WO2015155830A1 - High durability anti-fouling structure and car part using same - Google Patents

High durability anti-fouling structure and car part using same Download PDF

Info

Publication number
WO2015155830A1
WO2015155830A1 PCT/JP2014/060163 JP2014060163W WO2015155830A1 WO 2015155830 A1 WO2015155830 A1 WO 2015155830A1 JP 2014060163 W JP2014060163 W JP 2014060163W WO 2015155830 A1 WO2015155830 A1 WO 2015155830A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
liquid
highly durable
antifouling structure
base material
Prior art date
Application number
PCT/JP2014/060163
Other languages
French (fr)
Japanese (ja)
Inventor
野口 雄司
甲斐 康朗
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/060163 priority Critical patent/WO2015155830A1/en
Publication of WO2015155830A1 publication Critical patent/WO2015155830A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to an antifouling structure that prevents adhesion of dirt in various fields such as buildings, automobiles, food containers, and medical devices, and realizes an excellent appearance and visibility over a long period of time in buildings and automobiles. More specifically, it is an antifouling structure in which wear and damage are suppressed, and is a highly durable antifouling structure impregnated or held with a predetermined liquid, and an automobile part having this highly durable antifouling structure It is about.
  • a surface coated with a fluorine-based material generally used as an antifouling surface has a small surface free energy, and can prevent various kinds of dirt from adhering.
  • fluorine has a large polarity in the molecule, there are some that become more adherent depending on the type of dirt. Further, it is known that highly viscous soils such as pitch, tar, and sap are highly adherent and stick even on a surface coated with a fluorine-based material.
  • Non-Patent Document 1 reports a technique for sliding off various stains by holding a fluorine liquid on the surface.
  • Patent Document 1 when the technique described in Patent Document 1 is applied to a superhydrophilic surface, dirt having near surface free energy such as water scale adheres. In fact, snail shells and exterior wall materials are not glossy, so they are almost inconspicuous due to a small amount of scale and water stains, but they are very useful for applications where luster is the main component of design, such as automobile paint. It is difficult to.
  • Non-Patent Document 1 still belongs to academic research, and the fields that can be put into practical use are limited in terms of actual durability and transparency.
  • the present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide long-term durability and antifouling properties in fields requiring severe durability such as automobiles. It is an object to provide a highly durable antifouling structure that can satisfy both of the above and an automobile part using the same.
  • the present inventor has controlled the surface roughness Ra of the porous base material to a predetermined value or less and holds the specific liquid on the porous base material. The inventors have found that the above object can be achieved and have completed the present invention.
  • the highly durable antifouling structure of the present invention comprises a porous substrate having a plurality of pores on the surface and inside and having a surface roughness Ra of 400 nm or less, and a liquid impregnated in the porous substrate. .
  • the surface energy difference between the porous substrate and the liquid is 10 mJ / m 2 or less.
  • the automobile part of the present invention is characterized by having the above-mentioned highly durable antifouling structure.
  • the surface roughness Ra of the porous base material is controlled to a predetermined value or less and the specific liquid is held in the porous base material, severe durability such as an automobile is required. It is possible to provide a highly durable antifouling structure capable of achieving both long-term durability and antifouling properties in the field, and automobile parts using the same.
  • FIG. 1 is an enlarged cross-sectional view showing an example of an antifouling coating which is an embodiment of the highly durable antifouling structure of the present invention.
  • the antifouling coating 40 includes a base material layer 10, a porous base material layer 20, and a liquid 30.
  • a porous base material layer 20 is disposed on the surface side of the base material layer 10, and the porous base material layer 20 has a plurality of pores 21 on the surface and inside thereof. 30 is impregnated or retained.
  • the surface roughness Ra of the porous substrate layer 20 is 400 nm or less
  • the liquid 30 held in the pores 21 is the surface of the porous substrate layer 20 or the inner surface of the pores 21.
  • the surface free energy difference is 10 mJ / m 2 or less.
  • the pore 21 consists of a some pore, it may be an independent hole or a communicating hole.
  • the porous substrate layer 20 needs to have a surface roughness Ra of 400 nm or less, preferably 300 nm or less, more preferably 200 nm or less, from the viewpoint of optical properties and wear resistance. If Ra exceeds 400 nm, light is likely to be scattered, making it difficult to apply to parts that require high transparency, and the structure is likely to be destroyed due to the sliding object caught on the surface roughness.
  • the material constituting the porous substrate layer 20 is not particularly limited, and any material such as an inorganic material, an organic compound, or a composite thereof can be used, but an inorganic material is preferable from the viewpoint of wear resistance. More preferred are inorganic oxides such as silicon oxide, titanium oxide, zirconium oxide, tin oxide, aluminum oxide, indium tin oxide, zinc oxide and zinc tin oxide, which can ensure high transparency, and magnesium fluoride.
  • the material constituting the porous substrate layer 20 is preferably 20 GPa or more in terms of the elastic modulus by the nano-indent method, and more preferably 50 GPa or more.
  • the method for forming the porous substrate layer 20 is not particularly limited, and various methods such as a sol-gel method, CVD, vapor deposition, and magnetron sputtering can be used. Particularly preferred is a sol-gel method in which the pore size can be easily adjusted by adjusting the phase separation agent and the reaction rate.
