WO2015154288A1 - 一种进行自动补偿的方法、装置及相应的流式细胞分析仪 - Google Patents

一种进行自动补偿的方法、装置及相应的流式细胞分析仪 Download PDF

Info

Publication number
WO2015154288A1
WO2015154288A1 PCT/CN2014/075109 CN2014075109W WO2015154288A1 WO 2015154288 A1 WO2015154288 A1 WO 2015154288A1 CN 2014075109 W CN2014075109 W CN 2014075109W WO 2015154288 A1 WO2015154288 A1 WO 2015154288A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
value
cell group
reference cell
compensated
Prior art date
Application number
PCT/CN2014/075109
Other languages
English (en)
French (fr)
Inventor
刘鹏昊
郭文恒
刘右林
金坚
闫华文
董丽芳
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
北京深迈瑞医疗电子技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 北京深迈瑞医疗电子技术研究院有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2014/075109 priority Critical patent/WO2015154288A1/zh
Priority to CN201910392236.7A priority patent/CN110057744B/zh
Priority to CN201480075276.4A priority patent/CN106255873B/zh
Publication of WO2015154288A1 publication Critical patent/WO2015154288A1/zh
Priority to US15/289,826 priority patent/US9970857B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B45/00ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1402Data analysis by thresholding or gating operations performed on the acquired signals or stored data

