JP2009270483A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2009270483A
JP2009270483A JP2008121437A JP2008121437A JP2009270483A JP 2009270483 A JP2009270483 A JP 2009270483A JP 2008121437 A JP2008121437 A JP 2008121437A JP 2008121437 A JP2008121437 A JP 2008121437A JP 2009270483 A JP2009270483 A JP 2009270483A
Authority
JP
Japan
Prior art keywords
intake
closing
valve
opening
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008121437A
Other languages
Japanese (ja)
Inventor
Toshibumi Hayamizu
俊文 早水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008121437A priority Critical patent/JP2009270483A/en
Publication of JP2009270483A publication Critical patent/JP2009270483A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To surely improve filling efficiency, without receiving influence of a variation in manufacture and a change with the lapse of time of an internal combustion engine, while satisfying a request for cost reduction and miniaturization. <P>SOLUTION: A highly responsive air flowmeter 14 whose output changes with excellent responsiveness in response to a change in the suction air volume, is arranged in an intake pipe 12 of an engine 11, and can detect intake pulsation and even a backflow. An intake opening-closing valve 18 is closed during a predetermined period determined by taking into consideration the relationship between an intake stroke and the intake pulsation timing of respective cylinder, actually, a period when a reflected wave (the backflow) of the intake pulsation from the intake valve 31 side reaches the intake opening-closing valve 18, and " intermittent closing control " for controlling so as to open the intake opening-closing valve 18, is performed in the other period. When performing this intermittent closing control, the closing timing TVID (and/or a closing period) of the intake opening-closing valve 18 is controlled by making a feedback process so as to reduce the intake pulsation detected from output of the air flowmeter 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関(エンジン)の充填効率を向上させる制御を実行する内燃機関の制御装置に関する発明である。   The present invention relates to a control device for an internal combustion engine that executes control for improving the charging efficiency of the internal combustion engine (engine).

従来より、エンジンの充填効率を向上させる技術として、エンジン回転速度に応じて吸気管長を変化させることで、共鳴過給や慣性過給効果を利用して充填効率を向上させる可変吸気システムが知られている(例えば特許文献1,2参照)。   Conventionally, as a technique for improving the charging efficiency of an engine, a variable intake system that improves the charging efficiency by using the resonance supercharging or inertial supercharging effect by changing the intake pipe length according to the engine rotation speed is known. (For example, refer to Patent Documents 1 and 2).

また、近年では、吸気のバルブタイミングやリフト量を変化させる可変吸気バルブ装置を搭載したエンジンが増加しているが、この可変吸気バルブ装置は、スロットル全開時に筒内充填空気量が最大となるように制御される。
特開2008−38759号公報 特開2007−297963号公報
In recent years, the number of engines equipped with a variable intake valve device that changes the valve timing and lift amount of intake air is increasing. This variable intake valve device is designed to maximize the amount of air charged in the cylinder when the throttle is fully opened. Controlled.
JP 2008-38759 A JP 2007-297963 A

しかし、従来の可変吸気システムは、構成が複雑で、装置全体が大型化して、低コスト化、小型化の要求を満たすことができない。   However, the conventional variable intake system has a complicated configuration, and the entire apparatus becomes large, so that the demand for cost reduction and size reduction cannot be satisfied.

しかも、従来の可変吸気システムや可変吸気バルブ装置の制御方法は、予め標準的なエンジンを用いて適合したマップを用いて、エンジン回転速度や負荷等のパラメータに応じて見込み制御するだけであるため、エンジンの製造ばらつきや経時変化の存在を考えると、必ずしも最大の充填効率が得られるとは限らない。   Moreover, the conventional control method for the variable intake system and the variable intake valve device only uses prospective control according to parameters such as engine rotational speed and load, using a map that has been adapted in advance using a standard engine. Considering the existence of engine manufacturing variations and changes over time, the maximum charging efficiency is not always obtained.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、低コスト化、小型化の要求を満たしながら、内燃機関の製造ばらつきや経時変化の影響を受けずに確実に充填効率を向上させることができる内燃機関の制御装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to reliably satisfy the demands for cost reduction and downsizing without being affected by variations in manufacturing of internal combustion engines and changes over time. An object of the present invention is to provide a control device for an internal combustion engine capable of improving the charging efficiency.

上記目的を達成するために、請求項1に係る発明は、内燃機関の吸気脈動を検出可能なエアフローメータを備えた内燃機関の制御装置において、内燃機関のスロットルバルブよりも下流側の吸気通路に、該吸気通路を開閉する吸気開閉弁を設けると共に、前記エアフローメータの出力から検出される吸気脈動が小さくなるように前記吸気開閉弁の開閉動作を制御する制御手段を備えた構成としたものである。   In order to achieve the above object, an invention according to claim 1 is directed to an internal combustion engine control apparatus having an air flow meter capable of detecting intake air pulsation of an internal combustion engine, wherein the intake passage is located downstream of the throttle valve of the internal combustion engine. And an intake opening / closing valve for opening / closing the intake passage, and a control means for controlling the opening / closing operation of the intake opening / closing valve so as to reduce the intake pulsation detected from the output of the air flow meter. is there.

本発明は、吸気脈動領域において、吸気開閉弁の上流側への脈動の伝達が大きくなるほど可変吸気装置による吸気の過給効果が小さくなるという特性に着目して、スロットルバルブの下流側に設けた吸気開閉弁の開閉動作を吸気脈動が小さくなるように制御するようにしたものであり、これにより、過給効果を最大化して、充填効率を向上させることができる。しかも、エアフローメータの出力から吸気脈動を検出するため、内燃機関の製造ばらつきや経時変化があっても、その影響による吸気脈動のばらつきを吸気開閉弁の開閉動作の制御に反映させて確実に充填効率を向上させることができる。更に、吸気脈動検出可能なエアフローメータと吸気開閉弁を設けるだけの比較的簡単な構成であるため、従来の可変吸気システムと比較して、構成が簡単で、装置全体を小型化することができ、低コスト化の要求も満たすことができる。   In the intake pulsation region, the present invention is provided on the downstream side of the throttle valve, paying attention to the characteristic that the supercharging effect of the intake by the variable intake device becomes smaller as the transmission of the pulsation upstream of the intake opening / closing valve becomes larger. The opening / closing operation of the intake opening / closing valve is controlled so as to reduce the intake pulsation, whereby the supercharging effect can be maximized and the charging efficiency can be improved. In addition, since intake pulsation is detected from the output of the air flow meter, even if there are manufacturing variations or changes over time of the internal combustion engine, the intake pulsation variation due to the influence is reflected in the control of the opening / closing operation of the intake opening / closing valve to ensure filling. Efficiency can be improved. Furthermore, since it is a relatively simple configuration that only includes an air flow meter that can detect intake pulsation and an intake opening / closing valve, the configuration is simple and the entire device can be downsized compared to conventional variable intake systems. The demand for cost reduction can also be satisfied.