  • the pore diameter D of the pore 21 needs to be 400 nm or less because light scattering is particularly strong due to the relationship of optical characteristics, and exactly D ⁇ 400 nm / n (n is a component so that light diffraction does not occur).
  • the refractive index of the material is desirable.
  • the lower limit value of the pore diameter D is preferably larger than the molecules of the liquid 30 to be impregnated. For example, when a krytox series (manufactured by duPont) perfluoropolyether-based oil is used as the liquid 30, the molecular size is about 10 to 50 nm, so the lower limit is about 10 nm.
  • the surface free energy of the surface of the porous base material layer 20 or the pore 21 with the surface energy of the liquid 30 to be impregnated or retained It is necessary to adjust the energy difference to 10 mJ / m 2 or less.
  • the surface treatment of the liquid 21 to be introduced may be necessary on the surface of the pore 21.
  • a fluorinated liquid having a low surface energy of 20 mJ / m 2 or less which is considered to have the highest antifouling property in the antifouling coating of the present embodiment, is introduced as the liquid 30, the pore surface is also set to 20 mJ / m 2 .
  • a processing method at this time there are a dry film forming method by PVD or CVD, and a wet method in which a reactive reagent such as a fluorine-based silane coupling agent is applied and surface treatment is performed, but a method that can be more easily and uniformly processed Preferred is a wet method in which a surface treatment agent diluted in a fluorinated solvent is applied.
  • a perfluorinated fluorine molecule such as perfluoropolyether or perfluoroalkyl is preferred as the fluorine molecule used in the main chain of the silane coupling agent, and particularly preferred is the presence of oxygen between perfluoromolecules.
  • the liquid 30 to be introduced is not particularly limited. However, in the case of performing the above-described surface treatment, any liquid having a perfluoro fluorine molecular chain may be used. Oils such as Krytox (perfluoropolyether type) manufactured by Dupont are suitable for holding because of low vapor pressure ( ⁇ 0.01 Pa) and low volatility.
  • the liquid 30 preferably has a viscosity of 160 mm 2 / s or less because of the slipping property of dirt.
  • the evaporation loss when kept at 120 ° C. for 24 hours is 35. % Or less is preferable.
  • the surface treatment material for example, CH 3 — (Si (CH 3 ) 2 —O) n—Si (CH 3 ) 2 OCH 3 (n>13; contact angle 95 to 105 °) ), CH 3 — (Si (CH 3 ) 2 —O) n —SiCH 3 (OCH 3 ) 2 (n>13; contact angle 95-105 °), CH 3 — (Si (CH 3 ) 2 —O) n-Si (OCH 3 ) 3 (n>13; contact angle 95 to 105 °), CH 3 — (Si (CH 3 ) 2 —O) n —Si (OC 2 H 5 ) 3 (n>13; contact) 95-105 °), CH 3 — (Si (CH 3 ) 2 —O) n —Si (CH 2 ) 2 (CH 2 ) 3 OCH 2 CH (OH) CH 2 NH (CH 2 ) 3 Si (OCH
  • the base material layer 10 can be omitted, it can also be formed separately or integrally with the porous base material layer 20.
  • the constituent material of the base material 10 is not particularly limited, but it is preferable to adopt the same or the same type as the porous base material layer 20.
  • Parts with antifouling coating The above-mentioned parts (molded products) with antifouling coatings have antireflection functions at the forefront of mobile devices such as automobile and motorcycle meter panels, wind panels, mobile phones and electronic notebooks, signboards, watches, etc. It is preferably used for a display device that is required and may be exposed to water such as rain or oil stains.
  • the format of the display device is not particularly limited, and for example, a system combining mechanical display and illumination such as an analog meter can be used.
  • liquid crystal, light emitting diode (LED), electroluminescence (EL) and other backlights and light emitting surfaces such as digital meters and monitors, and reflective liquid crystal such as mobile devices. It is also applicable to.
  • it can be used for mirrors, radiator fins, evaporators, and the like, and is considered to bring various advantages.
  • Example 1 to 3 and Comparative Example 1 [Preparation of coating layer having pores]
  • a solution having the following formulation was coated on glass by spin coating (2000 rpm, 20 sec), and placed in an oven at an atmospheric temperature of 150 ° C. within 1 minute to perform temporary curing for 1 hour. Then, the sample after temporary hardening was baked at 450 degreeC for 1 hour, and the coating layer which has a porous film (porous base material layer) of a communicating hole was produced.
  • Comparative Example 1 in order to increase the surface roughness, a coating layer was prepared in the same manner except that the sample after spin coating was allowed to stand at room temperature for 10 minutes and temporarily cured in an oven at an atmospheric temperature of 150 ° C. .
  • impregnating solution As for the impregnating solution, first, 50 mmol of water, 11 mmol of triethylene glycol, and 13 mmol of isopropanol were uniformly mixed, and a solution A in which 0.2 g of 32N sulfuric acid was added was prepared. Next, 54 mmol of tetraethoxysilane and 13 mmol of isopropanol were mixed to prepare Solution B. These solutions A and B were mixed and stirred with a stirrer for 15 minutes to prepare a sol solution. This sol solution was diluted 5-fold with ethanol to obtain a coating solution.
  • any one of Krytox 101, Krytox 102 and Krytox 103 is applied to the surface of the coating layer having pores in each example after the surface treatment, and the excess oil on the surface is wiped off to prevent antifouling in each example.
  • a coating was made.
  • the constitution of the antifouling coating in each example is shown in Table 1.
  • Example 4 In Example 4, a mesoporous silica film having a pore diameter of 2 nm was surface-treated by the same method as described above and impregnated with oil.
  • Abrasion resistance evaluation Abrasion resistance test with canvas cloth was carried out, the sliding angle after 5000 reciprocating slides was measured, the contact angle retention ratio was 80% or more, ⁇ , 70% -80% ⁇ , 50% -70% ⁇ , 50 Less than% was taken as x.
  • the number of times a car is washed can be greatly reduced, and if it is applied to an in-vehicle camera, a mirror, a window, etc., a clear field of view can be secured even in rainy weather or on a rough road.
  • a clear field of view can be secured even in rainy weather or on a rough road.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

A high durability anti-fouling structure provided with: a porous base material, which has multiple pores on the surface and internally and for which surface roughness (Ra) is 400 nm or less; and a liquid impregnated in the porous base material. The difference in surface energy between the porous base material and the liquid is 10 mJ/m2 or less. The pore diameter (D) of the pores in the porous base material is 10 nm ≤ (D) ≤ 400 nm. The nanoindentation elastic modulus of the porous base material is 20 Gpa or more. The surface free energy of the impregnated liquid is 20 mJ/m2 or less and the surface free energy of the porous base material is 20 mJ/m2 or less. The viscosity of the impregnated liquid at 0°C is 160 mm2/s or less. A car part comprising such a high durability anti-fouling structure.

Description

高耐久性防汚構造体及びこれを用いた自動車部品High durability antifouling structure and automobile parts using the same
 本発明は、建造物や自動車、食品容器、医療用具など様々な分野で汚れ付着を防ぎ、建物や自動車等では、優れた外観や視認性を長期にわたって実現する防汚構造体に関する。
 更に詳細には、摩耗や損傷が抑制された防汚構造体であって、所定の液体を含浸ないし保持させた高耐久性防汚構造体、及びこの高耐久性防汚構造体を有する自動車部品に関するものである。
The present invention relates to an antifouling structure that prevents adhesion of dirt in various fields such as buildings, automobiles, food containers, and medical devices, and realizes an excellent appearance and visibility over a long period of time in buildings and automobiles.
More specifically, it is an antifouling structure in which wear and damage are suppressed, and is a highly durable antifouling structure impregnated or held with a predetermined liquid, and an automobile part having this highly durable antifouling structure It is about.
 従来、防汚表面として一般的に利用されているフッ素系材料でコーティングした表面は、表面自由エネルギーが小さく、様々な汚れの付着を防止できる。
 しかし、フッ素は分子内での極性が大きいため、汚れの種類によっては却って付着性が強くなるものもあった。また、ピッチやタール、樹液などの高粘性の汚れは付着性が強く、フッ素系材料でコーティングした表面でも固着することが知られている。
Conventionally, a surface coated with a fluorine-based material generally used as an antifouling surface has a small surface free energy, and can prevent various kinds of dirt from adhering.
However, since fluorine has a large polarity in the molecule, there are some that become more adherent depending on the type of dirt. Further, it is known that highly viscous soils such as pitch, tar, and sap are highly adherent and stick even on a surface coated with a fluorine-based material.
 防汚のもう一つの方策として、表面を超親水性にし、水を流したときに、汚れと親水表面の間に水を浸入させて汚れを剥離することが考えられる。
 この方策はいわばカタツムリの殻を模倣するものであり、特許文献1に提案されている親水性反射防止構造はかかる方策に適用することが可能と思われる。
As another measure of antifouling, it is conceivable that when the surface is made super hydrophilic, water is infiltrated between the dirt and the hydrophilic surface to remove the dirt when water is allowed to flow.
This measure imitates a snail shell, and the hydrophilic antireflection structure proposed in Patent Document 1 seems to be applicable to such a measure.
 一方、非特許文献1には、表面にフッ素液体を保持させることにより、様々な汚れを滑落させる技術が報告されている。 On the other hand, Non-Patent Document 1 reports a technique for sliding off various stains by holding a fluorine liquid on the surface.
日本国特許3830742号Japanese Patent No. 3830742
 しかしながら、特許文献1に記載の技術を超親水表面に適用しようとすると、水垢などの表面自由エネルギーが近い汚れは付着してしまう。実際、カタツムリの殻や住宅外壁材では光沢が無いため、少々の水垢や水シミ付着ではほとんど目立たないが、自動車塗装のように光沢が意匠性の主要な構成要素である用途への応用は非常に困難である。 However, when the technique described in Patent Document 1 is applied to a superhydrophilic surface, dirt having near surface free energy such as water scale adheres. In fact, snail shells and exterior wall materials are not glossy, so they are almost inconspicuous due to a small amount of scale and water stains, but they are very useful for applications where luster is the main component of design, such as automobile paint. It is difficult to.
 この一方で、非特許文献1に記載の技術は、依然として学術的な領域の研究に属するものであり、実際の耐久性や透明性などにおいて実用化できる分野が限定される。 On the other hand, the technology described in Non-Patent Document 1 still belongs to academic research, and the fields that can be put into practical use are limited in terms of actual durability and transparency.
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、自動車などの過酷な耐久性を要求される分野において長期間の耐久性と防汚性を両立し得る高耐久性防汚構造体、及びこれを用いた自動車部品を提供することにある。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide long-term durability and antifouling properties in fields requiring severe durability such as automobiles. It is an object to provide a highly durable antifouling structure that can satisfy both of the above and an automobile part using the same.
 本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、多孔質基材の表面粗さRaを所定値以下に制御し、且つこの多孔質基材に特定の液体を保持させることにより、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has controlled the surface roughness Ra of the porous base material to a predetermined value or less and holds the specific liquid on the porous base material. The inventors have found that the above object can be achieved and have completed the present invention.
 即ち、本発明の高耐久性防汚構造体は、表面及び内部に複数の細孔を有し表面粗さRaが400nm以下の多孔質基材と、この多孔質基体に含浸させた液体を備える。
 上記多孔質基材と上記液体の表面エネルギー差が10mJ/m以下であることを特徴とする。
That is, the highly durable antifouling structure of the present invention comprises a porous substrate having a plurality of pores on the surface and inside and having a surface roughness Ra of 400 nm or less, and a liquid impregnated in the porous substrate. .
The surface energy difference between the porous substrate and the liquid is 10 mJ / m 2 or less.
 また、本発明の自動車部品は、上述のような高耐久性防汚構造体を有することを特徴とする。 Further, the automobile part of the present invention is characterized by having the above-mentioned highly durable antifouling structure.
 本発明によれば、多孔質基材の表面粗さRaを所定値以下に制御し、且つこの多孔質基材に特定の液体を保持させることとしたため、自動車などの過酷な耐久性を要求される分野において長期間の耐久性と防汚性を両立し得る高耐久性防汚構造体、及びこれを用いた自動車部品を提供することができる。 According to the present invention, since the surface roughness Ra of the porous base material is controlled to a predetermined value or less and the specific liquid is held in the porous base material, severe durability such as an automobile is required. It is possible to provide a highly durable antifouling structure capable of achieving both long-term durability and antifouling properties in the field, and automobile parts using the same.
本発明の高耐久性防汚構造体の一実施形態である防汚コーティングの一例を示す拡大断面図である。It is an expanded sectional view showing an example of antifouling coating which is one embodiment of the highly durable antifouling structure of the present invention.
 以下、本発明の高耐久性防汚構造体防及びこれを備えた自動車用部品について図面を用いて詳細に説明する。
 なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。また、本明細書において、濃度及び含有量等についての「%」は特記しない限り質量百分率を表すものとする。
Hereinafter, a highly durable antifouling structure body of the present invention and automotive parts equipped with the same will be described in detail with reference to the drawings.
In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio. In the present specification, “%” for concentration, content, and the like represents a mass percentage unless otherwise specified.
[防汚コーティング]
 図1は、本発明の高耐久性防汚構造体の一実施形態である防汚コーティングの一例を示す拡大断面図である。
 図1において、防汚コーティング40は、基材層10と多孔質基材層20と液体30を備えている。基材層10の表面側には多孔質基材層20が配置され、この多孔質基材層20はその表面及び内部に複数の細孔21を有しており、この細孔21には液体30が含浸ないし保持されている。
[Anti-fouling coating]
FIG. 1 is an enlarged cross-sectional view showing an example of an antifouling coating which is an embodiment of the highly durable antifouling structure of the present invention.
In FIG. 1, the antifouling coating 40 includes a base material layer 10, a porous base material layer 20, and a liquid 30. A porous base material layer 20 is disposed on the surface side of the base material layer 10, and the porous base material layer 20 has a plurality of pores 21 on the surface and inside thereof. 30 is impregnated or retained.
 ここで、多孔質基材層20の表面粗さRaは400nm以下であり、また、細孔21内に保持されている液体30は、多孔質基材層20の表面又は細孔21の内表面との表面自由エネルギー差が10mJ/m以下である。
 なお、細孔21は、複数の細孔から成るが、独立孔であっても連通孔であってもよい。
Here, the surface roughness Ra of the porous substrate layer 20 is 400 nm or less, and the liquid 30 held in the pores 21 is the surface of the porous substrate layer 20 or the inner surface of the pores 21. And the surface free energy difference is 10 mJ / m 2 or less.
In addition, although the pore 21 consists of a some pore, it may be an independent hole or a communicating hole.
 多孔質基材層20は、光学特性及び耐摩耗性の観点からその表面粗さRaが400nm以下である必要があり、好ましくは300nm以下、さらに好ましくは200nm以下である。
 Raが400nmを超えると、光を散乱しやすくなるため、高い透明性を要求されるような部品に適用しにくくなり、また表面の粗さに摺動物が引っ掛かることにより構造が破壊されやすくなる。
The porous substrate layer 20 needs to have a surface roughness Ra of 400 nm or less, preferably 300 nm or less, more preferably 200 nm or less, from the viewpoint of optical properties and wear resistance.
If Ra exceeds 400 nm, light is likely to be scattered, making it difficult to apply to parts that require high transparency, and the structure is likely to be destroyed due to the sliding object caught on the surface roughness.
 この多孔質基材層20を構成する材料は、特には限定されず、無機物、有機化合物又はその複合物など、どのようなものでも用いることができるが、耐摩耗性の観点からは無機物が好ましく、高い透明性が確保できる酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化スズ、酸化アルミニウム、酸化インジウムスズ、酸化亜鉛、酸化亜鉛スズなどの無機酸化物及びフッ化マグネシウムなどがさらに好ましい。 The material constituting the porous substrate layer 20 is not particularly limited, and any material such as an inorganic material, an organic compound, or a composite thereof can be used, but an inorganic material is preferable from the viewpoint of wear resistance. More preferred are inorganic oxides such as silicon oxide, titanium oxide, zirconium oxide, tin oxide, aluminum oxide, indium tin oxide, zinc oxide and zinc tin oxide, which can ensure high transparency, and magnesium fluoride.
 また、多孔質基材層20を構成する材料としては上記のもの中でも、ナノインデント法による弾性率で20GPa以上のものが耐久性の観点から好ましく、50GPa以上の材料がさらに好ましい。 Among the materials described above, the material constituting the porous substrate layer 20 is preferably 20 GPa or more in terms of the elastic modulus by the nano-indent method, and more preferably 50 GPa or more.
 多孔質基材層20を形成する方法には、特に限定されず、ゾルゲル法、CVD、蒸着及びマグネトロンスパッタリングなど様々な方法を用いることができる。特に好ましいものとして、相分離剤や反応速度を調節して細孔径を容易に調整できるゾルゲル法を挙げることができる。 The method for forming the porous substrate layer 20 is not particularly limited, and various methods such as a sol-gel method, CVD, vapor deposition, and magnetron sputtering can be used. Particularly preferred is a sol-gel method in which the pore size can be easily adjusted by adjusting the phase separation agent and the reaction rate.
 細孔21の細孔径Dは、光学特性の関係から、特に光散乱が強くなるため400nm以下にする必要があり、正確には光の回折が起こらないようにD≦400nm/n(nは構成材料の屈折率)とすることが望ましい。
 さらに、細孔径Dの下限値としては、含浸させる液体30の分子より大きいことが好ましい。例えば、液体30としてkrytoxシリーズ(dupont社製)のパーフルオロポリエーテル系のオイルを用いた場合、分子サイズが10~50nm程度であるため、10nm程度が下限値となる。
The pore diameter D of the pore 21 needs to be 400 nm or less because light scattering is particularly strong due to the relationship of optical characteristics, and exactly D ≦ 400 nm / n (n is a component so that light diffraction does not occur). The refractive index of the material is desirable.
Furthermore, the lower limit value of the pore diameter D is preferably larger than the molecules of the liquid 30 to be impregnated. For example, when a krytox series (manufactured by duPont) perfluoropolyether-based oil is used as the liquid 30, the molecular size is about 10 to 50 nm, so the lower limit is about 10 nm.
 また、本発明においては、多孔質基材層20又は細孔21の表面の表面自由エネルギーを、含浸ないし保持させる液体30の表面エネルギーと調整する必要があり、具体的には、両者の表面自由エネルギー差を10mJ/m以下に調整する必要がある。
 このため、細孔21の表面には導入する液体21に合わせた表面処理が必要となることがある。液体30として、本実施形態の防汚コーティングにおいて最も防汚性に優れていると考えられる20mJ/m以下の低表面エネルギーのフッ素系液体を導入する場合、細孔表面も20mJ/mに処理する。
Further, in the present invention, it is necessary to adjust the surface free energy of the surface of the porous base material layer 20 or the pore 21 with the surface energy of the liquid 30 to be impregnated or retained. It is necessary to adjust the energy difference to 10 mJ / m 2 or less.
For this reason, the surface treatment of the liquid 21 to be introduced may be necessary on the surface of the pore 21. When a fluorinated liquid having a low surface energy of 20 mJ / m 2 or less, which is considered to have the highest antifouling property in the antifouling coating of the present embodiment, is introduced as the liquid 30, the pore surface is also set to 20 mJ / m 2 . To process.
 このときの処理方法として、PVDやCVDによるドライ製膜法と、フッ素系シランカップリング剤などの反応性がある試薬を塗布し表面処理するウェット法があるが、より簡便かつ均一に処理できる方法として好ましいのは、フッ素系溶剤に希釈した表面処理剤を塗布するウェット法である。 As a processing method at this time, there are a dry film forming method by PVD or CVD, and a wet method in which a reactive reagent such as a fluorine-based silane coupling agent is applied and surface treatment is performed, but a method that can be more easily and uniformly processed Preferred is a wet method in which a surface treatment agent diluted in a fluorinated solvent is applied.
 上記の場合、シランカップリング剤の主鎖に用いるフッ素分子として好ましいのは、パーフルオロポリエーテル又はパーフルオロアルキルなどのパーフルオロ系フッ素分子であり、特に好ましいのは酸素の存在によりパーフルオロ分子間での相互作用が強くなるパーフルオロポリエーテル系であり、これらを用いることにより、多孔質基材層20の構造内での液体30の保持性が向上する。 In the above case, a perfluorinated fluorine molecule such as perfluoropolyether or perfluoroalkyl is preferred as the fluorine molecule used in the main chain of the silane coupling agent, and particularly preferred is the presence of oxygen between perfluoromolecules. The perfluoropolyether type in which the interaction in the substrate is strong, and by using these, the retention of the liquid 30 in the structure of the porous substrate layer 20 is improved.
 本発明では、導入する液体30について特に限定されないが、上記の表面処理を行う場合、パーフルオロ系のフッ素分子鎖を持つものであればよく、具体的には、フルオロエーテル系又はフルオロアルキル系のオイルを挙げることができ、Dupont社製のkrytox(パーフルオロポリエーテル系)などは蒸気圧が低く(≦0.01Pa)、揮発性が低いので保持に適している。 In the present invention, the liquid 30 to be introduced is not particularly limited. However, in the case of performing the above-described surface treatment, any liquid having a perfluoro fluorine molecular chain may be used. Oils such as Krytox (perfluoropolyether type) manufactured by Dupont are suitable for holding because of low vapor pressure (≦ 0.01 Pa) and low volatility.
 その他には、3M社製のフロリナート(パーフルオロアルキル系)やノベック(パーフルオロポリエーテル系)、ダイキン社製のデムナム(パーフルオロアルキル系)などがあるが、揮発性が高いので短期的な使用にすることが好ましい。これらのオイルの粘度や蒸気圧を調整するため、側鎖にフッ素以外のハロゲン元素又はフッ素以外のハロゲンを有する官能基を付与する場合もある。 Others include 3M's Fluorinert (perfluoroalkyl), Novec (perfluoropolyether), and Daikin's demnam (perfluoroalkyl), but they are short-term because of their high volatility. It is preferable to make it. In order to adjust the viscosity and vapor pressure of these oils, a functional group having a halogen element other than fluorine or a halogen other than fluorine may be added to the side chain.
 さらに、この液体30については、汚れの滑落性から粘度が160mm/s以下であることが好ましく、また、自然蒸発による性能劣化を防ぐため、120℃で24時間保持したときの蒸発減量が35%以下であることが好ましい。 Further, the liquid 30 preferably has a viscosity of 160 mm 2 / s or less because of the slipping property of dirt. In order to prevent performance deterioration due to natural evaporation, the evaporation loss when kept at 120 ° C. for 24 hours is 35. % Or less is preferable.
 フッ素系以外のものとしては、表面処理材としては、例えば、CH-(Si(CH)2-O)n-Si(CHOCH(n>13;接触角95~105°)、CH-(Si(CH-O)-SiCH(OCH(n>13;接触角95~105°)、CH-(Si(CH-O)n-Si(OCH(n>13;接触角95~105°)、CH-(Si(CH-O)-Si(OC(n>13;接触角95~105°)、CH-(Si(CH-O)-Si(CH(CHOCHCH(OH)CHNH(CHSi(OCH(n>13;接触角95~105°)、(CH-(Si(CH-O)n-Si(CH(CHOCHCH(OH)CHN(CHSi(OCH(n>13;接触角95~105°)、CH-(Si(CH-O)-Si(OH)(n>13;接触角95~105°)、CH-(Si(CH-O)Si(CHCl(n>13;接触角95~105°)、CH-(Si(CH3)-O)n-Si(CH(CHSiCHCl(n>13;接触角95~105°)、CH-(Si(CH-O)-SiCl(n>13;接触角95~105°)、CH-(Si(CH-O)-Si(OCOCH(n>13;接触角95~105°)、CH-(Si(CH-O)-Si(NCO)(n>13;接触角95~105°)、CH-(Si(CH-O)-Si(CH(CHO(CHOCONHSi(NCO)(n>13;接触角95~105°)、Rf-(CH-(Si(CH-O)-Si(CH(CHOCHCH(OH)CHNHSi(OCH(n>13;接触角95~115°)、(Rf-(CH-(Si(CH-O)n-Si(CH(CHOCHCH(OH)CHN(CHSi(OCH(n>13;接触角95~115°)等のシリコーン化合物を挙げることができる。また、上記シラン化合物の置換基をイソシアネートに変更したものも用いることが可能である。 As materials other than fluorine-based materials, as the surface treatment material, for example, CH 3 — (Si (CH 3 ) 2 —O) n—Si (CH 3 ) 2 OCH 3 (n>13; contact angle 95 to 105 °) ), CH 3 — (Si (CH 3 ) 2 —O) n —SiCH 3 (OCH 3 ) 2 (n>13; contact angle 95-105 °), CH 3 — (Si (CH 3 ) 2 —O) n-Si (OCH 3 ) 3 (n>13; contact angle 95 to 105 °), CH 3 — (Si (CH 3 ) 2 —O) n —Si (OC 2 H 5 ) 3 (n>13; contact) 95-105 °), CH 3 — (Si (CH 3 ) 2 —O) n —Si (CH 2 ) 2 (CH 2 ) 3 OCH 2 CH (OH) CH 2 NH (CH 2 ) 3 Si (OCH 3 ) 3 (n>13; contact angle 95-105 °), (CH 3- (Si (CH 3 ) 2 -O) n-Si (CH 3 ) 2 (CH 2 ) 3 OCH 2 CH (OH) CH 2 ) 2 N (CH 2 ) 3 Si (OCH 3 ) 3 (n>13; contact angle 95-105 ° ), CH 3 — (Si (CH 3 ) 2 —O) n —Si (OH) 3 (n>13; contact angle 95-105 °), CH 3 — (Si (CH 3 ) 2 —O) n Si (CH 3 ) 2 Cl (n>13; contact angle 95-105 °), CH 3 — (Si (CH 3 ) 2 —O) n—Si (CH 3 ) 2 (CH 2 ) 2 SiCH 3 Cl 2 (n >13; contact angle 95 to 105 °), CH 3 — (Si (CH 3 ) 2 —O) n —SiCl 3 (n>13; contact angle 95 to 105 °), CH 3 — (Si (CH 3 )) 2 -O) n -Si (OCOCH 3 ) 3 (n>13; contact angle 95-105 °), CH 3- (Si (CH 3 ) 2 —O) n —Si (NCO) 3 (n>13; contact angle 95 to 105 °), CH 3 — (Si (CH 3 ) 2 —O) n —Si (CH 3 ) 2 (CH 2 ) 3 O (CH 2 ) 3 OCONHSi (NCO) 3 (n>13; contact angle 95-105 °), Rf— (CH 2 ) 2 — (Si (CH 3 ) 2 —O) n — Si (CH 3 ) 2 (CH 2 ) 3 OCH 2 CH (OH) CH 2 NHSi (OCH 3 ) 3 (n>13; contact angle 95-115 °), (Rf— (CH 2 ) 2 — (Si ( CH 3) 2 -O) n- Si (CH 3) 2 (CH 2) 3 OCH 2 CH (OH) CH 2) 2 n (CH 2) 3 Si (OCH 3) 3 (n>13; contact angle 95 Silicone compounds such as (˜115 °). Moreover, what changed the substituent of the said silane compound into isocyanate can also be used.
 なお、基材層10は、省略することが可能であるが、多孔質基材層20と別体又は一体に形成することも可能である。
 基材10の構成材料は、特に限定されるものではないが、多孔質基材層20と同一又は同種のものを採用することが好ましい。
In addition, although the base material layer 10 can be omitted, it can also be formed separately or integrally with the porous base material layer 20.
The constituent material of the base material 10 is not particularly limited, but it is preferable to adopt the same or the same type as the porous base material layer 20.
[防汚コーティングを備えた部品]
 上述の防汚コーティングを備えた部品(成形品)は、例えば、自動車やバイクのメーターパネル、ウインドパネル、携帯電話や電子手帳などのモバイル機器、看板、時計など、最前面での反射防止機能を必要とし、雨などの水や油汚れに曝される可能性がある表示装置に好適に使用される。
[Parts with antifouling coating]
The above-mentioned parts (molded products) with antifouling coatings have antireflection functions at the forefront of mobile devices such as automobile and motorcycle meter panels, wind panels, mobile phones and electronic notebooks, signboards, watches, etc. It is preferably used for a display device that is required and may be exposed to water such as rain or oil stains.
 この場合、表示装置の形式は特に限定されず、例えばアナログメーターのように機械的な表示と照明を組み合わせた方式を挙げることができる。さらに、デジタルメーターやモニターのように、液晶や発光ダイオード(LED)、エレクトロルミネセンス(EL)などのバックライトや発光面を用いた方式、モバイル機器のように反射方式の液晶を用いた方式などにも適用可能である。
 この他にもミラーやラジエーターフィンやエバポレーターなどに使用することができ、種々の利点をもたらすと考えられる。
In this case, the format of the display device is not particularly limited, and for example, a system combining mechanical display and illumination such as an analog meter can be used. In addition, liquid crystal, light emitting diode (LED), electroluminescence (EL) and other backlights and light emitting surfaces such as digital meters and monitors, and reflective liquid crystal such as mobile devices. It is also applicable to.
In addition, it can be used for mirrors, radiator fins, evaporators, and the like, and is considered to bring various advantages.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1~3及び比較例1)