Definitions

  • the present invention relates to the field of medical devices, and more particularly to a method and apparatus for performing automatic compensation and a corresponding flow fine analyzer.
  • the principle of the flow cytometer is to generate photoelectric signals by receiving laser irradiation, and then the photoelectric signals generated by the laser irradiation cells are graphically displayed for analysis by the user.
  • the scattered light signal and fluorescent signal reflect the physicochemical characteristics of the cell, such as the size of the cell, the particle size and the expression of the antigen molecule.
  • FIG. 1 it is a schematic structural diagram of a flow cytometer in the prior art, which mainly includes an optical system, a liquid path system, a mechanical system, a control and signal processing system, related peripherals and a software system (not Draw) composition.
  • the main function of the liquid path system is to form the sample stream into the sample sample, and control the sample flow rate to be adjusted;
  • the main function of the optical system is to generate a laser irradiation sample stream to form a forward and lateral fluorescence signal;
  • control and signal processing system The main function is to carry out photoelectric conversion and control instruments;
  • the main function of the software system is to set the relevant photoelectric conversion parameters and pulse identification parameters, and display the height and area of the particles through visualized graphics, and then let them through various tools. Customer Analysis.
  • the height and area of the particles will be displayed through visualized graphics, and generally need to be implemented through the path shown in Figure 2.
  • the sample flow passes through the flow chamber, and after the laser irradiation, the cells in the liquid flow generate scattered light signals and fluorescent signals, and the photoelectric conversion unit converts the optical signals into electrical signals, and performs appropriate subsequent adjustment.
  • the adjusted signal is an analog signal.
  • the analog signal needs to be converted into a digital signal by AD conversion (analog-to-digital conversion) and AD , and the data required by the end user is the height, area and other information of the specific particle. Therefore, it is necessary to pulse-identify the digital signals collected by the ,, identify the effective particles, and further calculate the height and area of the particles. These height or area information is then transmitted to the computer and converted to scatter plots, histograms, and the like through the software system.
  • Figure 3 is an electrical signal converted from an optical signal in an existing flow cytometer.
  • the electrical signal is subjected to photoelectric conversion and circuit processing and is expressed in the form of a voltage.
  • Typical scatter Figure information is shown in Figure 4.
  • the wavelength of the generated fluorescent signal is often not a fixed wavelength of the ideal state, but has a certain distribution curve.
  • the flow cytometer uses a bandpass filter to filter out the interfering signal, ensuring that most of the collected signals are fluorescent signals representative of the characteristics of the object under test.
  • the principle of operation of the wavelength distribution and bandpass filter is shown in FIG. As can be seen from Fig. 5, based on the currently used lasers, fluorescein and bandpass filters, it is not possible to completely ensure that the signals between the channels do not interfere with each other. In Fig. 5, there are two channels at each of A and B.
  • Fluorescence compensation is usually in the form of a table, and each cell represents a percentage correction of the leakage (interference) from channel A to channel B.
  • each data is in the case of a known voltage, and multiple experiments are required to collect the data of each fluorescent channel, and the data of each channel is integrated and calculated.
  • the compensation value of the cell This method is costly and time consuming to operate.
  • the location of the cell population is approximately equal.
  • the particle data of the scatter plot in Fig. 4 after a plurality of manual adjustment compensation systems, compensate the scatter plot, and the pattern distribution of the target scatter plot as shown in Fig. 6 can be obtained.
  • the inventor has found that the user has the following difficulties in implementing image compensation based on the existing method: First, after determining the direction of compensation, the user determines which cell in the compensation matrix needs to be accumulated, and only has experience. After a very rich experience, it can be accurately judged. Secondly, the user can manually adjust the compensation, and then need to adjust the compensation multiple times, then observe the distribution of the graph, and view the statistical results and analyze the steps to obtain a suitable compensation value. The operation is cumbersome and complicated, and the accuracy is not enough.
  • the present invention proposes a method, a device and a corresponding flow cell analyzer for performing automatic compensation, which can automatically perform graphic adjustment compensation, thereby reducing Less user workload, improve the accuracy of compensation.
  • an aspect of the embodiments of the present invention provides a method for performing automatic compensation, which is used for analyzing and processing streaming data, and includes the following steps:
  • the reference cell population is a double-negative cell population
  • the reference cell The group is a single positive cell population adjacent to the reference cell population in the compensation direction; according to the position of the reference cell population, the compensation value is automatically calculated by a stepwise approximation algorithm and the scattergram is calculated with the compensation value
  • the particles of each of the cell populations are compensated such that the difference in position between the reference cell population and the reference cell population in the compensated direction on the compensated scattergram is within a predetermined range.
  • the step of determining the reference cell population in each cell population by the location of each cell group on the scattergram compensated as needed comprises:
  • Each of the cell populations is projected as a histogram in the compensation direction and the compensated direction, and one of the cell populations is determined as a reference cell population based on the peak pattern characteristics in the histogram.
  • the step of determining the reference cell population in each cell population by the location of each cell group on the scattergram compensated as needed comprises:
  • an image algorithm is used to obtain a cell population profile, and the cell population corresponding to the cell population profile is determined as a reference cell population.
  • the step of determining the reference cell population and the reference cell population in each of the cell populations further comprises the steps of:
  • the scattergram is divided into four regions such that the reference cells are in the lower left region.
  • the step of automatically calculating the compensation value by a stepwise approximation algorithm and compensating the particles of each cell group in the scattergram with the compensation value comprises:
  • the compensation result value of the particle in the compensated direction the measured value of the current compensated direction of the particle - the compensation value * the measured value of the current compensation direction of the particle;
  • the coarse adjustment compensation value is calculated according to the following formula:
  • the stepwise approximation algorithm is an iterative method, and according to the position of the reference cell group, the compensation value is automatically calculated by a stepwise approximation algorithm and the cell population in the scattergram is compared with the compensation value
  • the steps of the particles to compensate include:
  • Compensating each cell group in the scattergram, and determining whether the compensated reference cell population satisfies the iterative termination condition, and if not, automatically increasing or decreasing the adjustment step size on the initial compensation value to form a current The compensation value continues to compensate for each cell population in the scatter plot until the iteration termination condition is met.
  • the iterative termination condition is:
  • the absolute value of the difference between the median of the measured value of the reference cell population in the compensated direction and the median of the measured value of the reference cell population in the compensated direction is less than the first predetermined value
  • the absolute value of the difference between the median of the compensated result value of the reference cell population in the compensated direction and the median of the compensated result value of the reference cell population in the compensated direction is compensated with the reference cell population
  • the median of the compensation result value in the direction or the median of the compensation result value of the reference cell group in the compensated direction is smaller than the second predetermined value
  • An absolute value of a difference between an average of the compensation result values of the reference cell group in the compensated direction and an average of the compensation result values of the reference cell group in the compensated direction is less than a third predetermined value; or the reference cell
  • the absolute value of the difference between the average of the compensation result values of the group in the compensated direction and the average of the compensation result values of the reference cell group in the compensated direction and the compensation result value of the reference cell group in the compensated direction Average or reference cell population in the direction of compensation The ratio of the average of the compensated result values is less than the fourth predetermined value.
  • the step of automatically increasing or decreasing the adjustment step size on the initial compensation value to form a current compensation value, and continuing to compensate each cell group in the scattergram until the iterative termination condition is satisfied further includes:
  • the algorithm of the stepwise approximation is a half-search algorithm.
  • the step of dividing the scattergram into four regions according to the determined location of the reference cell group is specifically:
  • the scattergram is divided into four regions by generating a cross door on the scattergram, wherein the cross gate is a positive cross gate formed by a horizontal straight line and a vertical straight line, or The cross door is a shaped cross door formed by at least one horizontal line and at least one vertical line.
  • the method further comprises:
  • the desired at least one target compensation direction of each cell population in the scattergram is determined and displayed in the form of a chart for the user to select.
  • the method further comprises:
  • the compensation value is manually adjusted before automatic compensation or after automatic compensation, and the cell population of each region in the scattergram is compensated with the adjusted compensation value.
  • an apparatus for performing automatic compensation for analyzing and processing streaming data includes:
  • a reference cell group determining unit configured to determine a reference cell population and a reference cell population in each of the cell populations according to a position of each cell group on the scattergram compensated as needed, wherein the reference cell population is double a negative cell population, the reference cell population being a single positive cell population adjacent to the reference cell population in a compensation direction;
  • the reference cell group determining unit comprises:
  • An overcompensation processing subunit configured to compensate each cell group on the scattergram by using a first compensation value, where the first compensation value is an excessive compensation value;
  • a projection processing subunit configured to project the respective cell groups into a histogram in a compensation direction and a compensated direction, and determine a cell group in each of the cell groups as a reference according to a peak pattern characteristic in the histogram Cell population.
  • the reference cell group determining unit comprises:
  • a contour determining subunit configured to obtain a cell cluster contour by an image algorithm in a lower left corner region of the scattergram, and determine a cell population corresponding to the contour of the cell cluster as a reference cell population.
  • the method further comprises:
  • the area dividing unit divides the scattergram into four areas according to the determined position of the reference cell group, so that the reference cell is in the lower left side.
  • the compensation processing unit further includes:
  • a compensation subunit for compensating particles of all cell populations in the scattergram according to the compensation value by the following formula:
  • the compensation result value of the particle in the compensated direction the measured value of the current compensated direction of the particle - the compensation value * the measured value of the current compensation direction of the particle;
  • a coarse adjustment compensation value calculation sub-unit for calculating the coarse adjustment compensation value according to the following formula:
  • Coarse compensation value (Refer to the measured value of the cell population in the compensated direction - the measured value of the reference cell group in the compensated direction) I The measured value of the reference cell group in the compensation direction.
  • the stepwise approximation algorithm used by the compensation processing unit is an iterative method, and the compensation processing unit further includes:
  • Setting a subunit configured to use the coarse adjustment compensation value as an initial compensation value or set an initial compensation value, and set an adjustment step size and an iteration termination condition
  • the cell population continues to compensate until the iteration termination condition is met.
  • the iterative termination condition is:
  • the absolute value of the difference between the median of the compensation result value of the reference cell group in the compensated direction and the median of the compensation result value of the reference cell group in the compensated direction is less than a first predetermined value; or The absolute value of the difference between the median of the compensation result value of the reference cell group in the compensated direction and the median of the compensation result value of the reference cell group in the compensated direction and the reference cell group in the compensated direction.
  • the median of the compensated result value or the median of the compensated result value of the reference cell population in the compensated direction is less than the second predetermined value; or
  • An absolute value of a difference between an average of the compensation result values of the reference cell group in the compensated direction and an average of the compensation result values of the reference cell group in the compensated direction is less than a third predetermined value; or the reference cell
  • the absolute value of the difference between the average of the compensation result values of the group in the compensated direction and the average of the compensation result values of the reference cell group in the compensated direction and the compensation result value of the reference cell group in the compensated direction The ratio of the average of the compensated result values of the mean or reference cell population in the compensated direction is less than the fourth predetermined value.
  • the iterative processing subunit further comprises:
  • Adjusting the step size update subunit for determining the median/average of the compensation result value of the reference cell group in the compensated direction and the median/average of the compensation result value of the reference cell group in the compensated direction Whether the number has an inversion, if an inversion occurs, the adjustment step is decreased by a predetermined value, and the iterative process is continued.
  • the algorithm of the stepwise approximation is a half-search algorithm.
  • the area dividing unit divides the scattergram into four regions by generating a cross door on the scattergram, wherein the cross gate is a straight line and a vertical straight line
  • the formed positive cross door, or the cross door is a shaped cross door formed by at least one horizontal line and at least one vertical line.
  • the method further comprises:
  • the target compensation direction determining unit is configured to determine a desired at least one target compensation direction of each cell group in the scattergram before performing automatic compensation, and display the form in a graph for the user to select.
  • the method further comprises:
  • the compensation value setting unit is configured to manually adjust the compensation value, and perform compensation processing on the cell group of each region in the scattergram with the adjusted compensation value.
  • a flow cytometer including the aforementioned apparatus for performing automatic compensation.
  • the method and device for automatically compensating provided by the embodiments of the present invention and the corresponding flow cell analyzer automatically form a cross door based on the characteristics and position information of each cell group in the scattergram, and automatically perform coarse adjustment compensation.
  • the fine adjustment compensation is implemented according to the algorithm of gradual approximation, so that the appropriate compensation value can be automatically analyzed and calculated, and the scattergram is automatically updated, so that each cell group in the compensated scattergram has a horizontal and vertical distribution effect;
  • the embodiment of the invention automates the process based on the graphic adjustment compensation, reduces the workload of the user, improves the accuracy, and automatically sets the compensation cell to be adjusted, so that the experience requirement for the user is greatly reduced.
  • FIG. 1 is a structural view of a flow cytometer in the prior art
  • FIG. 3 is a waveform diagram of an electrical signal converted from an optical signal in a prior art flow cytometer
  • Figure 4 is a typical scatter plot displayed by a flow cytometer in the prior art
  • FIG. 5 is a waveform diagram of a fluorescent signal collected by a flow cytometer in the prior art using a band pass filter
  • FIG. 6 is an ideal scatter plot of a prior art flow cytometer after manual adjustment
  • FIG. 7 is a main flow diagram of one embodiment of a method for performing automatic compensation provided by the present invention
  • FIG. 8a is the present invention
  • Figure 8b is a schematic diagram of a histogram obtained after projecting on the Y-axis of Figure 8a;
  • FIG. 9 is a schematic diagram of a scattergram after automatically generating a cross door in an embodiment of the method for performing automatic compensation according to the present invention.
  • FIG. 10 is a schematic diagram of a compensation direction prompting interface in an embodiment of the method for performing automatic compensation according to the present invention.
  • FIGS. 12a-12c are scatter diagrams after automatically generating a cross door in another embodiment of the method for performing automatic compensation provided by the present invention.
  • Figure 13 is a schematic diagram of an embodiment of the apparatus for performing automatic compensation provided by the present invention
  • Figure 14 is a schematic diagram of the reference cell group determining unit of Figure 13;
  • FIG. 15 is a schematic illustration of the compensation processing unit of Figure 13.
  • Flow data refers to the use of sheath flow cytometry to illuminate the fluorescent dye on the analyte by laser and collect the data obtained by the intensity of the scattered light and the fluorescent excitation light signal;
  • a scatter plot is a two-dimensional map generated by a flow cytometer, on which two-dimensional feature information of a plurality of particles is distributed, wherein the X coordinate axis and the ⁇ coordinate axis of the scatter plot each characterize each particle a property, such as in a scatter plot, the X coordinate axis characterizes the CD3 characteristics of lymphocytes, and the Y coordinate axis characterizes the CD8 characteristics of lymphocytes;
  • the compensation means that the value of at least one coordinate axis direction of each particle in the scattergram is adjusted by a compensation value (ie, a compensation coefficient), for example, the value in one of the coordinate axes can be adjusted. And the value on the other axis is not adjusted;
  • a compensation value ie, a compensation coefficient
  • compensation direction refers to the coordinate direction that does not need to adjust the coordinate values of each particle during the compensation process
  • the compensated direction refers to the coordinate direction that needs to adjust the coordinate values of each particle during the compensation process
  • the reference cell population refers to the reference cell population as the reference position in the scatter plot
  • the particles of the group are compensated, that is, the reference cell group and the reference cell group are simultaneously compensated by the above formula, so that the measured value of the compensated direction of each particle is adjusted, thereby obtaining each particle in the compensated direction.
  • the compensation result value, and the measurement value of each particle in the compensation direction remains unchanged.
  • the user may select to perform manual adjustment of the compensation value for compensation in the interactive interface, or automatically calculate and compensate the compensation value by the method provided by the embodiment of the present invention.
  • the current scatter plot and the two desired compensation directions are shown in the interactive interface, and the user can determine one of the compensation directions according to the graphical guidance, for example, if the above one of the compensations in FIG. 10 is selected.
  • the direction ie CD3-CD8 direction
  • each particle can also be compensated in two compensation directions at the same time, that is, in one embodiment, each particle in the scattergram can be in the CD3 direction.
  • the value is compensated, and the value in the CD8 direction is also compensated.
  • the examples in the following examples are explained in the case where the particles in the scattergram are compensated in one compensation direction.
  • the user can also choose to set the compensation value in the manual compensation box (small box on the right side of the Manual Modify in the figure).
  • the current compensation value in Figure 10 is 12, and the user can manually adjust the compensation as needed. Value; or the user can also choose to automatically calculate the compensation value, click the "Auto Calculate" button in the figure, the method provided by the embodiment of the present invention automatically analyzes and calculates the appropriate compensation value according to the graphic features of the current scatter plot, and according to The calculated compensation value compensates for the particles in the scatter to update the scattergram.
  • the user can also manually adjust the compensation value.
  • the principle and process of automatically calculating the compensation value in the embodiment of the present invention are mainly described.
  • FIG. 7 a main flow diagram of one embodiment of a method of performing automatic compensation provided by the present invention is shown.
  • the method includes the following steps:
  • Step S10 determining a reference cell population and a reference cell population in each cell group according to the position of each cell group on the scattergram that needs to be compensated, wherein the reference cell population is a double-negative cell population, and the reference cell population is a single positive cell population in the direction of compensation, wherein the scatter plot is a scatter plot generated by a flow cytometer;
