is preferable to have angles [theta] 1 and [theta] 2 so as not to be easily damaged by an impact.
  • the focal length f of the chromophoric prism 20 suitable for surgery is 50 mm to 500 mm, more preferably 200 mm to 400 mm.
  • the angle ( ⁇ 1) of the first prism is more preferably between 5 and 40 degrees. Preferably it is 7 degrees-15 degrees, and the angle (theta) 2 of the said 2nd prism is between 3 degrees-10 degrees, More preferably, it is between 4 degrees-8 degrees.
  • the chromic prisms 20 can be moved back and forth to adjust the viewing angle of the 3D stereoscopic image.
  • the present invention simply adjusts the gaze angle during the operation by advancing the molar prisms 20 through the advancing means (not shown).
  • the pair of lens 30 is disposed on both rear sides of the chromophoric prism 20, and enlarges the image of the subject passing through the chromophoric prism 20 at a predetermined magnification and transmits the image to the image sensor 10.
  • variable displacement lens 30 is provided with various types of different arrangements, and according to a user's (operator's) operation, a pair of variable displacement lenses 30 having a desired magnification at that time are disposed on both rear sides of the color matching prism 20. do.
  • the forward lens 40 is formed in a pair, and is selectively disposed on a virtual axis connecting the pair of variable displacement lenses 30 and the image sensor 10 to form an image on the image sensor 10. Adjust the magnification.
  • the image of the subject transferred from the rear lens 30 is magnified (eg; 0.5 times and 2 times) to be transmitted to the image sensor 10, and when placed outside the virtual axis connecting the displacement lens 30 and the image sensor 10 to pass through the displacement lens 30.
  • the image of the subject is transferred to the image sensor 10 as it is, and the subject is imaged on the image sensor 10 at a magnification according to the variation lens and displayed on the monitor.
  • the forward lens 40 is rotated through a rotation means (not shown) to be disposed on or off the virtual axis connecting the variable displacement lens 30 and the image sensor 10.
  • the forward lens 40 is rotated 90 degrees to be disposed on the virtual axis, and is rotated 90 degrees to depart from the virtual axis.
  • the magnification may be further adjusted. That is, if two pairs of magnification lenses 40 with different magnifications are provided, the magnification lens 40, another magnification lens 40, and no magnification lens 40 (no magnification lens 40) are provided at intervals of 60 degrees. In this case, the magnification of the subject may be adjusted every time the camera rotates by 60 degrees using the rotation means.
  • the chromophoric prism 20 receives an image of a subject 89, which is an object to be photographed, on both sides, and converts the optical paths of the images input to both sides by wavelength to remove chromatic aberration, and a pair of rear pairs arranged behind each other. It is input to the variable displacement lens 30.
  • the chromic prisms 20 can be moved back and forth to mechanically adjust the viewing angle of the subject image (that is, the left eye image and the right eye image) input to both sides.
  • variable magnification lens 30 enlarges the image of the subject transmitted by the chromophoric prism 20 at a predetermined magnification, and the double magnification lens 40 once again enlarges the image of the subject delivered from the variable magnification lens 30 at the normal magnification. Zoom in (or zoom out)
  • the focus lens 92 disposed behind the rear lens 40 adjusts the focus of the subject image by moving forward or backward along the light path in the barrel 93.
  • the image sensor 10 receives an image of an object passing through the focus lens 92 to form an image, and converts optical data into image data as an image of the input object.
  • the image data of the image sensor 10 is transmitted to the converter 95, and the converter 95 performs a format conversion of an appropriate image so as to facilitate the preprocessing of the input image data.
  • the image data converted from the format of the converter 95 is transferred to the preprocessor 96 to be preprocessed into a space and a time axis to enable memory and processing.
  • the image data preprocessed by the preprocessor 96 is transmitted to the ISP 97 to adjust the color and brightness of the image.
  • the image data whose color, brightness, etc. are adjusted by the ISP unit 97 is transmitted to the viewing angle adjusting unit 98 to adjust the viewing angle by adjusting the center and distance of the left eye image data and the right eye image data.
  • the left and right eye image data whose angle of view is adjusted through the angle adjusting unit 98 is output to the monitor 104 having a muxing function through the transmitters 101 and 102 so that the monitor 104 is synthesized and displayed as a stereoscopic image.
  • the image may be transmitted to the synthesis unit 99, synthesized, and then output to the monitors 105 and 106 to be displayed as a stereoscopic image.
  • the left and right eye image data of which the viewing angle is adjusted through the viewing angle adjusting unit 98 is transmitted to the left and right monitors of an HMD device (eg, a 3D glasses or a headset provided with a monitor), and thus the wearer of the HMD device.
  • the left eye and the right eye may display the left eye image and the right eye image so that the wearer's left and right eyes directly feel the 3D image.
  • reference numeral '107' denotes a controller which controls the 3D video microscope apparatus and the image processing apparatus as a whole through power management, light source control, command signal processing, etc.
  • '108' is a user interface
  • '109' Are external input devices such as handswitch and footswitch.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Microscoopes, Condenser (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