この場合、請求項2のように、吸気通路のうちの各気筒の吸気マニホールドよりも上流側の集合吸気管に吸気開閉弁を設け、各気筒の吸気行程と吸気脈動タイミングとの関係を考慮して決められた所定期間[具体的には吸気バルブ側からの吸気脈動の反射派(逆流)が吸気開閉弁に到達する期間]に吸気開閉弁を閉止し、他の期間に該吸気開閉弁を開放するように制御するようにすると良い。このように、吸気バルブ側からの吸気脈動の反射派(逆流)が吸気開閉弁に到達する期間に吸気開閉弁を閉止するように制御すれば、吸気脈動の反射派を吸気開閉弁によって他の吸気行程気筒の吸気マニホールド側に反射させることができて、吸気脈動の反射派を有効に利用して充填効率を更に向上させることができる。   In this case, as in claim 2, an intake opening / closing valve is provided in the intake manifold upstream of the intake manifold of each cylinder in the intake passage, and the relationship between the intake stroke of each cylinder and the intake pulsation timing is considered. The intake on / off valve is closed during a predetermined period determined by the above [specifically, the period during which the reflection (reverse flow) of the intake pulsation from the intake valve reaches the intake on / off valve], and the intake on / off valve is closed during other periods. It is good to control so that it opens. In this way, if control is performed to close the intake on / off valve during the period in which the intake pulsation reflection (reverse flow) from the intake valve side reaches the intake on / off valve, the intake pulsation reflection is It can be reflected to the intake manifold side of the intake stroke cylinder, and the charging efficiency can be further improved by effectively utilizing the reflection pulsation of the intake pulsation.

この場合、請求項3のように、エアフローメータの出力から検出される吸気脈動が小さくなるように吸気開閉弁の閉止タイミング及び/又は閉止期間をフィードバック制御するようにすると良い。このようにすれば、フィードバック制御により充填効率をより確実に向上させることができる。   In this case, the closing timing and / or the closing period of the intake opening / closing valve may be feedback controlled so that the intake pulsation detected from the output of the air flow meter is reduced. If it does in this way, filling efficiency can be improved more certainly by feedback control.

更に、請求項4のように、内燃機関の運転領域毎に制御手段の制御データを学習してその学習値を書き換え可能な不揮発性の記憶手段に記憶する学習手段を備え、吸気開閉弁の開閉動作の制御を開始する際に、前記学習手段により学習済みの運転領域では、前記学習値を初期値として吸気開閉弁の開閉動作の制御を開始するようにしても良い。このようにすれば、学習済みの運転領域では、吸気開閉弁の開閉動作の制御開始当初から吸気開閉弁の閉止タイミング及び/又は閉止期間を最適値付近に制御して充填効率を向上させることができる。   Further, according to a fourth aspect of the invention, there is provided learning means for learning the control data of the control means for each operation region of the internal combustion engine and storing the learned value in a rewritable nonvolatile storage means, and opening and closing of the intake opening / closing valve When starting the operation control, in the operation region learned by the learning means, the control of the opening / closing operation of the intake opening / closing valve may be started using the learning value as an initial value. In this way, in the learned operation region, it is possible to improve the charging efficiency by controlling the closing timing and / or the closing period of the intake opening / closing valve to be close to the optimum value from the beginning of the control of the opening / closing operation of the intake opening / closing valve. it can.

また、吸気通路内で吸入空気の逆流が発生すると、筒内に向かう吸入空気の順方向の流れが妨げられて、充填効率が低下する。この点を考慮して、請求項5のように、吸気バルブの開閉特性(バルブタイミング、リフト量等)を変化させる可変吸気バルブ装置を備えた内燃機関の制御装置において、内燃機関の吸入空気の逆流を検出可能なエアフローメータと、前記エアフローメータの出力に基づいて逆流が発生しないように前記吸気バルブの開閉特性を制御する制御手段とを備えた構成としても良い。このように、逆流を検出可能なエアフローメータを用いて、当該エアフローメータで逆流が検出されないように吸気バルブの開閉特性を制御すれば、内燃機関の製造ばらつきや経時変化があっても、充填効率を低下させる要因となる吸入空気の逆流を確実に防止できて、充填効率を向上させることができる。   Further, when a reverse flow of the intake air occurs in the intake passage, the forward flow of the intake air toward the inside of the cylinder is hindered, and the charging efficiency is lowered. In view of this point, in a control device for an internal combustion engine having a variable intake valve device that changes the opening / closing characteristics (valve timing, lift amount, etc.) of the intake valve as in claim 5, An air flow meter capable of detecting back flow and control means for controlling the opening / closing characteristics of the intake valve so as not to generate back flow based on the output of the air flow meter may be provided. In this way, if an air flow meter that can detect backflow is used to control the opening and closing characteristics of the intake valve so that backflow is not detected by the airflow meter, the charging efficiency can be improved even if there are manufacturing variations or changes over time of the internal combustion engine. Therefore, it is possible to reliably prevent the backflow of the intake air, which is a factor that decreases the charging efficiency, and to improve the filling efficiency.

この場合、請求項6のように、エアフローメータは、内燃機関の吸気脈動も検出可能であり、前記エアフローメータの出力に基づいて逆流が発生しない範囲内で吸気脈動が大きくなるように吸気バルブの開閉特性を制御するようにしても良い。このようにすれば、充填効率を低下させる要因となる吸入空気の逆流を防止しながら、吸気脈動を有効に利用して充填効率を更に向上させることができる。   In this case, as in claim 6, the air flow meter can also detect intake air pulsation of the internal combustion engine, and the intake valve pulsation is increased so that the back flow does not occur based on the output of the air flow meter. The opening / closing characteristics may be controlled. In this way, it is possible to further improve the charging efficiency by effectively using the intake air pulsation while preventing the backflow of the intake air, which causes a decrease in the charging efficiency.

更に、請求項7のように、内燃機関の運転領域毎に前記制御手段の制御データを学習してその学習値を書き換え可能な不揮発性の記憶手段に記憶する学習手段を備え、吸気バルブの開閉特性の制御を開始する際に、前記学習手段により学習済みの運転領域では、前記学習値を初期値として吸気バルブの開閉特性の制御を開始するようにしても良い。このようにすれば、学習済みの運転領域では、吸気バルブの開閉特性の制御開始当初から吸気バルブの開閉特性を最適値付近に制御して充填効率を向上させることができる。   Further, as claimed in claim 7, there is provided learning means for learning the control data of the control means for each operating region of the internal combustion engine and storing the learned value in a rewritable nonvolatile storage means, and opening and closing the intake valve When starting the control of the characteristics, the control of the opening / closing characteristics of the intake valve may be started with the learning value as an initial value in the operation region learned by the learning means. In this way, in the learned operation region, the charging efficiency can be improved by controlling the opening / closing characteristics of the intake valve to be close to the optimum value from the beginning of the control of the opening / closing characteristics of the intake valve.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明の実施例1を図1乃至図5に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側には、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14は、吸入空気量の変化に応じて出力が応答良く変化する高応答型のエアフローメータであり、吸気脈動や逆流も検出可能となっている。逆流発生時には、エアフローメータ14の出力がマイナス値となる。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is an internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. The air flow meter 14 is a highly responsive air flow meter whose output changes with a good response in accordance with a change in the amount of intake air, and can detect intake pulsation and reverse flow. When backflow occurs, the output of the air flow meter 14 becomes a negative value.

エアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。図1及び図2に示すように、このスロットルバルブ16の下流側の集合吸気管12a(吸気通路)には、該集合吸気管12a内の通路を開閉する吸気開閉弁18が設けられ、この吸気開閉弁18の開閉動作がモータ19等のアクチュエータによって駆動される。   A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 that detects the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14. As shown in FIGS. 1 and 2, the intake manifold 12a (intake passage) on the downstream side of the throttle valve 16 is provided with an intake opening / closing valve 18 for opening and closing the passage in the intake manifold 12a. The opening / closing operation of the opening / closing valve 18 is driven by an actuator such as a motor 19.

吸気開閉弁18の下流側には、サージタンク12bが設けられ、該サージタンク12bには、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。この場合、各気筒の吸気バルブ31から吸気開閉弁18までの吸気通路の長さが同一となるように各気筒の吸気マニホールド20の長さが同一となるように構成されている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。   A surge tank 12b is provided on the downstream side of the intake opening / closing valve 18, and an intake manifold 20 for introducing air into each cylinder of the engine 11 is provided in the surge tank 12b, and an intake port of the intake manifold 20 of each cylinder. A fuel injection valve 21 for injecting fuel is attached in the vicinity. In this case, the length of the intake manifold 20 of each cylinder is the same so that the length of the intake passage from the intake valve 31 of each cylinder to the intake opening / closing valve 18 is the same. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each ignition plug 22.

一方、エンジン11の排気管23には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。   On the other hand, the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting the air-fuel ratio or rich / lean of the exhaust gas. A catalyst 25 such as a three-way catalyst for purifying gas is provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26が取り付けられている。また、エンジン11のクランク軸27の外周側には、クランク軸27が所定クランク角回転する毎にパルス信号を出力するクランク角センサ28が取り付けられ、このクランク角センサ28の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 26 that detects the cooling water temperature is attached to the cylinder block of the engine 11. A crank angle sensor 28 that outputs a pulse signal every time the crankshaft 27 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 27 of the engine 11, and the crank angle sensor 28 outputs a crank signal based on the output signal of the crank angle sensor 28. Angles and engine speed are detected.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶されたエンジン制御用の各ルーチン(図示せず)を実行することで、各気筒の燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 30. The ECU 30 is composed mainly of a microcomputer, and executes each routine (not shown) for engine control stored in a built-in ROM (storage medium), so that the fuel of the fuel injection valve 21 of each cylinder is obtained. The injection amount and the ignition timing of the spark plug 22 are controlled.

更に、ECU30は、後述する図4及び図5の吸気開閉弁間欠閉止制御ルーチンを実行することで、エアフローメータ14の出力から検出される吸気脈動が小さくなるように吸気開閉弁18の開閉動作を制御する。   Further, the ECU 30 executes an intake air opening / closing valve intermittent closing control routine of FIGS. 4 and 5 to be described later, thereby opening / closing the intake air opening / closing valve 18 so that the intake pulsation detected from the output of the air flow meter 14 is reduced. Control.

ここで、図3(4気筒エンジンの例)を用いて、各気筒(#1〜#4)の吸気行程と吸気脈動の波形と吸気開閉弁18の閉止タイミングTVID及び閉止期間との関係を説明する。各気筒の吸気行程毎に吸入空気量が増減する吸気脈動が発生し、エアフローメータ14の部分で検出する吸気脈動が大きくなるほど、吸気開閉弁18による過給効果が減少して、充填効率が低下するという特性がある。   Here, with reference to FIG. 3 (an example of a four-cylinder engine), the relationship between the intake stroke of each cylinder (# 1 to # 4), the waveform of intake pulsation, the closing timing TVID of the intake opening / closing valve 18 and the closing period will be described. To do. As the intake air pulsation in which the intake air amount increases or decreases in each intake stroke of each cylinder occurs and the intake air pulsation detected by the air flow meter 14 increases, the supercharging effect by the intake on-off valve 18 decreases and the charging efficiency decreases. There is a characteristic to do.

そこで、各気筒の吸気行程と吸気脈動タイミングとの関係を考慮して決められた所定期間、具体的には、吸気バルブ31側からの吸気脈動の反射派(逆流)が吸気開閉弁18に到達する期間(吸気脈動波形の極小点付近の期間)に吸気開閉弁18を閉止し、他の期間に該吸気開閉弁18を開放するように制御する“間欠閉止制御”を実行する。そして、この間欠閉止制御の実行中に、エアフローメータ14の出力から検出される吸気脈動が小さくなるように吸気開閉弁18の閉止タイミングTVID(及び/又は閉止期間)をフィードバック制御する。   Accordingly, a reflection period (reverse flow) of the intake pulsation from the intake valve 31 side reaches the intake opening / closing valve 18 for a predetermined period determined in consideration of the relationship between the intake stroke of each cylinder and the intake pulsation timing. “Intermittent closing control” is performed in which the intake on-off valve 18 is closed during the period (a period near the minimum point of the intake pulsation waveform) and the intake on-off valve 18 is opened at other periods. Then, during the execution of the intermittent closing control, feedback control is performed on the closing timing TVID (and / or the closing period) of the intake opening / closing valve 18 so that the intake pulsation detected from the output of the air flow meter 14 is reduced.

更に、エンジン運転領域毎に吸気開閉弁18の閉止タイミングTVIDを学習してその学習値を書き換え可能な不揮発性の記憶手段であるバックアップRAM等のメモリに記憶しておき、吸気開閉弁18の間欠閉止制御を開始する際に、学習済みのエンジン運転領域では、前記学習値を吸気開閉弁18の閉止タイミングTVIDの初期値にセットして吸気開閉弁18の間欠閉止制御を開始する。このようにすれば、学習済みのエンジン運転領域では、吸気開閉弁18の間欠閉止制御開始当初から吸気開閉弁18の閉止タイミングTVIDを最適値付近に制御して充填効率を向上させることができる。   Further, the closing timing TVID of the intake on / off valve 18 is learned for each engine operation region, and the learned value is stored in a memory such as a backup RAM which is a non-volatile storage means that can be rewritten. When starting the closing control, in the learned engine operation region, the learning value is set to the initial value of the closing timing TVID of the intake opening / closing valve 18 and the intermittent closing control of the intake opening / closing valve 18 is started. In this way, in the learned engine operating region, the closing timing TVID of the intake on / off valve 18 can be controlled to be close to the optimum value from the beginning of the intermittent on / off control of the intake on / off valve 18 to improve the charging efficiency.

以上説明した本実施例1の吸気開閉弁18の間欠閉止制御は、ECU30によって図4及び図5の吸気開閉弁間欠閉止制御ルーチンに従って次のように実行される。本ルーチンは、エンジン運転中に所定周期で実行され、特許請求の範囲でいう制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、エアフローメータ14の出力、エンジン回転速度、エンジン負荷(筒内充填空気量、スロットル開度、アクセル開度等)を入力する入力処理を実行する。   The intermittent closing control of the intake on / off valve 18 according to the first embodiment described above is executed by the ECU 30 as follows according to the intake on / off valve intermittent closing control routine of FIGS. 4 and 5. This routine is executed at a predetermined cycle during engine operation, and serves as a control means in the claims. When this routine is started, first, in step 101, input processing for inputting the output of the air flow meter 14, the engine speed, and the engine load (in-cylinder charged air amount, throttle opening, accelerator opening, etc.) is executed.

この後、ステップ102に進み、エンジン回転速度、エンジン負荷(筒内充填空気量、スロットル開度、アクセル開度等)に基づいて吸気脈動発生領域であるか否かを判定する。一般に、吸気脈動は、スロットル全開付近で発生しやすい。尚、エアフローメータ14の出力から検出される吸気脈動幅[つまり吸気脈動波形の極大点(ピーク点)と極小点(ボトム点)との差分値]が所定値以上であるか否かで、吸気脈動発生領域であるか否かを判定するようにしても良い。   Thereafter, the process proceeds to step 102, where it is determined whether or not it is an intake pulsation generation region based on the engine speed and the engine load (cylinder charged air amount, throttle opening, accelerator opening, etc.). In general, intake pulsation tends to occur near the throttle fully open. Note that the intake pulsation width detected from the output of the air flow meter 14 [that is, the difference value between the maximum point (peak point) and the minimum point (bottom point) of the intake pulsation waveform) is greater than or equal to a predetermined value. You may make it determine whether it is a pulsation generation | occurrence | production area | region.

上記ステップ102で、吸気脈動発生領域ではないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。これに対して、上記ステップ102で、吸気脈動発生領域であると判定されれば、ステップ103に進み、エンジン回転速度等に応じて吸気開閉弁18の閉止期間をマップ等により算出する。尚、吸気脈動幅に応じて吸気開閉弁18の閉止期間をマップ等により算出するようにしても良い。   If it is determined in step 102 that the region is not the intake pulsation occurrence region, this routine is terminated without performing the subsequent processing. On the other hand, if it is determined in step 102 that the region is the intake pulsation generation region, the process proceeds to step 103, and the closing period of the intake on / off valve 18 is calculated from a map or the like according to the engine speed or the like. The closing period of the intake opening / closing valve 18 may be calculated from a map or the like according to the intake pulsation width.

この後、ステップ104に進み、現在のエンジン運転領域における吸気開閉弁18の閉止タイミングTVIDを学習済みであるか否かを判定し、学習済みであれば、ステップ105に進み、現在のエンジン運転領域に対応する吸気開閉弁18の閉止タイミングTVIDの学習値をメモリから読み出して、この学習値を吸気開閉弁18の閉止タイミングTVIDの初期値とする。   Thereafter, the process proceeds to step 104, where it is determined whether or not the closing timing TVID of the intake on / off valve 18 in the current engine operation region has been learned. The learning value of the closing timing TVID of the intake opening / closing valve 18 corresponding to the above is read from the memory, and this learning value is set as the initial value of the closing timing TVID of the intake opening / closing valve 18.

これに対して、上記ステップ104で、現在のエンジン運転領域における吸気開閉弁18の閉止タイミングTVIDが学習されていないと判定されれば、ステップ106に進み、エンジン回転速度等に応じて吸気開閉弁18の閉止タイミングTVIDの初期値をマップ等により算出する。尚、吸気脈動幅に応じて吸気開閉弁18の閉止タイミングTVIDの初期値をマップ等により算出するようにしても良い。   On the other hand, if it is determined in step 104 that the closing timing TVID of the intake on / off valve 18 in the current engine operating region has not been learned, the process proceeds to step 106, and the intake on / off valve is determined in accordance with the engine speed or the like. The initial value of 18 closing timing TVID is calculated by a map or the like. The initial value of the closing timing TVID of the intake opening / closing valve 18 may be calculated from a map or the like according to the intake pulsation width.

以上のようにして、ステップ105又は106で、吸気開閉弁18の閉止タイミングTVIDの初期値を設定した後、ステップ107に進み、閉止タイミングTVIDのフィードバック補正量vidfbを所定値KVIDINIに設定して、次のステップ108で、吸気開閉弁18の間欠閉止制御を開始し、吸気開閉弁18の閉止タイミングTVIDの初期値にて吸気開閉弁18を閉止し、上記ステップ103で算出した閉止期間経過後に吸気開閉弁18を開放する。この後、ステップ109に進み、吸気脈動波形の極大点(ピーク点)と極小点(ボトム点)との差分から吸気脈動幅Qw0を算出する。   As described above, after the initial value of the closing timing TVID of the intake on-off valve 18 is set in step 105 or 106, the process proceeds to step 107, and the feedback correction amount vidfb of the closing timing TVID is set to a predetermined value KVIDINI. In the next step 108, the intermittent closing control of the intake opening / closing valve 18 is started, the intake opening / closing valve 18 is closed at the initial value of the closing timing TVID of the intake opening / closing valve 18, and the intake air is taken in after the closing period calculated in step 103 has elapsed. The on-off valve 18 is opened. Thereafter, the routine proceeds to step 109, where the intake pulsation width Qw0 is calculated from the difference between the maximum point (peak point) and the minimum point (bottom point) of the intake pulsation waveform.

この後、図5のステップ110に進み、前回の閉止タイミングTVIDにフィードバック補正量vidfbを加算して、今回の閉止タイミングTVIDを求め、次のステップ111で、今回の閉止タイミングTVIDにて吸気開閉弁18を閉止し、閉止期間経過後に吸気開閉弁18を開放する。この後、ステップ112に進み、吸気脈動波形の極大点(ピーク点)と極小点(ボトム点)との差分から吸気脈動幅Qwを算出する。   Thereafter, the process proceeds to step 110 in FIG. 5, the feedback correction amount vidfb is added to the previous closing timing TVID to obtain the current closing timing TVID, and in the next step 111, the intake opening / closing valve at the current closing timing TVID. 18 is closed, and the intake on-off valve 18 is opened after the closing period has elapsed. Thereafter, the routine proceeds to step 112, where the intake pulsation width Qw is calculated from the difference between the maximum point (peak point) and the minimum point (bottom point) of the intake pulsation waveform.

この後、ステップ113に進み、前回の吸気脈動幅Qw0から今回の吸気脈動幅Qwを差し引いて吸気脈動幅変化量QwDIFを求める。
QwDIF=Qw0−Qw
Thereafter, the process proceeds to step 113, and the intake pulsation width change amount QwDIF is obtained by subtracting the current intake pulsation width Qw from the previous intake pulsation width Qw0.
QwDIF = Qw0-Qw

吸気脈動幅変化量QwDIFがプラス値となる場合は、吸気脈動幅が小さくなる方向(つまり充填効率が最大となる閉止タイミングTVIDに近付く方向)に制御されていることを意味し、一方、吸気脈動幅変化量QwDIFがマイナス値となる場合は、吸気脈動幅が大きくなる方向(つまり充填効率が最大となる閉止タイミングTVIDから遠ざかる方向)に制御されていることを意味する。   When the intake pulsation width change amount QwDIF is a positive value, it means that the intake pulsation width is controlled in a direction in which the intake pulsation width decreases (that is, a direction approaching the closing timing TVID at which the charging efficiency is maximized). When the width change amount QwDIF becomes a negative value, it means that the intake pulsation width is controlled in the direction in which it increases (that is, in the direction away from the closing timing TVID at which the charging efficiency is maximized).

この後、ステップ114に進み、吸気脈動幅変化量QwDIFにフィードバックゲインKVIDGAINに乗算した値をフィードバック補正量vidfbに加算することで、フィードバック補正量vidfbを吸気脈動幅変化量QwDIFに応じて修正する。
vidfb=vidfb+QwDIF×KVIDGAIN
Thereafter, the process proceeds to step 114, and the feedback correction amount vidfb is corrected according to the intake pulsation width change amount QwDIF by adding the value obtained by multiplying the intake pulsation width change amount QwDIF by the feedback gain KVIDGAIN to the feedback correction amount vidfb.
vidfb = vidfb + QwDIF × KVIDGAIN

この後、ステップ115に進み、次回の演算に備えて、今回の吸気脈動幅Qwを前回値Qw0として記憶する。
Qw0=Qw
Thereafter, the routine proceeds to step 115 where the current intake pulsation width Qw is stored as the previous value Qw0 in preparation for the next calculation.
Qw0 = Qw

そして、次のステップ116で、吸気脈動が発生しない領域に移行したか否かを判定し、まだ吸気脈動発生領域が続いていれば、上記ステップ110〜115の処理を繰り返す。これにより、吸気脈動発生領域が続いている期間は、吸気脈動幅が小さくなるように吸気開閉弁18の閉止タイミングTVIDをフィードバック補正して、充填効率が最大となる閉止タイミングTVIDに制御する。   Then, in the next step 116, it is determined whether or not the region has shifted to a region where no intake pulsation occurs. If the intake pulsation generation region still continues, the processing of steps 110 to 115 is repeated. As a result, during the period in which the intake pulsation generation region continues, the closing timing TVID of the intake on / off valve 18 is feedback-corrected so that the intake pulsation width becomes small, and the closing timing TVID at which the charging efficiency is maximized is controlled.

その後、吸気脈動が発生しなくなった時点で、吸気開閉弁18の間欠閉止制御を終了して吸気開閉弁18を開放して、ステップ117に進み、吸気開閉弁18の閉止タイミングTVIDの最終制御結果を学習値としてバックアップRAM等のメモリに記憶する。この学習値は、エンジン運転条件毎に学習してメモリに記憶する。このステップ117の処理が特許請求の範囲でいう学習手段としての役割を果たす。   Thereafter, when the intake pulsation ceases to occur, the intermittent closing control of the intake opening / closing valve 18 is terminated, the intake opening / closing valve 18 is opened, and the routine proceeds to step 117 where the final control result of the closing timing TVID of the intake opening / closing valve 18 is reached. Is stored as a learning value in a memory such as a backup RAM. This learned value is learned for each engine operating condition and stored in the memory. The processing in step 117 serves as learning means in the claims.

以上説明した本実施例1によれば、吸気脈動が大きくなるほど充填効率が低下するという特性に着目して、スロットルバルブ16の下流側の集合吸気管12aに吸気開閉弁18を設け、吸気脈動波形の極小点付近(ボトム圧付近)のタイミングに合わせて吸気開閉弁18を間欠的に閉止させる間欠閉止制御を実行すると共に、エアフローメータ14の出力から検出される吸気脈動が小さくなるように吸気開閉弁18の閉止タイミングTVIDをフィードバック制御するようにしたので、吸気開閉弁18の間欠閉止制御によって充填効率を向上させることができる。この間欠閉止制御の際に、エアフローメータ14の出力から検出される吸気脈動が小さくなるように吸気開閉弁18の閉止期間をフィードバック制御するようにしたり、閉止期間と閉止タイミングTVIDの両方をフィードバック制御するようにしても良い。   According to the first embodiment described above, focusing on the characteristic that the charging efficiency decreases as the intake pulsation increases, the intake opening / closing valve 18 is provided in the collective intake pipe 12a downstream of the throttle valve 16, and the intake pulsation waveform is obtained. In accordance with the timing near the minimum point (near the bottom pressure), intermittent closing control is performed to intermittently close the intake opening / closing valve 18, and intake opening / closing is performed so that the intake pulsation detected from the output of the air flow meter 14 is reduced. Since the closing timing TVID of the valve 18 is feedback-controlled, the charging efficiency can be improved by the intermittent closing control of the intake opening / closing valve 18. During the intermittent closing control, the closing period of the intake opening / closing valve 18 is feedback-controlled so that the intake pulsation detected from the output of the air flow meter 14 is reduced, or both the closing period and the closing timing TVID are feedback-controlled. You may make it do.

しかも、本実施例1では、エアフローメータ14の出力から吸気脈動を検出するため、エンジン11の製造ばらつきや経時変化があっても、その影響による吸気脈動のばらつきを吸気開閉弁18の間欠閉止制御に反映させて確実に充填効率を向上させることができる。更に、吸気脈動検出可能なエアフローメータ14と吸気開閉弁18を設けるだけの比較的簡単な構成であるため、従来の可変吸気システムと比較して、構成が簡単で、装置全体を小型化することができ、低コスト化の要求も満たすことができる。   In addition, in the first embodiment, since the intake pulsation is detected from the output of the air flow meter 14, even if there is a manufacturing variation of the engine 11 or a change with time, the intake pulsation variation due to the influence is controlled to intermittently close the intake opening / closing valve 18. It is possible to improve the filling efficiency with certainty. Furthermore, since the air flow meter 14 capable of detecting the intake pulsation and the intake opening / closing valve 18 are relatively simple, the configuration is simple and the entire apparatus can be downsized as compared with the conventional variable intake system. Can meet the demand for cost reduction.

更に、本実施例1では、吸気バルブ31側からの吸気脈動の反射派(逆流)が吸気開閉弁18に到達する期間に吸気開閉弁18を閉止するようにしたので、吸気脈動の反射派を吸気開閉弁18によって他の吸気行程気筒の吸気マニホールド20側に反射させることができて、吸気脈動の反射派を有効に利用して充填効率を効果的に向上させることができる。   Further, in the first embodiment, since the intake pulsation reflection (reverse flow) from the intake valve 31 side reaches the intake on / off valve 18, the intake on / off valve 18 is closed. The intake on / off valve 18 can be reflected to the intake manifold 20 side of the other intake stroke cylinders, and the charging efficiency can be effectively improved by effectively utilizing the reflection of the intake pulsation.

尚、図4及び図5の吸気開閉弁間欠閉止制御ルーチンでは、エアフローメータ14の出力から検出される吸気脈動が小さくなるように吸気開閉弁18の閉止タイミングTVIDをフィードバック制御するようにしたが、吸気開閉弁18の閉止期間をフィードバック制御したり、閉止タイミングTVIDと閉止期間の両方をフィードバック制御するようにしても良い。   In the intake / closing valve intermittent closing control routine of FIGS. 4 and 5, the closing timing TVID of the intake opening / closing valve 18 is feedback-controlled so that the intake pulsation detected from the output of the air flow meter 14 is reduced. The closing period of the intake opening / closing valve 18 may be feedback-controlled, or both the closing timing TVID and the closing period may be feedback-controlled.

図6及び図7に示す本発明の実施例2は、吸気バルブ31の開閉タイミング(以下「吸気VCT」と表記する)を変化させる可変吸気バルブタイミング装置32(可変吸気バルブ装置)を備えたシステムに適用される実施例である(前記実施例1で必要とした吸気開閉弁18は、本実施例2では不要である)。その他のシステム構成は、前記実施例1と同じである。   The second embodiment of the present invention shown in FIGS. 6 and 7 is a system including a variable intake valve timing device 32 (variable intake valve device) that changes the opening / closing timing of the intake valve 31 (hereinafter referred to as “intake VCT”). (The intake opening / closing valve 18 required in the first embodiment is not necessary in the second embodiment). Other system configurations are the same as those in the first embodiment.

吸気管12内で吸入空気の逆流が発生すると、筒内に向かう吸入空気の順方向の流れが妨げられて、充填効率が低下する。この点を考慮して、本実施例2では、吸入空気の逆流及び脈動を検出可能なエアフローメータ14を用い、エアフローメータ14の出力に基づいて逆流が発生しないように吸気VCTを制御すると共に、逆流が発生しない範囲内で吸気脈動が大きくなるように目標吸気VCTを補正する。このようにすれば、エンジン11の製造ばらつきや経時変化があっても、充填効率を低下させる要因となる吸入空気の逆流を確実に防止しながら、吸気脈動を有効に利用して充填効率を効果的に向上させることができる。   When a reverse flow of the intake air occurs in the intake pipe 12, the forward flow of the intake air toward the cylinder is hindered, and the charging efficiency is lowered. Considering this point, in the second embodiment, the air flow meter 14 capable of detecting the backflow and pulsation of the intake air is used, and the intake VCT is controlled based on the output of the airflow meter 14 so that the backflow does not occur. The target intake VCT is corrected so that the intake pulsation increases within a range where no backflow occurs. In this way, even if there are manufacturing variations or changes over time of the engine 11, the charging efficiency can be effectively utilized by effectively using the intake pulsation while reliably preventing the backflow of the intake air, which causes a decrease in the charging efficiency. Can be improved.

更に、エンジン運転領域毎に目標吸気VCT補正量を学習してその学習値を書き換え可能な不揮発性の記憶手段であるバックアップRAM等のメモリに記憶しておき、吸気VCTの制御を開始する際に、学習済みのエンジン運転領域では、前記学習値を目標吸気VCT補正量の初期値にセットして吸気VCTの制御を開始する。このようにすれば、学習済みのエンジン運転領域では、吸気VCTの制御開始当初から吸気VCTを最適値付近に制御して充填効率を向上させることができる。   Further, the target intake VCT correction amount is learned for each engine operation region, and the learned value is stored in a memory such as a backup RAM which is a rewritable non-volatile storage means, and when the intake VCT control is started. In the learned engine operation region, the learning value is set to the initial value of the target intake VCT correction amount, and the intake VCT control is started. In this way, in the learned engine operation region, it is possible to improve the charging efficiency by controlling the intake VCT near the optimum value from the beginning of the control of the intake VCT.

以上説明した本実施例2の吸気VCTの制御は、ECU30によって図7の吸気VCT制御ルーチンに従って次のように実行される。本ルーチンは、エンジン運転中に所定周期で実行され、特許請求の範囲でいう制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ201で、エアフローメータ14の出力、エンジン回転速度、エンジン負荷、冷却水温等のエンジン運転条件を検出する各種センサ出力等を入力する入力処理を実行する。   The control of the intake VCT of the second embodiment described above is executed by the ECU 30 as follows according to the intake VCT control routine of FIG. This routine is executed at a predetermined cycle during engine operation, and serves as a control means in the claims. When this routine is started, first, in step 201, input processing for inputting various sensor outputs for detecting engine operating conditions such as the output of the air flow meter 14, the engine speed, the engine load, and the coolant temperature is executed.

この後、ステップ202に進み、現在のエンジン運転条件に基づいて吸気VCT制御実行条件が成立しているか否かを判定し、吸気VCT制御実行条件が成立していなければ、以降の処理を行うことなく、本ルーチンを終了する。   Thereafter, the process proceeds to step 202, where it is determined whether or not the intake VCT control execution condition is satisfied based on the current engine operating conditions. If the intake VCT control execution condition is not satisfied, the subsequent processing is performed. This routine is terminated.

これに対して、上記ステップ202で、吸気VCT制御実行条件が成立していると判定されれば、ステップ203に進み、現在のエンジン運転領域における目標吸気VCT補正量を学習済みであるか否かを判定し、学習済みであれば、ステップ105に進み、現在のエンジン運転領域に対応する目標吸気VCT補正量の学習値をメモリから読み出して、この学習値を初期値とする。   On the other hand, if it is determined in step 202 that the intake VCT control execution condition is satisfied, the process proceeds to step 203, and whether or not the target intake VCT correction amount in the current engine operation region has been learned. If the learning has been completed, the process proceeds to step 105, where the learning value of the target intake VCT correction amount corresponding to the current engine operating region is read from the memory, and this learning value is set as the initial value.

一方、上記ステップ203で、現在のエンジン運転領域における目標吸気VCT補正量が学習されていないと判定されれば、ステップ205に進み、目標吸気VCT補正量を初期値(例えば0)にセットする。   On the other hand, if it is determined in step 203 that the target intake VCT correction amount in the current engine operation region has not been learned, the process proceeds to step 205, where the target intake VCT correction amount is set to an initial value (eg, 0).

この後、ステップ206に進み、吸気VCT制御を実行して、実吸気VCTを目標吸気VCTに一致させるように可変吸気バルブタイミング装置32の駆動油圧をフィードバック制御する。この後、ステップ207に進み、エアフローメータ14の出力がマイナス値であるか否かで逆流が発生しているか否かを判定し、逆流が発生していると判定されれば、ステップ208に進み、目標吸気VCTを遅角補正する。この際、目標吸気VCTの遅角補正量は、予め設定された一定値でも良いが、エンジン運転条件毎にマップ等で設定しても良い。   Thereafter, the routine proceeds to step 206, where the intake VCT control is executed, and the drive hydraulic pressure of the variable intake valve timing device 32 is feedback-controlled so that the actual intake VCT coincides with the target intake VCT. Thereafter, the process proceeds to step 207, where it is determined whether a backflow has occurred depending on whether the output of the air flow meter 14 is a negative value. If it is determined that a backflow has occurred, the process proceeds to step 208. Then, the target intake VCT is retarded. At this time, the retard correction amount of the target intake VCT may be a predetermined constant value, or may be set on a map or the like for each engine operating condition.

これに対して、上記ステップ207で、逆流が発生していないと判定されれば、ステップ209に進み、逆流が発生しない範囲内で吸気脈動が最大となるように目標吸気VCTを進角補正する。この際、目標吸気VCTの進角補正量は、エンジン運転条件毎にマップ等で設定しても良いし、予め決められた一定値ずつ目標吸気VCTの進角補正する処理を繰り返して、逆流が発生しない範囲内で吸気脈動が最大となる目標吸気VCTの進角補正量を探索するようにしても良い。   On the other hand, if it is determined in step 207 that no reverse flow has occurred, the process proceeds to step 209, where the target intake VCT is advanced and corrected so that the intake pulsation is maximized within the range where no reverse flow occurs. . At this time, the advance correction amount of the target intake VCT may be set on a map or the like for each engine operating condition, or the process of correcting the advance angle of the target intake VCT by a predetermined constant value is repeated, so that the backflow occurs. The advance correction amount of the target intake VCT that maximizes the intake pulsation within a range that does not occur may be searched.

この後、ステップ210に進み、吸気VCT制御実行条件が不成立であるか否かを判定し、まだ吸気VCT制御実行条件が成立した状態が続いていれば、上述したステップ206〜209の処理を繰り返して、逆流が発生しない範囲内で吸気脈動が最大となるように目標吸気VCTを補正する。   Thereafter, the process proceeds to step 210, where it is determined whether or not the intake VCT control execution condition is not satisfied. If the intake VCT control execution condition is still satisfied, the processes of steps 206 to 209 are repeated. Thus, the target intake VCT is corrected so that the intake pulsation is maximized within a range where no backflow occurs.

その後、吸気VCT制御実行条件が不成立になった時点で、ステップ210で「Yes」と判定されて、ステップ211に進み、最終的な目標吸気VCT補正量を学習値としてバックアップRAM等のメモリに記憶する。この学習値は、エンジン運転条件毎に学習してメモリに記憶する。このステップ211の処理が特許請求の範囲でいう学習手段としての役割を果たす。   Thereafter, when the intake VCT control execution condition is not satisfied, “Yes” is determined in step 210, the process proceeds to step 211, and the final target intake VCT correction amount is stored as a learning value in a memory such as a backup RAM. To do. This learned value is learned for each engine operating condition and stored in the memory. The processing in step 211 serves as learning means in the claims.

以上説明した本実施例2によれば、吸気管12内で吸入空気の逆流が発生すると、筒内に向かう吸入空気の順方向の流れが妨げられて、充填効率が低下する点を考慮して、エアフローメータ14の出力に基づいて逆流が発生しないように吸気VCTを制御する構成としたので、エンジン11の製造ばらつきや経時変化があっても、充填効率を低下させる要因となる吸入空気の逆流を確実に防止できて、充填効率を向上させることができる。   According to the second embodiment described above, taking into account the fact that when a reverse flow of the intake air occurs in the intake pipe 12, the forward flow of the intake air toward the cylinder is hindered and the charging efficiency is reduced. Since the intake VCT is controlled so that no backflow occurs based on the output of the air flow meter 14, the backflow of the intake air that causes a reduction in charging efficiency even if there are manufacturing variations or changes over time of the engine 11 Can be reliably prevented, and the filling efficiency can be improved.

しかも、本実施例2では、エアフローメータ14の出力に基づいて逆流が発生しない範囲内で吸気脈動が大きくなるように吸気VCTを制御する構成としたので、充填効率を低下させる要因となる吸入空気の逆流を防止しながら、吸気脈動を有効に利用して充填効率を更に向上させることができる。   Moreover, in the second embodiment, since the intake VCT is controlled so that the intake pulsation increases within a range where no backflow occurs based on the output of the air flow meter 14, intake air that causes a reduction in charging efficiency In addition, the charging efficiency can be further improved by effectively using the intake air pulsation while preventing the backflow of the air.

尚、本実施例2では、逆流が発生しないように吸気VCTを制御する構成としたが、吸気バルブ31の他の開閉特性(リフト量、作用角等)を制御する構成としても良い。   In the second embodiment, the intake VCT is controlled so that no backflow occurs, but other open / close characteristics (lift amount, working angle, etc.) of the intake valve 31 may be controlled.

その他、本発明は、吸気ポート噴射エンジンに限定されず、筒内噴射エンジンや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射エンジンにも適用して実施できる。   In addition, the present invention is not limited to an intake port injection engine, and is also applicable to a direct injection engine and a dual injection engine having both a fuel injection valve for intake port injection and a fuel injection valve for direct injection. Can be implemented.

実施例1におけるエンジン制御システム全体の概略構成図である。1 is a schematic configuration diagram of an entire engine control system in Embodiment 1. FIG. 実施例1のエンジンの吸気系の構成を概略的に示す図である。It is a figure which shows roughly the structure of the intake system of the engine of Example 1. FIG. 実施例1のエンジンの各気筒(#1〜#4)の吸気行程と吸気脈動の波形と吸気開閉弁の閉止タイミングTVID及び閉止期間との関係を説明するタイムチャートである。6 is a time chart for explaining the relationship among the intake stroke, the waveform of intake pulsation, the closing timing TVID of the intake opening and closing valve, and the closing period of each cylinder (# 1 to # 4) of the engine of the first embodiment. 実施例1の吸気開閉弁間欠閉止制御ルーチンの前半部の処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing in the first half of an intake on / off valve intermittent closing control routine according to Embodiment 1; 実施例1の吸気開閉弁間欠閉止制御ルーチンの後半部の処理の流れを示すフローチャートである。7 is a flowchart showing a flow of processing in the latter half of the intake air opening / closing valve intermittent closing control routine according to the first embodiment. 実施例2におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 2. FIG. 実施例2の吸気VCT制御ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of an intake VCT control routine according to a second embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、12a…集合吸気管(吸気通路)、12b…サージタンク、14…エアフローメータ、16…スロットルバルブ、17…スロットル開度センサ、18…吸気開閉弁、19…モータ、20…吸気マニホールド、21…燃料噴射弁、22…点火プラグ、23…排気管、24…排出ガスセンサ、28…クランク角センサ、30…ECU(制御手段,学習手段)、31…吸気バルブ、32…可変吸気バルブタイミング装置(可変吸気バルブ装置)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 12a ... Collective intake pipe (intake passage), 12b ... Surge tank, 14 ... Air flow meter, 16 ... Throttle valve, 17 ... Throttle opening sensor, 18 ... Intake opening / closing valve , 19 ... motor, 20 ... intake manifold, 21 ... fuel injection valve, 22 ... spark plug, 23 ... exhaust pipe, 24 ... exhaust gas sensor, 28 ... crank angle sensor, 30 ... ECU (control means, learning means), 31 ... Intake valve, 32 ... Variable intake valve timing device (variable intake valve device)

Claims (7)

内燃機関の吸気脈動を検出可能なエアフローメータと、
内燃機関のスロットルバルブよりも下流側の吸気通路に設けられ、該吸気通路を開閉する吸気開閉弁と、
前記エアフローメータの出力から検出される吸気脈動が小さくなるように前記吸気開閉弁の開閉動作を制御する制御手段と
を備えていることを特徴とする内燃機関の制御装置。
An air flow meter capable of detecting intake air pulsation of an internal combustion engine;
An intake opening / closing valve that is provided in an intake passage downstream of the throttle valve of the internal combustion engine and opens and closes the intake passage;
A control device for an internal combustion engine, comprising: control means for controlling an opening / closing operation of the intake opening / closing valve so that an intake pulsation detected from an output of the air flow meter is reduced.
前記吸気開閉弁は、前記吸気通路のうちの各気筒の吸気マニホールドよりも上流側の集合吸気管に設けられ、
前記制御手段は、各気筒の吸気行程と吸気脈動タイミングとの関係を考慮して決められた所定期間に前記吸気開閉弁を閉止し、他の期間に該吸気開閉弁を開放するように制御することを特徴とする請求項1に記載の内燃機関の制御装置。
The intake opening / closing valve is provided in a collective intake pipe upstream of the intake manifold of each cylinder in the intake passage,
The control means controls to close the intake opening / closing valve in a predetermined period determined in consideration of the relationship between the intake stroke of each cylinder and the intake pulsation timing, and to open the intake opening / closing valve in another period. The control apparatus for an internal combustion engine according to claim 1.
前記制御手段は、前記エアフローメータの出力から検出される吸気脈動が小さくなるように前記吸気開閉弁の閉止タイミング及び/又は閉止期間をフィードバック制御することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   3. The control unit according to claim 1, wherein the control unit performs feedback control of a closing timing and / or a closing period of the intake on / off valve so that an intake pulsation detected from an output of the air flow meter is reduced. Control device for internal combustion engine. 内燃機関の運転領域毎に前記制御手段の制御データを学習してその学習値を書き換え可能な不揮発性の記憶手段に記憶する学習手段を備え、
前記制御手段は、前記吸気開閉弁の開閉動作の制御を開始する際に、前記学習手段により学習済みの運転領域では、前記学習値を初期値として前記吸気開閉弁の開閉動作の制御を開始することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の制御装置。
Learning means for learning the control data of the control means for each operating region of the internal combustion engine and storing the learning value in a rewritable nonvolatile storage means;
When starting the control of the opening / closing operation of the intake opening / closing valve, the control means starts the control of the opening / closing operation of the intake opening / closing valve with the learning value as an initial value in the operation region learned by the learning means. The control device for an internal combustion engine according to any one of claims 1 to 3.
吸気バルブの開閉特性を変化させる可変吸気バルブ装置を備えた内燃機関の制御装置において、
内燃機関の吸入空気の逆流を検出可能なエアフローメータと、
前記エアフローメータの出力に基づいて逆流が発生しないように前記吸気バルブの開閉特性を制御する制御手段と
を備えていることを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine having a variable intake valve device that changes the opening and closing characteristics of the intake valve,
An air flow meter capable of detecting the backflow of the intake air of the internal combustion engine;
And a control means for controlling the opening / closing characteristics of the intake valve so that no backflow occurs based on the output of the air flow meter.
前記エアフローメータは、内燃機関の吸気脈動も検出可能であり、
前記制御手段は、前記エアフローメータの出力に基づいて逆流が発生しない範囲内で吸気脈動が大きくなるように前記吸気バルブの開閉特性を制御することを特徴とする請求項5に記載の内燃機関の制御装置。
The air flow meter can also detect intake air pulsation of an internal combustion engine,
6. The internal combustion engine according to claim 5, wherein the control means controls the opening / closing characteristics of the intake valve so that intake pulsation increases within a range in which no backflow occurs based on an output of the air flow meter. Control device.
内燃機関の運転領域毎に前記制御手段の制御データを学習してその学習値を書き換え可能な不揮発性の記憶手段に記憶する学習手段を備え、
前記制御手段は、前記吸気バルブの開閉特性の制御を開始する際に、前記学習手段により学習済みの運転領域では、前記学習値を初期値として前記吸気バルブの開閉特性の制御を開始することを特徴とする請求項5又は6に記載の内燃機関の制御装置。
Learning means for learning the control data of the control means for each operating region of the internal combustion engine and storing the learning value in a rewritable nonvolatile storage means;
When starting the control of the opening / closing characteristics of the intake valve, the control means starts the control of the opening / closing characteristics of the intake valve using the learning value as an initial value in the operation region learned by the learning means. The control device for an internal combustion engine according to claim 5 or 6, characterized by the above.
JP2008121437A 2008-05-07 2008-05-07 Control device of internal combustion engine Pending JP2009270483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121437A JP2009270483A (en) 2008-05-07 2008-05-07 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121437A JP2009270483A (en) 2008-05-07 2008-05-07 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009270483A true JP2009270483A (en) 2009-11-19

Family

ID=41437266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121437A Pending JP2009270483A (en) 2008-05-07 2008-05-07 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009270483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469086B1 (en) * 2013-07-23 2014-12-10 유수영 Apparatus for supplying filtered air engine of vehicle
US10006395B2 (en) 2014-04-11 2018-06-26 Nissan Motor Co., Ltd. Apparatus and method for controlling internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288055A (en) * 1997-04-15 1998-10-27 Toyota Motor Corp Intake air amount control device of internal combustion engine
JP2008025562A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288055A (en) * 1997-04-15 1998-10-27 Toyota Motor Corp Intake air amount control device of internal combustion engine
JP2008025562A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469086B1 (en) * 2013-07-23 2014-12-10 유수영 Apparatus for supplying filtered air engine of vehicle
US10006395B2 (en) 2014-04-11 2018-06-26 Nissan Motor Co., Ltd. Apparatus and method for controlling internal combustion engine

Similar Documents

Publication Publication Date Title
JP5209454B2 (en) Device for controlling when ignition is stopped when the internal combustion engine is stopped
JP4314585B2 (en) Control device for internal combustion engine
JP5451687B2 (en) Engine control device
JP4848396B2 (en) Ignition timing control device for internal combustion engine
JP2006144639A (en) Engine control system
JP4605512B2 (en) Control device for internal combustion engine
JP5660322B2 (en) EGR control device for internal combustion engine
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP2009270483A (en) Control device of internal combustion engine
JP2009002249A (en) Device for estimating throttle upstream pressure of internal combustion engine
JP5490646B2 (en) Variable valve timing control device for internal combustion engine
JP2006112385A (en) Variable valve timing controller of internal combustion engine
JP2006170163A (en) Start control device for internal combustion engine
JP2005146908A (en) Vibration dampening control device of internal combustion engine
JP2005337186A (en) Controller for internal combustion engine
JP5317022B2 (en) Fuel injection control device for internal combustion engine
JP2006009674A (en) Controller of internal combustion engine
JP2011052579A (en) Fuel supply control device of internal combustion engine
JP2006329035A (en) Control device of internal combustion engine
JP2009275694A (en) Control device for internal combustion engine
JP2009216001A (en) Noise reducing device of internal combustion engine
JP4110534B2 (en) Variable valve control device for internal combustion engine
WO2021112221A1 (en) Drive control device for internal combustion engine
JP6698580B2 (en) Control device and control method for internal combustion engine
JP2008196352A (en) Fuel injection device for multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120502