WO2015156013A1 - Apparatus and method for controlling internal combustion engine - Google Patents

Apparatus and method for controlling internal combustion engine Download PDF

Info

Publication number
WO2015156013A1
WO2015156013A1 PCT/JP2015/052021 JP2015052021W WO2015156013A1 WO 2015156013 A1 WO2015156013 A1 WO 2015156013A1 JP 2015052021 W JP2015052021 W JP 2015052021W WO 2015156013 A1 WO2015156013 A1 WO 2015156013A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
air amount
amount
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2015/052021
Other languages
French (fr)
Japanese (ja)
Inventor
行伸 伊藤
由子 水野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112016023666-1A priority Critical patent/BR112016023666B1/en
Priority to RU2016144143A priority patent/RU2660489C2/en
Priority to JP2016512613A priority patent/JP6327339B2/en
Priority to MX2016013005A priority patent/MX357144B/en
Priority to EP15777250.0A priority patent/EP3130788B1/en
Priority to US15/124,868 priority patent/US10006395B2/en
Priority to CN201580019285.6A priority patent/CN106164453B/en
Publication of WO2015156013A1 publication Critical patent/WO2015156013A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine that controls a fuel injection amount in accordance with an intake air amount detected by an air flow meter.
  • the fuel injection amount of the internal combustion engine is generally determined by detecting the intake air amount per unit time with an air flow meter disposed in the intake passage, and calculating the fuel injection amount per cycle calculated from the intake air amount per unit time and the engine speed.
  • the air-fuel ratio is controlled so as to be an appropriate air-fuel ratio (for example, stoichiometric air-fuel ratio) with respect to the intake air amount.
  • an air flow meter provided immediately after the air cleaner is located away from an engine controller that performs processing for calculating the fuel injection amount, and is connected to the engine controller via a harness.
  • Patent Document 1 discloses that a highly responsive air flow meter capable of detecting intake pulsation and instantaneous backflow is disposed in the intake passage.
  • the air flow meter is connected to the engine controller via the harness, there is a risk of disconnection of the signal path.
  • the fuel injection amount can be simplified from the throttle valve opening and the engine speed.
  • the throttle valve opening degree is fixed at a predetermined opening degree, and the intake air amount is estimated according to the engine rotational speed.
  • the present invention relates to a control device for an internal combustion engine, comprising: an air flow meter provided in an intake passage; and an engine controller that controls a fuel injection amount of the internal combustion engine in accordance with an intake air amount detected by the air flow meter.
  • the air flow meter has a positive air amount flowing in the forward direction and a negative air amount flowing in the reverse direction, the higher the positive air amount, the higher the frequency, and the absolute value of the negative air amount is large.
  • the engine controller has a table for converting the frequency signal into an air amount, and this table is assigned a positive air amount as a dummy output in a frequency region lower than a predetermined frequency corresponding to a negative air amount. ing.
  • the air flow meter while the air flow meter is normal, a signal having a frequency corresponding to the amount of air flowing through the intake passage is sent from the air flow meter to the engine controller.
  • the air flow meter On the engine controller side, the air flow meter is converted into an air amount using a table. Above, it is used to control the fuel injection amount.
  • the frequency of the signal received by the engine controller is close to zero.
  • an appropriate positive air amount is output as a dummy output by conversion via the table.
  • the fuel injection amount is not extremely reduced even when the air flow meter is disconnected.
  • the present invention when the air flow meter is disconnected, an appropriate positive air amount is output as a dummy output, so that misfire due to a decrease in the fuel injection amount can be avoided.
  • the present invention can be applied substantially only by setting the table, and it is not necessary to diagnose disconnection. Therefore, there is essentially no delay, and it is possible to immediately cope with disconnection of the air flow meter.
  • FIG. 1 shows a system configuration of an automotive internal combustion engine 1 to which the present invention is applied.
  • the internal combustion engine 1 is, for example, a port injection type spark ignition internal combustion engine, and includes a fuel injection valve 3 that injects fuel toward the intake port 2 for each cylinder.
  • the combustion chamber of each cylinder includes an intake valve 6 and an exhaust valve 7, and a spark plug 4 at the center.
  • the spark plug 4 is individually connected to an ignition unit 5 provided for each cylinder.
  • the fuel injection valve 3 and the ignition unit 5 are controlled by an engine controller 10.
  • An electronically controlled throttle valve 13 whose opening is controlled by a control signal from the engine controller 10 is interposed upstream of the intake collector 12 of the intake passage 11 connected to the intake port 2, and further upstream On the side, an air flow meter 14 for detecting the amount of intake air is disposed.
  • a catalyst device 16 composed of a three-way catalyst is interposed in the exhaust passage 15, and an air-fuel ratio sensor 17 for detecting the exhaust air-fuel ratio is disposed upstream thereof.
  • the engine controller 10 includes a crank angle sensor 18 for detecting the engine speed, a water temperature sensor 19 for detecting the coolant temperature, and an accelerator pedal operated by the driver. Detection signals of sensors such as an accelerator opening sensor 20 that detects the amount of depression of the vehicle are input. Based on these detection signals, the engine controller 10 optimally controls the fuel injection amount and injection timing by the fuel injection valve 3, the ignition timing by the spark plug 4, the opening of the throttle valve 13, and the like.
  • the fuel injection amount is feedback controlled so as to be the stoichiometric air-fuel ratio except for some operating regions.
  • K is a constant.
  • COEF is various increase correction coefficients based on the water temperature or the like.
  • Such calculation processing of the fuel injection amount is executed in the engine controller 10.
  • the air flow meter 14 that detects the amount of intake air is composed of, for example, a highly responsive hot-wire mass flow meter, and its detection unit is disposed in the flow path of the intake passage 11.
  • the air flow meter 14 includes a signal processing unit 14a that converts a current value signal obtained by the detection unit into a frequency signal having a predetermined characteristic and outputs the signal, and the air flow meter 14 is connected via a harness.
  • a frequency signal is input to the engine controller 10 as a signal indicating the amount of air.
  • the engine controller 10 includes a conversion table 10a for converting a frequency signal into an air amount, and reads a value converted into the air amount via the conversion table 10a, for example, every sampling period.
  • the sensor signal is exchanged by converting the frequency signal between the air flow meter 14 and the engine controller 10 that are located apart from each other, thereby increasing the robustness against noise.
  • FIG. 2 is a characteristic diagram showing the relationship between the amount of air flowing through the intake passage 11 and the frequency of the frequency signal output through the signal processing unit 14a.
  • the vertical axis represents the amount of air (in other words, obtained by the detection unit). Current value), and the horizontal axis represents the frequency of the frequency signal.
  • the air flow meter 14 can detect the amount of air flowing in the forward direction of the intake passage 11 (the direction from the front end opening of the intake passage 11 toward the combustion chamber) (this is a positive amount of air) with a high response, as well as intake pulsation, etc.
  • the air amount flowing in the reverse direction instantaneously can be detected as a negative air amount, and a predetermined air amount detection range (from the maximum value Qamax in FIG.
  • a predetermined frequency range (shown as a range RFr from the maximum value Frmax to the minimum value Frmin in FIG. 2) is assigned to the range RQa up to the minimum value Qamin) so as to have a desired resolution. Specifically, it has a characteristic that the higher the positive air amount, the higher the frequency, and the higher the absolute value of the negative air amount, the lower the frequency. Further, when the air amount is 0, an intermediate frequency Fr1 is obtained.
  • the air amount detection range RQa includes the entire range of air amount that can be generated as an intake system, and the forward flow larger than the maximum value Qamax and the reverse flow larger in absolute value than the minimum value Qamin are fundamental. Does not occur.
  • the minimum value Frmin of the frequency corresponding to the minimum value Qamin of the air amount is not 0 (Hz). Therefore, as a frequency signal, a low frequency region from 0 (Hz) to the minimum value Frmin is regarded as corresponding to the minimum value Qamin of the air amount in signal processing, but the air flow meter 14 and the signal processing unit 14a. As long as is functioning normally, the region on the lower frequency side than the minimum value Frmin is not used.
  • the output signal of the air flow meter 14 converted into the frequency signal as described above is input to the engine controller 10 via the harness, and is converted again into the air amount in the engine controller 10.
  • FIG. 3 shows characteristics of the conversion table 10a for converting the frequency signal into the air amount in the engine controller 10.
  • This basically has the same characteristics as the signal processing unit 14a of the air flow meter 14 shown in FIG. 2, and for each value in the frequency range RFr from the maximum value Frmax to the minimum value Frmin, Air amount values (positive and negative values) in the air amount range RQa from the maximum value Qamax to the minimum value Qamin are respectively assigned. Therefore, based on the frequency signal output from the air flow meter 14, the engine controller 10 can read the air amount at every sampling period, for example. Since the negative air amount indicates an instantaneous backflow component due to, for example, pulsation, the negative air amount is subtracted from the positive air amount during a certain period (for example, during one cycle). By doing so, the true amount of air can be obtained.
  • a predetermined positive value is output as a dummy output for a frequency lower than a predetermined threshold value Frsh in an area on the lower frequency side than the minimum frequency value Frmin.
  • the air quantity value Qa1 is assigned.
  • the region on the lower frequency side than the frequency threshold Frsh is a region that is not used during normal operation.
  • the positive air amount Qa1 output as a dummy output is set so that a fuel injection amount equal to or greater than the misfire limit is obtained at least when the throttle valve 13 is at an idle opening.
  • the interval between the minimum frequency value Frmin and the threshold value Frsh is merely an allowance for noise or the like, and is not necessarily required, but the threshold value Frsh may be set to a relatively low frequency, so that the frequency as shown in the example of FIG. It is desirable to give an appropriate margin between the minimum value Frmin and the threshold value Frsh.
  • the frequency of the frequency signal input to the engine controller 10 becomes approximately 0 Hz. Therefore, the value of the air amount read through the conversion table 10a is a positive air amount Qa1 that is a dummy output.
  • the engine controller 10 calculates the basic fuel injection amount Tp as described above based on the positive air amount Qa1. Therefore, at least a fuel injection amount that is greater than the misfire limit during idling is ensured, and misfire due to excessive leaning is suppressed.
  • FIG. 4 is a time chart for explaining a signal change when the harness is disconnected (or short-circuited).
  • FIG. 4A shows a frequency input to the engine controller 10 from the signal processing unit 14a of the air flow meter 14.
  • FIG. The frequency of a signal is shown, (b) has shown the air quantity which the engine controller 10 side reads via the conversion table 10a.
  • the harness is disconnected or short-circuited at time t1, and the frequency of the frequency signal input to the engine controller 10 is approximately 0 Hz immediately after time t2.
  • the engine controller 10 diagnoses such disconnection or short-circuit of the harness from the abnormality of the frequency signal, and shifts from the normal mode to a predetermined fail-safe mode at time t3.
  • the fail-safe mode for example, the fuel injection amount is simply obtained from the opening degree of the throttle valve 13 and the engine rotational speed N, or the opening degree of the throttle valve 13 is fixed to a predetermined opening degree, and according to the engine rotational speed N.
  • the operation is performed without depending on the air flow meter 14 by estimating the amount of intake air.
  • there is a delay time of about several hundred ms, for example, between time t2 and time t3.
  • the amount of air read by the engine controller 10 via the conversion table 10a is equal to the positive air amount Qa1, which is a dummy output, after time t2, since the frequency of the signal input to the engine controller 10 is equal to or less than the threshold value Frsh. Become. Therefore, the amount of fuel calculated based on the air amount Qa1 is injected from the fuel injection valve 3 until the time t3 when the mode is shifted to the fail safe mode. Thus, misfire is avoided from time t2 to time t3, and the autonomous operation is continued.
  • the diagnosis of disconnection or short circuit is not required, and when the input signal falls below the threshold value Frsh due to disconnection or short circuit, the positive air amount Qa1 that is a dummy output is immediately output. Therefore, there is no complication of control for diagnosis, and there is essentially no response delay problem.
  • the air amount is read as if it is a negative value as the frequency of the input signal decreases, and as a result In addition, the fuel injection amount is extremely reduced. Therefore, even if the fail-safe mode is provided, misfire may occur until time t3 when the mode is actually shifted to the fail-safe mode.
  • the presence or absence of the fail safe mode is arbitrary, and the present invention can be applied even when the fail safe mode is not provided. If the fail-safe mode is not provided, for example, the operation with the dummy output is continued with the lighting of the warning lamp.

Abstract

 A heat-ray-type airflow meter (14) has a signal processor (14a) for converting a detected air quantity to a frequency signal. An engine controller (10) has a conversion table (10a) for converting the frequency signal to an air quantity. The signal processor (14a) and the conversion table (10a) have features such that the frequency increases in correspondence with increases in the magnitude of a positive air quantity, and the frequency decreases in correspondence with increases in the absolute value of a negative air quantity. In the conversion table (10a), a prescribed positive air quantity value (Qa1) is assigned as a dummy output for frequencies lower than a prescribed threshold value (Frsh). Under normal circumstances, frequencies lower than a minimum value (Frmin) are not used. The frequency decreases to near 0 Hz when there is a disconnection or a short circuit, the dummy output (Qa1) is therefore outputted, and an injection quantity equal to or greater than a misfire limit is ensured.

Description

内燃機関の制御装置および制御方法Control device and control method for internal combustion engine
 この発明は、エアフロメータが検出した吸入空気量に応じて燃料噴射量を制御する内燃機関の制御装置および制御方法に関する。 The present invention relates to a control device and a control method for an internal combustion engine that controls a fuel injection amount in accordance with an intake air amount detected by an air flow meter.
 内燃機関の燃料噴射量は、一般に、吸気通路に配設したエアフロメータによって単位時間当たりの吸入空気量を検出し、この単位時間当たりの吸入空気量と機関回転速度とから算出される1サイクル当たりの吸入空気量に対して適当な空燃比(例えば理論空燃比)となるように、制御される。例えばエアクリーナの直後に設けられるエアフロメータは、燃料噴射量の演算処理を行うエンジンコントローラから離れて位置しており、ハーネスを介してエンジンコントローラに接続されている。 The fuel injection amount of the internal combustion engine is generally determined by detecting the intake air amount per unit time with an air flow meter disposed in the intake passage, and calculating the fuel injection amount per cycle calculated from the intake air amount per unit time and the engine speed. The air-fuel ratio is controlled so as to be an appropriate air-fuel ratio (for example, stoichiometric air-fuel ratio) with respect to the intake air amount. For example, an air flow meter provided immediately after the air cleaner is located away from an engine controller that performs processing for calculating the fuel injection amount, and is connected to the engine controller via a harness.
 特許文献1には、吸気脈動や瞬間的な逆流も検出可能な高応答型のエアフロメータを吸気通路に配設することが開示されている。 Patent Document 1 discloses that a highly responsive air flow meter capable of detecting intake pulsation and instantaneous backflow is disposed in the intake passage.
 上記のようにエアフロメータはハーネスを介してエンジンコントローラに接続されているので、信号経路の断線の虞がある。このようなエアフロメータの断線による吸入空気量信号の喪失に対しては、何らかのフェールセーフモードが設けられるのが一般的であり、例えば、スロットル弁開度と機関回転速度とから燃料噴射量を簡易的に求めたり、スロットル弁開度を所定開度に固定し、機関回転速度に応じて吸入空気量を推定する、などのエアフロメータに依存しないフェールセーフモードに移行することになる。 As described above, since the air flow meter is connected to the engine controller via the harness, there is a risk of disconnection of the signal path. For the loss of the intake air amount signal due to the disconnection of the air flow meter, it is common to provide some fail-safe mode. For example, the fuel injection amount can be simplified from the throttle valve opening and the engine speed. Or the throttle valve opening degree is fixed at a predetermined opening degree, and the intake air amount is estimated according to the engine rotational speed.
 しかしながら、ノイズなどでフェールセーフモードへ誤って移行しないように、診断に要する時間を含め、フェールセーフモードへの移行には、エアフロメータが断線してからある程度の遅れ期間が必要である。従って、この遅れ期間の間、エアフロメータから、吸入空気量があたかも0(あるいは負の流れ)であるかのような信号が出力されるため、燃料噴射量が極端に少なくなり、フェールセーフモードに移行する前に失火に至る可能性があった。 However, in order to prevent accidental transition to the fail safe mode due to noise or the like, a certain delay period is required for the transition to the fail safe mode, including the time required for diagnosis, after the air flow meter is disconnected. Therefore, during this delay period, a signal as if the intake air amount is 0 (or negative flow) is output from the air flow meter, so the fuel injection amount becomes extremely small, and the mode shifts to the fail safe mode. There was a possibility of misfire before doing.
特開2009-270483号公報JP 2009-270483 A
 この発明は、吸気通路に設けられたエアフロメータと、このエアフロメータが検出した吸入空気量に応じて内燃機関の燃料噴射量を制御するエンジンコントローラと、を備えてなる内燃機関の制御装置において、
 上記エアフロメータは、順方向に流れる正の空気量と逆方向に流れる負の空気量とを、正の空気量が大であるほど高い周波数で、かつ負の空気量の絶対値が大であるほど低い周波数となる、所定の特性の周波数信号として出力するように構成され、
 上記エンジンコントローラは、上記周波数信号を空気量に変換するテーブルを有し、このテーブルは、負の空気量に対応する所定の周波数よりも低い周波数領域では、ダミー出力として正の空気量が割り付けられている。
The present invention relates to a control device for an internal combustion engine, comprising: an air flow meter provided in an intake passage; and an engine controller that controls a fuel injection amount of the internal combustion engine in accordance with an intake air amount detected by the air flow meter.
The air flow meter has a positive air amount flowing in the forward direction and a negative air amount flowing in the reverse direction, the higher the positive air amount, the higher the frequency, and the absolute value of the negative air amount is large. It is configured to output as a frequency signal with a predetermined characteristic, which is a lower frequency,
The engine controller has a table for converting the frequency signal into an air amount, and this table is assigned a positive air amount as a dummy output in a frequency region lower than a predetermined frequency corresponding to a negative air amount. ing.
 上記の構成では、エアフロメータが正常である間は、吸気通路を流れる空気量に応じた周波数の信号がエアフロメータからエンジンコントローラへ送られ、エンジンコントローラ側では、テーブルを用いて空気量に変換した上で、燃料噴射量の制御に用いる。 In the above configuration, while the air flow meter is normal, a signal having a frequency corresponding to the amount of air flowing through the intake passage is sent from the air flow meter to the engine controller. On the engine controller side, the air flow meter is converted into an air amount using a table. Above, it is used to control the fuel injection amount.
 一方、エアフロメータとエンジンコントローラとの間で断線が生じると、エンジンコントローラが受ける信号の周波数は0近傍となる。本発明では、このような0近傍の周波数領域では、テーブルを介した変換により適宜な正の空気量がダミー出力として出力される。 On the other hand, when a disconnection occurs between the air flow meter and the engine controller, the frequency of the signal received by the engine controller is close to zero. In the present invention, in such a frequency region near 0, an appropriate positive air amount is output as a dummy output by conversion via the table.
 従って、エアフロメータの断線時にも燃料噴射量が極端に少なくならない。 Therefore, the fuel injection amount is not extremely reduced even when the air flow meter is disconnected.
 この発明によれば、エアフロメータの断線時に、適宜な正の空気量がダミー出力として出力されるので、燃料噴射量の減少による失火を回避することができる。特に、実質的にテーブルの設定のみで適用が可能であり、断線の診断が不要であるので、本質的に遅れを伴うことがなく、エアフロメータの断線に直ちに対応することができる。 According to the present invention, when the air flow meter is disconnected, an appropriate positive air amount is output as a dummy output, so that misfire due to a decrease in the fuel injection amount can be avoided. In particular, the present invention can be applied substantially only by setting the table, and it is not necessary to diagnose disconnection. Therefore, there is essentially no delay, and it is possible to immediately cope with disconnection of the air flow meter.
この発明が適用された内燃機関のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Configuration explanatory drawing which shows the system configuration | structure of the internal combustion engine to which this invention was applied. エアフロメータにおける空気量と出力信号との関係を示す特性図。The characteristic view which shows the relationship between the air quantity in an air flow meter, and an output signal. エンジンコントローラにおける変換テーブルの特性を示す特性図。The characteristic view which shows the characteristic of the conversion table in an engine controller. 断線したときの(a)入力変化と(b)検出空気量とを対比して示したタイムチャート。The time chart which contrasted and showed (a) input change at the time of disconnection, and (b) detected air quantity.
 以下、この発明の一実施例を図面に基づいて詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、この発明が適用された自動車用内燃機関1のシステム構成を示している。この内燃機関1は、例えばポート噴射型火花点火式内燃機関であって、各気筒毎に、吸気ポート2へ向けて燃料を噴射する燃料噴射弁3を備えている。また各気筒の燃焼室は、吸気弁6と排気弁7とを具備しているとともに、中央部に点火プラグ4を備えている。点火プラグ4は、各気筒毎に設けられた点火ユニット5に個々に接続されている。上記燃料噴射弁3および点火ユニット5は、エンジンコントローラ10によって制御されている。 FIG. 1 shows a system configuration of an automotive internal combustion engine 1 to which the present invention is applied. The internal combustion engine 1 is, for example, a port injection type spark ignition internal combustion engine, and includes a fuel injection valve 3 that injects fuel toward the intake port 2 for each cylinder. The combustion chamber of each cylinder includes an intake valve 6 and an exhaust valve 7, and a spark plug 4 at the center. The spark plug 4 is individually connected to an ignition unit 5 provided for each cylinder. The fuel injection valve 3 and the ignition unit 5 are controlled by an engine controller 10.
 上記吸気ポート2に連なる吸気通路11の吸気コレクタ12よりも上流側には、エンジンコントローラ10からの制御信号によって開度が制御される電子制御型スロットル弁13が介装されており、さらにその上流側に、吸入空気量を検出するエアフロメータ14が配設されている。 An electronically controlled throttle valve 13 whose opening is controlled by a control signal from the engine controller 10 is interposed upstream of the intake collector 12 of the intake passage 11 connected to the intake port 2, and further upstream On the side, an air flow meter 14 for detecting the amount of intake air is disposed.
 また、排気通路15には、三元触媒からなる触媒装置16が介装されており、その上流側に、排気空燃比を検出する空燃比センサ17が配置されている。 Further, a catalyst device 16 composed of a three-way catalyst is interposed in the exhaust passage 15, and an air-fuel ratio sensor 17 for detecting the exhaust air-fuel ratio is disposed upstream thereof.
 上記エンジンコントローラ10には、上記のエアフロメータ14、空燃比センサ17のほか、機関回転速度を検出するためのクランク角センサ18、冷却水温を検出する水温センサ19、運転者により操作されるアクセルペダルの踏込量を検出するアクセル開度センサ20、等のセンサ類の検出信号が入力されている。エンジンコントローラ10は、これらの検出信号に基づき、燃料噴射弁3による燃料噴射量および噴射時期、点火プラグ4による点火時期、スロットル弁13の開度、等を最適に制御している。 In addition to the air flow meter 14 and the air-fuel ratio sensor 17, the engine controller 10 includes a crank angle sensor 18 for detecting the engine speed, a water temperature sensor 19 for detecting the coolant temperature, and an accelerator pedal operated by the driver. Detection signals of sensors such as an accelerator opening sensor 20 that detects the amount of depression of the vehicle are input. Based on these detection signals, the engine controller 10 optimally controls the fuel injection amount and injection timing by the fuel injection valve 3, the ignition timing by the spark plug 4, the opening of the throttle valve 13, and the like.
 燃料噴射量は、一部の運転領域を除き、理論空燃比となるようにフィードバック制御される。具体的には、エアフロメータ14により検出された吸入空気量Qaと、クランク角センサ18により検出された機関回転速度Nとを用いて、基本燃料噴射量Tpを、Tp=Qa×K/Nとして求める(但しKは定数)。そして、燃料噴射弁3に与える実際の噴射パルス幅Tiを、空燃比センサ17の検出信号に基づくフィードバック補正係数αを用いて、Ti=Tp×(1+COEF)×αとして求める。なお、COEFは、水温等に基づく各種増量補正係数である。このような燃料噴射量の演算処理は、エンジンコントローラ10において実行される。 The fuel injection amount is feedback controlled so as to be the stoichiometric air-fuel ratio except for some operating regions. Specifically, the basic fuel injection amount Tp is set as Tp = Qa × K / N using the intake air amount Qa detected by the air flow meter 14 and the engine rotational speed N detected by the crank angle sensor 18. Obtain (where K is a constant). Then, the actual injection pulse width Ti given to the fuel injection valve 3 is obtained as Ti = Tp × (1 + COEF) × α using the feedback correction coefficient α based on the detection signal of the air-fuel ratio sensor 17. COEF is various increase correction coefficients based on the water temperature or the like. Such calculation processing of the fuel injection amount is executed in the engine controller 10.
 吸入空気量を検出するエアフロメータ14は、例えば高応答性の熱線式質量流量計からなり、その検出部が吸気通路11の流路内に配設されている。また、このエアフロメータ14は、検出部によって得られる電流値信号を所定の特性の周波数信号に変換して出力する信号処理部14aを内蔵しており、ハーネスを介してエアフロメータ14が接続されるエンジンコントローラ10には、空気量を示す信号として周波数信号が入力される。エンジンコントローラ10は、周波数信号を空気量に変換する変換テーブル10aを具備し、この変換テーブル10aを介して空気量に変換した値を、例えばサンプリング周期毎に読み込む。このように、互いに離れて位置するエアフロメータ14とエンジンコントローラ10との間で周波数信号に変換してセンサ信号の授受を行うことで、ノイズに対するロバスト性が高くなる。 The air flow meter 14 that detects the amount of intake air is composed of, for example, a highly responsive hot-wire mass flow meter, and its detection unit is disposed in the flow path of the intake passage 11. The air flow meter 14 includes a signal processing unit 14a that converts a current value signal obtained by the detection unit into a frequency signal having a predetermined characteristic and outputs the signal, and the air flow meter 14 is connected via a harness. A frequency signal is input to the engine controller 10 as a signal indicating the amount of air. The engine controller 10 includes a conversion table 10a for converting a frequency signal into an air amount, and reads a value converted into the air amount via the conversion table 10a, for example, every sampling period. As described above, the sensor signal is exchanged by converting the frequency signal between the air flow meter 14 and the engine controller 10 that are located apart from each other, thereby increasing the robustness against noise.
 図2は、吸気通路11を流れる空気量と信号処理部14aを通して出力される周波数信号の周波数との関係を示した特性図であり、縦軸が空気量(換言すれば、検出部により得られる電流値)を示し、横軸が周波数信号の周波数を示す。エアフロメータ14は、吸気通路11を順方向(吸気通路11の先端開口から燃焼室へ向かう方向)に流れる空気量(これを正の空気量とする)を高い応答で検出できるほか、吸気脈動などにより瞬間的に逆方向に流れる空気量を負の空気量として検出することができるものであり、正の空気量から負の空気量に亘る所定の空気量検出範囲(図2に最大値Qamaxから最小値Qaminまでの範囲RQaとして示す)に対し、所望の分解能を有するように所定の周波数範囲(図2に最大値Frmaxから最小値Frminまでの範囲RFrとして示す)が割り当てられている。具体的には、正の空気量が大であるほど高い周波数となり、負の空気量の絶対値が大であるほど低い周波数となる特性を有している。また、空気量が0であるときに、中間のある周波数Fr1となる。空気量検出範囲RQaは、吸気系として生じ得る空気量の全範囲を包含しており、最大値Qamaxよりも大きな順方向の流れや最小値Qaminよりも絶対値の大きな逆方向の流れは、基本的に、生じることがない。 FIG. 2 is a characteristic diagram showing the relationship between the amount of air flowing through the intake passage 11 and the frequency of the frequency signal output through the signal processing unit 14a. The vertical axis represents the amount of air (in other words, obtained by the detection unit). Current value), and the horizontal axis represents the frequency of the frequency signal. The air flow meter 14 can detect the amount of air flowing in the forward direction of the intake passage 11 (the direction from the front end opening of the intake passage 11 toward the combustion chamber) (this is a positive amount of air) with a high response, as well as intake pulsation, etc. Thus, the air amount flowing in the reverse direction instantaneously can be detected as a negative air amount, and a predetermined air amount detection range (from the maximum value Qamax in FIG. 2) from the positive air amount to the negative air amount can be detected. A predetermined frequency range (shown as a range RFr from the maximum value Frmax to the minimum value Frmin in FIG. 2) is assigned to the range RQa up to the minimum value Qamin) so as to have a desired resolution. Specifically, it has a characteristic that the higher the positive air amount, the higher the frequency, and the higher the absolute value of the negative air amount, the lower the frequency. Further, when the air amount is 0, an intermediate frequency Fr1 is obtained. The air amount detection range RQa includes the entire range of air amount that can be generated as an intake system, and the forward flow larger than the maximum value Qamax and the reverse flow larger in absolute value than the minimum value Qamin are fundamental. Does not occur.
 ここで、空気量の最小値Qaminに対応する周波数の最小値Frminは、0(Hz)ではない。従って、周波数信号として、0(Hz)から最小値Frminまでの低周波数領域は、信号処理の上では、空気量の最小値Qaminに対応するものとみなされるが、エアフロメータ14や信号処理部14aが正常に機能している限りは、最小値Frminよりも低周波側の領域は使用されることがない。 Here, the minimum value Frmin of the frequency corresponding to the minimum value Qamin of the air amount is not 0 (Hz). Therefore, as a frequency signal, a low frequency region from 0 (Hz) to the minimum value Frmin is regarded as corresponding to the minimum value Qamin of the air amount in signal processing, but the air flow meter 14 and the signal processing unit 14a. As long as is functioning normally, the region on the lower frequency side than the minimum value Frmin is not used.
 上記のように周波数信号に変換されたエアフロメータ14の出力信号は、ハーネスを介してエンジンコントローラ10に入力され、該エンジンコントローラ10において再び空気量に変換される。 The output signal of the air flow meter 14 converted into the frequency signal as described above is input to the engine controller 10 via the harness, and is converted again into the air amount in the engine controller 10.
 図3は、エンジンコントローラ10において周波数信号を空気量に変換するための変換テーブル10aの特性を示している。これは、基本的には、図2に示したエアフロメータ14の信号処理部14aと同一の特性を有しており、最大値Frmaxから最小値Frminまでの周波数範囲RFrのそれぞれの値に対し、最大値Qamaxから最小値Qaminまでの空気量範囲RQaの空気量の値(正および負の値)がそれぞれ割り付けられている。従って、エアフロメータ14が出力する周波数信号に基づき、エンジンコントローラ10は、例えばサンプリング周期毎に空気量の読み込みを行うことができる。なお、負の空気量は、例えば脈動等による瞬間的な逆流成分を示しているので、一定期間(例えば1サイクルの間)の間における正の空気量の総和から負の空気量の総和を減算することで、真の空気量を求めることができる。 FIG. 3 shows characteristics of the conversion table 10a for converting the frequency signal into the air amount in the engine controller 10. This basically has the same characteristics as the signal processing unit 14a of the air flow meter 14 shown in FIG. 2, and for each value in the frequency range RFr from the maximum value Frmax to the minimum value Frmin, Air amount values (positive and negative values) in the air amount range RQa from the maximum value Qamax to the minimum value Qamin are respectively assigned. Therefore, based on the frequency signal output from the air flow meter 14, the engine controller 10 can read the air amount at every sampling period, for example. Since the negative air amount indicates an instantaneous backflow component due to, for example, pulsation, the negative air amount is subtracted from the positive air amount during a certain period (for example, during one cycle). By doing so, the true amount of air can be obtained.
 ここで、図3に示すように、本実施例においては、周波数の最小値Frminよりも低周波側の領域の中で、所定の閾値Frshよりも低い周波数に対して、ダミー出力として所定の正の空気量の値Qa1が割り当てられている。この周波数閾値Frshよりも低周波側の領域は、前述したように、正常時には使用されることがない領域である。 Here, as shown in FIG. 3, in the present embodiment, a predetermined positive value is output as a dummy output for a frequency lower than a predetermined threshold value Frsh in an area on the lower frequency side than the minimum frequency value Frmin. The air quantity value Qa1 is assigned. As described above, the region on the lower frequency side than the frequency threshold Frsh is a region that is not used during normal operation.
 ダミー出力として出力される正の空気量Qa1は、少なくともスロットル弁13の開度がアイドル開度にあるときに失火限界以上の燃料噴射量が得られるように設定されている。なお、周波数の最小値Frminと閾値Frshとの間は、ノイズ等に対する余裕代に過ぎず、必ずしも必要ではないが、閾値Frshは比較的低い周波数に設定すればよいので、図示例のように周波数の最小値Frminと閾値Frshとの間に適宜な余裕を与えることが望ましい。 The positive air amount Qa1 output as a dummy output is set so that a fuel injection amount equal to or greater than the misfire limit is obtained at least when the throttle valve 13 is at an idle opening. Note that the interval between the minimum frequency value Frmin and the threshold value Frsh is merely an allowance for noise or the like, and is not necessarily required, but the threshold value Frsh may be set to a relatively low frequency, so that the frequency as shown in the example of FIG. It is desirable to give an appropriate margin between the minimum value Frmin and the threshold value Frsh.
 上記実施例の構成によれば、エアフロメータ14や信号処理部14aさらにはハーネスが正常であれば、空気量検出範囲RQaに対応した周波数範囲RFrの中で周波数が変化し、空気量の検出が正しく行われる。 According to the configuration of the above embodiment, if the air flow meter 14, the signal processing unit 14a, and the harness are normal, the frequency changes in the frequency range RFr corresponding to the air amount detection range RQa, and the air amount is detected. Done correctly.
 これに対し、エアフロメータ14とエンジンコントローラ10との間でハーネスが断線すると、エンジンコントローラ10に入力される周波数信号の周波数がほぼ0Hzとなる。従って、変換テーブル10aを介して読み込まれる空気量の値は、ダミー出力である正の空気量Qa1となる。エンジンコントローラ10では、この正の空気量Qa1に基づいて前述したように基本燃料噴射量Tpの演算を行う。そのため、少なくともアイドル時の失火限界よりも多い燃料噴射量が確保され、過度にリーンとなることによる失火が抑制される。 On the other hand, when the harness is disconnected between the air flow meter 14 and the engine controller 10, the frequency of the frequency signal input to the engine controller 10 becomes approximately 0 Hz. Therefore, the value of the air amount read through the conversion table 10a is a positive air amount Qa1 that is a dummy output. The engine controller 10 calculates the basic fuel injection amount Tp as described above based on the positive air amount Qa1. Therefore, at least a fuel injection amount that is greater than the misfire limit during idling is ensured, and misfire due to excessive leaning is suppressed.
 なお、エアフロメータ14とエンジンコントローラ10との間のハーネスが短絡した場合にも、周波数信号の周波数がほぼ0Hzとなるので、同様に、ダミー出力である正の空気量Qa1が読み込まれることとなる。 Even when the harness between the air flow meter 14 and the engine controller 10 is short-circuited, since the frequency of the frequency signal is almost 0 Hz, the positive air amount Qa1 that is a dummy output is similarly read. .
 図4は、ハーネスの断線(あるいは短絡)時の信号変化を説明するためのタイムチャートであり、同図の(a)は、エアフロメータ14の信号処理部14aからエンジンコントローラ10に入力される周波数信号の周波数を示し、(b)は、エンジンコントローラ10側が変換テーブル10aを介して読み込む空気量を示している。 FIG. 4 is a time chart for explaining a signal change when the harness is disconnected (or short-circuited). FIG. 4A shows a frequency input to the engine controller 10 from the signal processing unit 14a of the air flow meter 14. FIG. The frequency of a signal is shown, (b) has shown the air quantity which the engine controller 10 side reads via the conversion table 10a.
 図4の例では、時間t1においてハーネスの断線ないし短絡が生じ、エンジンコントローラ10に入力される周波数信号の周波数は、直後の時間t2においてほぼ0Hzとなる。エンジンコントローラ10では、このようなハーネスの断線ないし短絡を周波数信号の異常から診断し、時間t3において、通常モードから所定のフェールセーフモードに移行する。フェールセーフモードは、例えば、スロットル弁13の開度と機関回転速度Nとから燃料噴射量を簡易的に求めたり、スロットル弁13の開度を所定開度に固定し、機関回転速度Nに応じて吸入空気量を推定する、などによりエアフロメータ14に依存せずに運転を行うモードである。ノイズによる誤診断の回避などのために、時間t2から時間t3までの間には、例えば数百ms程度の遅れ時間が存在する。 In the example of FIG. 4, the harness is disconnected or short-circuited at time t1, and the frequency of the frequency signal input to the engine controller 10 is approximately 0 Hz immediately after time t2. The engine controller 10 diagnoses such disconnection or short-circuit of the harness from the abnormality of the frequency signal, and shifts from the normal mode to a predetermined fail-safe mode at time t3. In the fail-safe mode, for example, the fuel injection amount is simply obtained from the opening degree of the throttle valve 13 and the engine rotational speed N, or the opening degree of the throttle valve 13 is fixed to a predetermined opening degree, and according to the engine rotational speed N. In this mode, the operation is performed without depending on the air flow meter 14 by estimating the amount of intake air. In order to avoid misdiagnosis due to noise or the like, there is a delay time of about several hundred ms, for example, between time t2 and time t3.
 一方、エンジンコントローラ10が変換テーブル10aを介して読み込む空気量は、エンジンコントローラ10に入力される信号の周波数が閾値Frsh以下となることから、時間t2以降はダミー出力である正の空気量Qa1となる。そのため、フェールセーフモードに移行する時間t3までの間、この空気量Qa1に基づいて算出された量の燃料が燃料噴射弁3から噴射される。これにより、時間t2から時間t3までの間、失火が回避され、自立運転が継続される。 On the other hand, the amount of air read by the engine controller 10 via the conversion table 10a is equal to the positive air amount Qa1, which is a dummy output, after time t2, since the frequency of the signal input to the engine controller 10 is equal to or less than the threshold value Frsh. Become. Therefore, the amount of fuel calculated based on the air amount Qa1 is injected from the fuel injection valve 3 until the time t3 when the mode is shifted to the fail safe mode. Thus, misfire is avoided from time t2 to time t3, and the autonomous operation is continued.
 このように、上記実施例では、断線ないし短絡の診断を要さずに、断線ないし短絡により入力信号が閾値Frsh以下となったときには、直ちにダミー出力である正の空気量Qa1が出力される。従って、診断のための制御の複雑化を伴うことがなく、しかも、応答遅れの問題が本質的に存在しない。 Thus, in the above-described embodiment, the diagnosis of disconnection or short circuit is not required, and when the input signal falls below the threshold value Frsh due to disconnection or short circuit, the positive air amount Qa1 that is a dummy output is immediately output. Therefore, there is no complication of control for diagnosis, and there is essentially no response delay problem.
 ここで、仮にダミー出力の設定がない場合には、破線に示す比較例のように、入力信号の周波数の低下に伴ってあたかも空気量が負の値であるかのように読み込まれ、結果的に、燃料噴射量が極端に低下する。従って、フェールセーフモードの備えがあったとしても、実際にフェールセーフモードに移行する時間t3までの間に、失火を生じる可能性がある。 Here, if there is no dummy output setting, as in the comparative example shown by the broken line, the air amount is read as if it is a negative value as the frequency of the input signal decreases, and as a result In addition, the fuel injection amount is extremely reduced. Therefore, even if the fail-safe mode is provided, misfire may occur until time t3 when the mode is actually shifted to the fail-safe mode.
 なお、本発明においては、フェールセーフモードの有無は任意であり、フェールセーフモードを具備しない場合でも、本発明は適用が可能である。フェールセーフモードを具備しない場合は、例えば、警告灯の点灯とともにダミー出力による運転を継続することとなる。 In the present invention, the presence or absence of the fail safe mode is arbitrary, and the present invention can be applied even when the fail safe mode is not provided. If the fail-safe mode is not provided, for example, the operation with the dummy output is continued with the lighting of the warning lamp.

Claims (7)

  1.  吸気通路に設けられたエアフロメータと、このエアフロメータが検出した吸入空気量に応じて内燃機関の燃料噴射量を制御するエンジンコントローラと、を備えてなる内燃機関の制御装置において、
     上記エアフロメータは、順方向に流れる正の空気量と逆方向に流れる負の空気量とを、正の空気量が大であるほど高い周波数で、かつ負の空気量の絶対値が大であるほど低い周波数となる、所定の特性の周波数信号として出力するように構成され、
     上記エンジンコントローラは、上記周波数信号を空気量に変換するテーブルを有し、このテーブルは、負の空気量に対応する所定の周波数よりも低い周波数領域では、ダミー出力として正の空気量が割り付けられている、内燃機関の制御装置。
    An internal combustion engine control apparatus comprising: an air flow meter provided in an intake passage; and an engine controller that controls a fuel injection amount of the internal combustion engine in accordance with an intake air amount detected by the air flow meter.
    The air flow meter has a positive air amount flowing in the forward direction and a negative air amount flowing in the reverse direction, the higher the positive air amount, the higher the frequency, and the absolute value of the negative air amount is large. It is configured to output as a frequency signal with a predetermined characteristic, which is a lower frequency,
    The engine controller has a table for converting the frequency signal into an air amount, and this table is assigned a positive air amount as a dummy output in a frequency region lower than a predetermined frequency corresponding to a negative air amount. A control device for an internal combustion engine.
  2.  上記のダミー出力となる正の空気量は、内燃機関のアイドル時における失火限界以上の燃料噴射量に対応するように設定されている、請求項1に記載の内燃機関の制御装置。 2. The control device for an internal combustion engine according to claim 1, wherein the positive air amount serving as the dummy output is set so as to correspond to a fuel injection amount that is equal to or greater than a misfire limit during idling of the internal combustion engine.
  3.  上記エアフロメータは、熱線式エアフロメータからなり、空気量を上記周波数信号として出力する信号処理部を一体に備えている、請求項1または2に記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to claim 1 or 2, wherein the air flow meter is a hot-wire air flow meter, and integrally includes a signal processing unit that outputs an air amount as the frequency signal.
  4.  上記周波数領域は、正常時に使用される空気量検出範囲に対応する所定の周波数範囲よりも低い周波数に設定されている、請求項1~3のいずれかに記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the frequency region is set to a frequency lower than a predetermined frequency range corresponding to an air amount detection range used in a normal state.
  5.  吸気通路に設けられたエアフロメータによって、順方向に流れる正の空気量と逆方向に流れる負の空気量との双方を検出し、
     検出した空気量を、正の空気量が大であるほど高い周波数で、かつ負の空気量の絶対値が大であるほど低い周波数となる、所定の特性の周波数信号に変換して出力し、
     この周波数信号をエンジンコントローラ側で空気量に変換し、ここで、負の空気量に対応する所定の周波数よりも低い周波数信号に対してはダミー出力として正の空気量を出力し、
     この空気量に基づいて燃料噴射量を制御する、
     内燃機関の制御方法。
    The air flow meter provided in the intake passage detects both the amount of positive air flowing in the forward direction and the amount of negative air flowing in the reverse direction,
    The detected air amount is converted into a frequency signal having a predetermined characteristic, which is a higher frequency as the positive air amount is larger and a lower frequency as the absolute value of the negative air amount is larger.
    This frequency signal is converted into an air amount on the engine controller side, where a positive air amount is output as a dummy output for a frequency signal lower than a predetermined frequency corresponding to the negative air amount,
    Control the fuel injection amount based on this air amount,
    A method for controlling an internal combustion engine.
  6.  周波数信号から空気量への変換を所定のテーブルを用いて行い、このテーブルが、ダミー出力を含む特性を有する、請求項5に記載の内燃機関の制御方法。 The method for controlling an internal combustion engine according to claim 5, wherein the conversion from the frequency signal to the air amount is performed using a predetermined table, and the table has a characteristic including a dummy output.
  7.  上記エアフロメータと上記エンジンコントローラとの間のハーネスが断線ないし短絡していると周波数の異常から診断したときに、上記エアフロメータに依存しないフェールセーフモードに移行する、請求項5または6に記載の内燃機関の制御方法。 7. The internal combustion engine according to claim 5, wherein when the harness between the air flow meter and the engine controller is disconnected or short-circuited and diagnosed from an abnormality in frequency, the internal combustion engine according to claim 5 or 6 shifts to a fail-safe mode that does not depend on the air flow meter. How to control the engine.
PCT/JP2015/052021 2014-04-11 2015-01-26 Apparatus and method for controlling internal combustion engine WO2015156013A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112016023666-1A BR112016023666B1 (en) 2014-04-11 2015-01-26 Control device and control method to control internal combustion engine
RU2016144143A RU2660489C2 (en) 2014-04-11 2015-01-26 Apparatus and method for controlling internal combustion engine
JP2016512613A JP6327339B2 (en) 2014-04-11 2015-01-26 Control device and control method for internal combustion engine
MX2016013005A MX357144B (en) 2014-04-11 2015-01-26 Apparatus and method for controlling internal combustion engine.
EP15777250.0A EP3130788B1 (en) 2014-04-11 2015-01-26 Apparatus and method for controlling internal combustion engine
US15/124,868 US10006395B2 (en) 2014-04-11 2015-01-26 Apparatus and method for controlling internal combustion engine
CN201580019285.6A CN106164453B (en) 2014-04-11 2015-01-26 The control device and control method of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014081782 2014-04-11
JP2014-081782 2014-04-11

Publications (1)

Publication Number Publication Date
WO2015156013A1 true WO2015156013A1 (en) 2015-10-15

Family

ID=54287595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052021 WO2015156013A1 (en) 2014-04-11 2015-01-26 Apparatus and method for controlling internal combustion engine

Country Status (9)

Country Link
US (1) US10006395B2 (en)
EP (1) EP3130788B1 (en)
JP (1) JP6327339B2 (en)
CN (1) CN106164453B (en)
BR (1) BR112016023666B1 (en)
MX (1) MX357144B (en)
MY (1) MY187706A (en)
RU (1) RU2660489C2 (en)
WO (1) WO2015156013A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066548A1 (en) * 2018-09-26 2020-04-02 日立オートモティブシステムズ株式会社 Internal combustion engine control device
CN111890264B (en) * 2020-08-27 2023-11-24 浙江东精智能装备有限公司 Rotor finish machining detection system and detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240816A (en) * 1986-04-14 1987-10-21 Toyota Motor Corp Abnormality detector for pulse output type sensor
JP2000337184A (en) * 1999-05-28 2000-12-05 Unisia Jecs Corp Control device of engine
JP2013054013A (en) * 2011-09-06 2013-03-21 Hitachi Automotive Systems Ltd Air flow rate measurement device
JP2013204581A (en) * 2012-03-29 2013-10-07 Hitachi Automotive Systems Ltd Intake air quantity measurement device of engine
JP2014020210A (en) * 2012-07-12 2014-02-03 Hitachi Automotive Systems Ltd Suction air volume measuring device for engine

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233452A (en) * 1986-03-31 1987-10-13 Mitsubishi Electric Corp Fuel control device
JPS62261638A (en) * 1986-05-08 1987-11-13 Mitsubishi Electric Corp Fuel-ratio controller for internal combustion engine
JPS6473147A (en) * 1987-09-16 1989-03-17 Fuji Heavy Ind Ltd Air-fuel ratio control device for engine
JPH01244139A (en) * 1988-03-25 1989-09-28 Nissan Motor Co Ltd Fuel feed control device for internal combustion engine
JPH04262031A (en) * 1991-01-22 1992-09-17 Mitsubishi Electric Corp Fuel control device for internal combustion engine
WO1995014215A1 (en) * 1993-11-18 1995-05-26 Unisia Jecs Corporation Method and device for detecting suction air flow rate for an engine
US5594180A (en) * 1994-08-12 1997-01-14 Micro Motion, Inc. Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters
US5505179A (en) * 1994-10-03 1996-04-09 Ford Motor Company Method and apparatus for inferring manifold absolute pressure in turbo-diesel engines
US5563340A (en) * 1995-03-28 1996-10-08 Ford Motor Company Mass air flow sensor housing
JP3572442B2 (en) * 1998-09-07 2004-10-06 日産自動車株式会社 Intake air amount estimation device for variable valve engine
JP3799851B2 (en) * 1999-01-11 2006-07-19 株式会社日立製作所 Diagnostic method for internal combustion engine
JP3627564B2 (en) * 1999-03-15 2005-03-09 株式会社日立製作所 Intake air flow rate measuring device
US6152102A (en) * 1999-03-22 2000-11-28 Brunswick Corporation Throttle control system for a stratified charge internal combustion engine
DE60112266T2 (en) * 2000-03-08 2006-06-08 Rosemount Inc., Eden Prairie BIDIRECTIONAL DIFFERENTIAL PRESSURE FLOW SENSOR
JP4811695B2 (en) * 2000-05-30 2011-11-09 株式会社デンソー Flow measuring device
JP4474771B2 (en) * 2000-12-20 2010-06-09 株式会社デンソー Flow measuring device
JP3840379B2 (en) * 2001-01-29 2006-11-01 株式会社日立製作所 Intake air amount measuring device for internal combustion engine
JP4483115B2 (en) * 2001-03-30 2010-06-16 株式会社デンソー Fuel injection control device and fluid flow rate measuring device
US6622555B2 (en) * 2001-10-11 2003-09-23 Visteon Global Technologies, Inc. Fluid flow meter
US6708561B2 (en) * 2002-04-19 2004-03-23 Visteon Global Technologies, Inc. Fluid flow meter having an improved sampling channel
US6990856B2 (en) * 2003-06-13 2006-01-31 General Motors Corporation Method and apparatus for determining mass of engine intake air with reversion compensation
US7273046B2 (en) * 2004-07-09 2007-09-25 Denso Corporation Air-fuel ratio controller for internal combustion engine and diagnosis apparatus for intake sensors
JP4715766B2 (en) * 2007-02-13 2011-07-06 トヨタ自動車株式会社 Boosting system failure diagnosis device, boosting circuit control device, and vehicle
US7596991B2 (en) * 2007-06-28 2009-10-06 Gm Global Technology Operations, Inc. Multiple path air mass flow sensor assembly
US7631551B2 (en) * 2007-07-27 2009-12-15 Gm Global Technology Operations, Inc. Adaptive barometric pressure estimation in which an internal combustion engine is located
JP2009270483A (en) 2008-05-07 2009-11-19 Denso Corp Control device of internal combustion engine
RU2517197C1 (en) * 2010-04-20 2014-05-27 Ниссан Мотор Ко., Лтд. Device for flow rate meter malfunction diagnostics
JP5454603B2 (en) * 2011-05-18 2014-03-26 株式会社デンソー Flow measuring device
US8706381B2 (en) * 2011-05-31 2014-04-22 GM Global Technology Operations LLC System and method for detection failures of mass airflow sensors in a parallel intake engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240816A (en) * 1986-04-14 1987-10-21 Toyota Motor Corp Abnormality detector for pulse output type sensor
JP2000337184A (en) * 1999-05-28 2000-12-05 Unisia Jecs Corp Control device of engine
JP2013054013A (en) * 2011-09-06 2013-03-21 Hitachi Automotive Systems Ltd Air flow rate measurement device
JP2013204581A (en) * 2012-03-29 2013-10-07 Hitachi Automotive Systems Ltd Intake air quantity measurement device of engine
JP2014020210A (en) * 2012-07-12 2014-02-03 Hitachi Automotive Systems Ltd Suction air volume measuring device for engine

Also Published As

Publication number Publication date
JP6327339B2 (en) 2018-05-23
MX2016013005A (en) 2017-01-18
BR112016023666B1 (en) 2022-05-24
US20170016409A1 (en) 2017-01-19
MX357144B (en) 2018-06-28
RU2016144143A3 (en) 2018-05-21
EP3130788A1 (en) 2017-02-15
CN106164453B (en) 2019-05-03
EP3130788B1 (en) 2018-10-10
EP3130788A4 (en) 2017-04-19
JPWO2015156013A1 (en) 2017-08-17
US10006395B2 (en) 2018-06-26
CN106164453A (en) 2016-11-23
RU2016144143A (en) 2018-05-11
MY187706A (en) 2021-10-13
RU2660489C2 (en) 2018-07-06
BR112016023666A2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2011132678A1 (en) Fault diagnosis apparatus for airflow meter
JP2016061228A (en) Device and method for controlling internal combustion engine mounted with supercharger
JP4776698B2 (en) Control device for internal combustion engine
WO2016035498A1 (en) Engine control apparatus
JP3097491B2 (en) Failure diagnosis device for exhaust gas recirculation device
JP6327339B2 (en) Control device and control method for internal combustion engine
JP2006057523A (en) Failure diagnosis device for engine control system
KR20150115043A (en) Detecting method of trouble of egr valve
JP2008190430A (en) Vehicle speed sensor failure diagnosis device for vehicle and cooling fan motor failure diagnosis device
JP2004251186A (en) Device for diagnosing failure of cooling water temperature sensor for internal combustion engine
JP2013060864A (en) Fuel supply control device of internal combustion engine
JP5346857B2 (en) Engine control unit and fuel pump control system
JP2008002833A (en) Device for correcting intake flow rate
JP2012021444A (en) Engine control device
JP2016223312A (en) Engine controller
JP4532516B2 (en) Engine control device
JP4906815B2 (en) Control device for internal combustion engine
JP6506661B2 (en) Engine control device
KR102045699B1 (en) Method for determining air mass in an internal combustion engine
JP4000937B2 (en) Exhaust control device for internal combustion engine
JP2015113759A (en) Engine control device
JP4784560B2 (en) Control device for internal combustion engine
JP6312566B2 (en) Misfire detection device for internal combustion engine
JP2003293842A (en) Failure determining device for water temperature sensor
JP2005337211A (en) Sensor output abnormality determining device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124868

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201606533

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/013005

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016023666

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015777250

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015777250

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016144143

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016512613

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016023666

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161011

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112016023666

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2432 DE 15/08/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016023666

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2014-081782 DE 11/04/2014 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112016023666

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161011