본 발명은 의사의 눈에 잘 보이지 않거나, 쉽게 확인할 수 없는 인체 내부를 확대하여 보면서 수술할 수 있도록 하는 수술용 현미경 장치에 관한 것으로서, 보다 상세하게는 모니터에 환부를 3D 입체영상으로 디스플레이하여 보다 현실감 있는 수술을 지원하고, 피사체 이미지를 결상시키는데 몰색프리즘을 이용하여 피사체가 굴곡 없이 플랫하게 디스플레이되며 색수차게 제거되어 선명하게 디스플레이되고, 디스플레이되는 피사체의 주시각과 배율을 간편하게 조절할 수 있는 3D 비디오 현미경 장치에 관한 것이다. 본 발명에 따른 3D 비디오 현미경 장치는 한 쌍의 이미지센서; 입력되는 피사체 이미지가 색수차가 제거된 상태로 상기 이미지센서에 결상되도록 하는 몰색프리즘; 상기 몰색프리즘을 통과한 피사체의 이미지를 일정 배율로 상기 이미지센서로 전달하는 한 쌍의 변배렌즈;를 포함하여 이루어진다.

Description

3D 비디오 현미경 장치
본 발명은 눈에 잘 보이지 않거나 시야가 닿지 않는 부위를 확대해서 모니터를 통해 입체적으로 보여줌으로써 수술을 위한 의료분야와 여러 산업분야에서 널리 사용될 수 있는 비디오 현미경 장치에 관한 것으로서, 보다 상세하게는 모니터에 피사체(예; 환자의 환부, 각종 기계장치, 반도체 소자 등)를 3D 입체영상으로 디스플레이하여 보다 현실감 있게 피사체를 관찰할 수 있고, 피사체 이미지를 결상시키는데 몰색프리즘을 이용하여 피사체가 굴곡 없이 플랫하게 디스플레이되며 색수차게 제거되어 선명하게 디스플레이되고, 디스플레이되는 피사체의 주시각과 배율을 간편하게 조절할 수 있는 3D 비디오 현미경 장치에 관한 것이다.
주지하다시피 현미경은 피사체를 확대하여 보여주는 기기로서, 과거에는 관찰자가 눈을 아이피스로 가져가 피사체를 보았지만, 근래에는 기술의 발전으로 피사체를 모니터에 디스플레이하여서 관찰자가 행동제약(예; 아이프스에 눈을 갖대 댄 상태로 행동해야 함) 없이 피사체를 확대하여 볼 수 있도록 하는 비디오 현미경 장치가 출시되고 있다.
이러한 비디오 현미경 장치는 현재 수술을 위한 의료분야와 각종 산업분야에서 사용 증가 추세에 있다.
본 발명에 따른 3D 비디오 현미경 장치는 수술에 활용하는 의료분야에 주로 사용될 것으로 예상되는 바, 이하에서는 의료분야를 기준으로 설명한다. 물론, 본 발명의 3D 비디오 현미경 장치는 각종 산업분야에도 활용될 수 있다.
일반적으로 의료 수술용 현미경은 의료기관의 외과, 안과, 신경외과, 이비인후과, 척추외과 및 산부인과 등에서 의사의 눈에 잘 보이지 않거나, 쉽게 확인할 수 없는 인체 부위를 확대하여 보면서 수술할 수 있도록 한 의료기기의 일종으로,
의사는 수술용 현미경을 통해 촬영되는 환자의 환부를 관찰하면서 수술을 진행하고, 의사 이외의 보조자와 참관자 및 환자와 관련된 보호자는 모니터를 통해서 수술실 및 외부에서 환자의 환부 및 수술 진행과정을 관찰할 수 있게 된다.
이때 모니터로 디스플레이되는 영상은 단순히 2차원 영상으로 디스플레이하도록 되어 있어서, 수술부위를 정확하게 관찰 및 확인하는데 어려움이 있다.
그래서 최근에는 수술 진행과정을 입체적 영상으로 디스플레이하도록 하여 환부 및 환부의 이면까지 보면서 수술을 할 수 있는 3차원 영상시스템이 개발되고 있다.
수술용 현미경 장치에 관한 종래기술로 개시된 공개특허 제10-2012-0138520호 "수술 현미경 시스템", 등록특허 제10-1092108호 "수술용 현미경" 등에서 보는 바와 같이,
수술용 현미경 장치는 피사체의 이미지가 결상되며 결상된 피사체의 이미지가 모니터에 디스플레이될 수 있도록 처리하는 이미지센서(예; CCD, CMOS)와, 피사체의 이미지가 이미지센서에 결상되도록 하는 볼록렌즈와, 볼록렌즈와 이미지센서 사이에 배치되어서 피사체 이미지의 배율을 조절하는 변배렌즈를 포함한다.
이처럼 종래기술에 따른 수술용 현미경 장치에서는 피사체 이미지의 결상을 위해 볼록렌즈를 사용하고 있는데, 볼록렌즈는 볼록한 형상의 구조와 통과하는 이미지 빛의 굴절 성질에 의해서 피사체가 모니터에 만곡되어 튀어나오거나 들어간 모양으로 디스플레이된다.
실제와 다르게 피사체가 모니터에 만곡되어 디스플레이되는 영상을 장시간 보게되면 어지러움증을 유발하게 되고, 그러면 수술자에게 악영향을 주어 정밀한 수술을 방해하고 의료사고가 발생될 수도 있다.
따라서 장시간 모니터를 주시하며 수술을 하더라도 어지러움증이 유발되지 않도록할 필요성이 강하게 요구되고 있지만, 종래기술에서는 아직 이를 해결하지 못하고 있다.