  • Step S12 dividing the scatter plot into four regions according to the position of the reference cell group, so that the reference cell group is in the lower left corner region;
  • Step S14 obtaining a coarse adjustment compensation value, wherein the step S14 is an optional step;
  • Step S16 according to the position of the reference cell group, automatically calculate the compensation value by a stepwise approximation algorithm and update the scattergram with the compensation value, so that the position difference between the reference cell group and the reference cell group in the compensated direction on the scatter plot is at The predetermined range, wherein, in the scatter plot, the compensation direction is perpendicular to the compensated direction.
  • step S10 further includes:
  • the first compensation value is used to compensate each cell group on the scattergram, and the first compensation value is an excessive compensation value; each cell group is projected into a histogram in the compensation direction and the compensated direction, according to the peak pattern in the histogram Characteristics, determining a cell population in each cell population as a reference cell population, and determining a reference cell population.
  • a double-negative cell population, a single positive cell population, and a double positive cell population are distributed in the scattergram shown in FIG. 8a, in which interference is disturbed by other channels in the three cell populations.
  • the position of the double-negative cell population in the scatter plot is relatively stable, and it is located on the scatter plot. The position and the actual value do not deviate much, and the position of the single positive cell group in the scatter plot deviates greatly from the actual value. Therefore, the double negative cell population is usually determined as the reference cell population, and the X coordinate axis (CD3) direction is determined as the compensation direction, and the Y coordinate axis (CD8) is determined as the compensated direction.
  • a first compensation value needs to be set, and the first compensation value is selected to be larger.
  • the value for example 50%. Because the double-negative cells are insensitive to the compensation value response when compensating for the scatter plot (ie, the position of each particle does not change much after compensation), but the single positive cells react very strongly to the compensation value (ie, after compensation) The change in position of the particles is distinguished from the double-negative fine cell population.
  • the scatter plot is overcompensated by the first compensation value, wherein the single positive cell population is adjusted to a negative region (in Figure 8a A sign), and double-negative cells will gather near the coordinate 0 (marked by B in Figure 8a). It is understandable that in order to see the cell population more clearly in the scatter plot, in the scatter plot In the two coordinate axes, the coordinate values of the negative direction of the compensation direction and the compensated direction are all marked by double exponential amplification, so that a large amount of negative data generated after compensation can be clearly displayed.
  • the Y-axis coordinate value of the first position on the scatter plot (ie, the value in the CD8 direction) can be obtained, specifically, in one example, the first The position can select the particle number value (Count value) for the first time equal to a predetermined value
  • a point is determined in the scattergram as the center point of the cross gate, so the cell group at the lower left side of the center point is As the reference cell population (double negative cell population).
  • step S12 according to the center point determined in the foregoing step S10, from the horizontal direction and Extending the line in the vertical direction, a cross door can be formed on the scatter plot, the cross door is composed of horizontal and vertical lines, and the cross door divides the scatter plot into four regions (see the area Q5 shown in FIG. 9 , Q6, Q7, and Q8), and the reference cells are located in the lower left region (Q7) such that the reference cell population is located (or partially located) in the region (Q8) where the compensation direction is adjacent to the reference cell population, specifically In FIG. 9, the cell population located in the region Q7 is the reference cell population; and the cell population located in the region Q8 is the reference cell population.
  • the reference cell population can also be found by other methods in steps S10 and S12, and form a cross gate, such as in one embodiment, such as the scatter plot shown in Figure 8a.
  • a cross gate such as in one embodiment, such as the scatter plot shown in Figure 8a.
  • an image algorithm such as an algorithm such as expansion and erosion
  • the obtained cell population is used as a reference cell group, and a point is determined as a center point of the cross gate at the upper right side of the reference cell edge.
  • the line extends from the horizontal direction and the vertical direction, and a cross door is formed on the scatter plot, the cross gate divides the scatter plot into four regions, and the reference cell is in the lower left side region, and the same A scatter plot with a cross door similar to that of Figure 9 was obtained.
  • the cross door is exemplified by a positive cross door (ie, a line perpendicular to the horizontal direction and the vertical direction). It can be understood that, in other embodiments, the cross door It can also be a shaped cross door.
  • Figures 12a to 12c show the form of several shaped cross doors. In these shaped cross doors, it is necessary to divide the scatter plot into four areas and make the reference cells The group is in the area on the lower left side.
  • the measurement values of the reference cell population or the reference cell population in the following are implemented by counting all the particles in the region where the reference cell population or the reference cell population is located, that is, the lower left region (see FIG. 9). All particles in the region Q7) are considered to be particles of the reference cell population, all particles in the region Q8 are considered to be particles of the reference cell population, and cell populations in other regions are similarly statistically used.
  • step S14 a step of calculating a coarse adjustment compensation value and compensating the scattergram with a coarse adjustment compensation value is further included,
  • the coarse adjustment compensation value is calculated according to the following formula:
  • Coarse compensation value (Reference value of reference cell group in the compensated direction - measured value of the reference cell group in the compensated direction) I Reference measurement of the cell population in the compensation direction.
  • the scattergram shown in FIG. 9 is taken as an example, wherein the cell group in the region Q7 is the reference cell group, and the cell group in the region Q8 is the reference cell group, and the X coordinate axis direction (ie, the CD3 direction) )
  • the Y coordinate axis direction (ie, CD8 direction) is the compensated direction.
  • K 12 ( Q8:0 C D8 - Q7:0 CD8 ) I Q8:0 CD3 ( 5 )
  • K 12 is the coarse adjustment compensation value
  • Q8:0 CD8 is the measured value of the reference cell group in the region Q8 in the CD8 direction (compensated direction)
  • Q7:0 CD8 is the reference cell group in the region Q7.
  • Q8:0 CD3 is the measured value of the reference cell group in the region Q8 in the CD3 direction (compensation direction);
  • the coarse adjustment compensation value here is obtained by the following principle:
  • the scatter plot in Figure 9 is compensated.
  • the direction of the X coordinate axis ie, the CD3 direction
  • the direction of the Y coordinate axis ie, the CD8 direction
  • the compensation formula for each particle in the scatter plot is:
  • CD8 is the measured value in the CD8 direction (that is, the Y-axis direction of Fig. 9)
  • S CD8 is the true value in the CD8 direction (in the process, the final compensation result value is obtained by compensating the measured value, and the final compensation is expected The result value is close to the true value)
  • 8 ⁇ 3 is the true value in the 03 direction
  • K 12 is the coarse adjustment value.
  • Q8 represents the cell population set in the region Q8
  • Q8: S CD8 represents the true value set of the cell group in the region Q8 in the CD8 direction.
  • K 12 ( Q8:0 CD8 - Q7:S CD8 ) / Q8:S CD3
  • the measured values of the region Q7 and the region Q8 in the above formula (5) can be expressed by the median, wherein the median refers to the value of all the particles in the region sorted according to the numerical value, and the number of the most intermediate particles is obtained. Excluding outlier interference, and all calculations in equation (5) above are measurable measurements, and the coarse adjustment value can be easily calculated.
  • the measured value and the true value of the region Q7 and the region Q8 in the above formula (5) can also be expressed by using, for example, an average number, and the coarse adjustment compensation value can be easily calculated. .
  • the coarse adjustment compensation value can be applied to compensate all the cell groups in the scattergram, and the scatter plot is refreshed.
  • the stepwise approximation algorithm used is an iterative method, and according to the position of the reference cell group, the compensation value is automatically calculated by a stepwise approximation algorithm, and the compensation value is all in the scatter plot.
  • the particles are compensated, and then the scatter plot is updated with the compensated result value.
  • the steps specifically include:
  • the particles of all cell groups in the scatter plot are compensated according to the compensation formula by the following formula:
  • the result value of the compensated direction after the particle compensation the measured value of the current compensated direction of the particle - the compensation value * the measured value of the current compensation direction of the particle;
  • FIG. 11 The specific process of fine adjustment compensation is shown in FIG. 11.
  • the process of fine adjustment compensation includes the following steps:
  • Step S20 setting an iteration termination condition, an initial adjustment step length, and an initial compensation value; wherein, the coarse adjustment compensation value obtained in the foregoing step S14 may be used as an initial compensation value, and if the step of coarse adjustment compensation is not performed, an initial setting is directly set.
  • a compensation value in an embodiment, the initial adjustment step size can be set to, for example, 1%;
  • the iteration termination condition is:
  • the absolute value of the difference between the median of the compensated result value of the reference cell population in the compensated direction and the median of the compensated result value of the reference cell population in the compensated direction is less than the first predetermined value; or the reference cell population is The absolute value of the difference between the median of the compensation result value in the compensated direction and the median of the compensation result value of the reference cell group in the compensated direction and the compensation result value of the reference cell group in the compensated direction.
  • the ratio of the median or the median of the reference cell population in the compensated direction is less than the second predetermined value; or
  • the absolute value of the difference between the average of the compensation result value of the reference cell group in the compensated direction and the average of the compensation result value of the reference cell group in the compensated direction is less than a third predetermined value; or the reference cell group is compensated
  • the ratio of the average of the compensation result values of the group in the compensated direction is smaller than the fourth predetermined value.
  • the first predetermined value, the second predetermined value, the third predetermined value, and the fourth predetermined value are pre-set as needed.
  • the iterative termination condition can be set to:
  • step S21 it is determined whether Median (Q8: CD8) is greater than Median (Q7: CD8). If the determination result is yes, then the process proceeds to step S22, and the compensation value is added, that is, the initial adjustment step is automatically added to the initial compensation value to obtain the current Compensation value;
  • step S23 the compensation value, that is, the initial adjustment step is automatically subtracted from the initial compensation value to obtain the current compensation value.
  • Step S24 performing compensation processing on the particles of each cell group in the scattergram with the current compensation value, refreshing the coordinates of the scattergram, and updating the current scattergram with the compensation result;
  • Step S25 determining whether each cell group in the compensated scattergram image satisfies an iterative termination condition. If the iterative termination condition is satisfied, the fine adjustment compensation process is ended, and the current compensation value is an output compensation value; if not, the entry is entered. Step S26;
  • Step S26 determining whether the median/average of the measured value of the reference cell group in the compensation direction and the median/average of the measured value of the reference cell group in the compensation direction are reversed, and if the inversion occurs, Reduce the adjustment step by a predetermined multiple and continue the iterative process. Specifically, in one embodiment, it can be determined whether the Median (Q8: CD8) and Median (Q7: CD8) sizes are reversed.
  • step S21 If no inversion occurs, the process proceeds to step S21, where the reverse refers to: for example, Iterative process has been Median (Q8: CD8) > Median (Q7: CD8), continue to adjust, when the first appearance of Median (Q7: CD8) > Median (Q8: CD8), the size of the two appears Inverted; if the inversion occurs, it indicates that the sizes of Median (Q8: CD8) and Median (Q7: CD8) are very close, then proceed to step S27;
  • step S27 the initial adjustment step size is decreased by a predetermined value (for example, the predetermined multiple can be reduced, in one example, it can be reduced by 10 times to 0.1%), and the process proceeds to step S21 to repeat the iterative process.
  • a predetermined value for example, the predetermined multiple can be reduced, in one example, it can be reduced by 10 times to 0.16%
  • the current compensation value is the output compensation value, so that the reference cell group in the region Q7 and the reference cell group in the region Q8 are in the compensated direction (ie, CD8).
  • the median direction of the direction is the closest.
  • the average number of reference cell groups in the region Q7 and the reference cell group in the region Q8 in the direction of the compensated direction can be compared, and the two can be approximated, and the scattergram can also be realized.
  • the distribution of the cell population above is "horizontal and vertical", that is, in the direction of compensation, the reference cell population (ie, the double negative cell population) is approximately equal to the position of the reference cell population (within a predetermined range).
  • the stepwise approximation algorithm can employ a method such as a half-search algorithm
  • an embodiment of the present invention further provides an apparatus for performing automatic compensation, which is used for analyzing and processing streaming data generated by a flow cytometer, and includes:
  • the target compensation direction determining unit 10 is configured to determine a desired at least one target compensation direction of each cell group in the scattergram before performing automatic compensation, and display it in the form of a graph for the user to select.
  • the compensation value setting unit 12 is configured to manually adjust the compensation value, and perform compensation processing on the cell group of each region in the scattergram with the set adjustment value.
  • the reference cell group determining unit 14 is configured to determine a reference cell group and a reference cell group in each cell group according to a position of each cell group on the scattergram compensated as needed, wherein the reference cell group is a double negative cell group , the reference cell population is a single positive cell population in the direction of compensation;
  • the region dividing unit 16 divides the scattergram into four regions according to the determined position of the reference cell group, so that the reference cells are in the lower left region, so that at least a portion of the reference cell group is in the compensation direction and the reference cell group In the adjacent region, specifically, the region dividing unit divides the scattergram into four regions by generating a cross gate on the scattergram, wherein the cross gate is formed by a horizontal straight line and a vertical straight line.
  • a positive cross door, or a cross door is a shaped cross door formed by at least one horizontal line and at least one vertical line;
  • the compensation processing unit 18 is configured to automatically calculate the compensation value according to the position of the reference cell group by a stepwise approximation algorithm and update the scattergram with the compensation value, so that the reference cell group and the reference cell group on the scatter plot are in the compensated direction.
  • the position difference is in a predetermined range, wherein, in the scatter plot, the compensation direction Vertical to the direction to be compensated;
  • the reference cell group determining unit 14 includes:
  • the overcompensation processing sub-unit 140 is configured to compensate each cell group on the scattergram by using the first compensation value, and the first compensation value is an excessive compensation value;
  • the projection processing sub-unit 142 is configured to project each cell group into a histogram in the compensation direction and the compensated direction, and determine a cell group in each cell group as a reference cell group according to the peak pattern characteristic in the histogram.
  • the reference cell population determination unit 14 further comprises:
  • the contour determining sub-unit 144 is configured to obtain a cell group contour by using an image algorithm in a lower left corner region of the scattergram, and determine a cell population corresponding to the cell group contour as a reference cell group.
  • FIG. 15 it is a schematic structural diagram of the compensation processing unit 18 in FIG.
  • the compensation processing unit 18 further includes:
  • a coarse adjustment compensation value calculation unit 180 configured to calculate a coarse adjustment compensation value
  • the setting subunit 181 is configured to set the adjustment step size and the iteration termination condition by using the coarse adjustment compensation value as the initial compensation value or setting the initial compensation value;
  • Compensating subunit 182 configured to compensate particles of all cell groups in the scattergram according to a compensation value set by the setting subunit;
  • the iterative processing sub-unit 183 compensates each cell group in the scattergram, and determines whether the compensated reference cell group satisfies the iterative termination condition, and if not, automatically increases or decreases the adjustment step size on the initial compensation value to form
  • the current compensation value continues to compensate for each cell group in the scattergram until the iterative termination condition is satisfied, and how to increase or decrease the adjustment length automatically in the initial compensation value, refer to the foregoing description of FIG.
  • the coarse adjustment compensation value calculation unit 180 calculates the coarse adjustment compensation value according to the following formula:
  • the coarse adjustment compensation value (the measured value of the reference cell group in the compensated direction - the measured value of the reference cell group in the compensated direction) a reference value of the reference cell population in the compensation direction;
  • the compensation sub-unit 182 compensates for the particles of all the cell groups in the scatter plot according to the following formula:
  • Result value of the compensated direction after compensation of the particle measurement of the current compensated direction of the particle Value-compensation value* The measured value of the current compensation direction of the particle;
  • the absolute value of the difference between the median of the compensation result value of the reference cell group in the compensated direction and the median of the compensation result value of the reference cell group in the compensated direction is less than the first predetermined value
  • the absolute value of the difference between the median of the compensation result value of the reference cell group in the compensated direction and the median of the compensation result value of the reference cell group in the compensated direction and the compensation of the reference cell group in the compensated direction is less than the second predetermined value;
  • the absolute value of the difference between the average of the compensation result value of the reference cell group in the compensated direction and the average of the compensation result value of the reference cell group in the compensated direction is less than a third predetermined value
  • the absolute value of the difference between the average of the compensation result value of the reference cell group in the compensated direction and the average of the compensation result value of the reference cell group in the compensated direction and the compensation result value of the reference cell group in the compensated direction is less than the fourth predetermined value.
  • the iterative processing subunit 183 further includes:
  • the adjustment step update subunit 1830 is configured to determine the median/average number of the compensation result value of the reference cell group in the compensated direction and the median/average value of the compensation result value of the reference cell group in the compensated direction Whether there is a reversal, if there is an inversion, the adjustment step is reduced by a predetermined multiple, and the iterative processing is continued.
  • the algorithm for stepwise approximation is a binary search algorithm.
  • the algorithm for stepwise approximation is a binary search algorithm.
  • a flow cytometer including the foregoing apparatus for performing automatic compensation.
  • FIGS. 6-15 For more details, reference may be made to the foregoing description of FIGS. 6-15. , I will not repeat them here.
  • the method and device for automatically compensating provided by the embodiments of the present invention and the corresponding flow cell analyzer automatically form a cross door by using characteristics and position information of each cell group in the scattergram. And automatically perform coarse adjustment compensation, and implement fine adjustment compensation according to the algorithm of progressive approximation, so that the appropriate compensation value can be automatically analyzed and calculated, and the scattergram is automatically updated, so that each cell group in the compensated scattergram has horizontal and vertical Distribution effect;
  • the embodiment of the invention automates the process based on the graphic adjustment compensation, reduces the workload of the user, improves the accuracy, and automatically sets the compensation cell to be adjusted, so that the experience requirement for the user is greatly reduced.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种进行自动补偿的方法、相应的装置及流式细胞分析仪。该自动补偿的方法包括:根据需要进行补偿的散点图上各细胞群所处的位置,确定各细胞群中的基准细胞群以及参考细胞群,其中,基准细胞群为双阴性细胞群,参考细胞群为在补偿方向上与基准细胞群相邻的单阳性细胞群(S10);根据基准细胞群的位置,通过逐步逼近的算法自动计算补偿值并以该补偿值更新散点图,使该散点图上参考细胞群与基准细胞群在被补偿方向上的位置差处于预定的范围(S16)。该方法可自动进行图形调节补偿,从而减少用户工作量,提升补偿的准确度。