[細孔を有するコーティング層の作製]
 ガラス上に下記の処方の溶液をスピンコート(2000rpm、20sec)にてコーティングし、1分以内に雰囲気温度150℃のオーブンに投入して1時間の仮硬化を実施した。その後、仮硬化後のサンプルを450℃で1時間焼成し、連通孔の多孔膜(多孔質基材層)を有するコーティング層を作製した。
 なお、比較例1においては、あえて表面粗さを大きくするため、スピンコート後のサンプルを室温で10分放置し、雰囲気温度150℃オーブンで仮硬化した以外は同様の操作でコーティング層を作製した。
(Examples 1 to 3 and Comparative Example 1)
[Preparation of coating layer having pores]
A solution having the following formulation was coated on glass by spin coating (2000 rpm, 20 sec), and placed in an oven at an atmospheric temperature of 150 ° C. within 1 minute to perform temporary curing for 1 hour. Then, the sample after temporary hardening was baked at 450 degreeC for 1 hour, and the coating layer which has a porous film (porous base material layer) of a communicating hole was produced.
In Comparative Example 1, in order to increase the surface roughness, a coating layer was prepared in the same manner except that the sample after spin coating was allowed to stand at room temperature for 10 minutes and temporarily cured in an oven at an atmospheric temperature of 150 ° C. .
[含浸液の処方] 
 含浸液については、まず水50mmolとトリエチレングリコール11mmol、イソプロパノール13mmolを均一に混合し、32N硫酸を0.2g添加した溶液Aを作製した。次いで、テトラエトキシシラン54mmolとイソプロパノール13mmolを混合し、溶液Bを調整した。これらの溶液A及びBを混合して、スターラーで15分撹拌し、ゾル液調整した。このゾル液をエタノールで5倍希釈してコーティング溶液とした。
[Prescription of impregnating solution]
As for the impregnating solution, first, 50 mmol of water, 11 mmol of triethylene glycol, and 13 mmol of isopropanol were uniformly mixed, and a solution A in which 0.2 g of 32N sulfuric acid was added was prepared. Next, 54 mmol of tetraethoxysilane and 13 mmol of isopropanol were mixed to prepare Solution B. These solutions A and B were mixed and stirred with a stirrer for 15 minutes to prepare a sol solution. This sol solution was diluted 5-fold with ethanol to obtain a coating solution.
[コーティング層の表面処理]
 上述のように作製したコーティング層をフロロサーフ(フロロテクノロジー社製、PFPE0.1%)に24時間浸漬し、150℃で1時間乾燥した。さらにこの操作を3回行いコーティング膜の表面処理を行った。
[Surface treatment of coating layer]
The coating layer produced as described above was immersed in Fluorosurf (Fluoro Technology, PFPE 0.1%) for 24 hours and dried at 150 ° C. for 1 hour. Further, this operation was performed three times to perform surface treatment of the coating film.
[液体(オイル)含浸]
 表1に示すように、Krytox101、Krytox102及びKrytox103のいずれかを、表面処理後における各例の細孔を有するコーティング層表面に塗布し、表面の余剰分のオイルをふき取って、各例の防汚コーティングを作製した。各例の防汚コーティングの構成を表1に示した。
[Liquid (oil) impregnation]
As shown in Table 1, any one of Krytox 101, Krytox 102 and Krytox 103 is applied to the surface of the coating layer having pores in each example after the surface treatment, and the excess oil on the surface is wiped off to prevent antifouling in each example. A coating was made. The constitution of the antifouling coating in each example is shown in Table 1.
(実施例4)
 実施例4では、細孔径2nmのメソポーラスシリカ膜を上記と同様の方法で表面処理し、オイル含浸を行った。
Example 4
In Example 4, a mesoporous silica film having a pore diameter of 2 nm was surface-treated by the same method as described above and impregnated with oil.
<性能評価>
 以上のようにして得られた各例の防汚コーティングを下記の性能評価に供し、得られた結果を表2に示す。
<Performance evaluation>
The antifouling coating of each example obtained as described above was subjected to the following performance evaluation, and the obtained results are shown in Table 2.
[耐摩耗性評価]
 キャンバス布による耐摩耗試験を実施し、5000往復摺動後の転落角を測定し、接触角保持率が80%以上を◎、70%~80%を○、50%~70%を△、50%未満を×とした。
[Abrasion resistance evaluation]
Abrasion resistance test with canvas cloth was carried out, the sliding angle after 5000 reciprocating slides was measured, the contact angle retention ratio was 80% or more, ◎, 70% -80% ○, 50% -70% △, 50 Less than% was taken as x.
[接触角・転落角測定]
 接触角はDSA100(Kruss社製)を用いて測定し、θ/2近似にて静置接触角を導出した。転落角はDSA100を用いて、オレイン酸及び水20μLでの転落角を計測した。
[Contact angle / rolling angle measurement]
The contact angle was measured using DSA100 (manufactured by Kruss), and the stationary contact angle was derived by approximating θ / 2. The sliding angle was measured using DSA100 and the falling angle with 20 μL of oleic acid and water.
[透明性評価]
 ヘイズメーター(村上色彩社製)により、サンプルのヘイズを測定した。ヘイズがH≦1%のときを◎、1<H≦3のときを○、3<H≦10のときを△、H>10のときを×とした。
[Transparency evaluation]
The haze of the sample was measured with a haze meter (Murakami Color Co., Ltd.). When haze is H ≦ 1%, ◎ is when 1 <H ≦ 3, Δ when 3 <H ≦ 10, and × when H> 10.
[オイル保持性評価]
100℃のオーブン中に、上記のサンプルを垂直に設置して、3時間後の水滴転落角を測定した。この時、水滴転落角が10°以下であれば◎、10°~15°であれば○、15°~30°を△、30°を超えるものを×とした。
[Oil retention evaluation]
The sample was placed vertically in an oven at 100 ° C., and the water drop falling angle after 3 hours was measured. At this time, when the water drop sliding angle is 10 ° or less, ◎ is 10 ° to 15 °, ◯ is 15 ° to 30 °, and x is more than 30 °.
[防汚性評価]
(水滴転落性)
 水20μLを試験片に滴下し、転落角が10°以下であれば◎、10°~15°であれば○、15°~30°を△、30°を超えるものを×とした。
[Anti-fouling evaluation]
(Water drop fallability)
20 μL of water was dropped on the test piece. If the sliding angle was 10 ° or less, ◎ if 10 ° to 15 °, Δ if 15 ° to 30 °, and x if more than 30 °.
[油滴転落性]
 オレイン酸20μLを試験片に滴下し、転落角が10°以下であれば◎、10°~15°であれば○、15°~30°を△、30°を超えるものを×とした。
[Oil drop fallability]
20 μL of oleic acid was dropped onto the test piece. If the sliding angle was 10 ° or less, ◎ if 10 ° to 15 °, Δ if 15 ° to 30 °, and × if more than 30 °.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 As mentioned above, although this invention was demonstrated by some embodiment and an Example, this invention is not limited to these, A various deformation | transformation is possible within the range of the summary of this invention.
 本発明を適用することにより自動車の洗車回数を大きく減らすことができ、また、車載カメラやミラー、ウィンドウなどに適用すれば雨天や悪路においてもクリアな視界を確保できる。このように、各種分野における製品の意匠性を長期間維持できるのみならず、長期に亘る視認性も確保できるので、安全性なども向上できる。 By applying the present invention, the number of times a car is washed can be greatly reduced, and if it is applied to an in-vehicle camera, a mirror, a window, etc., a clear field of view can be secured even in rainy weather or on a rough road. Thus, not only can the design properties of products in various fields be maintained for a long period of time, but also the visibility over a long period of time can be secured, so that safety and the like can also be improved.
 10  基材
 20  多孔質基材
 21  細孔
 30  液体
 40  防汚コーティング
DESCRIPTION OF SYMBOLS 10 Base material 20 Porous base material 21 Pore 30 Liquid 40 Antifouling coating

Claims (10)

  1.  表面及び内部に複数の細孔を有し表面粗さRaが400nm以下の多孔質基材と、この多孔質基体に含浸させた液体を備え、
     上記多孔質基材と上記液体の表面エネルギー差が10mJ/m以下であることを特徴とする高耐久性防汚構造体。
    A porous substrate having a plurality of pores on the surface and inside and having a surface roughness Ra of 400 nm or less, and a liquid impregnated in the porous substrate,
    A highly durable antifouling structure, wherein the surface energy difference between the porous substrate and the liquid is 10 mJ / m 2 or less.
  2.  上記多孔質基材における細孔の細孔径Dが10nm≦D≦400nmであることを特徴とする請求項1に記載の高耐久性防汚構造体。 2. The highly durable antifouling structure according to claim 1, wherein the pore diameter D of the pores in the porous substrate is 10 nm ≦ D ≦ 400 nm.
  3.  上記多孔質基材のナノインデント弾性率が20GPa以上である請求項1又は2に記載の高耐久性防汚構造体。 The highly durable antifouling structure according to claim 1 or 2, wherein the porous base material has a nanoindent elastic modulus of 20 GPa or more.
  4.  上記含浸液体の表面自由エネルギーが20mJ/m以下であり、且つ上記多孔質基材の表面自由エネルギーが20mJ/m以下であることを特徴とする請求項1~3のいずれか1つの高に記載の高耐久性防汚構造体。 The surface free energy of the impregnating liquid is 20 mJ / m 2 or less, and the surface free energy of the porous substrate is 20 mJ / m 2 or less. A highly durable antifouling structure as described in 1.
  5.  上記含浸液体の0℃における粘度が160mm/s以下であることを特徴とする請求項1~4のいずれか1つの項に記載の高耐久性防汚構造体。 The highly durable antifouling structure according to any one of claims 1 to 4, wherein the impregnating liquid has a viscosity at 0 ° C of 160 mm 2 / s or less.
  6.  上記含浸液体の120℃で24時間後の蒸発減量が35質量%未満であることを特徴とする請求項1~5のいずれか1つの項に記載の高耐久性防汚構造体。 6. The highly durable antifouling structure according to any one of claims 1 to 5, wherein the impregnation liquid has an evaporation loss after 120 hours at 120 ° C. of less than 35% by mass.
  7.  上記含浸液体がフルオロエーテル系又はフルオロアルキル系の液体であることを特徴とする請求項1~5のいずれか1つの項に記載の高耐久性防汚構造体。 The highly durable antifouling structure according to any one of claims 1 to 5, wherein the impregnating liquid is a fluoroether or fluoroalkyl liquid.
  8.  上記多孔質基材が無機酸化物から成ることを特徴とする請求項1~7のいずれか1つの項に記載の高耐久性防汚構造体。 The highly durable antifouling structure according to any one of claims 1 to 7, wherein the porous substrate comprises an inorganic oxide.
  9.  上記無機酸化物が酸化ケイ素を主成分とすることを特徴とする請求項8に記載の高耐久性防汚構造体。 9. The highly durable antifouling structure according to claim 8, wherein the inorganic oxide contains silicon oxide as a main component.
  10.  請求項1~9のいずれか1つの項に記載の高耐久性防汚構造体を有することを特徴とする自動車部品。 10. An automobile part comprising the highly durable antifouling structure according to any one of claims 1 to 9.
PCT/JP2014/060163 2014-04-08 2014-04-08 High durability anti-fouling structure and car part using same WO2015155830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060163 WO2015155830A1 (en) 2014-04-08 2014-04-08 High durability anti-fouling structure and car part using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060163 WO2015155830A1 (en) 2014-04-08 2014-04-08 High durability anti-fouling structure and car part using same

Publications (1)

Publication Number Publication Date
WO2015155830A1 true WO2015155830A1 (en) 2015-10-15

Family

ID=54287433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060163 WO2015155830A1 (en) 2014-04-08 2014-04-08 High durability anti-fouling structure and car part using same

Country Status (1)

Country Link
WO (1) WO2015155830A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013810A1 (en) * 2015-07-17 2017-01-26 日産自動車株式会社 Antifouling structure and method for producing same
WO2017199423A1 (en) * 2016-05-20 2017-11-23 日産自動車株式会社 Soil-resistant structure and automobile component provided with said soil-resistant structure
WO2017216831A1 (en) * 2016-06-13 2017-12-21 日産自動車株式会社 Antifouling structure and automotive component using antifouling structure
WO2018012093A1 (en) * 2016-07-15 2018-01-18 日産自動車株式会社 Antifouling structure precursor, antifouling structure, surface modification composition, and surface modification method
WO2018051410A1 (en) * 2016-09-13 2018-03-22 日産自動車株式会社 Antifouling structure
JP2018111072A (en) * 2017-01-12 2018-07-19 日産自動車株式会社 Method for producing antifouling coating film and antifouling coating film
WO2019035192A1 (en) * 2017-08-16 2019-02-21 日産自動車株式会社 Antifouling structure
JPWO2018066046A1 (en) * 2016-10-04 2019-07-04 日産自動車株式会社 Antifouling structure
EP3666517A4 (en) * 2017-08-10 2020-07-29 Nissan Motor Co., Ltd. Antifouling structure and automobile component provided with said antifouling structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237513A (en) * 2003-02-05 2004-08-26 Teijin Chem Ltd High-molecular resin laminate and window material for vehicle
JP2005112911A (en) * 2003-10-03 2005-04-28 Matsushita Electric Works Ltd Defogging and soilproof material and its manufacturing process
WO2008120505A1 (en) * 2007-03-29 2008-10-09 Konica Minolta Holdings, Inc. Water repellent article, window glass for construction and window glass for vehicle
WO2009066630A1 (en) * 2007-11-19 2009-05-28 Konica Minolta Holdings, Inc. Water-repellent or antifouling article and window glass for building, window glass for vehicle, display member, and optical part all employing the same
JP2010174079A (en) * 2009-01-27 2010-08-12 Kagawa Univ Water- and oil-repellent stainproof member, method for producing the same, and article using the same
WO2014061606A1 (en) * 2012-10-15 2014-04-24 旭硝子株式会社 Antifouling antireflection film, article and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237513A (en) * 2003-02-05 2004-08-26 Teijin Chem Ltd High-molecular resin laminate and window material for vehicle
JP2005112911A (en) * 2003-10-03 2005-04-28 Matsushita Electric Works Ltd Defogging and soilproof material and its manufacturing process
WO2008120505A1 (en) * 2007-03-29 2008-10-09 Konica Minolta Holdings, Inc. Water repellent article, window glass for construction and window glass for vehicle
WO2009066630A1 (en) * 2007-11-19 2009-05-28 Konica Minolta Holdings, Inc. Water-repellent or antifouling article and window glass for building, window glass for vehicle, display member, and optical part all employing the same
JP2010174079A (en) * 2009-01-27 2010-08-12 Kagawa Univ Water- and oil-repellent stainproof member, method for producing the same, and article using the same
WO2014061606A1 (en) * 2012-10-15 2014-04-24 旭硝子株式会社 Antifouling antireflection film, article and method for manufacturing same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665519C1 (en) * 2015-07-17 2018-08-30 Ниссан Мотор Ко., Лтд. Anti-pollution structure and method of its production
WO2017013810A1 (en) * 2015-07-17 2017-01-26 日産自動車株式会社 Antifouling structure and method for producing same
RU2690801C1 (en) * 2016-05-20 2019-06-05 Ниссан Мотор Ко., Лтд. Anti-fouling structure and automotive component provided with said anti-fouling structure
US10464842B2 (en) 2016-05-20 2019-11-05 Nissan Motor Co., Ltd. Antifouling structure and automobile component provided with said antifouling structure
CN109195788A (en) * 2016-05-20 2019-01-11 日产自动车株式会社 Antifouling tectosome and auto parts with the antifouling tectosome
WO2017199423A1 (en) * 2016-05-20 2017-11-23 日産自動車株式会社 Soil-resistant structure and automobile component provided with said soil-resistant structure
KR102000413B1 (en) * 2016-05-20 2019-09-27 닛산 지도우샤 가부시키가이샤 Automobile parts provided with an antifouling structure and the antifouling structure
JPWO2017199423A1 (en) * 2016-05-20 2019-03-28 日産自動車株式会社 Antifouling structure and automobile component provided with the antifouling structure
KR20180129955A (en) * 2016-05-20 2018-12-05 닛산 지도우샤 가부시키가이샤 An antifouling structure and an automobile part having the antifouling structure
JPWO2017216831A1 (en) * 2016-06-13 2019-05-09 日産自動車株式会社 Antifouling structure and automobile part using the antifouling structure
KR20190016556A (en) * 2016-06-13 2019-02-18 닛산 지도우샤 가부시키가이샤 Antifouling structure and automobile parts using the antifouling structure
US11400686B2 (en) 2016-06-13 2022-08-02 Nissan Motor Co., Ltd. Antifouling structure and automotive component using antifouling structure
WO2017216831A1 (en) * 2016-06-13 2017-12-21 日産自動車株式会社 Antifouling structure and automotive component using antifouling structure
EP3470222A4 (en) * 2016-06-13 2019-04-17 Nissan Motor Co., Ltd. Antifouling structure and automotive component using antifouling structure
RU2735178C2 (en) * 2016-06-13 2020-10-28 Ниссан Мотор Ко., Лтд. Anti-fouling structure and automotive component using anti-fouling structure
KR102167919B1 (en) 2016-06-13 2020-10-20 닛산 지도우샤 가부시키가이샤 Antifouling structure and automobile parts using the antifouling structure
WO2018012093A1 (en) * 2016-07-15 2018-01-18 日産自動車株式会社 Antifouling structure precursor, antifouling structure, surface modification composition, and surface modification method
JPWO2018012093A1 (en) * 2016-07-15 2019-06-13 日産自動車株式会社 Antifouling structure precursor, antifouling structure, surface modifying composition, and surface modifying method
US11015064B2 (en) 2016-07-15 2021-05-25 Nissan Motor Co., Ltd. Antifouling structure precursor, antifouling structure, and surface modification method
CN109689353A (en) * 2016-09-13 2019-04-26 日产自动车株式会社 Anti-pollution structure body
WO2018051410A1 (en) * 2016-09-13 2018-03-22 日産自動車株式会社 Antifouling structure
US10899933B2 (en) 2016-09-13 2021-01-26 Nissan Motor Co., Ltd. Antifouling structure
US20190345342A1 (en) * 2016-09-13 2019-11-14 Nissan Motor Co., Ltd. Antifouling structure
CN109689353B (en) * 2016-09-13 2021-02-02 日产自动车株式会社 Antifouling structure
JPWO2018051410A1 (en) * 2016-09-13 2019-06-24 日産自動車株式会社 Antifouling structure
EP3524426A4 (en) * 2016-10-04 2019-11-20 Nissan Motor Co., Ltd. Antifouling structure
JPWO2018066046A1 (en) * 2016-10-04 2019-07-04 日産自動車株式会社 Antifouling structure
JP2018111072A (en) * 2017-01-12 2018-07-19 日産自動車株式会社 Method for producing antifouling coating film and antifouling coating film
US11008467B2 (en) 2017-01-12 2021-05-18 Nissan Motor Co., Ltd. Method for producing anti-fouling coating film, and anti-fouling coating film
WO2018131587A1 (en) * 2017-01-12 2018-07-19 日産自動車株式会社 Method for producing anti-fouling coating film, and anti-fouling coating film
EP3666517A4 (en) * 2017-08-10 2020-07-29 Nissan Motor Co., Ltd. Antifouling structure and automobile component provided with said antifouling structure
US20200181418A1 (en) * 2017-08-16 2020-06-11 Nissan Motor Co., Ltd. Antifouling structure
JPWO2019035192A1 (en) * 2017-08-16 2020-05-28 日産自動車株式会社 Antifouling structure
CN110831757A (en) * 2017-08-16 2020-02-21 日产自动车株式会社 Antifouling structure
WO2019035192A1 (en) * 2017-08-16 2019-02-21 日産自動車株式会社 Antifouling structure

Similar Documents

Publication Publication Date Title
WO2015155830A1 (en) High durability anti-fouling structure and car part using same
Aghaei et al. Optical and superhydrophilic properties of nanoporous silica-silica nanocomposite thin film
CN102317228B (en) There is base material of automatically cleaning antireflection coatings and preparation method thereof
JP6171788B2 (en) Antifouling body and method for producing the same
Zou et al. Rational design and fabrication of highly transparent, flexible, and thermally stable superhydrophobic coatings from raspberry-like hollow silica nanoparticles
JP5655215B2 (en) Coating composition, antifouling treatment method and antifouling substrate
US20100167046A1 (en) Process for coating a glass plate
Budunoglu et al. Flexible and mechanically stable antireflective coatings from nanoporous organically modified silica colloids
US20170298235A1 (en) Anti-fouling surface coating materials
US10520647B2 (en) Anti-fog and anti-reflective dual-functional coating for optical articles
CN103185905A (en) Anti-reflection film and optical element
WO2015145703A1 (en) Anti-fouling surface structure and motor vehicle component
JP6171801B2 (en) Antifouling body and method for producing the same
Moghal et al. Development of single layer nanoparticle anti-reflection coating for polymer substrates
JP6635115B2 (en) Antifouling structure and method of manufacturing the same
JP2018004921A (en) Spectacle lens, and manufacturing method for the same
Wei et al. Highly transparent superhydrophobic thin film with low refractive index prepared by one-step coating of modified silica nanoparticles
EP3880371A1 (en) Easy to clean coating
US11802994B2 (en) Easy-clean coating
JPH11228942A (en) Water-repellent fluid and production of water-repellent film
JPH11322368A (en) Solution for forming water repellent film
EP3459728B1 (en) Soil-resistant structure and automobile component provided with said soil-resistant structure
WO2018131587A1 (en) Method for producing anti-fouling coating film, and anti-fouling coating film
Zhao et al. Transparent and durable antismudge polyurethane coatings with octadecyl chlorosilane-enhanced bihydroxypropyl PDMS polymer brushes
WO2020241751A1 (en) Transparent substrate with antifouling layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP