WO2015156396A1 - 粘土-黒鉛複合体およびその製造方法 - Google Patents

粘土-黒鉛複合体およびその製造方法 Download PDF

Info

Publication number
WO2015156396A1
WO2015156396A1 PCT/JP2015/061267 JP2015061267W WO2015156396A1 WO 2015156396 A1 WO2015156396 A1 WO 2015156396A1 JP 2015061267 W JP2015061267 W JP 2015061267W WO 2015156396 A1 WO2015156396 A1 WO 2015156396A1
Authority
WO
WIPO (PCT)
Prior art keywords
clay
graphite
composite
film
graphite oxide
Prior art date
Application number
PCT/JP2015/061267
Other languages
English (en)
French (fr)
Inventor
考志 中村
蛯名 武雄
南條 弘
堀部 雅弘
悠人 加藤
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2016512792A priority Critical patent/JPWO2015156396A1/ja
Publication of WO2015156396A1 publication Critical patent/WO2015156396A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays

Definitions

  • the present invention relates to a clay-graphite composite and a method for producing the same.
  • the present inventors have invented a clay film which is an inorganic compound film that has both heat resistance and gas barrier properties and is flexible and has better handling properties than glass (Patent Document 1). From these characteristics, application of clay films to solar battery back sheets and the like has been studied. However, since the clay film is made of clay, which is an insulator, it cannot be a member that requires electrical conductivity assuming use in electronic equipment.
  • Patent Document 2 a clay-expanded graphite composite
  • expanded graphite itself has poor dispersibility in liquid, it cannot be developed into a thin film such as a film using this as a raw material.
  • mixing of expanded graphite was not uniform inside the film. It has been found that the non-uniformity of the graphite dispersion within the material gives rise to variations in the conductivity of the entire film, and as a result, can be a major drawback when used in electromagnetic shielding materials. Accordingly, development of a clay-graphite composite having further improved conductivity and conductivity uniformity has been desired.
  • the clay-graphite composite was improved by reviewing the understanding of carbon at the molecular level.
  • an object of the present invention is to provide a clay-graphite composite having improved conductivity.
  • the present invention provides the following inventions.
  • the clay-graphite composite according to the above (1) which is a sheet or film-like molded product.
  • the clay-graphite composite as described in (1) or (2) above, wherein the clay is one or more of natural clay, modified clay and synthetic clay.
  • Sheet resistance value is 0.01 ⁇ / sq. ⁇ 100,000 k ⁇ / sq.
  • An electromagnetic wave shielding material comprising the clay-graphite composite according to any one of (1) to (10) above.
  • a conductive material comprising the clay-graphite composite according to any one of (1) to (10) above.
  • a heat conductive material comprising the clay-graphite composite according to any one of (1) to (10) above.
  • a gas barrier material comprising the clay-graphite composite according to any one of (1) to (10) above.
  • a method for producing a clay-graphite composite comprising reducing a clay-graphite oxide composite obtained by incorporating graphite oxide between clay layers to obtain a clay-graphite composite.
  • a method for producing a clay-graphite composite described in 1. Any one of the above (16) to (18), wherein the clay-graphite oxide composite is a coating film obtained by spraying a substrate containing a dispersion containing the clay-graphite oxide composite, and drying the dispersion.
  • a method for producing a clay-graphite composite described in 1. (22) The method for producing a clay-graphite composite according to any one of the above (16) to (21), wherein the reduction treatment of the clay-graphite oxide composite uses heating, light, or a non-aqueous reducing liquid.
  • a clay-graphite composite with improved conductivity can be obtained.
  • FIG. 5 shows the results of evaluation of electromagnetic wave shielding characteristics after firing the clay-graphite composite film of Example 1.
  • FIG. 6 shows the measurement results of electromagnetic wave shielding characteristics after firing the clay-graphite composite film of Comparative Example 2.
  • FIG. The variation in sheet resistance of the clay-graphite composite films obtained in Example 1 and Comparative Example 1 is shown.
  • FIG. 9 shows the results of measuring electromagnetic wave shielding characteristics in a low frequency band (0.01 MHz-10 MHz) of an alumina plate coated with the clay-graphite composite film of Example 11 and the clay-graphite composite film of Example 12.
  • FIG. 9 shows the results of measuring electromagnetic wave shielding characteristics in a low frequency band (0.01 MHz-10 MHz) of an alumina plate coated with the clay-graphite composite film of Example 11 and the clay-graphite composite film of Example 12.
  • the clay-graphite composite of the present invention can be obtained by reducing a clay-graphite oxide composite in which graphite oxide obtained by oxidizing unexpanded graphite is incorporated between clay layers.
  • one or more of natural clay, synthetic clay and modified clay can be used.
  • one or more of vermiculite, montmorillonite, beidellite, saponite, hectorite, stevensite, nontronite, smectite, kaolinite, mica (sericite, illite, etc.), hydrotalcite, etc. are preferably used. These may be natural or synthetic, and may further contain an organic compound for modification.
  • Layered condensed hydroxide (LDH) is also cited as a hydrotalcite-like synthetic clay.
  • examples of the organic cation include those containing a quaternary ammonium cation or a quaternary phosphonium cation, an imidazolium cation, and a pyridinium cation.
  • the organic cation is introduced into the clay by ion exchange of the raw clay. This ion exchange is performed, for example, by dispersing raw clay in water in which a large excess of organic matter is dissolved, stirring for a certain period of time, solid-liquid separation by centrifugation or filtration, and repeated washing with water.
  • the silylating agent is not particularly limited, and examples thereof include methyltrimethoxysilane, methyltriethoxysilane, and propyltrimethoxysilane.
  • the raw clay is mixed with 2% by weight of the silylating agent with respect to the raw clay, and the mixture is milled by a ball mill for one hour.
  • organic compounds include cationic polymers.
  • graphite oxide those obtained by oxidizing unexpanded graphite are suitable, and the most preferred is graphene oxide in which the carbon sheet constituting the graphite is exfoliated atomically.
  • the formation of graphene oxide can be confirmed by the characteristic light absorption of 210 to 400 nm appearing in the ultraviolet-visible region derived from the peeling of the carbon sheet.
  • Expanded graphite is obtained by treating graphite powder with an oxidizing agent such as sulfuric acid and nitric acid and then rapidly heating it to decompose or gasify the inserts between the graphite layers to expand the graphite layers. Although it is expanded about 5 to 800 times, the six-membered ring of the carbon sheet also collapses at this time, so when it is combined with clay or the like, the performance of the carbon sheet such as gas barrier and conductivity cannot be fully utilized. Therefore, it is preferable that the graphite oxide used in the present invention is made of the unexpanded graphite that has not been subjected to the above expansion treatment.
  • the unexpanded graphite is not expanded, the regularity of atoms in the stacking direction of the carbon sheets is maintained.
  • This confirmation can be judged by analyzing by the powder X-ray diffraction method and obtaining the width of the obtained diffraction peak. That is, when the crystallinity is high and the atomic arrangement is regular in a high dimension like unexpanded graphite, the peak is sharpened, and as a result, the peak width is narrowed.
  • a peak derived from (002) of graphite appearing at 26-27 ° was fitted by a pseudo-Forked function, and the full width at half maximum (FWHM) was calculated.
  • the one having a value of 0.4 ° or less when determined can be determined as unexpanded graphite (for example, Table 1).
  • the unexpanded graphite it is preferable to use one or more of flaky graphite, scaly (lumpy) graphite, artificial graphite, pyrolytic graphite and heat-treated graphite.
  • the graphite oxide is preferably obtained by oxidizing unexpanded graphite in a liquid phase.
  • the oxidation treatment can be performed by a general method such as Hummer oxidation or Brodie method, Staudenmaier method, or Hofmann method, and a method in which the reaction proceeds in a short time using ultrasonic treatment or microwave heating.
  • the weight ratio of clay and graphite oxide is 1:99 to 99: 1, preferably 20:80 to 95: 5, and more preferably 40:60 to 90:10.
  • An organic compound may be further added to the clay and the graphite oxide in order to improve the strength of the composite.
  • the weight ratio of the sum of the weight of the clay and the graphite oxide to the organic compound is 30:70 to 100: 0. It is preferably 40:60 to 100: 0.
  • the organic compound to be added there are a monomer-based additive and / or a polymer-based additive.
  • the monomer-based additive include monoalcohol, diol, polyol, amine, diamine, polyamine, monocarboxylic acid, dicarboxylic acid, and polycarboxylic acid.
  • ⁇ -caprolactone, ⁇ -caprolactam and the like preferably polyol, polyamine, polycarboxylic acid, ⁇ -caprolactone and ⁇ -caprolactam.
  • Polymeric additives include polyester, polyamide, polyimide, polyamic acid, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene, polypropylene, polyphenol, silicone rubber, silicone oil, polyvinyl chloride, polyethylene terephthalate, nylon, synthetic rubber, natural rubber, starch, Cellulose, protein, nucleic acid and the like can be exemplified, and polyester, polyamide, polyimide, polyamic acid, polyvinyl alcohol and polyvinylpyrrolidone can be preferably exemplified.
  • the clay-graphite oxide composite is preferably dispersed in the liquid phase.
  • water, alcohol, ether, ethyl acetate, hexane, cyclohexane, toluene, chloroform, N, N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, dimethylacetamide or the like is used as a dispersion medium.
  • Preferable examples include water or alcohol, ethyl acetate, N, N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone and dimethylacetamide.
  • the clay-graphite oxide composite of the present invention is preferably a sheet or a film-like molded body.
  • the obtained clay-graphite oxide composite is a sheet or film-like formed body by applying a dispersion containing the clay-graphite oxide composite to a substrate and drying.
  • the substrate is not particularly limited, and plastics, glass, ceramics other than glass, metal, and the like can be used, and preferably, plastic or glass is used. Drying can be performed at about 100 to 300 ° C. in air or in an inert, reducing atmosphere, but is preferably in air or an inert atmosphere.
  • the obtained clay-graphite oxide composite is a sheet or film-like product obtained by pouring a dispersion containing the clay-graphite oxide composite into a mold and drying.
  • the material of the casting mold is not particularly limited, and plastics, glass, ceramics other than glass, metal, and the like can be used. Preferably, plastic or metal is used.
  • the clay-graphite oxide composite is a coating film obtained by spraying and applying a dispersion containing the clay-graphite oxide composite to a substrate and drying.
  • the shape of the substrate is not particularly limited, and the material of the substrate is not particularly limited, and plastics, glass, ceramics other than glass, metals, etc. can be used, but preferably other than plastic, glass, or glass The use of ceramics is mentioned.
  • the clay-graphite oxide composite of the present invention can be formed into a laminate in which two or more sheets or film-like molded bodies having different weight ratios of clay and graphite oxide are laminated. Properties can be imparted. For example, by laminating composites with different electromagnetic wave shielding performance derived from different weight ratios of clay and graphite, it is possible to control the amount of electromagnetic wave absorbed and reflected, control the wavelength of electromagnetic waves to be reflected, and control the wavelength of electromagnetic waves to be absorbed. It becomes possible.
  • the clay-graphite composite of the present invention can be obtained by reducing a clay-graphite oxide composite in which graphite oxide is incorporated between the above clay-graphite composite clay layers.
  • As the reduction treatment it is preferable to use heating, light, or a non-aqueous reducing liquid.
  • air or inert at 100 to 400 ° C. heating using an electric furnace in a reducing atmosphere, heating in air or inert atmosphere using an electromagnetic field or magnetic field or both, xenon Light irradiation using a flash lamp, etc., ultraviolet irradiation using a mercury lamp, etc., a method of reducing a clay-graphite oxide composite by dipping or spraying a reducing agent with a hydrazine derivative dissolved in an organic solvent as a reducing agent Is mentioned.
  • heating it is carried out in air or in an inert atmosphere at a temperature of 100 to 400 ° C., preferably about 200 to 300 ° C.
  • the clay-graphite composite of the present invention preferably has a sheet resistance value of 0.01 ⁇ / sq. ⁇ 100,000 k ⁇ / sq.
  • the variation of the sheet resistance value is 50% to 150% from the arithmetic average value.
  • the clay-graphite composite of the present invention preferably has an electromagnetic wave shielding performance of 0.1 kHz to 50 GHz, more preferably 10 kHz to 100 dB over 1 kHz to 20 GHz, and is preferably used as an electromagnetic wave shielding material. obtain.
  • the clay-graphite composite of the present invention can be suitably used as a heat conductive material, a conductive material such as a conductive film.
  • a sheet or film-like molded body containing only clay or graphite alone has a barrier property such as gaseous hydrogen or / and oxygen, nitrogen, argon, helium, water vapor, etc.
  • the clay-graphite composite of the invention can be easily considered as having the above-mentioned gas barrier properties, and can be suitably used as a gas barrier material.
  • the water vapor barrier property may have a value of 0.01 to 500 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 .
  • Example 1 O Hummer oxidation method
  • Graphite was oxidized using the method described below to prepare an oxidized graphite water dispersion.
  • 10 g of graphite was added to 240 mL of concentrated sulfuric acid (Wako Pure Chemical Industries, Ltd.) in a 1 L three-necked flask and cooled in an ice bath for 20 minutes while stirring with a stirring blade.
  • 30 g of potassium permanganate (Wako Pure Chemical Industries, Ltd.) was slowly cooled, and the whole amount was added with stirring. After stirring for 1 hour in an ice bath, the mixture was further stirred for 2 hours at room temperature. Next, 500 g of deionized water was added.
  • the liquid was transferred to a 5 L beaker, 1400 mL of deionized water was added while stirring in a stirring bath, and then 50 mL of hydrogen peroxide (30%, Wako Pure Chemical Industries) was quickly added.
  • the solid content was separated from this reaction solution by filtration, and washed with dilute hydrochloric acid (3%, Wako Pure Chemical Industries) and centrifugation in 5 portions until 5 L of dilute hydrochloric acid was used up. Finally, 200 mL of deionized water was added to the solid content to obtain an oxidized graphite dispersion.
  • clay (bentonite-based) aqueous dispersion (“Kunipia M”, Kunimine Industries) 10g
  • oxidation-treated graphite aqueous dispersion solid content 0.8% by weight, derived from scaly graphite, SS- (3, Japan Matex) was mixed with 115 g, stirred for 30 minutes with a rotating and rotating stirrer, 11 g of de
  • the graphite was introduced between the clay crystal layers using an X-ray diffractometer (M21X: 40 kV, 200 mA, CuK ⁇ , manufactured by Mac Science), and the distance between the clay crystal interlayer (001) reflection and the oxidized graphite (001) reflection was analyzed.
  • M21X 40 kV, 200 mA, CuK ⁇ , manufactured by Mac Science
  • d 0.84 nm for the graphite-only film
  • d 1 for the clay-only film.
  • the cross section of the film is further observed with a scanning electron microscope (SEM) (Hitachi S-4800, acceleration voltage 10 kV, emission current 15 ⁇ A) to confirm that the composite film is oriented in a certain direction. Confirmed (FIG. 4).
  • SEM scanning electron microscope
  • the sheet resistance was confirmed by a four-probe method using a low resistivity meter (Mitsubishi Chemical Analytech's “Loresta-GP” and “MCP-T610”). The measurement was performed by measuring a total of 9 points of 3 ⁇ 3 in a 2.5 ⁇ 5 cm region and calculating an average value.
  • the film before film baking is 15.4 M ⁇ / sq.
  • After firing 3.03 k ⁇ / sq. It became and became conductive by heating.
  • the electromagnetic shielding properties were measured by the KEC method.
  • the water vapor gas barrier measurement was performed according to JIS z 0208 under the conditions of a temperature of 40 ° C. and a humidity of 90%, and a graphite 33 wt% composite film having a film thickness of 15 ⁇ m was measured. As a result, a value of 257 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 was obtained.
  • Example 2 Clay-graphite polymer composite film clay ("Kunipia M", Kunimine Industries) 4g and oxidation-treated graphite water dispersion (oxidation treatment is the same as in Example 1 with a solid content of 2.4 wt%, derived from flaky graphite, SS -3, Japan Matex) was mixed and stirred for 40 minutes using a rotation and revolution stirrer. This was mixed with 125 g of N-methylpyrrolidone (Wako Pure Chemical Industries, Ltd.) and stirred for 30 minutes using a homogenizer. To this, 7 g of U-varnish A (Ube Industries) was mixed and stirred for 25 minutes using a rotation and revolution stirrer.
  • oxidation treatment is the same as in Example 1 with a solid content of 2.4 wt%, derived from flaky graphite, SS -3, Japan Matex
  • This dispersion was applied to a PET sheet with a thickness of 1 mm using a casting knife, and dried at 30 ° C. for 12 hours using an explosion-proof oven. Thereafter, the composite film was peeled from the PET sheet and heated at 250 ° C. for 30 minutes using an electric furnace.
  • the sheet resistance was calculated by measuring a total of 9 points of 3 ⁇ 3 in a 2.5 ⁇ 5 cm region and calculating an average value.
  • the film before firing was 12.6 M ⁇ / sq.
  • After firing 2.11 k ⁇ / sq. And the conductivity by heating was confirmed.
  • the dispersion was coated on a PET sheet (100 ⁇ m) with a thickness of 1 mm using a casting knife. After drying for 24 hours using a dryer at 60 ° C., the composite membrane was obtained by heating for 1 hour at 250 ° C. using an electric furnace. From XRD analysis, the orientation of clay and carbon could not be confirmed (FIG. 6).
  • the electromagnetic wave shielding characteristics of the fired film were evaluated (FIG. 7).
  • the electromagnetic wave shielding between 0.1 and 1000 MHz was 5 dB or less, and the shielding effect was not confirmed.
  • Table 2 summarizes the film thicknesses before and after heating of the films prepared in Examples 1 and 2 and Comparative Examples 1 and 2, and the average value, maximum value, and minimum value of sheet resistance.
  • FIG. 8 shows the variation in sheet resistance of the films obtained in Example 1 and Comparative Example 1.
  • the measured nine points were plotted with the scale of (measured value) / (average value) ⁇ 100 on the vertical axis. From this result, the film of Comparative Example 1 had a larger variation than both films before and after firing in Example 1. This indicates that graphite is uniformly dispersed throughout the film of Example 1.
  • Example 1 From Example 1 and Comparative Example 1, it was confirmed that the sheet resistance was uniform over a wide range of the film by combining clay-oxidized flake graphite with clay.
  • Examples 3-7 Evaluation of shielding properties of laminate and shielding properties from 1 MHz to 13 GHz For each of the clay-graphite composite film (A film) and the clay-graphite polymer composite film (B film) in the same manner as in Example 1 and Example 2. Membranes were prepared, and spray paste (“Spray paste 55” manufactured by Sumitomo 3M Limited) was applied to these membranes and pasted together to obtain composite film laminates shown in Table 3.
  • the electromagnetic wave shielding characteristics of the films of Examples 3 to 7 were measured.
  • the electromagnetic wave shielding characteristics are in accordance with the ASTM standard (ASTM D4935-10).
  • Examples 8 and 9 Difference in shielding properties due to differences in firing temperature
  • Example 10 O Applying electromagnetic wave shielding properties by coating
  • the coating solution was the same as that prepared in Example 1. This was applied to an alumina plate having a length x width x thickness of 150 x 150 x 5 mm using a gravity air spray gun so as to have a liquid thickness of 200 ⁇ m, and dried at 25 ° C using a draft, Then, it heated at 250 degreeC using the oven for 3 hours.
  • the baked product was measured for electromagnetic wave shielding characteristics by the same method as described in Example 1. The measurement results are shown in FIG.
  • Examples 11 and 12 Electromagnetic wave shielding characteristics in low frequency range (10 kHz to 10 MHz) Using the same method as in Example 1, a clay-graphite oxide aqueous dispersion was obtained. This clay-graphite oxide aqueous dispersion is coated on a PET film (100 ⁇ m), air-dried, peeled off from the PET film, and heated in an air oven at 250 ° C. for 30 minutes. (Example 11). In addition, the same clay-graphite oxide aqueous dispersion was coated on an alumina plate having a length x width x thickness of 150 x 150 x 5 mm using a gravity air spray gun to a liquid thickness of 200 ⁇ m. It was dried at 25 ° C.
  • Example 12 The electromagnetic shielding properties of these samples were measured by the KEC method.
  • a jig KEC shield effect measuring device manufactured by Microwave Factory Co., Ltd.
  • the present invention it becomes possible to provide a sheet having lightness, gas barrier properties, and conductivity, and an electromagnetic shielding material such as a tablet terminal or a heat dissipation material, and a noise countermeasure member for an inverter such as an automobile. It is possible to provide a clay-graphite composite having improved conductivity, which is suitable for the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)

Abstract

 導電性の改良された粘土-黒鉛複合体を得ることを目的とする。未膨張黒鉛を酸化処理して得られる酸化黒鉛が粘土の層間に取り込まれてなる粘土-酸化黒鉛複合体を、還元処理して得られた粘土-黒鉛複合体は、電磁波遮蔽材として好適である。

Description

粘土-黒鉛複合体およびその製造方法
 本発明は、粘土-黒鉛複合体およびその製造方法に関する。
 タブレット端末またはスマートフォン、ノートパソコン等、近年の電子機器の小型化、高機能化に伴い、機器内部で利用される部材一つ一つに複合的な機能、例えば電気絶縁または/および導電、放熱、伝熱、ガスバリア、電磁波遮蔽、機械的強度、透光などこれら2つ以上の項目を求められる傾向が強まっている。特に導電性に優れたシートや膜は、電磁波遮蔽、放熱、伝熱にも優れた性能を兼ね備える場合が一般的である。
 本発明者はこれまで、耐熱性とガスバリア性を兼ね備え、かつ柔軟でありガラスよりもハンドリング性に優れた無機化合物膜である粘土膜を発明した(特許文献1)。これらの特性より、粘土膜は太陽電池バックシート等への応用が検討されている。しかし、粘土膜は絶縁体である粘土を原料にする為、電子機器への利用を想定し導電性を必要とする部材には成り得なかった。
 その後、導電性のある膨張黒鉛と粘土を含む異種材料との複合化について、種々の検討した結果、本発明者は、粘土-膨張黒鉛複合体を提案するに至った(特許文献2)。しかし、膨張黒鉛自体が液体への分散性が悪い為、これを原料としたフィルム等の薄膜への展開が出来ず、できたとしても十分な導電性を得る事ができないこと、特に得られた膜内部で膨張黒鉛の混合が不均一となる問題があった。この材料内部における、黒鉛の分散の不均一性は膜全体の導電率にばらつきを与える結果、電磁波遮蔽材へ利用する際、大きな欠点となり得る事がわかっていた。そこで、さらに導電率および導電率の均一性が改良された粘土-黒鉛複合体の開発が望まれていた。
 粘土-黒鉛複合体の改善は炭素の分子レベルでの理解を見直すことにより行った。
 まず、黒鉛を粘土と均一に混合したとき、黒鉛を構成していた炭素シートが導電性を発現するには、炭素環の共役系が可能な限り崩壊していない状態が望ましい。しかし、膨張黒鉛は、膨張操作により多くの炭素環が崩壊している。そのため、たとえ膨張黒鉛の酸化処理等で分子レベルの粘土と混合状態を作り出したとしても十分な導電性を発現できない。
 また、理想的な共役系炭素を持つ未膨張黒鉛をそのまま粘土と複合化しようとしても、通常の操作では分子間力で結合している炭素シート層間内に粘土を複合させることはできない。その為複合状態を形成するのには適しておらず、導電性発現に必要な、複合材中の均一性を保つことが困難である。
国際公開第2005/023714号 国際公開第2007/114443号
本発明は、上記の状況に鑑みて、導電性の改良された粘土-黒鉛複合体を
提供することを目的とする。
  本発明は上記の課題を解決するために、以下の発明を提供するものである。
(1)未膨張黒鉛を酸化処理して得られる酸化黒鉛が粘土の層間に取り込まれてなる粘土-酸化黒鉛複合体を、還元処理して得られた粘土-黒鉛複合体。
(2)シートまたはフィルム状成形体である上記(1)に記載の粘土-黒鉛複合体。
(3)粘土が天然粘土、変性粘土および合成粘土の1種以上からなる上記(1)または(2)に記載の粘土-黒鉛複合体。
(4)酸化黒鉛が、酸化グラフェンである上記(1)~(3)のいずれかに記載の粘土-黒鉛複合体。
(5)粘土と酸化黒鉛との重量比率が、1:99~99:1である上記(1)~(4)のいずれかに記載の粘土-黒鉛複合体。
(6)さらに有機化合物が添加されていてもよい上記(1)~(5)のいずれかに記載の粘土-黒鉛複合体。
(7)粘土と酸化黒鉛の重量和と有機化合物との重量比率が、30:70~100:0である上記(6)に記載の粘土-黒鉛複合体。
(8)シート抵抗値が、0.01Ω/sq.~100,000kΩ/sq.である上記(1)~(7)のいずれかに記載の粘土-黒鉛複合体。
(9)シート抵抗値のばらつきが、算術平均値から50%~150%である上記(8)に記載の粘土-黒鉛複合体。
(10)電磁波遮蔽性能が、0.1kHz~50GHzにわたり10dB~100dBの値を有する上記(1)~(9)のいずれかに記載の粘土-黒鉛複合体。
(11)上記(1)~(10)のいずれかに記載の粘土-黒鉛複合体を含む電磁波遮蔽材。
(12)上記(1)~(10)のいずれかに記載の粘土-黒鉛複合体を含む導電材。
(13)上記(1)~(10)のいずれかに記載の粘土-黒鉛複合体を含む熱伝導材。
(14)上記(1)~(10)のいずれかに記載の粘土-黒鉛複合体を含むガスバリア材。
(15)粘土と酸化黒鉛との重量比率が異なる、上記(2)のシートまたはフィルム状成形体が2層以上積層されてなる積層体。
(16)粘土の層間に酸化黒鉛が取り込まれてなる粘土-酸化黒鉛複合体を還元処理して、粘土-黒鉛複合体を得ることを特徴とする粘土-黒鉛複合体の製造方法。
(17)粘土-酸化黒鉛複合体が、液相中に分散されている上記(16)記載の粘土-黒鉛複合体の製造方法。
(18)酸化黒鉛が、未膨張黒鉛を液相で酸化処理して得られる上記(16)または(17)に記載の粘土-黒鉛複合体の製造方法。
(19)粘土-酸化黒鉛複合体が、粘土-酸化黒鉛複合体を含む分散液を基板に塗布し、乾燥して得られるシートまたはフィルム状成形体である上記(16)~(18)のいずれかに記載の粘土-黒鉛複合体の製造方法。
(20)粘土-酸化黒鉛複合体が、粘土-酸化黒鉛複合体を含む分散液を鋳型に流し込み、乾燥して得られるシートまたはフィルム状成形体である上記(16)~(18)のいずれかに記載の粘土-黒鉛複合体の製造方法。
(21)粘土-酸化黒鉛複合体が、粘土-酸化黒鉛複合体を含む分散液を基板に噴霧して塗布し、乾燥して得られる塗膜である上記(16)~(18)のいずれかに記載の粘土-黒鉛複合体の製造方法。
(22)粘土-酸化黒鉛複合体の還元処理が、加熱、光または非水系還元液体を用いる上記(16)~(21)のいずれかに記載の粘土-黒鉛複合体の製造方法。
 本発明によれば、導電性の改良された粘土-黒鉛複合体を得ることができる。
実施例1の粘土-黒鉛複合膜のXRD(X線回折)測定結果。 実施例1の粘土-黒鉛複合膜の焼成前後のXRD測定結果。 実施例1の粘土-黒鉛複合膜の焼成前後のFTIR(フーリエ変換型赤外分光)測定結果。 実施例1の粘土-黒鉛複合膜の焼成前後の断面SEM(走査型電子顕微鏡)観察画像。 実施例1の粘土-黒鉛複合膜の焼成後の電磁波遮蔽特性評価結果。 比較例2の粘土-黒鉛複合膜の焼成前のXRD測定結果。 比較例2の粘土-黒鉛複合膜の焼成後の電磁波遮蔽特性測定結果。 実施例1と比較例1で得られた粘土-黒鉛複合膜のシート抵抗のばらつきを示す。 実施例3~7の積層膜の電磁波遮蔽特性評価結果。 実施例8と実施例9の粘土-黒鉛複合膜の電磁波遮蔽特性測定結果。 実施例10の粘土-黒鉛複合膜を塗工したアルミナ板の電磁波遮蔽特性測定結果。 実施例11の粘土-黒鉛複合膜と実施例12の粘土-黒鉛複合膜を塗工したアルミナ板の低周波数帯(0.01MHz-10MHz)の電磁波遮蔽特性測定結果。
 本発明の粘土-黒鉛複合体は,未膨張黒鉛を酸化処理して得られる酸化黒鉛が粘土の層間に取り込まれてなる粘土-酸化黒鉛複合体を、還元処理して得られる。
 粘土としては、天然粘土、合成粘土、変性粘土の1種以上を用いることができる。たとえば、バーミキュライト、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、スメクタイト、カオリナイト、雲母(セリサイト、イライト等)、ハイドロタルサイト等の一種以上が好適に用いられる。これらは、天然または合成によるものであってもよく、さらに変性のために有機化合物を含んでいてもよい。層状復水酸化物(LDH)もハイドロタルサイト様の合成粘土として挙げられる。
 有機カチオン、シリル化剤の有機化合物等で変性される場合、有機カチオンとしては、たとえば、第四級アンモニウムカチオンまたは第四級ホスホニウムカチオン、イミダゾリウム系カチオン、ピリジニウム系カチオンを含むものが例示される。有機カチオンは、原料粘土のイオン交換によって粘土に導入される。このイオン交換は、例えば原料粘土を、大過剰の有機物を溶解した水に分散し、一定時間攪拌し、遠心分離或いは濾過により固液分離し、水により洗浄を繰り返すことにより行われる。
 シリル化剤としては、特に制限されるものではないが、メチルトリメトキシシラン、メチルトリエトキシシラン、プロピルトリメトキシシラン等を例示することができる。粘土へのシリル化剤の導入方法としては、例えば、原料粘土と、原料粘土に対して2重量%のシリル化剤を混合し、それらをボールミルにより一時間ミルすることによって製造される。
 その他の有機化合物としては、カチオン性高分子等が挙げられる。
 酸化黒鉛としては、未膨張黒鉛を酸化処理して得られるものが好適であり、最も好適なものは、黒鉛を構成する炭素シートが原子状に剥離した酸化グラフェンである。酸化グラフェンの生成は炭素シートが剥離したことに由来する紫外可視領域に現れる210~400nmの特徴的な光吸収で確認できる。
 膨張黒鉛は、黒鉛粉末を硫酸と硝酸等の酸化剤とで処理した後、急速に加熱し、黒鉛層間内の挿入物を分解あるいはガス化して黒鉛層間を押し広げることによって、もとの容積の5~800倍程度に膨張させたものであるが、このとき炭素シートの六員環も崩壊するため、粘土等と複合化した際、炭素シートのガスバリアや導電性といった性能を十分に利用できない。そのため本発明で利用する酸化黒鉛は、上記の膨張処理されていない未膨張黒鉛を原料とするのが好適である。また、未膨張黒鉛は膨張処理をされてない故、炭素シートの積層方向における原子の規則性が保持されている。この確認は粉末X線回折法による分析を行い、得られた回折ピークの幅を求めることにより判断出来る。つまり、未膨張黒鉛のように結晶性が高く原子の配列が高次元において規則的である場合、ピークは先鋭化し、その結果ピークの幅は狭くなる。具体的にはCuKα線(1.541862Å)を用いて測定を行った際、26-27°に現れる黒鉛の(002)に由来するピークを擬フォークト関数によりフィッティングし、その半値全幅(FWHM)を求めた時0.4°以下の値を取るものを未膨張黒鉛と判断できる(たとえば表1)。
 未膨張黒鉛は、鱗片状黒鉛、鱗状(塊状)黒鉛、人造黒鉛、熱分解黒鉛および熱処理黒鉛のうち1種類以上を用いることが好適である。
Figure JPOXMLDOC01-appb-T000001
 酸化黒鉛は、未膨張黒鉛を液相で酸化処理して得るのが好適である。酸化処理は、Hummer酸化またはBrodie法、Staudenmaier法、Hofmann法といった一般的な方法から、超音波処理、マイクロ波加熱を用いて反応を短時間で進行させる方法もとることができる。
 粘土と酸化黒鉛との重量比率は1:99~99:1、好適には20:80~95:5、さらに好適には40:60~90:10である。
 粘土と酸化黒鉛に、複合体の強度を向上させるために、さらに有機化合物が添加されていてもよく、粘土と酸化黒鉛の重量和と有機化合物との重量比率は、30:70~100:0、好適には40:60~100:0である。
 添加する有機化合物としてはモノマー系添加剤および/またはポリマー系添加剤があり、モノマー系添加剤としては、モノアルコール、ジオール、ポリオール、アミン、ジアミン、ポリアミン、モノカルボン酸、ジカルボン酸、ポリカルボン酸、ε-カプロラクトン、ε-カプロラクタム等が例示でき、好適にはポリオール、ポリアミン、ポリカルボン酸、ε-カプロラクトン、ε-カプロラクタムが例示できる。ポリマー系添加剤としてはポリエステル、ポリアミド、ポリイミド、ポリアミック酸、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレン、ポリプロピレン、ポリフェノール、シリコンゴム、シリコンオイル、ポリ塩化ビニル、ポリエチレンテレフタレート、ナイロン、合成ゴム、天然ゴム、でんぷん、セルロース、たんぱく質、核酸等が例示でき、好適にはポリエステル、ポリアミド、ポリイミド、ポリアミック酸、ポリビニルアルコール、ポリビニルピロリドンが例示できる。
 粘土-酸化黒鉛複合体は、液相中に分散されているのが好適である。粘土分散液を作成する際には、水、アルコール、エーテル、酢酸エチル、ヘキサン、シクロヘキサン、トルエン、クロロホルム、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、ジメチルアセトアミド等を分散媒体として用いることができる。好適には水またはアルコール、酢酸エチル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、ジメチルアセトアミドが例示できる。
 本発明の粘土-酸化黒鉛複合体は、シートまたはフィルム状成形体であるのが好適である。本発明の一態様において、得られた粘土-酸化黒鉛複合体は、粘土-酸化黒鉛複合体を含む分散液を基板に塗布し、乾燥してシートまたはフィルム状成形体である。基板としては、特に制限されず、プラスチックス、ガラス、ガラス以外のセラミックス、金属等を使用し得るが、好適にはプラスチックまたはガラスの使用が挙げられる。乾燥は、100~300℃程度で、空気中または不活性、還元雰囲気中で行うことができるが、好適には空気または不活性雰囲気中である。
 本発明のもう一つの態様において、得られた粘土-酸化黒鉛複合体は、粘土-酸化黒鉛複合体を含む分散液を鋳型に流し込み、乾燥して得られるシートまたはフィルム状成形体である。流し込む型の素材としては、特に制限されず、プラスチックス、ガラス、ガラス以外のセラミックス、金属等を使用し得るが、好適にはプラスチックまたは金属の使用が挙げられる。
 本発明のもう一つの態様において、粘土-酸化黒鉛複合体は、粘土-酸化黒鉛複合体を含む分散液を基材に噴霧して塗布し、乾燥して得られる塗膜である。基材の形状はとくに限定されることは無く、基材の材質は特に制限されず、プラスチックス、ガラス、ガラス以外のセラミックス、金属等を使用し得るが、好適にはプラスチックまたはガラス、ガラス以外のセラミックスの使用が挙げられる。
 本発明の粘土-酸化黒鉛複合体は、粘土と酸化黒鉛との重量比率が異なる、シートまたはフィルム状成形体を2層以上積層されてなる積層体とすることができ、用途に応じて種々の特性を付与し得る。たとえば、粘土と黒鉛の重量比率が異なることに由来する電磁波遮蔽性能の異なる複合体を積層させることにより電磁波の吸収量と反射量の制御、反射させる電磁波波長の制御、吸収させる電磁波波長の制御が可能となる。
 本発明の粘土-黒鉛複合体は、上記の粘土-黒鉛複合体粘土の層間に酸化黒鉛が取り込まれてなる粘土-酸化黒鉛複合体を還元処理して、得ることができる。
還元処理としては、加熱、光または非水系還元液体を用いるのが好適である。さらに具体的には、100~400℃での空気または不活性、還元雰囲気での電気炉を用いた加熱、電磁波の電界または磁界もしくはその両方を用いて空気または不活性雰囲気下での加熱、キセノン等のフラッシュランプを用いて行う光照射、水銀ランプ等を用いて行う紫外線照射、有機溶媒に溶解させたヒドラジン誘導体を還元剤として粘土-酸化黒鉛複合体を浸漬または還元剤を噴霧し還元する方法が挙げられる。
 たとえば、加熱による場合には、温度100~400℃、好ましくは200~300℃程度で、空気中または不活性雰囲気中で行われる。
 本発明の粘土-黒鉛複合体は、好適には、シート抵抗値が、0.01Ω/sq.~100,000kΩ/sq.であり、シート抵抗値のばらつきは、算術平均値から50%~150%である。
 本発明の粘土-黒鉛複合体は、好適には、電磁波遮蔽性能が、0.1kHz~50GHz、さらに好適には1kHz~20GHzにわたり10dB~100dBの値を有し、電磁波遮蔽材として好適に利用し得る。
 さらに、本発明の粘土-黒鉛複合体は、好適には、熱伝導材、導電膜等の導電材、として好適に利用し得る。
 粘土単体または黒鉛単体のみを含むシートまたはフィルム状成形体にはガス状の水素または/および酸素、窒素、アルゴン、ヘリウム、水蒸気等のバリア性を有することがこれまで確認されていることから、本発明の粘土-黒鉛複合体も上記のガスのバリア性を保持していると容易に考えることが出来、ガスバリア材として好適に利用し得る。例えば水蒸気バリア性に於いて0.01~500g・m-2・day-1の値を有し得る。
 以下に、実施例により本発明をさらに詳細に説明する。
実施例1
○Hummer酸化方法
 黒鉛は以下に述べる方法を用いて酸化処理を行い、酸化処理黒鉛水分散液を調製した。1L3つ口フラスコに黒鉛10gを濃硫酸240mL(和光純薬)に加え、撹拌羽で撹拌しながら氷浴にて20分冷却した。これに過マンガン酸カリウム30g(和光純薬)をゆっくりと冷やし、撹拌しながら全量を添加した。氷浴で1時間撹拌後、室温でさらに2時間撹拌した。次に脱イオン水500gを加えた。上記液体を5Lビーカーに移し替え、撹拌浴で撹拌しながら1400mLの脱イオン水を加えた後、過酸化水素水(30%、和光純薬)50mLを速やかに加えた。この反応溶液から固形分をろ別し、希塩酸(3%、和光純薬)と遠心分離を用い、5Lの希塩酸を使い切るまで5回に分けて固形分を洗浄した。最後この固形分に脱イオン水200mLを加えることで、酸化処理黒鉛分散液を得た。この希釈した酸化処理黒鉛を純粋にて100倍希釈し、紫外可視吸収スペクトル(日立社製U-2910)を測定すると、共役系炭素環、カルボキシル基等に由来する複合的な光吸収が210nm~400nmに現れ、これを持って酸化処理黒鉛の生成を確認した。
○粘土-黒鉛複合膜
 20%粘土(ベントナイト系)の水分散液(「クニピアM」、クニミネ工業)10gと酸化処理黒鉛水分散液(固体分0.8重量%、鱗片状黒鉛由来、SS-3、ジャパンマテックス)115gを混ぜ、自転公転攪拌機にて30分撹拌、これに11gの脱イオン水を加えてさらに20分撹拌し、粘土-酸化黒鉛水分散液を調製。これに脱イオン水を、PETフィルム(100μm)上に塗工し、自然乾燥をした後、PETフィルムから膜を剥離し、250℃で30分間、空気中で電気炉を用いて加熱することで、黒鉛33重量%粘土-黒鉛複合膜を得た。
 粘土結晶層間への黒鉛の導入はエックス線回折装置(マックサイエンス社のM21X:40kV、200mA、CuKα)を用いて粘土結晶層間(001)反射または酸化処理黒鉛(001)反射の距離を分析した。加熱前の粘土-酸化黒鉛複合膜を黒鉛のみの膜、粘土のみの膜とを比較したとき(図1)、黒鉛のみの膜はd=0.84nm、粘土のみの膜の場合はd=1.53nmであり粘土-酸化黒鉛複合膜における粘土結晶由来と黒鉛由来の層間はそれぞれd=1.25nmとd=0.86nmの値を取ることが確認され、黒鉛と粘土とが複合されていることを確認した。
 また、粘土-酸化黒鉛複合膜は加熱により複合膜層間の水が蒸散し、粘土結晶層間がd=0.96nmに閉じることを確認した(図2)。
 複合膜の加熱前後の化学状態の確認は赤外分光装置(パーキンエルマ社のSpectrum1000:測定波数帯650~4000cm-1、取り込み間隔2cm-1)を用いておこなった(図3)。加熱前には酸化処理黒鉛由来のカルボキシル基(1735cm-1)とエポキシ基(1230cm-1)、粘土結晶層間に存在する水(1630cm-1)のピークが確認され、250℃の加熱により、カルボキシル基の残存とエポキシ基の消失が確認され、酸化処理黒鉛の一定の黒鉛化が確認された。また、粘土結晶層間水の消失も確認できた。これらから粘土-黒鉛複合膜の乾燥を確認した。
 膜の配向の確認はさらに膜の断面を走査型電子顕微鏡(SEM)観察(日立社のS―4800、加速電圧10kV、エミッション電流15μA)を行い、複合膜が一定方向に配向されていることを確認した(図4)。
 シート抵抗の確認は低抵抗率計(三菱化学アナリテックの「Loresta-GP」、「MCP-T610」)を用いて四探針法により測定した。測定は2.5x5cmの領域を3x3の合計9点を測定し平均値を算出した。膜焼成前の膜は15.4MΩ/sq.であるのに対し、焼成後は3.03kΩ/sq.となり加熱による導電化を確認した。電磁波遮蔽特性はKEC法により測定を行った。KEC法の測定はベクトルネットワークアナライザー(Agilent Technologies社のE5071C:出力設定値0dBm、IFBW10Hz、アベレージング=16)に接続された治具(マイクロウェーブ ファクトリー社のKEC法シールド効果測定装置)を用い、室温にて0.1-1000MHzの範囲で測定を行った。
 水蒸気ガスバリア測定はJIS z 0208に従って温度40℃、湿度90%の条件で行い、膜厚15μmの黒鉛33重量%複合膜を測定した結果、257g・m-2・day-1の値を得た。
実施例2
○粘土-黒鉛高分子複合膜
 粘土(「クニピアM」、クニミネ工業)4gと酸化処理黒鉛水分散液(酸化処理は実施例1と同様、固体分2.4重量%、鱗片状黒鉛由来、SS-3、ジャパンマテックス)42gを混合し、自転公転攪拌機を用いて40分撹拌した。これにN-メチルピロリドン(和光純薬)125gを混合し、ホモジナイザーを用いて30分撹拌した。これにU-ワニスA(宇部興産)7gを混合し、自転公転攪拌機を用いて25分撹拌した。この分散液をキャスティングナイフによりPETシート上に1mmの厚さで塗工し、防爆オーブンを用いて30℃、12時間乾燥させた。その後、PETシートから複合膜を剥離し、電気炉を用いて250℃で30分間加熱した。
 シート抵抗は2.5x5cmの領域を3x3の合計9点を測定し平均値を算出した。焼成前の膜は12.6MΩ/sq.であるのに対して、焼成後は2.11kΩ/sq.と、加熱による導電化を確認した。
 水蒸気ガスバリア測定はJIS z 0208に従って温度40℃、湿度90%の条件で行い、膜厚19μmの複合膜を測定した結果、4.5g・m-2・day-1の値を得た。
比較例1
○膨張黒鉛と粘土との混合膜
 20%粘土の水分散液(「クニピアM」、クニミネ工業)40gに膨張黒鉛(J-ME40、ジャパンマテックス)を混合し、自転公転攪拌機を用いて10分撹拌した。これに自転公転撹拌を用いながら脱イオン水を3回に分けて合計90gを混合した。これを、プラスチックトレーに流し入れ、60℃の乾燥器を用いて24時間乾燥させた。得られた膜を電気炉で250℃、2時間焼成した。
 シート抵抗は2.5x5cmの領域を3x3の合計9点を測定し平均値を算出した。焼成前の膜は9.99MΩ/sq.であった。焼成後は抵抗がオーバーレンジとなり、膜の導電を確認できなかった。
比較例2
○酸化処理膨張黒鉛と粘土との複合膜
 粘土10gに脱イオン水150gを混合し、自転公転攪拌機を用いて30分撹拌した。これと酸化処理済み膨張黒鉛分散液(酸化処理は実施例1と同様。固体分7.3重量%、膨張黒鉛由来、J-ME40、ジャパンマテックス)36gとを混合し、自転公転攪拌機を用いて20分撹拌した。キャスティングナイフを用いて1mmの厚さでPETシート(100μm)上に分散液を塗布した。60℃の乾燥器を用いて24時間乾燥した後、電気炉を用いて250℃、1時間加熱し複合膜を得た。
XRD分析から、粘土および炭素の配向は確認できなかった(図6)。
 シート抵抗を測定したが9点すべて抵抗がオーバーレンジとなり、導電性を確認できなかった。
 また、焼成した膜の電磁波遮蔽特性評価を行った(図7)が0.1-1000MHzの間の電磁波遮蔽は5dB以下となり、遮蔽効果は確認されなかった。
 実施例1,2と比較例1,2で作成した膜の加熱前後の膜厚およびシート抵抗の平均値、最大値、最小値を表2にまとめる。
 実施例1と比較例1で得られた膜のシート抵抗のばらつきを図8に示す。平均値からの値の隔たりを百分率で表すため、(測定値)/(平均値)×100という尺度を縦軸に、測定した9点をプロットした。この結果より、比較例1の膜は実施例1の焼成前後、両方膜よりもばらつきが大きい結果となった。これは、実施例1の膜全体に均一に黒鉛が分散していることを示している。
 実施例1と比較例1より、鱗片状黒鉛を酸化処理したものと粘土とを複合化することにより膜の広範囲にわたりシート抵抗が均一になることを確認した。
 実施例1と比較例2より、低シート抵抗の複合膜を得るには、鱗片状黒鉛を出発原料とする酸化処理黒鉛が好適であることを確認した。
Figure JPOXMLDOC01-appb-T000002
実施例3~7
積層体の遮蔽特性評価および1MHzから13GHzまでの遮蔽特性
 実施例1および実施例2と同様の方法で粘土-黒鉛複合膜(A膜)と粘土-黒鉛高分子複合膜(B膜)それぞれの膜を調製し、これら膜にスプレーのり(住友スリーエム株式会社製「スプレーのり55」)を塗布し張り合わせることにより、表3に示す複合膜の積層体を得た。
Figure JPOXMLDOC01-appb-T000003
 実施例3~7の膜の電磁波遮蔽特性を測定した。電磁波遮蔽特性はASTM規格(ASTM D4935-10)に準じてネットワークアナライザー(Agilent Technology社のE8361A:出力設定値0dBm、IFBW10Hz、アベレージング=16)に接続された導波管線路冶具(Sバンド、2.4GHz~4.7GHz;Gバンド、3.8GHz~6.5GHz;Cバンド、5GHz~9GHz;Xバンド、8GHz~13GHz)を複数用いて測定した。また、ネットワークアナライザー(Agilent Technology社のE5071C:出力設定値0dBm、IFBW10Hz、アベレージング=16)に接続された同軸線路冶具を用いて1MHzから4.5GHzまでの周波数帯を測定した。その測定結果を図9に示す。
実施例8および9
○焼成温度の違いによる遮蔽特性の違い
 実施例1と同様の方法で粘土-黒鉛複合膜用の塗工液を調製し、これに脱イオン水を加え、PETフィルム(100μm)上に塗工し、自然乾燥をした後、PETフィルムから膜を剥離し、250℃(実施例8)または350℃(実施例9)で30分間、空気中で電気炉を用いて加熱することにより、異なる焼成温度の粘土-黒鉛複合膜をそれぞれ得た。焼成した複合膜は実施例1と同様の方法で電磁波遮蔽特性を測定した。また、実施例9において、8000MHz~13000MHzの電波遮蔽量の測定は実施例3~7におけるXバンドの測定方法と同様の方法で行った。その測定結果を図10に示す。      実施例10
塗工による電磁波遮蔽特性の付与
 塗工液は実施例1で調製したものと同等の組成で行った。これを長さ×幅×厚さが150×150×5mmのアルミナ板状に重力式エアースプレーガンを用いてにて液厚200μmとなるように塗工しドラフトを用いて25℃で乾燥させ、その後オーブンを用いて250℃で3時間加熱した。焼成したものを実施例1に記載と同様の方法で電磁波遮蔽特性を測定した。その測定結果を図11に示す。
実施例11および12
低周波数領域(10kHz~10MHz)における電磁波遮蔽特性
 実施例1と同様の方法を用いて粘土-酸化黒鉛水分散液を得た。この粘土-酸化黒鉛水分散液をPETフィルム(100μm)上に塗工し、自然乾燥をした後、PETフィルムから膜を剥離し、250℃で30分間、空気中で電気炉を用いて加熱することで膜を得た(実施例11)。また、同様の粘土-酸化黒鉛水分散液を長さ×幅×厚さが150×150×5mmのアルミナ板状に重力式エアースプレーガンを用いてにて液厚200μmとなるように塗工しドラフトを用いて25℃で乾燥させ、その後オーブンを用いて250℃で3時間加熱し粘土-黒鉛塗工体を得た(実施例12)。
 これら試料の電磁波遮蔽特性はKEC法により測定を行った。KEC法の測定はベクトルネットワークアナライザー(Agilent Technologies社のE5071C:出力設定値0dBm、IFBW10Hz、アベレージング=16)に接続されたアンプ(RF BAY社のLNA-1450:動作周波数10kHz-1450MHz、増幅率30dB)および治具(マイクロウェーブ ファクトリー社のKEC法シールド効果測定装置)を用い、室温にて0.01-10MHzの範囲で測定を行った。その測定結果を図12に示す。
 本発明が利用されることになれば、軽量性、ガスバリア性、導電性を兼ね備えたシートを提供することが可能となり、タブレット端末等の電磁波遮蔽材または放熱材、自動車等のインバータのノイズ対策部材、等に好適な、導電性の改良された粘土-黒鉛複合体を提供し得る。

Claims (22)

  1.  未膨張黒鉛を酸化処理して得られる酸化黒鉛が粘土の層間に取り込まれてなる粘土-酸化黒鉛複合体を、還元処理して得られた粘土-黒鉛複合体。
  2.  シートまたはフィルム状成形体である請求項1に記載の粘土-黒鉛複合体。
  3.  粘土が天然粘土、変性粘土および合成粘土の1種以上からなる請求項1または2に記載の粘土-黒鉛複合体。
  4.  酸化黒鉛が、酸化グラフェンである請求項1~3のいずれか1項に記載の粘土-黒鉛複合体。
  5.  粘土と酸化黒鉛との重量比率が、1:99~99:1である請求項1~4のいずれか1項に記載の粘土-黒鉛複合体。
  6.  さらに有機化合物が添加されていてもよい請求項1~5のいずれか1項に記載の粘土-黒鉛複合体。
  7.  粘土と酸化黒鉛の重量和と有機化合物との重量比率が、30:70~100:0である請求項6に記載の粘土-黒鉛複合体。
  8.  シート抵抗値が、0.01Ω/sq.~100,000kΩ/sq.である請求項1~7のいずれか1項に記載の粘土-黒鉛複合体。
  9.  シート抵抗値のばらつきが、算術平均値から50%~150%である請求項8に記載の粘土-黒鉛複合体。
  10.  電磁波遮蔽性能が、0.1kHz~50GHzにわたり10dB~100dBの値を有する請求項1~9のいずれか1項に記載の粘土-黒鉛複合体。
  11.  請求項1~10のいずれか1項に記載の粘土-黒鉛複合体を含む電磁波遮蔽材。
  12.  請求項1~10のいずれか1項に記載の粘土-黒鉛複合体を含む導電材。
  13.  請求項1~10のいずれか1項に記載の粘土-黒鉛複合体を含む熱伝導材。
  14.  請求項1~10のいずれか1項に記載の粘土-黒鉛複合体を含むガスバリア材。
  15.  粘土と酸化黒鉛との重量比率が異なる、請求項2のシートまたはフィルム状成形体が2層以上積層されてなる積層体。
  16.  粘土の層間に酸化黒鉛が取り込まれてなる粘土-酸化黒鉛複合体を還元処理して、粘土-黒鉛複合体を得ることを特徴とする粘土-黒鉛複合体の製造方法。
  17.  粘土-酸化黒鉛複合体が、液相中に分散されている請求項16に記載の粘土-黒鉛複合体の製造方法。
  18.  酸化黒鉛が、黒鉛を液相で酸化処理して得られる請求項16または17に記載の粘土-黒鉛複合体の製造方法。
  19.  粘土-酸化黒鉛複合体が、粘土-酸化黒鉛複合体を含む分散液を基板に塗布し、乾燥して得られるシートまたはフィルム状成形体である請求項16~18のいずれか1項に記載の粘土-黒鉛複合体の製造方法。
  20.  粘土-酸化黒鉛複合体が、粘土-酸化黒鉛複合体を含む分散液を鋳型に流し込み、乾燥して得られるシートまたはフィルム状成形体である請求項16~18のいずれか1項に記載の粘土-黒鉛複合体の製造方法。
  21.  粘土-酸化黒鉛複合体が、粘土-酸化黒鉛複合体を含む分散液を基板に噴霧して塗布し、乾燥して得られる塗膜である請求項16~18のいずれか1項に記載の粘土-黒鉛複合体の製造方法。
  22.  粘土-酸化黒鉛複合体の還元処理が、加熱、光または非水系還元液体を用いる請求項16~21のいずれか1項に記載の粘土-黒鉛複合体の製造方法。
PCT/JP2015/061267 2014-04-10 2015-04-10 粘土-黒鉛複合体およびその製造方法 WO2015156396A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016512792A JPWO2015156396A1 (ja) 2014-04-10 2015-04-10 粘土−黒鉛複合体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-081223 2014-04-10
JP2014081223 2014-04-10

Publications (1)

Publication Number Publication Date
WO2015156396A1 true WO2015156396A1 (ja) 2015-10-15

Family

ID=54287967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061267 WO2015156396A1 (ja) 2014-04-10 2015-04-10 粘土-黒鉛複合体およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2015156396A1 (ja)
WO (1) WO2015156396A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107043101A (zh) * 2017-03-07 2017-08-15 中国科学院上海硅酸盐研究所 一种三维多孔石墨烯泡沫材料及其制备方法和应用
CN107200322A (zh) * 2017-05-16 2017-09-26 江西宁新新材料股份有限公司 一种利用特种石墨尾料制备锂电池用负极材料的方法
KR20170111097A (ko) * 2016-03-25 2017-10-12 전자부품연구원 잉크젯 프린팅을 이용한 다층 교차 구조의 가스 배리어 필름의 제조방법 및 이를 이용한 가스 배리어 필름
KR20190002432A (ko) * 2016-02-26 2019-01-08 나노테크 에너지, 인크. 탄소질 조성물의 프로세싱을 위한 방법, 디바이스 및 시스템
JP2022548157A (ja) * 2019-10-21 2022-11-16 ザ ユニバーシティ オブ コネチカット 一段階共集合によるナノコンポジット塗装系

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141813A (ja) * 1987-11-28 1989-06-02 Univ Tohoku 層状化合物を用いた高配向性シート状黒鉛の製造法
WO2007114443A1 (ja) * 2006-04-05 2007-10-11 National Institute Of Advanced Industrial Science And Technology 黒鉛粘土複合材及びその製造方法、並びにこの複合材からなるガスケット又はパッキン、及びこの複合材に用いられる粘土分散液
JP2010006695A (ja) * 2008-06-24 2010-01-14 Chung Yuan Christian Univ 改質粘土および粘土−高分子複合材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141813A (ja) * 1987-11-28 1989-06-02 Univ Tohoku 層状化合物を用いた高配向性シート状黒鉛の製造法
WO2007114443A1 (ja) * 2006-04-05 2007-10-11 National Institute Of Advanced Industrial Science And Technology 黒鉛粘土複合材及びその製造方法、並びにこの複合材からなるガスケット又はパッキン、及びこの複合材に用いられる粘土分散液
JP2010006695A (ja) * 2008-06-24 2010-01-14 Chung Yuan Christian Univ 改質粘土および粘土−高分子複合材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. NETHRAVATHI ET AL.: "Delamination, colloidal dispersion and reassembly of alkylamine intercalated graphite oxide in alcohols", CARBON, vol. 44, no. 13, 2006, pages 2635 - 2641, XP025010717, ISSN: 0008-6223 *
C. NETHRAVATHI ET AL.: "Graphite Oxide- Intercalated Anionic Clay and Its Decomposition to Graphene-Inorganic Material Nanocomposites", LANGMUIR, vol. 24, no. 15, 2008, pages 8240 - 8244, XP055003372, ISSN: 0743-7463 *
C. NETHRAVATHI ET AL.: "The production of smectite clay/graphene composites through delamination and co-stacking", CARBON, vol. 46, 2008, pages 1773 - 1781, XP025469443, ISSN: 0008-6223 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190002432A (ko) * 2016-02-26 2019-01-08 나노테크 에너지, 인크. 탄소질 조성물의 프로세싱을 위한 방법, 디바이스 및 시스템
JP2019507717A (ja) * 2016-02-26 2019-03-22 ナノテック エナジー,インク. 炭素質組成物を処理するための方法、装置、およびシステム
US11192082B2 (en) 2016-02-26 2021-12-07 Nanotech Energy, Inc. Methods, devices and systems for processing of carbonaceous compositions
US11752479B2 (en) 2016-02-26 2023-09-12 Nanotech Energy, Inc. Methods, devices and systems for processing of carbonaceous compositions
KR102629266B1 (ko) 2016-02-26 2024-01-24 나노테크 에너지, 인크. 탄소질 조성물의 프로세싱을 위한 방법, 디바이스 및 시스템
KR20170111097A (ko) * 2016-03-25 2017-10-12 전자부품연구원 잉크젯 프린팅을 이용한 다층 교차 구조의 가스 배리어 필름의 제조방법 및 이를 이용한 가스 배리어 필름
KR102235721B1 (ko) * 2016-03-25 2021-04-05 한국전자기술연구원 잉크젯 프린팅을 이용한 다층 교차 구조의 가스 배리어 필름의 제조방법 및 이를 이용한 가스 배리어 필름
CN107043101A (zh) * 2017-03-07 2017-08-15 中国科学院上海硅酸盐研究所 一种三维多孔石墨烯泡沫材料及其制备方法和应用
CN107043101B (zh) * 2017-03-07 2019-01-29 中国科学院上海硅酸盐研究所 一种三维多孔石墨烯泡沫材料及其制备方法和应用
CN107200322A (zh) * 2017-05-16 2017-09-26 江西宁新新材料股份有限公司 一种利用特种石墨尾料制备锂电池用负极材料的方法
JP2022548157A (ja) * 2019-10-21 2022-11-16 ザ ユニバーシティ オブ コネチカット 一段階共集合によるナノコンポジット塗装系
JP7452822B2 (ja) 2019-10-21 2024-03-19 ザ ユニバーシティ オブ コネチカット 一段階共集合によるナノコンポジット塗装系

Also Published As

Publication number Publication date
JPWO2015156396A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
Liang et al. Lightweight and flexible graphene/SiC-nanowires/poly (vinylidene fluoride) composites for electromagnetic interference shielding and thermal management
WO2015156396A1 (ja) 粘土-黒鉛複合体およびその製造方法
Wan et al. Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites
Dalal et al. EMI shielding properties of laminated graphene and PbTiO3 reinforced poly (3, 4-ethylenedioxythiophene) nanocomposites
Wang et al. Flexible and lightweight Ti3C2Tx MXene/Fe3O4@ PANI composite films for high-performance electromagnetic interference shielding
Yang et al. Nanocomposites of poly (vinylidene fluoride)-Controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor
Bansala et al. Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band
Yang et al. Constructing a continuous amorphous carbon interlayer to enhance dielectric performance of carbon nanotubes/polyvinylidene fluoride nanocomposites
EP3816103B1 (en) Carbon nanotube dispersion and usage therefor
Modak et al. Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding
Xiang et al. Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties
Singh et al. Polymer-graphene nanocomposites: preparation, characterization, properties, and applications
Kim et al. Influence of Ag doped graphene on electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites
Guo et al. Improved microwave absorption and electromagnetic interference shielding properties based on graphene–barium titanate and polyvinylidene fluoride with varying content
Gong et al. Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer
Qian et al. Highly thermally conductive Ti3C2Tx/h-BN hybrid films via coulombic assembly for electromagnetic interference shielding
WO2003038838A1 (fr) Pate a compose ag
EP3805153A1 (en) Carbon nanotube, carbon nanotube liquid dispersion, and use thereof
Su et al. Synthesis of high-k and low dielectric loss polymeric composites from crosslinked divinylbenzene coated carbon nanotubes
Liu et al. Improve the dielectric property and breakdown strength of composites by cladding a polymer/BaTiO3 composite layer around carbon nanotubes
Dey et al. Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material
Deng et al. Eco-friendly poly (vinyl alcohol)/delaminated V2C MXene high-k nanocomposites with low dielectric loss enabled by moderate polarization and charge density at the interface
Kulkarni et al. α-MnO2 nanorods-polyaniline (PANI) nanocomposites synthesized by polymer coating and grafting approaches for screening EMI pollution
Lv et al. Preparation and dielectric properties of novel composites based on oxidized styrene-butadienestyrene copolymer and polyaniline modified exfoliated graphite nanoplates
US20170233621A1 (en) Graphene-containing epoxy adhesives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512792

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776782

Country of ref document: EP

Kind code of ref document: A1