그리고 3D 입체영상에서는 좌측 이미지와 우측 이미지 간의 시차량이 맞지 아니하면 입체영상의 주시자가 무의식적인 뇌의 명령에 따라 디스플레이되는 피사체의 시차량을 인위적으로 맞추게 되어서 어지러움증과 눈의 피로감을 유발하기 때문에 주시각 조정이 중요하다.
주시각을 조정하는 간단한 방법 중의 하나가 피사체와 현미경 내부에서 피사체가 이미지센서에 결상되도록 하는 렌즈 간의 거리를 조절하는 것이다.
그런데 종래기술에 따른 수술용 현미경 장치에서는 피사체가 이미지센서에 결상되도록 하는 렌즈가 고정되어 있어서, 수술 중에 주시각을 조정하는 것이 곤란하다.
본 발명은 위와 같이 종래기술에 따른 수술용 현미경 장치가 갖는 문제를 해결하기 위해 안출된 발명으로서,
우선, 피사체의 이미지가 이미지센서에 결상되도록 하는 결상부재로 볼록렌즈가 아닌 프리즘을 사용하여서, 모니터에 디스플레이되는 피사체가 굴곡(만곡) 없이 플랫하게 디스플레이되고, 그에 따라 장기간 모니터를 응시하더라도 눈의 피로감이 적어 의료사고 없는 안전한 수술에 이바지하고, 프리즘은 굴절률이 다른 두 프리즘을 포개어서 색수차가 없는 몰색프리즘을 사용하여 고품질의 피사체 영상을 제공하고,
변배렌즈와 이미지센서를 연결하는 축상에 정배렌즈가 선택적으로 배치되도록 하여 현미경에서 피사체 자체의 배율을 임의로 간편하게 조절할 수 있고,
몰색프리즘은 전후로 이동 가능하여 간편하게 주시각 조정이 가능한 3D 비디오 현미경 장치를 제공함을 목적으로 한다.
이와 같은 목적을 달성하기 위한 본 발명에 따른 3D 비디오 현미경 장치는
한 쌍의 이미지센서;
입력되는 피사체 이미지가 색수차가 제거된 상태로 상기 이미지센서에 결상되도록 하는 몰색프리즘;
상기 몰색프리즘을 통과한 피사체의 이미지를 일정 배율로 상기 이미지센서로 전달하는 한 쌍의 변배렌즈;를 포함하여 이루어진다.
그리고 상기 이미지센서와 변배렌즈를 연결하는 가상축 상에 선택적으로 배치되어서, 상기 이미지센서에 결상되는 피사체의 배율을 조절하는 정배렌즈;를 더 포함하는 것을 특징으로 하고,
상기 몰색프리즘은 전후진하여 주시각 조정이 가능한 것을 특징으로 한다.
위와 같이 구성되는 본 발명은 피사체를 이미지센서에 결상시키는데 볼록렌즈가 아닌 프리즘을 사용하여 모니터에 디스플레이되는 피사체가 만곡하게 튀어나오거나 들어가는 것 없이 플랫하게 디스플레이되어서 장시간 모니터를 주시하여도 눈의 어지러움증이 적고, 일반적으로 색수차가 큰 프리즘의 단점은 굴절률이 다른 제1프리즘과 제2프리즘을 포개어져서 색수차가 없는 몰색프리즘을 사용하여 해결하고, 현미경을 통한 환부의 관찰방향과 관찰거리가 달라지는 경우에 몰색프리즘을 전후로 이동시켜 간편하게 주시각을 조정함으로써 선명하게 품질 좋은 3D 입체영상을 얻을 수 있는 수술용 3D 현미경 장치로서, 의료 산업발전에 매우 유용한 발명이다.
도 1 은 본 발명에 따른 수술용 3D 현미경 장치의 요부를 도시한 사시도.
도 2 는 본 발명에 따른 수술용 3D 현미경 장치와 여기서 촬영된 영상을 처리하여 모니터로 출력하는 영상처리장치를 도시한 블럭도.
* 도면의 주요 부분에 대한 부호의 설명 *
10 : 이미지센서 20 : 몰색프리즘
30 : 변배렌즈 40 : 정배렌즈
이하, 도면을 참조하여 본 발명에 따른 수술용 3D 현미경 장치를 보다 상세하게 설명한다.
도면을 참조하여 본 발명에 따른 수술용 3D 현미경 장치를 보다 구체적으로 설명하기에 앞서,
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 구현예(態樣, aspect)(또는 실시예)들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면에서 동일한 참조부호, 특히 십의 자리 및 일의 자리 수, 또는 십의 자리, 일의 자리 및 알파벳이 동일한 참조부호는 동일 또는 유사한 기능을 갖는 부재를 나타내고, 특별한 언급이 없을 경우 도면의 각 참조부호가 지칭하는 부재는 이러한 기준에 준하는 부재로 파악하면 된다.
또 각 도면에서 구성요소들은 이해의 편의 등을 고려하여 크기나 두께를 과장되게 크거나(또는 두껍게) 작게(또는 얇게) 표현하거나, 단순화하여 표현하고 있으나 이에 의하여 본 발명의 보호범위가 제한적으로 해석되어서는 안 된다.
본 명세서에서 사용한 용어는 단지 특정한 구현예(태양, 態樣, aspect)(또는 실시예)를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, ~포함하다~ 또는 ~이루어진다~ 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도면에서 보는 바와 같이 본 발명에 따른 수술용 3D 현미경 장치는 이미지센서(10), 몰색프리즘(20), 변배렌즈(30), 정배렌즈(40)를 포함하여 이루어진다.