Description

一种进行自动补偿的方法、 装置及相应的流式细胞分析仪 技术领域
本发明涉及医疗设备领域, 尤其涉及一种进行自动补偿的方法、 装置及 相应的流式细 分析仪。
背景技术
流式细胞分析仪的原理是通过接收激光照射细胞产生光电信号, 然后, 将激光照射细胞产生的光电信号通过图形化的方式表现出来,供用户进行分 析。 其散射光信号和荧光信号反映细胞的物理化学特征, 如细胞的大小、 颗 粒度和抗原分子的表达情况等。
如图 1所示, 是现有技术中的一种流式细胞分析仪的结构示意图, 其主 要包括光学系统、 液路系统、 机械系统、 控制及信号处理系统、 相关外设及 软件系统(未画出)组成。 其中, 液路系统的主要作用是将分析样本形成样 本流, 并且控制样本流流量可以调; 光学系统的主要作用是产生激光照射样 本流, 形成前向、 侧向荧光信号; 控制及信号处理系统的主要作用是进行光 电转换和控制仪器; 软件系统的主要作用是通过设置相关光电转换参数、 脉 冲识别参数, 把粒子的高度、 面积等信息通过视觉化的图形现出来, 然后通 过各种工具让客户分析。
其中, 粒子的高度、 面积等信息会通过视觉化的图形表现出来, 一般需 要经过如图 2示出的路径实现。 具体包括: 样本流经过流动室, 激光照射后 液流内细胞产生散射光信号和荧光信号, 光电转换单元将这些光学信号转换 为电学信号, 并且进行适当的后续调整。 调整后的信号为模拟信号, 为了进 行后续数据处理, 需要将模拟信号通过 AD转换(模数转换)和 AD釆集变 为数字信号, 而最终用户需要的数据为具体粒子的高度、 面积等信息, 因此 需要将釆集到的数字信号进行脉冲识别, 识别有效粒子, 进一步计算出粒子 的高度和面积。 然后将这些高度或者面积信息传送给计算机, 通过软件系统 转换为散点图、 直方图等图形。
附图 3是现有流式细胞分析仪中一路光学信号转换出的电学信号, 这个 电学信号经过光电转换及电路处理, 通过电压的形式表现出来。 典型的散点 图信息如图 4所示。
由于激光照射荧光素激发荧光信号,但产生的荧光信号波长往往不是理 想状态的固定波长, 而是具备一定的分布曲线。 为了搜集代表某种特性的荧 光数据, 流式细胞分析仪釆用带通滤光片来滤除干扰信号, 保证搜集到的大 部分信号是能够代表被测物特征的荧光信号。 图 5中示出了波长分布与带通 滤波片的工作原理示意。 从图 5中可以看到, 基于目前常用的激光器、 荧光 素和带通滤波片, 无法完全保证各个通道间的信号不相互干扰, 在图 5中的 A和 B两处存在两个通道相互之间干扰,这种干扰会使被测物在相应通道上 所釆集的数据产生偏差。 为了克服这种缺陷, 现有技术中经常釆用荧光补偿 的方法, 去除通道间的相互干扰, 以便展示出的各种图形上能够显示出真实 反映被测物实际特征的数据。 荧光补偿通常釆用表格的形式, 每个单元格代 表按百分比修正 A通道到 B通道的泄漏 (干扰 )。
但是, 现有的通过表格进行荧光补偿的方法, 其各数据是在已知电压的 情况下, 需要釆用多次试验来釆集各个荧光通道的数据, 并综合各通道的数 据后计算得到各个单元格的补偿值。 这种方法成本较高, 且操作费时。 而在 实际临床操作中, 经常需要对图形的补偿值进行调整, 且用户往往会多次尝 试调整补偿值, 直到散点图上的粒子群分布呈 "横平竖直" 形状, 即某方向 上各细胞群的位置大概相等。 例如图 4中的散点图的粒子数据, 在经过多次 手工调整补偿系统后, 对散点图进行补偿, 可以得到如图 6所示的目标散点 图的图形分布。
但是发明人发现,用户通过现有的这种方法实现基于图形补偿存在如下 的难点: 首先, 用户在确定补偿的方向后, 确定要修改补偿矩阵中的哪个单 元格需要经验的积累, 只有在具备非常丰富的经验后才能准确判断; 其次, 用户通过手动尝试的过程, 需要经常多次调节补偿, 然后观察图形分布, 以 及查看统计结果并进行分析的步骤, 才可能得到一个合适的补偿值, 这种操 作繁瑣复杂, 且准确性不够。
发明内容
为了消除现有技术的上述缺陷, 本发明提出了一种进行自动补偿的方 法、 装置及相应的流式细胞分析仪, 其可以自动进行图形调节补偿, 从而减 少用户工作量, 提升补偿的准确度。
为了解决上述技术问题,本发明实施例的一方面提供了一种进行自动补 偿的方法, 用于对流式数据进行分析处理, 包括如下步骤:
根据需要进行补偿的散点图上各细胞群所处的位置,确定所述各细胞群 中的基准细胞群以及参考细胞群, 其中, 所述基准细胞群为双阴性细胞群, 所述参考细胞群为在补偿方向上与所述基准细胞群相邻的单阳性细胞群; 根据所述基准细胞群的位置,通过逐步逼近的算法自动计算补偿值并以 所述补偿值对所述散点图中的各细胞群的粒子进行补偿,使补偿后的散点图 上所述参考细胞群与所述基准细胞群在被补偿方向上的位置差处于预定的 范围, 其中。
优选地, 所述根据需要进行补偿的散点图上各细胞群所处的位置, 确定 所述各细胞群中的基准细胞群的步骤包括:
利用第一补偿值对所述散点图上的各细胞群进行补偿, 所述第一补偿值 为过度补偿值;
将所述各细胞群在补偿方向和被补偿方向上投影为直方图,根据所述直 方图中的波峰图形特征, 确定所述各细胞群中的一个细胞群为基准细胞群。
优选地, 所述根据需要进行补偿的散点图上各细胞群所处的位置, 确定 所述各细胞群中的基准细胞群的步骤包括:
在所述散点图的左下角区域釆用图像算法获得细胞群轮廓,将所述细胞 群轮廓所对应的细胞群确定为基准细胞群。
优选地,在确定所述各细胞群中的基准细胞群以及参考细胞群的步骤之 后进一步包括步骤:
根据所述确定的基准细胞群的位置, 将所述散点图分成四个区域, 使所 述基准细胞处于左下侧的区域中。
优选地, 根据所述基准细胞群的位置, 通过逐步逼近的算法自动计算补 偿值并以所述补偿值对所述散点图中的各细胞群的粒子进行补偿的步骤包 括:
对所述散点图中的所有细胞群的粒子根据所述补偿值以如下的公式进 行补偿: 该粒子在被补偿方向的补偿结果值 = 该粒子当前被补偿方向的测量值 -补偿值 * 该粒子当前补偿方向的测量值;
且该粒子当前补偿方向的补偿结果值与测量值保持不变。
优选地, 进一步包括计算粗调补偿值, 并以所述粗调补偿值对所述散点 图进行补偿的步骤,
其中, 根据如下公式计算获得粗调补偿值:
(参考细胞群在被补偿方向上的测量值 -基准细胞群在被补偿方向上 的测量值) /参考细胞群在补偿方向上的测量值。
优选地, 所述逐步逼近的算法为迭代法, 所述根据所述基准细胞群的位 置,通过逐步逼近的算法自动计算补偿值并以所述补偿值对所述散点图中的 各细胞群的粒子进行补偿的步骤具体包括:
以所述粗调补偿值作为初始补偿值或设置初始补偿值,设置调节步长以 及迭代终止条件;
对散点图中的各细胞群进行补偿, 并判断补偿后的参考细胞群是否满足 所述迭代终止条件, 如否, 则在所述初始补偿值上自动增减所述调节步长, 形成当前补偿值, 对散点图中的各细胞群继续进行补偿, 直至满足迭代终止 条件。
优选地, 所述迭代终止条件为:
所述基准细胞群在被补偿方向上的测量值的中位数与参考细胞群在被 补偿方向上的测量值的中位数的差值的绝对值小于第一预定值; 或
所述基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群 在被补偿方向上的补偿结果值的中位数的差值的绝对值与所述基准细胞群 在被补偿方向上的补偿结果值的中位数或参考细胞群在被补偿方向上的补 偿结果值的中位数的比值小于第二预定值; 或
所述基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群 在被补偿方向上的补偿结果值的平均数的差值的绝对值小于第三预定值; 或 所述基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群 在被补偿方向上的补偿结果值的平均数的差值的绝对值与所述基准细胞群 在被补偿方向上的补偿结果值的平均数或参考细胞群在被补偿方向上的补 偿结果值的平均数的比值小于第四预定值。
优选地, 所述在所述初始补偿值上自动增减所述调节步长, 形成当前补 偿值, 对散点图中的各细胞群继续进行补偿, 直至满足迭代终止条件的步骤 进一步包括:
判断所述基准细胞群在被补偿方向上的补偿结果值的中位数 /平均数与 参考细胞群在被补偿方向上的补偿结果值的中位数 /平均数是否出现反转,如 果出现反转, 则将所述调节步长减少预定值, 继续进行迭代处理。
优选地, 所述逐步逼近的算法为折半搜索算法。
优选地, 所述根据所述确定的基准细胞群的位置, 将所述散点图分成四 个区域的步骤具体为:
通过在所述散点图上生成一个十字门将所述散点图分成四个区域, 其 中, 所述十字门为由一条水平方向的直线和一条垂直方向的直线形成的正十 字门, 或者所述十字门为由至少一条水平方向的线条和至少一条垂直方向线 条形成的异形十字门。
优选地, 进一步包括:
在进行自动补偿之前,确定所述散点图中各细胞群的期望的至少一个目 标补偿方向, 并以图表的形式显示出来供用户选择。
优选地, 进一步包括:
在进行自动补偿之前或自动补偿之后手动调整所述补偿值, 并以所调整 的补偿值对所述散点图中的各区域的细胞群进行补偿处理。
相应地, 本发明实施例的另一方面, 还提供一种进行自动补偿的装置, 用于对流式数据进行分析处理, 包括:
基准细胞群确定单元, 用于根据需要进行补偿的散点图上各细胞群所处 的位置, 确定所述各细胞群中的基准细胞群以及参考细胞群, 其中, 所述基 准细胞群为双阴性细胞群, 所述参考细胞群为在补偿方向上与所述基准细胞 群相邻的单阳性细胞群;
补偿处理单元, 用于根据所述基准细胞群的位置, 通过逐步逼近的算法 自动计算补偿值并以所述补偿值更新所述散点图,使所述散点图上所述参考 细胞群与所述基准细胞群在被补偿方向上的位置差处于预定的范围。 优选地, 所述基准细胞群确定单元包括:
过度补偿处理子单元, 用于利用第一补偿值对所述散点图上的各细胞群 进行补偿, 所述第一补偿值为过度补偿值;
投影处理子单元,用于将所述各细胞群在补偿方向和被补偿方向上投影 为直方图, 根据所述直方图中的波峰图形特征, 确定所述各细胞群中的一个 细胞群为基准细胞群。
优选地, 所述基准细胞群确定单元包括:
轮廓确定子单元,用于在所述散点图的左下角区域釆用图像算法获得细 胞群轮廓, 将所述细胞群轮廓所对应的细胞群确定为基准细胞群。
优选地, 其特征在于, 进一步包括:
区域划分单元, 根据所述确定的基准细胞群的位置, 将所述散点图分成 四个区域, 使所述基准细胞处于左下侧的区域中。
优选地, 所述补偿处理单元进一步包括:
补偿子单元, 用于对所述散点图中的所有细胞群的粒子根据所述补偿值 以如下的公式进行补偿:
该粒子在被补偿方向的补偿结果值 = 该粒子当前被补偿方向的测量值 -补偿值 * 该粒子当前补偿方向的测量值;
且该粒子当前补偿方向的补偿结果值与测量值保持不变。
优选地, 进一步包括粗调补偿值计算子单元, 用于根据下述公式计算粗 调补偿值:
粗调补偿值 = (参考细胞群在被补偿方向上的测量值 -基准细胞群在 被补偿方向上的测量值) I参考细胞群在补偿方向上的测量值。
优选地, 所述补偿处理单元釆用的逐步逼近的算法为迭代法, 所述补偿 处理单元进一步包括:
设置子单元, 用于以所述粗调补偿值作为初始补偿值或设置初始补偿 值, 设置调节步长以及迭代终止条件;
迭代处理子单元, 对散点图中的各细胞群进行补偿, 并判断补偿后的参 考细胞群是否满足所述迭代终止条件, 如否, 则在所述初始补偿值上自动增 减所述调节步长, 形成当前补偿值, 并以所述当前补偿值对散点图中的各细 胞群继续进行补偿, 直至满足迭代终止条件。
优选地, 所述迭代终止条件为:
所述基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群 在被补偿方向上的补偿结果值的中位数的差值的绝对值小于第一预定值; 或 所述基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群 在被补偿方向上的补偿结果值的中位数的差值的绝对值与所述基准细胞群 在被补偿方向上的补偿结果值的中位数或参考细胞群在被补偿方向上的补 偿结果值的中位数的比值小于第二预定值; 或
所述基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群 在被补偿方向上的补偿结果值的平均数的差值的绝对值小于第三预定值; 或 所述基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群 在被补偿方向上的补偿结果值的平均数的差值的绝对值与所述基准细胞群 在被补偿方向上的补偿结果值的平均数或参考细胞群在被补偿方向上的补 偿结果值的平均数的比值小于第四预定值。
优选地, 所述迭代处理子单元进一步包括:
调节步长更新子单元, 用于判断所述基准细胞群在被补偿方向上的补偿 结果值的中位数 /平均数与参考细胞群在被补偿方向上的补偿结果值的中位 数 /平均数是否出现反转, 如果出现反转, 则将所述调节步长减少预定值, 继 续进行迭代处理。
优选地, 所述逐步逼近的算法为折半搜索算法。
优选地, 所述区域划分单元是通过在所述散点图上生成一个十字门将所 述散点图分成四个区域, 其中, 所述十字门为由一条水平方向的直线和一条 垂直方向的直线形成的正十字门, 或者所述十字门为由至少一条水平方向的 线条和至少一条垂直方向线条形成的异形十字门。
优选地, 进一步包括:
目标补偿方向确定单元, 用于在进行自动补偿之前, 确定所述散点图中 各细胞群的期望的至少一个目标补偿方向, 并以图表的形式显示出来供用户 选择。
优选地, 进一步包括: 补偿值设置单元, 用于手动调整所述补偿值, 并以所调整的补偿值对所 述散点图中的各区域的细胞群进行补偿处理。
相应地, 本发明实施例的再一方面, 还提供了一种流式细胞分析仪, 包 括前述的进行自动补偿的装置。
实施本发明的实施例, 具有如下有益效果:
本发明实施例所提供的进行自动补偿的方法、装置及相应的流式细胞分 析仪, 通过基于散点图中各细胞群的特征以及位置信息, 自动形成十字门, 并自动进行粗调补偿, 以及根据逐步逼近的算法实现细调补偿, 从而可以自 动分析计算合适补偿值, 并自动更新散点图, 使补偿后的散点图中的各细胞 群具备横平竖直的分布效果;
本发明实施例使基于图形调节补偿的过程自动化, 减少了用户工作量, 提升了准确度, 并且自动设置需要调节的补偿单元格, 使得对于用户的经验 要求大大降低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中的流式细胞分析仪的结构图;
图 2是现有技术中的流式细胞分析仪的工作原理图;
图 3是现有技术中的流式细胞分析仪中一路光学信号转换出的电学信号 波形图;
图 4是现有技术中的流式细胞分析仪显示的典型散点图;
图 5是现有技术中的流式细胞分析仪使用带通滤光片后釆集到的荧光信 号波形图;
图 6是现有技术中的流式细胞分析仪在经过手工调整后的理想散点图; 图 7是本发明提供的进行自动补偿的方法的一个实施例的主流程图; 图 8a是本发明提供的进行自动补偿的方法的一个实施例中散点图示意 图; 图 8b是图 8a在 Y轴上投影后获得的直方图示意图;
图 9是本发明提供进行自动补偿的方法的一个实施例中自动生成十字门 后的散点图的示意图;
图 10是本发明提供进行自动补偿的方法的一个实施例中的补偿方向提 示界面示意图;
图 11是本发明提供的进行自动补偿的方法中进行细调补偿的流程图; 图 12a-12c是本发明提供的进行自动补偿的方法的其他实施例中的自动 生成十字门后的散点图的示意图;
图 13是本发明提供的进行自动补偿的装置一个实施例的示意图; 图 14是图 13中基准细胞群确定单元的示意图;
图 15是图 13中补偿处理单元的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
下面参考附图对本发明的优选实施例进行描述。
为便于后续说明的方便, 首先需要对下文中所涉及的一些术语进行简要 说明: ^下:
流式数据, 是指使用鞘流细胞术, 通过激光照射被测物上的荧光染料, 并搜集各角度散射光和荧光激发光信号强度所得到的数据;
散点图, 是由流式细胞分析仪生成的一种二维图, 其上分布有多个粒子 的二维特征信息, 其中散点图的 X坐标轴和 γ坐标轴均表征每个粒子的一 种特性, 例如在一个散点图中, X坐标轴表征淋巴细胞的 CD3特性, 而 Y 坐标轴表征淋巴细胞的 CD8特性;
补偿, 是指通过一个补偿值(即一个补偿系数)对散点图中的每个粒子 的至少一个坐标轴方向上的值进行调整, 例如, 可以对其中一个坐标轴方向 上的值进行调整, 而对另一个坐标轴上的值不进行调整;
细胞群, 分布在散点图的某一区域, 由具有相同特性的多个粒子形成的 粒子团, 例如双阴性细胞群、 单阳性细胞群、 双阳性细胞群等; 补偿方向,是指在补偿过程中不需要对各粒子坐标值进行调整的坐标方 向;
被补偿方向,是指在补偿过程中需要对各粒子坐标值进行调整的坐标方 向;
基准细胞群, 是指在散点图中作为基准位置的参考细胞群;
参考细胞群, 是指在在补偿方向上与基准细胞群相邻的单阳性细胞群; 其中,在一个实施例中,釆用如下的公式对散点图中的各粒子进行补偿: 该粒子在被补偿方向的补偿结果值 = 该粒子当前被补偿方向的测量值 -补偿值 * 该粒子当前补偿方向的测量值, 需要说明的是, 在每次补偿过 程中, 需要对散点图中所有细胞群的粒子进行补偿处理, 即通过上述的公式 对基准细胞群、 参考细胞群等同时进行补偿, 使其每一粒子的被补偿方向的 测量值被调整, 从而得到每一粒子在被补偿方向上的补偿结果值, 而每一粒 子在补偿方向的测量值保持不变。
在本发明实施例中, 釆用的思路如下:
在需要对由流式细胞分析仪生成的流式数据进行分析时, 用户可以在交 互界面中选择进行手动调整补偿值进行补偿,或通过本发明实施例提供的方 法自动计算补偿值并进行补偿。 如附图 10所示, 在交互界面中示出了当前 的散点图以及两个期望的补偿方向,用户可根据图示引导确定其中一个补偿 方向, 例如, 如果选择图 10中上面一种补偿方向 (即 CD3-CD8方向), 则 对散点图上各粒子的 CD3方向的值进行补偿, 而如果选择图 10中下面一种 补偿方向 (即 CD8-CD3方向), 则对散点图中各粒子的 CD8方向的值进行 补偿。 可以理解的是, 在本发明的其他实施例中, 也可以同时对每个粒子在 两个补偿方向进行补偿, 即在一个实施例中, 可以对散点图中各粒子即对其 CD3方向的值进行补偿, 同时也对其 CD8方向上的值进行补偿, 为了便于 说明,后文中的例子均是以对散点图中的各粒子在一个补偿方向进行补偿的 情形进行说明。
用户也可以选择在手动补偿框(图中 Manual Modify右侧的小框) 中设 置补偿值, 图 10中当前的补偿值为 12, 用户可以根据需要手动调整该补偿 值; 或者用户也可以选择自动计算补偿值, 点击图中的 "Auto Calculate" 按 钮, 通过本发明实施例提供的方法会根据当前散点图的图形特征, 自动分析 计算合适的补偿值, 并根据该计算出来的补偿值对该散点中的粒子进行补 偿, 从而更新该散点图。 在自动计算补偿值并进行补偿之后, 如果用户认为 自动计算的补偿值不合适, 用户还可以手动调整该补偿值。 下文中主要是描 述本发明实施例中自动计算补偿值的原理及过程。
如图 7所示, 示出了本发明提供的进行自动补偿的方法的一个实施例的 主流程图。 在该实施例中, 该方法包括如下步骤:
步骤 S10, 根据需要进行补偿的散点图上各细胞群所处的位置, 确定各 细胞群中的基准细胞群以及参考细胞群,其中,基准细胞群为双阴性细胞群, 参考细胞群为在补偿方向上的单阳性细胞群,其中该散点图为流式细胞分析 仪所生成的散点图;
步骤 S12, 根据基准细胞群的位置, 将散点图分成四个区域, 使基准细 胞群处于左下角的区域中;
步骤 S14, 获得粗调补偿值, 其中该步骤 S14为可选的步骤;
步聚 S16, 根据基准细胞群的位置, 通过逐步逼近的算法自动计算补偿 值并以补偿值更新散点图,使散点图上参考细胞群与基准细胞群在被补偿方 向上的位置差处于预定的范围, 其中, 在散点图中, 补偿方向与被补偿方向 垂直。
下面将结合其他附图, 对上述的各个步骤进行详细的描述。
其中, 步骤 S10进一步包括:
利用第一补偿值对散点图上的各细胞群进行补偿, 第一补偿值为过度补 偿值; 将各细胞群在补偿方向和被补偿方向上投影为直方图, 根据直方图中 的波峰图形特征, 确定各细胞群中的一个细胞群为基准细胞群, 同时确定参 考细胞群。
其是基于下述原理实现的:
例如在一个实施例中, 在图 8a示出的散点图中分布有双阴性细胞群、 单阳性细胞群、 双阳性细胞群, 在这三种细胞群中, 在受其他通道的干扰的 情形下, 其中双阴性细胞群在散点图中的位置比较稳定, 其在散点图上所处 位置与实际值偏差不大, 而单阳性细胞群在散点图中所处的位置与实际值偏 差较大。 故通常会将该双阴性细胞群确定为基准细胞群, 并将 X 坐标轴 ( CD3 ) 方向确定为补偿方向, 将 Y坐标轴(CD8 )确定为被补偿方向。
首先需要确定散点图中基准细胞群(即双阴性细胞群) 的位置; 具体地, 在本发明的一个实施例中, 首先, 需要设置一个第一补偿值, 该第一补偿值选用较大的值, 例如 50%。 因为在对散点图进行补偿时, 双阴 性细胞对补偿值反应不敏感 (即在补偿后各粒子的位置变化不大), 但单阳 性细胞对补偿值反应非常强烈(即在补偿后其各粒子的位置变化较双阴性细 细胞群区别开来。 通过釆用该第一补偿值对该散点图进行过度补偿, 其中, 单阳性细胞群会被调整到负值区域(在图 8a中以 A标示), 而双阴性细胞会 聚集在坐标 0点附近(在图 8a中以 B标示)。 可以理解的是, 为了在散点图 中能更清楚地查看到各细胞群, 在散点图的两个坐标轴中, 即补偿方向和被 补偿方向的负值区域的坐标值均釆用双指数放大方式进行标注, 以便可以很 清楚地显示经过补偿后所产生的大量负值数据。
然后, 将该散点图中的所有粒子在 Y轴(即 CD8方向)上进行直方图 投影, 投影后的所获得的图如图 8b所示, 从中可以看出, 在坐标 0点及其 左侧上会具备双峰的特征, 分别对应被过度补偿的单阳性细胞群(A )和双 阴性细胞群(B )。 根据坐标 0点附近波峰右侧确定一个第一位置, 可以获得 该第一位置在散点图上的 Y轴坐标值(即 CD8方向上的值), 具体地, 在一 个例子中, 该第一位置可以选择粒子数量值(Count值)首次等于一预定值
(如 "4" ) 的位置, 如在图 8b中示出了一个第一位置 C; 类似的, 将该散 点图中的所有粒子在 X轴(即 CD3方向)上进行直方图投影(未示出), 其 会在坐标 0点附近呈现单峰的特征, 其对应双阴性细胞群, 同样根据坐标 0 点附近波峰右侧确定第二位置,并获得该第二位置在散点图上的 X轴坐标值
(即 CD3方向上的值); 根据上面获得的 Y轴坐标值和 X轴坐标值, 在散 点图中确定一个点, 作为十字门的中心点, 故在该中心点左下侧的细胞群即 为基准细胞群(双阴性细胞群)。
而在步骤 S12中, 根据前述步骤 S10所确定的中心点, 从水平方向以及 垂直方向延伸出线条, 可以在散点图上形成一十字门, 十字门是由水平方向 和垂直方向的线条组成, 十字门将散点图分成四个区域(参见图 9中示出的 区域 Q5、 Q6、 Q7和 Q8 ), 并使基准细胞位于左下侧的区域( Q7 ) 中, 使 参考细胞群位于 (或部份位于)在补偿方向与基准细胞群相邻的区域(Q8 ) 中, 具体地, 在图 9中, 位于区域 Q7中的细胞群为基准细胞群; 位于区域 Q8中的细胞群为参考细胞群。
可以理解的是, 在其他的实施例中, 在步骤 S10和步骤 S12中也可以通 过其他方法找到基准细胞群, 并形成十字门, 例如在一个实施例中, 诸如可 以在图 8a的散点图的左下角直接釆用图像算法(如膨胀以及腐蚀等算法) 获得细胞群轮廓, 将该获得的细胞群作为基准细胞群, 并且在该基准细胞边 缘的右上方确定一个点作为十字门的中心点, 根据该中心点, 从水平方向以 及垂直方向延伸出线条, 在散点图上形成一十字门, 该十字门将散点图分成 四个区域, 并使基准细胞处于左下侧的区域中, 同样可以获得类似图 9的具 有十字门的散点图。
其中, 在图 9中, 该十字门是以正十字门 (即水平方向和竖直方向为相 互垂直的直线)为例进行说明的, 可以理解的是, 在其他的实施例中, 该十 字门也可以是异形十字门, 例如, 图 12a至图 12c即示出了几种异型十字门 的形式, 在这些异型十字门中, 均需要满足将散点图划分为四个区域, 并使 基准细胞群处于左下侧的区域中。
可以理解的是, 后文中对基准细胞群或参考细胞群的测量值, 是釆用统 计该基准细胞群或参考细胞群所在区域中的所有粒子来实现的, 即把左下侧 区域(如图 9中的区域 Q7 ) 中的所有粒子均认为是基准细胞群的粒子, 区 域 Q8中的所有粒子均认为是参考细胞群的粒子, 其他区域的细胞群釆用类 似的统计方法。
其中, 在步骤 S14中进一步包括计算粗调补偿值, 并以粗调补偿值对散 点图进行补偿的步骤,
其中, 根据如下公式计算获得粗调补偿值:
粗调补偿值 = (参考细胞群在被补偿方向上的测量值 -基准细胞群在 被补偿方向上的测量值) I参考细胞群在补偿方向上的测量值。 具体地, 以图 9示出中的散点图为例进行说明, 其中, 区域 Q7中的细 胞群为基准细胞群, 区域 Q8中的细胞群为参考细胞群, X坐标轴方向 (即 CD3方向) 为补偿方向, Y坐标轴方向 (即 CD8方向) 为被补偿方向。
其中, 粗调补偿值计算公式具体如下:
K12 = ( Q8:0CD8 - Q7:0CD8 ) I Q8:0CD3 ( 5 )
其中, K12为粗调补偿值, Q8:0CD8为处于区域 Q8 中的基准细胞群在 CD8方向 (被补偿方向)上的测量值, Q7:0CD8为处于区域 Q7中的参考细 胞群在 CD8方向 (被补偿方向)上的测量值, Q8:0CD3为处于区域 Q8中的 基准细胞群在 CD3方向 (补偿方向)上的测量值;
具体地, 此处的粗调补偿值是通过下述的原理推理获得的:
以对图 9中的散点图进行补偿为例, 此处 X坐标轴方向(即 CD3方向) 为补偿方向, Y坐标轴方向 (即 CD8方向) 为被补偿方向。 则对散点图中 各粒子的补偿公式为:
〇CD8― ScD8+Ki2 *ScD3 ( 1 )
其中 0CD8为 CD8方向 (就是图 9的 Y轴方向) 的测量值, SCD8为 CD8方向 的真实值(在处理过程中, 通过对测量值进行补偿获得最终补偿结果值, 并 期望该最终补偿结果值接近于该真实值) , 8∞3为 03方向的真实值, K12 为粗调补偿值。
根据公式(1 ) , 可知:
ScD8—〇CD8 - K12 * ScD3 ( 2 )
针对区域 Q8中的基准细胞群, 有
Q8:SCD8= Q8:0CD8 - K12 * Q8:SCD3 ( 3 )
其中, Q8表示区域 Q8中的细胞群集合, Q8:SCD8表示区域 Q8中细胞群在 CD8方向上的真实值集合。
假设在经过补偿后,使散点图中的基准细胞群与参考细胞群的位置基本 持平, 故此时, 参考细胞群在 CD8方向的真实值应该和基准细胞群在 CD8方 向的真实值相当, 即有:
Q8:SCD8 = Q7:SCD8 将其代入公式(3 ) , 有
Q7:SCD8 = Q8:0CD8 - K12 * Q8:SCD3 ( 4 ) 将公式(4 ) 变形, 有
K12 = ( Q8:0CD8 - Q7:SCD8 ) / Q8:SCD3
由于只是粗调, 可以认为 Q7:0CD8近似等同 Q7:SCD8, 该 Q8:0CD3近似等同 Q8:SCD3, 从而获得粗调补偿值 K12:
Κ12 = ( Q8:0CD8 - Q7:0CD8 ) I Q8:0CD3 ( 5 )
上述公式(5 ) 中区域 Q7和区域 Q8的测量值可以釆用中位数来表达, 其中, 中位数指该区域中所有粒子根据数值排序, 取最中间的那个粒子数的 数值, 这样可以排除离群点干扰, 且在上述公式(5 ) 中所有计算项都是可 测量的测量值, 可以很容易地计算出粗调 卜偿值。
可以理解的是, 在其他的实施例中, 上述公式(5 ) 中区域 Q7 和区域 Q8 的测量值与真实值也可以釆用诸如平均数来表达, 同样可以很容易地计 算出粗调补偿值。
在计算出粗调补偿值, 可以应用该粗调补偿值对散点图中所有细胞群进 行补偿, 刷新散点图。
可以理解的是, 通过计算粗调补偿值, 可以减少后续细调补偿的调整次 数。 在其他的实施例中, 也可以省略该步骤, 直接进行下述的细调补偿的过 程。
在步骤 S 16的细调补偿中, 所利用到的逐步逼近的算法为迭代法, 根据 基准细胞群的位置, 通过逐步逼近的算法自动计算补偿值, 并以该补偿值对 散点图中所有粒子进行补偿, 然后以补偿的结果值更新散点图, 该步骤具体 包括:
以粗调补偿值作为初始补偿值或设置初始补偿值,设置调节步长以及迭 代终止条件;
对散点图中的各细胞群进行补偿, 并判断补偿后的参考细胞群是否满足 迭代终止条件, 如否, 则在初始补偿值上自动增减该调节步长, 形成当前补 偿值, 对散点图中的各细胞群继续进行补偿, 直至满足迭代终止条件, 具体 的细节将在后文中结合图 11进行说明。
其中,对散点图中的所有细胞群的粒子根据补偿值以如下的公式进行补 偿: 该粒子补偿后的被补偿方向的结果值 = 该粒子当前被补偿方向的测量 值 -补偿值 * 该粒子当前补偿方向的测量值;
且该粒子当前补偿方向的测量值保持不变。
该进行细调补偿的具体流程如图 11所示, 在图 11中, 该进行细调补偿 的流程包括如下步骤:
步骤 S20, 设置迭代终止条件, 初始调节步长以及初始补偿值; 其中, 可以将前述步骤 S14中得到的粗调补偿值作为初始补偿值,如果没有进行粗 调补偿的步骤, 则直接设置一个初始补偿值, 在一个实施例中, 该初始调节 步长可以诸如设置为 1%;
其中迭代终止条件为:
基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群在被 补偿方向上的补偿结果值的中位数的差值的绝对值小于第一预定值; 或 基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群在被 补偿方向上的补偿结果值的中位数的差值的绝对值与基准细胞群在被补偿 方向上的补偿结果值的中位数或参考细胞群在被补偿方向上的补偿结果值 的中位数的比值小于第二预定值; 或
基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群在被 补偿方向上的补偿结果值的平均数的差值的绝对值小于第三预定值; 或 基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群在被 补偿方向上的补偿结果值的平均数的差值的绝对值与基准细胞群在被补偿 方向上的补偿结果值的平均数或参考细胞群在被补偿方向上的补偿结果值 的平均数的比值小于第四预定值。
其中, 第一预定值、 第二预定值、 第三预定值、 第四预定值根据需要预 先设定。
具体地, 在一个实施例中, 以对图 9中的散点图进行补偿为例, 其迭代 终止条件可以设置为:
ABS(Median(QS: CDS) - Median{Ql: CDS)) cnf
< 5%
MAX (ABS (Median(QS: CDS)), ABS(Median(Ql: CDS))) 其中: Median(Q8:CD8)为处于区域 Q8中的基准细胞群在 CD8方向上的 测量值的中位数, Median(Q7:CD8)为处于相邻区域 Q7 中的参考细胞群在 CD8方向上的测量值的中位数, 其中 5%即前述的第二预定值。
步骤 S21, 判断 Median(Q8:CD8)是否大于 Median(Q7:CD8), 如果判断 结果为是, 则进入步骤 S22, 增加补偿值, 即在初始补偿值上自动加上初始 调节步长, 获得当前的补偿值;
如果判断结果为否, 则进入步骤 S23, 减少补偿值, 即在初始补偿值上 自动减去初始调节步长, 获得当前的补偿值。
步骤 S24,以当前的补偿值对散点图中的各细胞群的粒子进行补偿处理, 并刷新散点图的坐标, 并以补偿结果更新当前散点图;
步骤 S25, 判断经过补偿后的散点图中的各细胞群是否满足迭代终止条 件, 如果满足迭代终止条件, 则结束细调补偿过程, 当前补偿值即为输出补 偿值; 如果不满足, 则进入步骤 S26;
步骤 S26,判断基准细胞群在补偿方向上的测量值的中位数 /平均数与参 考细胞群在补偿方向上的测量值的中位数 /平均数是否出现反转,如果出现反 转, 则将调节步长缩小预定倍数, 继续进行迭代处理。 具体地, 在一个实施 例中, 可以判断 Median(Q8:CD8)和 Median(Q7:CD8)大小是否反转, 如果未 发生反转, 则进入步骤 S21, 此处所谓反转指: 例如, 在迭代过程中一直是 Median(Q8:CD8)> Median(Q7:CD8) , 继 续 调 节 , 当 第 一次 出 现 Median(Q7:CD8)> Median(Q8:CD8)的时候则表明两者的大小出现了反转;如 果发生反转, 则表明 Median(Q8:CD8)和 Median(Q7:CD8)两者的大小非常接 近了, 则进入步骤 S27;
步骤 S27, 将初始调节步长减少预定值(例如可以缩小预定的倍数, 在 一个例子中, 可以缩小 10倍变为 0.1% ), 转入步骤 S21重复迭代过程。
从而最终使补偿结果满足迭代终止条件, 则结束细调补偿过程, 当前补 偿值即为输出补偿值, 这样可以使得区域 Q7中的基准细胞群和区域 Q8中 参考细胞群在被补偿方向(即 CD8 )方向的中位数最接近。 通过逐步逼近的 算法细调补偿值, 可以实现散点图上的细胞群粒子分布 "横平竖直", 即在 被补偿方向上, 使基准细胞群(即双阴性细胞群)与参考细胞群的位置大致 相等(处于预定的范围内)。 同样,在其他的实施例中, 可以比较区域 Q7中的基准细胞群和区域 Q8 中参考细胞群在被补偿方向(即 CD8 )方向的平均数, 并使两者接近, 同样 可以实现散点图上的细胞群粒子分布 "横平竖直", 即在被补偿方向上, 使 基准细胞群(即双阴性细胞群)与参考细胞群的位置大致相等(处于预定的 范围内)。
可以理解的是, 在其他的实施例中, 该逐步逼近的算法可以釆用诸如折 半搜索算法;
可以理解的是,在进行自动计算补偿值以及对散点图中的粒子进行补偿 之后, 如果用户认为自动计算的补偿值不合适, 用户还可以手动调整该补偿 值。
如图 13所示, 本发明的实施例还提供了一种进行自动补偿的装置, 用 于对流式细胞分析仪所生成的流式数据进行分析处理, 包括:
目标补偿方向确定单元 10,用于在进行自动补偿之前,确定散点图中各 细胞群的期望的至少一个目标补偿方向, 并以图表的形式显示出来供用户选 择。
补偿值设置单元 12,用于手动调整补偿值,并以所设置的调整值对散点 图中的各区域的细胞群进行补偿处理。
基准细胞群确定单元 14,用于根据需要进行补偿的散点图上各细胞群所 处的位置, 确定各细胞群中的基准细胞群以及参考细胞群, 其中, 基准细胞 群为双阴性细胞群, 参考细胞群为在补偿方向上的单阳性细胞群;
区域划分单元 16,根据确定的基准细胞群的位置,将散点图分成四个区 域, 使基准细胞处于左下侧的区域中, 使参考细胞群至少一部份处于补偿方 向上且与基准细胞群相邻的区域中, 具体地, 区域划分单元是通过在散点图 上生成一个十字门将散点图分成四个区域, 其中, 十字门为由一条水平方向 的直线和一条垂直方向的直线形成的正十字门, 或者十字门为由至少一条水 平方向的线条和至少一条垂直方向线条形成的异形十字门;
补偿处理单元 18,用于根据基准细胞群的位置,通过逐步逼近的算法自 动计算补偿值并以补偿值更新散点图,使散点图上参考细胞群与基准细胞群 在被补偿方向上的位置差处于预定的范围, 其中, 在散点图中, 该补偿方向 与被补偿方向垂直;
如图 14所示, 是图 13中的基准细胞群确定单元 14的结构示意图。 其中, 基准细胞群确定单元 14包括:
过度补偿处理子单元 140, 用于利用第一补偿值对散点图上的各细胞群 进行补偿, 第一补偿值为过度补偿值;
投影处理子单元 142, 用于将各细胞群在补偿方向和被补偿方向上投影 为直方图, 根据直方图中的波峰图形特征, 确定各细胞群中的一个细胞群为 基准细胞群。
在另一个实施例中, 基准细胞群确定单 14元进一步包括:
轮廓确定子单元 144, 用于在散点图的左下角区域釆用图像算法获得细 胞群轮廓, 将细胞群轮廓所对应的细胞群确定为基准细胞群。
如图 15所示, 是图 13中补偿处理单元 18的结构示意图;
其中, 补偿处理单元 18进一步包括:
粗调补偿值计算子单元 180, 用于计算粗调补偿值;
设置子单元 181,用于以粗调补偿值作为初始补偿值或设置初始补偿值, 设置调节步长以及迭代终止条件;
补偿子单元 182, 用于对散点图中的所有细胞群的粒子根据设置子单元 所设置的补偿值进行补偿;
迭代处理子单元 183, 对散点图中的各细胞群进行补偿, 并判断补偿后 的参考细胞群是否满足迭代终止条件, 如否, 则在初始补偿值上自动增减该 调节步长, 形成当前补偿值, 对散点图中的各细胞群继续进行补偿, 直至满 足迭代终止条件, 具体如何在初始补偿值上自动增减调节长的更多细节, 可 参考前述对图 11的描述。
其中, 粗调补偿值计算子单元 180根据下述公式计算粗调补偿值: 粗调补偿值 = (参考细胞群在被补偿方向上的测量值 -基准细胞群在 被补偿方向上的测量值) I参考细胞群在补偿方向上的测量值;
其中, 补偿子单元 182根据如下的公式对散点图中的所有细胞群的粒子 进行补偿:
该粒子补偿后的被补偿方向的结果值 = 该粒子当前被补偿方向的测量 值-补偿值 * 该粒子当前补偿方向的测量值;
且该粒子当前补偿方向的补偿结果值与测量值保持不变。
其中, 迭代终止条件为:
基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群在被 补偿方向上的补偿结果值的中位数的差值的绝对值小于第一预定值; 或
基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群在被 补偿方向上的补偿结果值的中位数的差值的绝对值与基准细胞群在被补偿 方向上的补偿结果值的中位数或参考细胞群在被补偿方向上的补偿结果值 的中位数的比值小于第二预定值; 或
基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群在被 补偿方向上的补偿结果值的平均数的差值的绝对值小于第三预定值; 或
基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群在被 补偿方向上的补偿结果值的平均数的差值的绝对值与基准细胞群在被补偿 方向上的补偿结果值的平均数或参考细胞群在被补偿方向上的补偿结果值 的平均数的比值小于第四预定值。
进一步的, 迭代处理子单元 183进一步包括:
调节步长更新子单元 1830,用于判断基准细胞群在被补偿方向上的补偿 结果值的中位数 /平均数与参考细胞群在被补偿方向上的补偿结果值的中位 数 /平均数是否出现反转, 如果出现反转, 则将调节步长缩小预定倍数, 继续 进行迭代处理。
可以理解的是, 在其他的实施例中, 逐步逼近的算法为折半搜索算法。 其中更多的细节, 可以一并参照前述对图 6至图 12c的说明, 在此不进 行赘述。
相应地, 本发明实施例的再一方面, 还提供了一种流式细胞分析仪, 包 括前述的进行自动补偿的装置, 更多的细节, 可以一并参照前述对图 6至图 15的说明, 在此不进行赘述。
实施本发明的实施例, 具有如下有益效果:
本发明实施例所提供的进行自动补偿的方法、装置及相应的流式细胞分 析仪, 通过基于散点图中各细胞群的特征以及位置信息, 自动形成十字门, 并自动进行粗调补偿, 以及根据逐步逼近的算法实现细调补偿, 从而可以自 动分析计算合适补偿值, 并自动更新散点图, 使补偿后的散点图中的各细胞 群具备横平竖直的分布效果;
本发明实施例使基于图形调节补偿的过程自动化, 减少了用户工作量, 提升了准确度, 并且自动设置需要调节的补偿单元格, 使得对于用户的经验 要求大大降低。
可以理解的是, 本领域普通技术人员可以理解实现上述实施例方法中的 全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 的程序 可存储于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方 法的实施例的流程。 其中, 的存储介质可为磁碟、 光盘、 只读存储记忆体
( Read-Only Memory, ROM )或随机存储记忆体 ( Random Access Memory, RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本 发明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵 盖的范围。

Claims

权 利 要 求
1、 一种进行自动补偿的方法, 用于对流式数据进行分析处理, 其特征 在于, 包括如下步骤:
根据需要进行补偿的散点图上各细胞群所处的位置,确定所述各细胞群 中的基准细胞群以及参考细胞群, 其中, 所述基准细胞群为双阴性细胞群, 所述参考细胞群为在补偿方向上与所述基准细胞群相邻的单阳性细胞群; 根据所述基准细胞群的位置,通过逐步逼近的算法自动计算补偿值并以 所述补偿值对所述散点图中的各细胞群的粒子进行补偿,使补偿后的散点图 上所述参考细胞群与所述基准细胞群在被补偿方向上的位置差处于预定的 范围。
2、 如权利要求 1 所述的一种进行自动补偿的方法, 其特征在于, 所述 根据需要进行补偿的散点图上各细胞群所处的位置,确定所述各细胞群中的 基准细胞群的步骤包括:
利用第一补偿值对所述散点图上的各细胞群进行补偿, 所述第一补偿值 为过度补偿值;
将所述各细胞群在补偿方向和被补偿方向上投影为直方图,根据所述直 方图中的波峰图形特征, 确定所述各细胞群中的一个细胞群为基准细胞群。
3、 如权利要求 1所述的一种进行自动补偿的方法, 其特征在于, 所述 根据需要进行补偿的散点图上各细胞群所处的位置,确定所述各细胞群中的 基准细胞群的步骤包括:
在所述散点图的左下角区域釆用图像算法获得细胞群轮廓,将所述细胞 群轮廓所对应的细胞群确定为基准细胞群。
4、 如权利要求 2或 3所述的一种进行自动补偿的方法, 其特征在于, 在确定所述各细胞群中的基准细胞群以及参考细胞群的步骤之后进一步包 括步骤:
根据所述确定的基准细胞群的位置, 将所述散点图分成四个区域, 使所 述基准细胞处于左下侧的区域中。
5、 如权利要求 4所述的一种进行自动补偿的方法, 其特征在于, 根据 所述基准细胞群的位置,通过逐步逼近的算法自动计算补偿值并以所述补偿 值对所述散点图中的各细胞群的粒子进行补偿的步骤包括:
对所述散点图中的所有细胞群的粒子根据所述补偿值以如下的公式进 行补偿:
该粒子在被补偿方向的补偿结果值 = 该粒子当前被补偿方向的测量值 -补偿值 * 该粒子当前补偿方向的测量值;
且该粒子当前补偿方向的补偿结果值与测量值保持不变。
6、 如权利要求 5所述的一种进行自动补偿的方法, 其特征在于, 进一 步包括计算粗调补偿值, 并以所述粗调补偿值对所述散点图进行补偿的步 骤,
其中, 根据如下公式计算获得粗调补偿值:
粗调补偿值 = (参考细胞群在被补偿方向上的测量值 -基准细胞群在 被补偿方向上的测量值) I参考细胞群在补偿方向上的测量值。
7、 如权利要求 6所述的一种进行自动补偿的方法, 其特征在于, 所述 逐步逼近的算法为迭代法, 所述根据所述基准细胞群的位置, 通过逐步逼近 的算法自动计算补偿值并以所述补偿值对所述散点图中的各细胞群的粒子 进行补偿的步骤具体包括:
以所述粗调补偿值作为初始补偿值或设置初始补偿值,设置调节步长以 及迭代终止条件;
对散点图中的各细胞群进行补偿, 并判断补偿后的参考细胞群是否满足 所述迭代终止条件, 如否, 则在所述初始补偿值上自动增减所述调节步长, 形成当前补偿值, 并以所述当前补偿值对散点图中的各细胞群继续进行补 偿, 直至满足迭代终止条件。
8、 如权利要求 7所述的一种进行自动补偿的方法, 其特征在于, 所述 迭代终止条件为:
所述基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群 在被补偿方向上的补偿结果值的中位数的差值的绝对值小于第一预定值; 或 所述基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群 在被补偿方向上的补偿结果值的中位数的差值的绝对值与所述基准细胞群 在被补偿方向上的补偿结果值的中位数或参考细胞群在被补偿方向上的补 偿结果值的中位数的比值小于第二预定值; 或
所述基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群 在被补偿方向上的补偿结果值的平均数的差值的绝对值小于第三预定值; 或 所述基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群 在被补偿方向上的补偿结果值的平均数的差值的绝对值与所述基准细胞群 在被补偿方向上的补偿结果值的平均数或参考细胞群在被补偿方向上的补 偿结果值的平均数的比值小于第四预定值。
9、 如权利要求 8所述的一种进行自动补偿的方法, 其特征在于, 在所 述初始补偿值上自动增减所述调节步长, 形成当前补偿值, 对散点图中的各 细胞群继续进行补偿, 直至满足迭代终止条件的步骤进一步包括:
判断所述基准细胞群在被补偿方向上的补偿结果值的中位数 /平均数与 参考细胞群在被补偿方向上的补偿结果值的中位数 /平均数是否出现反转,如 果出现反转, 则将所述调节步长减少预定值, 继续进行迭代处理。
10、 如权利要求 6所述的一种进行自动补偿的方法, 其特征在于, 所述 逐步逼近的算法为折半搜索算法。
11、 如权利要求 9所述的一种进行自动补偿的方法, 其特征在于, 所述 根据所述确定的基准细胞群的位置,将所述散点图分成四个区域的步骤具体 为:
通过在所述散点图上生成一个十字门将所述散点图分成四个区域, 其 中, 所述十字门为由一条水平方向的直线和一条垂直方向的直线形成的正十 字门, 或者所述十字门为由至少一条水平方向的线条和至少一条垂直方向线 条形成的异形十字门。
12、 如权利要求 11 所述的一种进行自动补偿的方法, 其特征在于, 进 一步包括:
在进行自动补偿之前,确定所述散点图中各细胞群的期望的至少一个目 标补偿方向, 并以图表的形式显示出来供用户选择。
13、 如权利要求 12所述的一种进行自动补偿的方法, 其特征在于, 进 一步包括:
在进行自动补偿之前或自动补偿之后手动调整所述补偿值, 并以所调整 的补偿值对所述散点图中的各区域的细胞群进行补偿处理。
14、 一种进行自动补偿的装置, 用于对流式数据进行分析处理, 其特征 在于, 包括:
基准细胞群确定单元, 用于根据需要进行补偿的散点图上各细胞群所处 的位置, 确定所述各细胞群中的基准细胞群以及参考细胞群, 其中, 所述基 准细胞群为双阴性细胞群, 所述参考细胞群为在补偿方向上与所述基准细胞 群相邻的单阳性细胞群;
补偿处理单元, 用于根据所述基准细胞群的位置, 通过逐步逼近的算法 自动计算补偿值并以所述补偿值更新所述散点图,使所述散点图上所述参考 细胞群与所述基准细胞群在被补偿方向上的位置差处于预定的范围。
15、 如权利要求 14所述的一种进行自动补偿的装置, 其特征在于, 所 述基准细胞群确定单元包括:
过度补偿处理子单元, 用于利用第一补偿值对所述散点图上的各细胞群 进行补偿, 所述第一补偿值为过度补偿值;
投影处理子单元,用于将所述各细胞群在补偿方向和被补偿方向上投影 为直方图, 根据所述直方图中的波峰图形特征, 确定所述各细胞群中的一个 细胞群为基准细胞群。
16、 如权利要求 14所述的一种进行自动补偿的装置, 其特征在于, 所 述基准细胞群确定单元包括:
轮廓确定子单元,用于在所述散点图的左下角区域釆用图像算法获得细 胞群轮廓, 将所述细胞群轮廓所对应的细胞群确定为基准细胞群。
17、如权利要求 15或 16所述的一种进行自动补偿的装置,其特征在于, 进一步包括:
区域划分单元, 根据所述确定的基准细胞群的位置, 将所述散点图分成 四个区域, 使所述基准细胞处于左下侧的区域中。
18、 如权利要求 17所述的一种进行自动补偿的装置, 其特征在于, 所 述补偿处理单元进一步包括:
补偿子单元, 用于对所述散点图中的所有细胞群的粒子根据所述补偿值 以如下的公式进行补偿: 该粒子在被补偿方向的补偿结果值 = 该粒子当前被补偿方向的测量值 -补偿值 * 该粒子当前补偿方向的测量值;
且该粒子当前补偿方向的补偿结果值与测量值保持不变。
19、 如权利要求 18所述的一种进行自动补偿的装置, 其特征在于, 进 一步包括粗调补偿值计算子单元, 用于根据下述公式计算粗调补偿值: 粗调补偿值 = (参考细胞群在被补偿方向上的测量值 -基准细胞群在 被补偿方向上的测量值) I参考细胞群在补偿方向上的测量值。
20、 如权利要求 19所述的一种进行自动补偿的装置, 其特征在于, 所 述补偿处理单元釆用的逐步逼近的算法为迭代法, 所述补偿处理单元进一步 包括:
设置子单元, 用于以所述粗调补偿值作为初始补偿值或设置初始补偿 值, 设置调节步长以及迭代终止条件;
迭代处理子单元, 对散点图中的各细胞群进行补偿, 并判断补偿后的参 考细胞群是否满足所述迭代终止条件, 如否, 则在所述初始补偿值上自动增 减所述调节步长, 形成当前补偿值, 并以所述当前补偿值对散点图中的各细 胞群继续进行补偿, 直至满足迭代终止条件。
21、 如权利要求 20所述的一种进行自动补偿的装置, 其特征在于, 所 述迭代终止条件为:
所述基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群 在被补偿方向上的补偿结果值的中位数的差值的绝对值小于第一预定值; 或 所述基准细胞群在被补偿方向上的补偿结果值的中位数与参考细胞群 在被补偿方向上的补偿结果值的中位数的差值的绝对值与所述基准细胞群 在被补偿方向上的补偿结果值的中位数或参考细胞群在被补偿方向上的补 偿结果值的中位数的比值小于第二预定值; 或
所述基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群 在被补偿方向上的补偿结果值的平均数的差值的绝对值小于第三预定值; 或 所述基准细胞群在被补偿方向上的补偿结果值的平均数与参考细胞群 在被补偿方向上的补偿结果值的平均数的差值的绝对值与所述基准细胞群 在被补偿方向上的补偿结果值的平均数或参考细胞群在被补偿方向上的补 偿结果值的平均数的比值小于第四预定值。
22、 如权利要求 21 所述的一种进行自动补偿的装置, 其特征在于, 所 述迭代处理子单元进一步包括:
调节步长更新子单元, 用于判断所述基准细胞群在被补偿方向上的补偿 结果值的中位数 /平均数与参考细胞群在被补偿方向上的补偿结果值的中位 数 /平均数是否出现反转, 如果出现反转, 则将所述调节步长减少预定值, 继 续进行迭代处理。
23、 如权利要求 19所述的一种进行自动补偿的装置, 其特征在于, 所 述逐步逼近的算法为折半搜索算法。
24、 如权利要求 22所述的一种进行自动补偿的装置, 其特征在于, 所 述区域划分单元是通过在所述散点图上生成一个十字门将所述散点图分成 四个区域, 其中, 所述十字门为由一条水平方向的直线和一条垂直方向的直 线形成的正十字门, 或者所述十字门为由至少一条水平方向的线条和至少一 条垂直方向线条形成的异形十字门。
25、 如权利要求 24所述的一种进行自动补偿的装置, 其特征在于, 进 一步包括:
目标补偿方向确定单元, 用于在进行自动补偿之前, 确定所述散点图中 各细胞群的期望的至少一个目标补偿方向, 并以图表的形式显示出来供用户 选择。
26、 如权利要求 25所述的一种进行自动补偿的装置, 其特征在于, 进 一步包括:
补偿值设置单元, 用于手动调整所述补偿值, 并以所调整的补偿值对所 述散点图中的各区域的细胞群进行补偿处理。
27、 一种流式细胞分析仪, 其特征在于, 包括如权利要求 14至 26任一 项所述的进行自动补偿的装置。
PCT/CN2014/075109 2014-04-10 2014-04-10 一种进行自动补偿的方法、装置及相应的流式细胞分析仪 WO2015154288A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/075109 WO2015154288A1 (zh) 2014-04-10 2014-04-10 一种进行自动补偿的方法、装置及相应的流式细胞分析仪
CN201910392236.7A CN110057744B (zh) 2014-04-10 2014-04-10 一种进行自动补偿的方法、装置及相应的流式细胞分析仪
CN201480075276.4A CN106255873B (zh) 2014-04-10 2014-04-10 一种进行自动补偿的方法、装置及相应的流式细胞分析仪
US15/289,826 US9970857B2 (en) 2014-04-10 2016-10-10 Automatic compensation method, device, and corresponding flow cytometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075109 WO2015154288A1 (zh) 2014-04-10 2014-04-10 一种进行自动补偿的方法、装置及相应的流式细胞分析仪

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/289,826 Continuation US9970857B2 (en) 2014-04-10 2016-10-10 Automatic compensation method, device, and corresponding flow cytometer

Publications (1)

Publication Number Publication Date
WO2015154288A1 true WO2015154288A1 (zh) 2015-10-15

Family

ID=54287126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075109 WO2015154288A1 (zh) 2014-04-10 2014-04-10 一种进行自动补偿的方法、装置及相应的流式细胞分析仪

Country Status (3)

Country Link
US (1) US9970857B2 (zh)
CN (2) CN106255873B (zh)
WO (1) WO2015154288A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494750A (zh) * 2017-04-14 2019-11-22 国立研究开发法人国立癌症研究中心 效应性调节性t细胞的检测方法、效应性调节性t细胞的分析装置、效应性调节性t细胞的分析系统和程序

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154579A1 (en) * 2020-01-31 2021-08-05 Becton, Dickinson And Company Methods and systems for adjusting a training gate to accommodate flow cytometer data
CN112557284B (zh) * 2020-12-03 2023-05-30 桂林优利特医疗电子有限公司 一种进行自动调节cv质控的方法、装置及相应的流式细胞仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040119974A1 (en) * 2002-12-20 2004-06-24 Bishop James E. Instrument setup system for a fluorescence analyzer
WO2007010236A1 (en) * 2005-07-18 2007-01-25 Mathshop Limited Automatic plow cytometry data analysis
US20080194508A1 (en) * 2005-02-25 2008-08-14 Christensen Nanna K Cell Counting
CN102177427A (zh) * 2008-10-10 2011-09-07 贝克曼考尔特公司 颗粒分析中的检测和处理同步
CN103180858A (zh) * 2011-08-25 2013-06-26 索尼公司 移动微实体流中的运动相关误差的补偿

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0610774B1 (en) * 1993-02-09 2001-03-28 Becton, Dickinson and Company Automatic lineage assignment of acute leukemias by flow cytometry
US20030134305A1 (en) * 2001-08-16 2003-07-17 Dertinger Stephen D. Method for the enumeration of mammalian micronucleated erythrocyte populations with a single-laser flow cytometer
KR101135138B1 (ko) * 2003-08-13 2012-04-16 루미넥스 코포레이션 유세포 분석기식 측정 시스템의 하나 이상의 파라미터의제어 방법
US7899624B2 (en) * 2005-07-25 2011-03-01 Hernani Del Mundo Cualing Virtual flow cytometry on immunostained tissue-tissue cytometer
US7746713B2 (en) * 2007-09-12 2010-06-29 Massachusetts Institute Of Technology High density 45 nm SRAM using small-signal non-strobed regenerative sensing
CN101493400B (zh) * 2008-01-25 2012-06-27 深圳迈瑞生物医疗电子股份有限公司 一种基于形状特征的自动分类校正的方法
CN101245368A (zh) * 2008-03-20 2008-08-20 重庆师范大学 应用流式细胞术中的散射光及自发荧光参数进行粘孢子虫分类的方法
CN101853495A (zh) * 2010-06-03 2010-10-06 浙江工业大学 一种基于形态学的细胞分离方法
WO2013106842A2 (en) * 2012-01-13 2013-07-18 The Charles Stark Draper Laboratory, Inc. Stem cell bioinformatics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040119974A1 (en) * 2002-12-20 2004-06-24 Bishop James E. Instrument setup system for a fluorescence analyzer
US20080194508A1 (en) * 2005-02-25 2008-08-14 Christensen Nanna K Cell Counting
WO2007010236A1 (en) * 2005-07-18 2007-01-25 Mathshop Limited Automatic plow cytometry data analysis
CN102177427A (zh) * 2008-10-10 2011-09-07 贝克曼考尔特公司 颗粒分析中的检测和处理同步
CN103180858A (zh) * 2011-08-25 2013-06-26 索尼公司 移动微实体流中的运动相关误差的补偿

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, JUNHAO ET AL.: "Determination for the cutoff value and the compensation value in cell apoptosis assay by Annexin V/PI of flow cytomettry", J. MOD. LAB MED., vol. 23, no. 4, 31 July 2008 (2008-07-31), pages 24 - 27 *
TAO, JIAPING ET AL.: "Compensative problem in multi-parameter measurement of flow cytometry", JOURNAL OF BEIJING MEDICAL UNIVERSITY, vol. 28, no. 1, 31 December 1996 (1996-12-31), pages 39 - 41 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494750A (zh) * 2017-04-14 2019-11-22 国立研究开发法人国立癌症研究中心 效应性调节性t细胞的检测方法、效应性调节性t细胞的分析装置、效应性调节性t细胞的分析系统和程序

Also Published As

Publication number Publication date
US20170097296A1 (en) 2017-04-06
US9970857B2 (en) 2018-05-15
CN110057744A (zh) 2019-07-26
CN110057744B (zh) 2022-08-05
CN106255873A (zh) 2016-12-21
CN106255873B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN116186634B (zh) 一种建筑工程施工数据智能管理系统
JP2022003343A (ja) スペクトル型フローサイトメータシステム、情報処理装置および情報処理方法
WO2015154288A1 (zh) 一种进行自动补偿的方法、装置及相应的流式细胞分析仪
US11428652B2 (en) Pattern evaluation system and pattern evaluation method
US8357897B2 (en) Charged particle beam device
CN102393250A (zh) 一种获取红外焦平面探测器最佳偏置电压的方法和装置
WO2023206798A1 (zh) 耳机音质效果的校准方法、装置、设备及存储介质
KR101803119B1 (ko) 웨이퍼 검사 또는 계측 구성을 위한 데이터 섭동
JP6487063B2 (ja) 荷電粒子線装置及び荷電粒子線装置における画像処理方法
US11898974B2 (en) Charged particle beam device, computer, and signal processing method for charged particle beam device
US8581186B2 (en) Charged particle beam apparatus
KR102278301B1 (ko) 하전 입자선 장치
JP2012142143A (ja) 荷電粒子線装置及び観察画像生成方法
US20190370967A1 (en) Cell image evaluation device, method, and program
CN108279809B (zh) 一种校准方法和装置
JP4565845B2 (ja) 細胞の培養状態検出装置
US10909669B2 (en) Contrast adjustment system and contrast adjustment method
CN107491420B (zh) McMaster事件检测算法的一种自动寻参方法
KR102678481B1 (ko) 하전 입자 빔 장치
JP7344390B6 (ja) 補正係数計算装置、補正係数計算方法、補正係数計算プログラム
CN114299032A (zh) 自动聚焦或像差校正的优化方法及带电粒子束设备
TWI836437B (zh) 樣品像觀察裝置及方法
KR102678106B1 (ko) 하전 입자선 장치, 계산기 및 하전 입자선 장치의 신호 처리 방법
WO2023166551A1 (ja) イオンミリング装置及び検査システム
US11355304B2 (en) Electronic microscope device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (09.03.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14889042

Country of ref document: EP

Kind code of ref document: A1