상기 이미지센서(10)는 입력되는 피사체의 이미지(빛의 형태로 입력된)를 처리하여 영상데이터를 생성하고, 생성된 영상데이터를 본체로 전송한다. 본체는 이미지센서(10)가 전송하는 영상데이터를 모니터로 출력하여 디스플레이시킨다.
상기 이미지센서(10)로는 CCD소자, CMOS소자 등이 있고, 본 발명은 3D 입체영상을 제공하는 현미경으로써, 상기 이미지센서(10)는 한 쌍이 구비되어서 각각 피사체(환부)를 좌측에서 본 좌안이미지와 우측에서 본 우안이미지를 입력받아 처리한다.
상기 몰색프리즘(20)은 입력되는 피사체의 이미지를 상기 이미지센서(10)로 전달하여 결상되도록 한다.
전술한 바와 같이 종래기술에서는 피사체의 이미지가 이미지센서(10)에 결상되도록 하는 결상부재로 일반적으로 볼록렌즈를 사용하나, 볼록렌즈는 볼록한 형상의 구조에 의한 특성으로 모니터에 디스플레이되는 피사체의 이미지가 실제와 다르게 굴곡져 튀어나오는(또는 들어가는) 모양으로 디스플레이 되어서, 장시간 보게되면 어지러움증을 유발한다.
그러나 프리즘은 피사체의 이미지가 굴곡 없이 플랫하게 실제와 같은 모양으로 이미지센서(10)에 결상되어 모니터에 디스플레이되도록 함으로써 위와 같이 어지러움증을 유발하는 문제가 없다.
다만, 프리즘은 볼록렌즈 보다 색수차가 큰 단점을 갖는다. 즉, 프리즘은 입력되는 피사체의 이미지로서 빛의 색상(파장)에 따른 굴절률의 차이가 일반적으로 볼록렌즈 보다 커서 모니터에 디스플레이되는 피사체의 주변이 무지개빛으로 번져 보이는 현상이 발생된다.
이처럼 색수차가 발생되는 문제를 해결하기 위해서 본 발명은 프리즘으로 굴절률이 다른 제1프리즘(21)과 제2프리즘(22)이 포개져 있는 몰색프리즘(20)을 사용하여, 색수차를 제거하였다.
상기 몰색프리즘(20)은 제1프리즘(21)의 후면과 제2프리즘(22)의 전면이 평면 구조로 이루어져 서로 밀착되고, 제1프리즘(21)의 전면은 피사체의 좌측이미지와 우측이미지를 각각 입력받을 수 있도록 중앙이 돌출된 각이진 구조를 갖고, 상기 제2프리즘(22)의 후면은 제1프리즘(21)의 전면 양측으로 입력된 피사체의 좌측이미지와 우측이미지를 각각 한쌍의 이미지센서(10)로 전달하도록 중앙이 오목한 각이진 구조를 갖는다.
상기 몰색프리즘(20)은 수술에 적합한 초점거리(f)를 갖고, 이 초점거리(f)가 구현되면서 색수차를 제거하도록 제1프리즘(21)과 제2프리즘(22)의 굴절률에 따른 재질과, 각도(θ1, θ2)가 결정된다.
이때, 몰색프리즘(20)의 부피(특히, 전후방향의 길이)가 최소화되도록 현미경의 소형화와 내부 장착의 용이성을 높이고, 제1프리즘(21)과 제2프리즘(22)의 가공이 용이하고 외부충격에 의해 쉽게 손상되지 않도록 하는 각도(θ1, θ2)를 갖도록 하는 것이 바람직하다.
수술에 적합한 몰색프리즘(20)의 초점거리(f)는 50mm~500mm 이고, 보다 적합하게는 200mm~400mm가 된다.
이러한 초점거리(f) 범위에서 부피의 최소화, 가공의 용이성, 외부충격에 대한 내구성, 그리고 색수차 제거의 효율성을 고려할 때, 상기 제1프리즘의 각도(θ1)는 5도~40도 사이, 보다 바람직하게는 7도~15도이고, 상기 제2프리즘의 각도(θ2)는 3도~10도 사이, 보다 바람직하게는 4도~8도 사이이다.
상기 몰색프리즘(20)은 전후진이 가능하여 3D 입체영상의 주시각 조정이 가능하다.
3D 입체영상에서는 피사체의 관찰방향과 관찰거리가 달라지면 좌측이미지와 우측이미지 간에 시차량이 발생되고, 시차량이 발생되면 모니터에 디스플레이되는 피사체의 윤관이 흐려지고 관측자는 초점이 맺히지 않은 물체의 관측에 따른 심한 관측 피로를 느끼게 된다.
따라서 수술 중에 현미경을 통한 환부의 관찰방향이나 관찰거리가 달라져 좌측이미지와 우측이미지 간에 시차량이 발생된 경우에 간단한 조작을 통해 시차량을 최소화시킬 필요가 있다. 즉, 간단하기 주시각을 조정할 필요가 있다.
본 발명은 전후진수단(미도시)을 통해 몰색프리즘(20)을 전후진시켜 수술 중에 주시각을 간단하게 조정한다.
상기 변배렌즈(30)는 한 쌍이 상기 몰색프리즘(20)의 후방 양측에 배치되어서, 몰색프리즘(20)을 통과한 피사체의 이미지를 일정 배율로 확대하여 상기 이미지센서(10)로 전달한다.
상기 변배렌즈(30)는 배열을 달리하는 여러 종류가 구비되어서, 사용자(수술자)의 조작에 따라 그때그때 희망하는 배율의 한 쌍의 변배렌즈(30)가 몰색프리즘(20)의 후방 양측에 배치된다.
상기 정배렌즈(40)는 한쌍으로 이루어지고, 각기 한쌍의 상기 변배렌즈(30)와 상기 이미지센서(10)를 연결하는 가상축 상에 선택적으로 배치되어서, 상기 이미지센서(10)에 결상되는 피사체의 배율을 조절한다.
다시 말해, 정배렌즈(40)가 상기 변배렌즈(30)와 상기 이미지센서(10)를 연결하는 가상축 상에 배치되는 때에는 상기 변배렌즈(30)에서 전달되는 피사체의 이미지를 일정 배율(예; 0.5배, 2배)로 확대하여 상기 이미지센서(10)로 전달하고, 상기 변배렌즈(30)와 상기 이미지센서(10)를 연결하는 가상축을 벗어나 배치되는 때에는 상기 변배렌즈(30)를 통과한 피사체의 이미지는 그대로 이미지센서(10)로 전달되어 변배랜즈에 따른 배율로 피사체가 이미지센서(10)에 결상되고 모니터에 디스플레이된다.
상기 정배렌즈(40)는 회전수단(미도시)을 통해 회전하여 상기 변배렌즈(30)와 상기 이미지센서(10)를 연결하는 가상축 상에 배치되거나 가상축에서 벗어나게 된다.
도면과 같이 한쌍의 정배렌즈(40)를 구비하는 때에는 정배렌즈(40)는 90도 회전하여 가상축에 배치되고, 역으로 90도 회전하여 가상축을 벗어나게 된다.
이때, 정배렌즈(40)를 두 쌍 이상을 구비하면 배율을 더 다양하게 조절할 수 있다. 즉, 배율을 달리하는 정배렌즈(40)를 두 쌍 구비하면, 60도 간격으로 정배렌즈(40), 또 다른 정배렌즈(40), 무 정배렌즈(40)(정배렌즈(40) 없음)가 배치되어서, 회전수단을 이용해 60도씩 회전시킬 때마다 피사체의 배율이 조절될 수 있다.
이하에서는 도2를 참조하여 본 발명에 따른 3D 비디오 현미경 장치와 여기서 촬영된 영상을 처리하여 모니터로 출력하는 영상처리장치에 대하여 간략히 설명한다.
몰색프리즘(20)은 관찰대상(촬영대상)인 피사체(89)의 이미지를 양측으로 입력받고, 양측으로 입력된 이미지의 광경로를 색수차가 제거되도록 파장별로 변환하여 각각 후방에 배치된 한 쌍의 변배렌즈(30)로 입력되도록 한다.
상기 몰색프리즘(20)는 전후진이 가능하여 양측으로 입력되는 피사체 이미지(즉, 좌안이미지와 우안이미지)의 주시각을 기구적으로 조정할 수 있다.
상기 변배렌즈(30)는 몰색프리즘(20)에서 전달되는 피사체의 이미지를 일정 배율로 확대시키고, 상기 정배렌즈(40)는 상기 변배렌즈(30)에서 전달되는 피사체의 이미지를 다시 한번 정배율로 확대(또는 축소)시킨다.
상기 정배렌즈(40)의 후방에 배치되는 초점렌즈(92)는 경통(93) 내부에서 광경로를 따라 전진 또는 후진하여 피사체 이미지의 초점을 조절한다.
상기 이미지센서(10)는 상기 초점렌즈(92)를 통과한 피사체의 이미지가 입력되어 결상되고, 입력된 피사체의 이미지로서 광데이터를 영상데이터로 변환시킨다.
상기 이미지센서(10)의 영상데이터는 컨버터(95)로 전송되고, 컨버터(95)는 입력된 영상데이터를 전처리하기 편리하도록 적절한 영상의 포맷 변환 등을 수행한다.
상기 컨버터(95)에서 포맷 등이 변환된 영상데이터는 전처리부(96)로 전송되어서 메모리 및 프로세싱이 가능하도록 공간 및 시간축으로 변형되는 전처리가 수행된다.
상기 전처리부(96)에서 전처리된 영상데이터는 ISP부(97)로 전송되어서 영상의 색상과 밝기 등이 조정된다.
상기 ISP부(97)에서 색상과 밝기 등이 조정된 영상데이터는 주시각조정부(98)로 전송되어서 좌안용 영상데이터와 우안용 영상데이터의 중심 및 거리감을 조절하여 주시각이 조정된다.
상기 주시각조정부(98)를 통해 주시각이 조정된 좌우안용 영상데이터는 트랜스미터(101, 102)를 통해 먹싱 기능을 갖는 모니터(104)로 출력되어서 모니터(104)가 합성하여 입체영상으로 디스플레이될 수 있고, 합성부(99)로 전송되어서 합성된 후에 모니터(105, 106)로 출력되어서 입체영상으로 디스플레이될 수 있다.
이때, 상기 주시각조정부(98)를 통해 주시각이 조정된 좌우안용 영상데이터는 HMD기기(Head Mount Display, 예; 모니터가 구비된 3D 안경이나 헤드셋)의 좌우측 모니터로 전송되어서, HMD기기의 착용자 좌안과 우안에 각 좌안영상과 우안영상이 디스플레이되도록 하여 착용자의 좌우안이 직접 입체영상을 느끼도록 할 수도 있다.
도2에서 미설명된 도면부호 '107'은 전원관리, 광원제어, 명령신호 처리 등을 통해 3D 비디오 현미경 장치와 영상처리장치를 전체적으로 제어하는 컨트롤러이고, '108'은 사용자 인터페이스고, '109'는 외부 입력장치로 핸드스위치와 풋스위치 등이다.
이상에서 본 발명을 설명함에 있어 첨부된 도면을 참조하여 특정 형상과 구조를 갖는 3D 비디오 현미경 장치에 대해 설명하였으나 본 발명은 당업자에 의하여 다양한 변형 및 변경이 가능하고, 이러한 변형 및 변경은 본 발명의 보호범위에 속하는 것으로 해석되어야 한다.

Claims (4)

  1. 한 쌍의 이미지센서;
    입력되는 피사체 이미지가 색수차가 제거된 상태로 상기 이미지센서에 결상되도록 하는 몰색프리즘;
    상기 몰색프리즘을 통과한 피사체의 이미지를 일정 배율로 상기 이미지센서로 전달하는 한 쌍의 변배렌즈;를 포함하여 이루어지는 3D 비디오 현미경 장치.
  2. 제 1 항에 있어서,
    상기 이미지센서와 변배렌즈를 연결하는 가상축 상에 선택적으로 배치되어서, 상기 이미지센서에 결상되는 피사체의 배율을 조절하는 정배렌즈;를 더 포함하는 것을 특징으로 하는 3D 비디오 현미경 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 몰색프리즘은 전후진하여 주시각 조정이 가능한 것을 특징으로 하는 3D 비디오 현미경 장치.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 몰색프리즘은
    전면은 피사체의 좌측이미지와 우측이미지를 각각 입력받을 수 있도록 중앙이 돌출된 각이진 구조를 갖는 제1프리즘과,
    상기 제1프리즘의 후면에 전면이 밀착되도록 포개져 결합되고, 후면은 상기 제1프리즘의 전면 양측으로 입력된 피사체의 좌측이미지와 우측이미지를 각각 한 쌍의 이미지센서로 전달하도록 중앙이 오목한 각이진 구조를 갖는 제2프리즘을 포함하되,
    상기 몰색프리즘의 초점거리(f)는 200mm~400mm 이고,
    상기 제1프리즘의 각도(θ1)는 7도~15도 이고,
    상기 제2프리즘의 각도(θ2)는 4도~8도 인 것을 특징으로 하는 3D 비디오 현미경 장치.
PCT/KR2014/003382 2014-04-07 2014-04-18 3d 비디오 현미경 장치 WO2015156442A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480057159.5A CN105659139A (zh) 2014-04-07 2014-04-18 3d视频显微镜
US14/785,097 US9835841B2 (en) 2014-04-07 2014-04-18 3D video microscopy system
JP2016559416A JP2017509925A (ja) 2014-04-07 2014-04-18 3dビデオ顕微鏡装置
EP14889176.5A EP3067730A4 (en) 2014-04-07 2014-04-18 3d video microscope device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0041445 2014-04-07
KR20140041445A KR101476820B1 (ko) 2014-04-07 2014-04-07 3d 비디오 현미경 장치

Publications (1)

Publication Number Publication Date
WO2015156442A1 true WO2015156442A1 (ko) 2015-10-15

Family

ID=52680038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003382 WO2015156442A1 (ko) 2014-04-07 2014-04-18 3d 비디오 현미경 장치

Country Status (6)

Country Link
US (1) US9835841B2 (ko)
EP (1) EP3067730A4 (ko)
JP (1) JP2017509925A (ko)
KR (1) KR101476820B1 (ko)
CN (1) CN105659139A (ko)
WO (1) WO2015156442A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101608404B1 (ko) 2015-12-24 2016-04-01 주식회사 연시스템즈 입체 이미지를 촬영하기 위한 단안식 현미경
KR20170076517A (ko) 2015-12-24 2017-07-04 주식회사 연시스템즈 단안식 입체 카메라
KR101654589B1 (ko) * 2015-12-28 2016-09-07 (주)휴러스트 초점 및 물체 거리 자동 변환 기능을 구비한 3차원 입체 영상 기반의 의료 현미경 시스템
TWI576787B (zh) * 2016-02-05 2017-04-01 黃宇軒 擴增實境影像產生系統及其應用
US10890751B2 (en) 2016-02-05 2021-01-12 Yu-Hsuan Huang Systems and applications for generating augmented reality images
CN107913107A (zh) * 2016-10-08 2018-04-17 上海安信光学仪器制造有限公司 3d头盔式手术显微镜系统
TWI627444B (zh) * 2017-02-24 2018-06-21 秀傳醫療社團法人秀傳紀念醫院 可記憶電動平台之數位雙鏡頭立體顯微鏡
KR101874778B1 (ko) * 2017-05-01 2018-08-02 (주)휴러스트 3차원 입체 영상 기반의 연속 줌 및 연속 배율 전환을 지원하는 의료용 현미경 시스템
GB2567439A (en) 2017-10-10 2019-04-17 Vision Eng Stereo microscope with single objective
CN107907987A (zh) * 2017-12-26 2018-04-13 深圳科创广泰技术有限公司 基于混合现实的3d显微镜
AU2020326398A1 (en) * 2019-08-06 2022-01-20 Alcon Inc. Scene camera systems and methods for vitreoretinal surgery
CN113413207A (zh) * 2021-06-22 2021-09-21 南京康友医疗科技有限公司 一种3d可视化医疗手术系统
KR20240028675A (ko) * 2022-08-25 2024-03-05 최성백 의료 수술용 디지털 현미경

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523226A (en) * 1982-01-27 1985-06-11 Stereographics Corporation Stereoscopic television system
JP2000338416A (ja) * 1999-05-31 2000-12-08 Asahi Optical Co Ltd 立体視顕微鏡
US6546208B1 (en) * 1999-11-22 2003-04-08 Sl3D, Inc. Stereoscopic telescope with camera
JP2005157335A (ja) * 2003-11-21 2005-06-16 Carl Zeiss Jena Gmbh 落射型蛍光立体顕微鏡
JP2014021293A (ja) * 2012-07-19 2014-02-03 Olympus Medical Systems Corp 偏向光学系及びそれを備えた内視鏡

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB907679A (en) * 1960-04-02 1962-10-10 Zeiss Stiftung Stereomicroscope
GB1473537A (en) * 1974-06-17 1977-05-11 Butterfield J Stereo television microscope
US4178090A (en) * 1974-10-21 1979-12-11 Marks Alvin M 3-Dimensional camera device
US4175829A (en) * 1974-10-21 1979-11-27 Marks Alvin M 3-Dimensional camera device
DE3217776C2 (de) * 1982-05-12 1985-01-31 Fa. Carl Zeiss, 7920 Heidenheim Stereomikroskop
JPS5888212U (ja) * 1982-09-08 1983-06-15 ジエイムズ・フランク・バタ−フイ−ルド 顕微鏡の立体映像拡大観察装置
JP2765022B2 (ja) * 1989-03-24 1998-06-11 キヤノン販売株式会社 立体画像形成装置
US5227914A (en) * 1990-07-18 1993-07-13 Olympus Optical Co., Ltd. Stereomicroscope including a single variable magnification optical system
US6831781B2 (en) * 1998-02-26 2004-12-14 The General Hospital Corporation Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
JP2000193883A (ja) * 1998-12-25 2000-07-14 Sanyu Seni:Kk 立体映像撮影用光学部品及びそれを用いた立体映像撮影装置
JP4236345B2 (ja) * 1999-08-25 2009-03-11 オリンパス株式会社 実体顕微鏡
US7170677B1 (en) * 2002-01-25 2007-01-30 Everest Vit Stereo-measurement borescope with 3-D viewing
KR101092108B1 (ko) 2003-02-17 2011-12-12 가부시키가이샤 토프콘 수술용 현미경
US7329860B2 (en) * 2005-11-23 2008-02-12 Illumina, Inc. Confocal imaging methods and apparatus
JP5164424B2 (ja) * 2007-04-27 2013-03-21 株式会社ミツトヨ 光学的変位測定装置
CN101387755A (zh) * 2007-09-14 2009-03-18 扎法尔·伊克巴勒 改进型分离器
KR101598653B1 (ko) * 2009-07-10 2016-02-29 아이씨3디 인크. 단일 이미징 경로를 사용하여 3차원 이미지 정보를 발생시키는 방법 및 장치
US8830573B2 (en) * 2009-11-10 2014-09-09 California Institute Of Technology Optical phase conjugation 4Pi microscope
US9036869B2 (en) * 2010-08-31 2015-05-19 Zeta Instruments, Inc. Multi-surface optical 3D microscope
DE102010044404A1 (de) * 2010-09-04 2012-03-08 Leica Microsystems (Schweiz) Ag Bildsensor, Videokamera und Mikroskop
DE102010044502A1 (de) * 2010-09-06 2012-03-08 Leica Microsystems (Schweiz) Ag Sonderbeleuchtungs-Video-Operations-Stereomikroskop
JP5756721B2 (ja) * 2010-09-22 2015-07-29 富士フイルム株式会社 撮像装置
US9339179B2 (en) * 2010-09-28 2016-05-17 Sifi Medtech S.R.L. Corneal confocal microscope
US8997572B2 (en) * 2011-02-11 2015-04-07 Washington University Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
US8531581B2 (en) * 2011-05-23 2013-09-10 Ricoh Co., Ltd. Focusing and focus metrics for a plenoptic imaging system
KR20120138520A (ko) 2011-06-15 2012-12-26 주식회사 휴비츠 수술 현미경 시스템
DE102012001854A1 (de) * 2012-02-01 2013-08-01 Leica Microsystems (Schweiz) Ag Sonderbeleuchtungs-Operations-Stereomikroskop
US9874736B2 (en) * 2013-04-29 2018-01-23 The Regents Of The University Of California Apparatus and method for an inclined single plane imaging microscope box (iSPIM box)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523226A (en) * 1982-01-27 1985-06-11 Stereographics Corporation Stereoscopic television system
JP2000338416A (ja) * 1999-05-31 2000-12-08 Asahi Optical Co Ltd 立体視顕微鏡
US6546208B1 (en) * 1999-11-22 2003-04-08 Sl3D, Inc. Stereoscopic telescope with camera
JP2005157335A (ja) * 2003-11-21 2005-06-16 Carl Zeiss Jena Gmbh 落射型蛍光立体顕微鏡
JP2014021293A (ja) * 2012-07-19 2014-02-03 Olympus Medical Systems Corp 偏向光学系及びそれを備えた内視鏡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3067730A4 *

Also Published As

Publication number Publication date
US20170045727A1 (en) 2017-02-16
EP3067730A4 (en) 2017-06-21
JP2017509925A (ja) 2017-04-06
KR101476820B1 (ko) 2014-12-29
US9835841B2 (en) 2017-12-05
EP3067730A1 (en) 2016-09-14
CN105659139A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2015156442A1 (ko) 3d 비디오 현미경 장치
US5222477A (en) Endoscope or borescope stereo viewing system
US6139490A (en) Stereoscopic endoscope with virtual reality viewing
US9979949B2 (en) Method and apparatus for obtaining stereoscopic 3D visualization using commercially available 2D endoscopes
ES2899353T3 (es) Sistema digital para captura y visualización de video quirúrgico
JP4721981B2 (ja) 立体顕微鏡
CN101518438A (zh) 双目内窥镜手术视觉系统
WO2015042460A9 (en) Surgical visualization systems and displays
US10838189B2 (en) Operating microscope having an image sensor and a display, and method for operating an operating microscope
WO2023040637A1 (zh) 一种显示3d图像的手术显微镜系统
WO2013162220A1 (ko) 스테레오 현미경 시스템
US20120300032A1 (en) Endoscope
CN101219045A (zh) 口腔显微内窥镜
JP2004320722A (ja) 立体観察システム
JP6418578B2 (ja) 立体視硬性内視鏡
JP2004337247A (ja) 立体観察システム
KR101481905B1 (ko) 수술 현미경용 일체형 입체 화상 획득 시스템
KR20130071932A (ko) 의료 수술용 현미경의 3차원 고화질 영상 인터페이스 시스템
JP2001066513A5 (ko)
EP1275258A1 (en) Design, function, and utilisation of an equipment for capturing of three-dimensional images
CN209750986U (zh) 一种虚拟现实全景医用内窥镜
McLaurin et al. 3-D endoscopy through alternating-frame technology
JP2023542384A (ja) 顕微手術補助装置
Southern et al. Video microsurgery: early experience with an alternative operating magnification system
EP4328648A1 (en) Digital microscope for medical procedure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14785097

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889176

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014889176

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016559416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE