WO2015152404A1 - Fuel injection device for diesel engine - Google Patents

Fuel injection device for diesel engine Download PDF

Info

Publication number
WO2015152404A1
WO2015152404A1 PCT/JP2015/060618 JP2015060618W WO2015152404A1 WO 2015152404 A1 WO2015152404 A1 WO 2015152404A1 JP 2015060618 W JP2015060618 W JP 2015060618W WO 2015152404 A1 WO2015152404 A1 WO 2015152404A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
fuel
pipe
intake
air
Prior art date
Application number
PCT/JP2015/060618
Other languages
French (fr)
Japanese (ja)
Inventor
聖人 藤阪
加藤 信一郎
充 二宮
Original Assignee
スズキ株式会社
聖人 藤阪
加藤 信一郎
充 二宮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014077675A external-priority patent/JP6331603B2/en
Priority claimed from JP2014078509A external-priority patent/JP6281386B2/en
Priority claimed from JP2014083108A external-priority patent/JP6248771B2/en
Application filed by スズキ株式会社, 聖人 藤阪, 加藤 信一郎, 充 二宮 filed Critical スズキ株式会社
Priority to DE112015000072.0T priority Critical patent/DE112015000072B4/en
Priority to CN201580001060.8A priority patent/CN105339642B/en
Publication of WO2015152404A1 publication Critical patent/WO2015152404A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/02Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/85Mounting of fuel injection apparatus
    • F02M2200/857Mounting of fuel injection apparatus characterised by mounting fuel or common rail to engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/16Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines characterised by use in vehicles
    • F02M35/161Arrangement of the air intake system in the engine compartment, e.g. with respect to the bonnet or the vehicle front face

Definitions

  • the present invention relates to a fuel injection device for a diesel engine, and more particularly to a fuel injection device for a diesel engine supplied with fuel pressurized by a fuel pump.
  • a common rail that receives fuel sent from a fuel tank by a fuel feed pump, a plurality of fuel injection valves that inject fuel supplied from the common rail into each cylinder, and a fuel that connects the fuel tank and the fuel injection valve
  • a fuel pump arranged on the supply pipe and driven by the camshaft of the engine, and arranged on the upstream side of the fuel pump in the fuel supply pipe, the flow rate of fuel supplied to the fuel pump according to the fuel pressure in the common rail
  • a fuel injection device including a flow rate adjusting valve to be adjusted is mounted.
  • a mounting flange formed at the downstream end of a branch pipe of an intake manifold is separated by a gap between the branch pipes at a distance larger than the outer diameter of the fuel supply pipe.
  • a fuel supply pipe connected to an injection valve is arranged through a gap so that the fuel supply pipe is made equal in length with a short length.
  • some fuel injection devices for diesel engines have a flow rate adjustment valve integrated with a fuel pump.
  • the structure of the fuel pump becomes complicated and the fuel pump becomes expensive.
  • the flow rate adjustment valve is mounted alone in the vicinity of the cylinder head, it is difficult to secure a space for arranging the flow rate adjustment valve because a large number of engine auxiliary parts are arranged around the cylinder head. .
  • the bend of the fuel supply pipe connecting between the flow adjustment valve and the fuel pump becomes large, and the fuel supply pipe is installed.
  • there is a problem that a large space is required and connection workability of the fuel supply pipe is deteriorated.
  • An object of the present invention is to reduce the cost of a fuel injection device for a diesel engine and to efficiently arrange the components constituting the fuel injection device in the vicinity of the cylinder head.
  • the present invention relates to a cylinder head disposed at an upper portion of an engine, a plurality of fuel injection valves disposed at an upper portion of the cylinder head and supplied with fuel from a common rail, and a fuel supply pipe connecting the fuel tank and the fuel injection valve.
  • a fuel pump disposed above and driven by the camshaft of the engine, and disposed upstream of the fuel pump in the fuel supply piping, adjusts the flow rate of fuel supplied to the fuel pump according to the fuel pressure in the common rail.
  • the engine includes a chain case joined to an end portion on the transmission side in the cylinder row direction of the cylinder head, and the flow rate adjustment valve is attached to the chain case, while the fuel The pump is located near the top of the cylinder head and near the end opposite to the chain case in the cylinder row direction.
  • the flow rate adjusting valve since the flow rate adjusting valve separate from the fuel pump is attached to the engine, the structure of the fuel pump can be simplified and the manufacturing cost of the fuel pump can be reduced. Further, according to the present invention, the flow rate adjusting valve is attached to the chain case joined to the end of the cylinder head in the cylinder row direction on the transmission side, while the fuel pump is opposed to the chain case in the cylinder head upper surface side and the cylinder row direction. It was arranged near the end on the side. For this reason, this invention can arrange
  • the fuel supply pipe that communicates between the flow regulating valve and the fuel pump can be formed in a shape with relatively little bending so that it can be arranged compactly in the vicinity of the cylinder head, and the connection workability of the fuel supply pipe can be improved. Can be improved. Therefore, this invention can reduce the cost of the fuel injection device of a diesel engine, and can efficiently arrange the components constituting the fuel injection device in the vicinity of the cylinder head.
  • FIG. 1 is a plan view of a diesel engine.
  • FIG. 2 is a rear view of the diesel engine.
  • FIG. 3 is a left side view of the diesel engine taken along arrow III in FIG. (Example 1)
  • FIG. 4 is a system diagram of a fuel injection device for a diesel engine.
  • FIG. 5 is an enlarged rear view of the fuel injection device taken along arrow V in FIG. (Example 1)
  • FIG. 6 is an enlarged side view of the fuel pump taken along arrow VI in FIG.
  • FIG. 7 is an enlarged cross-sectional view of the fuel pump taken along line VII-VII in FIG. (Example 1)
  • FIG. 8 is a top view of the front portion of the vehicle.
  • FIG. 9 is a side view of the front portion of the vehicle.
  • FIG. 10 is a rear view of the engine.
  • FIG. 11 is a side view of the engine around the intercooler outlet pipe.
  • FIG. 12 is a top view of the front portion of the vehicle with the alternator and the intake manifold removed.
  • FIG. 13 is a diagram showing the relationship between the engine speed and the charging efficiency in a conventional intercooler outlet pipe having a constant inner diameter and the intercooler outlet pipe of the present embodiment having a different inner diameter.
  • FIG. 14 is a side view of the front portion of the vehicle. (Example 3) FIG.
  • FIG. 15 is a top view of the front portion of the vehicle.
  • FIG. 16 is a front view of the engine.
  • FIG. 17 is a rear view of the engine.
  • (Example 3) 18 is a view taken in the direction of arrows XVIII-XVIII in FIG. (Example 3)
  • FIG. 19 is a perspective view of the EGR device.
  • (Example 3) 20 is a cross-sectional view taken along the line XX-XX in FIG.
  • FIG. 21 is a view of the periphery of the EGR device as viewed from the front.
  • FIG. 22 is a sectional view of the EGR valve.
  • a diesel engine (hereinafter referred to as “engine”) 1 is an engine 1 having two cylinders arranged in series.
  • the engine 1 has a direction in which two cylinders are aligned as a cylinder row direction A and a direction orthogonal to the cylinder row direction A as a row crossing direction B.
  • a cylinder head 3 is disposed above the cylinder block 2
  • a cylinder head cover 4 is disposed above the cylinder head 3.
  • the cylinder head 3 includes a first cylinder head portion 3a attached to the cylinder block 2 and a second cylinder head portion 3b attached to the first cylinder head portion 3a.
  • the cylinder head 3 pivotally supports an intake cam shaft 5 and an exhaust cam shaft 6 extending in the cylinder row direction A between the first cylinder head portion 3a and the second cylinder head portion 3b. Yes.
  • the intake camshaft 5 and the exhaust camshaft 6 are arranged in parallel in a row crossing direction B orthogonal to the cylinder row direction A.
  • a cylinder head cover 4 that is long in the cylinder row direction A is attached to one side (front side in FIG. 1) of the row crossing direction B at the upper part of the second cylinder head portion 3b.
  • a lower case 7 is disposed below the cylinder block 2, and an oil pan 8 is disposed below the lower case 7.
  • the cylinder block 2 supports a crankshaft extending in the cylinder row direction A at the lower portion.
  • the oil pan 8 protrudes from the cylinder block 2 and the cylinder head 3 on one side in the cylinder row direction A.
  • a chain case 9 is disposed on one side of the cylinder block 2 and the cylinder head 3 in the cylinder row direction A and above the oil pan 8.
  • a transmission 10 is connected to one side of a cylinder row direction A of the oil pan 8 and a lower portion of one side of the chain case 9 in the cylinder row direction A.
  • the engine 1 has an air cleaner 11 disposed above the transmission 10.
  • an oil filter 12 and an EGR cooler 13 are arranged in a chain case 9 between the transmission 10 and the air cleaner 11.
  • an intake manifold 14 is disposed on the other side (the rear side in FIG. 3) of the column crossing direction B perpendicular to the cylinder row direction A between the cylinder block 2 and the cylinder head 3.
  • the engine 1 has an exhaust manifold, a supercharger 15 and an exhaust pipe 16 on one side (front side in FIG. 3) of the cylinder block 2 and the cylinder head 3 in the column crossing direction B orthogonal to the cylinder column direction A.
  • a catalyst case 17 is arranged.
  • the engine 1 includes a fuel injection device 18 that injects fuel into each cylinder.
  • the fuel injection device 18 is supplied from a fuel feed pump 20 that sends out fuel in a fuel tank 19, a fuel supply pipe 21 through which fuel sent by the fuel feed pump 20 flows, and a fuel supply pipe 21.
  • a common rail 22 that receives fuel, a plurality of fuel injection valves 23 that inject fuel supplied from the common rail 22 into each cylinder, a fuel supply pipe 21 that connects the fuel tank 19 and the fuel injection valve 23, and
  • a fuel pump 24 that is driven by the exhaust camshaft 6 of the engine 1 to boost the fuel, and is disposed upstream of the fuel pump 24 in the fuel supply pipe 21, and is supplied to the fuel pump 24 according to the fuel pressure in the common rail 22.
  • the fuel supply pipe 21 is connected from the fuel feed pump 20 of the fuel tank 19 to the fuel injection valve 23 via the flow rate adjustment valve 25, the fuel pump 24, and the common rail 22.
  • the fuel supply pipe 21 includes a first fuel supply pipe part 21a that connects the fuel feed pump 20 to the flow rate adjustment valve 25, a second fuel supply pipe part 21b that connects the flow rate adjustment valve 25 to the fuel pump 24, and A third fuel supply piping portion 21c that connects the fuel pump 24 to the common rail 22 and a fourth fuel supply piping portion 21d that connects the common rail 22 to the fuel injection valve 23 are configured. Since the engine 1 of this embodiment has two cylinders, the engine 1 includes two fourth fuel supply pipe portions 21d connected to the two fuel injection valves 23, respectively. Low-pressure fuel sent by the fuel feed pump 20 flows through the first fuel supply piping section 21a and the second fuel supply piping section 21b.
  • High-pressure fuel sent by the fuel pump 24 flows through the third fuel supply piping portion 21c and the fourth fuel supply piping portion 21d.
  • a fuel filter 27 that filters the fuel supplied to the flow rate adjustment valve 25 is disposed in the first fuel supply piping portion 21a.
  • the fuel return pipe 26 is connected to the fuel tank 19 from the fuel injection valve 23, the fuel pump 24, and the flow rate adjustment valve 25 via the junction 28.
  • the fuel return pipe 26 includes a first fuel return pipe section 26a that connects the fuel injection valve 23 to the merging section 28, a second fuel return pipe section 26b that connects the fuel pump 24 to the merging section 28, and a flow rate adjustment.
  • a third fuel return pipe part 26 c that connects the valve 25 to the junction 28 and a fourth fuel return pipe part 26 d that connects the junction 28 to the fuel tank 19 are configured.
  • the fuel injection device 18 purifies the fuel sent from the fuel feed pump 20 in the fuel tank 19 to the first fuel supply piping section 21 a by the fuel filter 27 and sends the fuel to the flow rate adjustment valve 25.
  • the flow rate adjusting valve 25 adjusts the fuel to a necessary flow rate, and sends the fuel to the fuel pump 24 through the second fuel supply piping portion 21b.
  • the fuel pump 24 sends the boosted fuel to the common rail 22 through the third fuel supply piping portion 21c.
  • the common rail 21 distributes the fuel to the fuel injection valves 23 of the respective cylinders by the fourth fuel supply piping portion 21d.
  • the fuel injection device 18 includes a fuel pressure sensor 29 that measures the fuel pressure in the common rail 22.
  • the fuel pressure sensor 29 outputs the measured fuel pressure to the control unit 30.
  • the control unit 30 feeds back the fuel pressure measured by the fuel pressure sensor 29 and adjusts the opening degree of the flow rate adjustment valve 25.
  • the flow rate adjustment valve 25 adjusts the flow rate of fuel sent to the fuel pump 24.
  • the fuel injection valve 23, the fuel pump 24, and the flow rate adjustment valve 25 allow excess fuel to flow through the first fuel return pipe part 26a, the second fuel return pipe part 26b, and the third fuel return pipe part 26c, respectively.
  • the fuel that has flown through the first fuel return pipe part 26a, the second fuel return pipe part 26b, and the third fuel return pipe part 26c is joined at the joining part 28 and returned to the fuel tank 19 by the fourth fuel return pipe part 26d. It is.
  • the fuel injection device 18 includes a plurality of fuel injection valves 23 to which fuel is supplied from the common rail 22 in the cylinder row direction A above the second cylinder head portion 3 b constituting the cylinder head 3. They are arranged side by side.
  • a common rail 22 is disposed between the two fuel injection valves 23.
  • the second cylinder head portion 3 b has a row crossing direction B orthogonal to the cylinder row direction A, and both side portions of the fuel injection valve 23 (rear side portion and front side portion in FIG. 7).
  • the intake camshaft 5 and the exhaust camshaft 6 are arranged in the section).
  • a fuel pump 24 driven by the exhaust camshaft 6 of the engine 1 is disposed on a fuel supply pipe 21 that connects the fuel tank 19 and the fuel injection valve 23. Further, the fuel injection device 18 is provided with a flow rate adjusting valve 25 for adjusting the flow rate of the fuel supplied to the fuel pump 24 according to the fuel pressure in the common rail 22 on the upstream side of the fuel pump 24 in the fuel supply pipe 21. Yes.
  • the fuel injection device 18 connects the fuel feed pump 20 to the flow rate adjustment valve 25 through the first fuel supply piping unit 21a, and connects the flow rate adjustment valve 25 to the fuel pump 24 through the second fuel supply piping unit 21b.
  • the common rail 22 is connected to the fuel injection valve 23 by the fourth fuel supply piping section 21d.
  • the fuel injection valve 23 is connected to the merging portion 28 by the first fuel return piping portion 26a
  • the fuel pump 24 is connected to the merging portion 28 by the second fuel return piping portion 26b
  • the flow rate adjusting valve 25 is connected.
  • the third fuel return pipe 26c is connected to the junction 28, and the junction 28 is connected to the fuel tank 19 by the fourth fuel return pipe 26d.
  • the engine 1 includes a chain case 9 joined to an end portion on the transmission 10 side in the cylinder row direction A between the cylinder block 2 and the cylinder head 3.
  • the fuel pump 24 is disposed on the upper surface side of the second cylinder head portion 3 b of the cylinder head 3 and in the vicinity of the end opposite to the chain case 9 in the cylinder row direction A. is doing.
  • the fuel pump 24 includes a cylinder member 31 as a pump main body.
  • the cylinder member 31 is attached to the pump attachment portion 32 of the second cylinder head portion 3b so as to be inclined toward the intake camshaft 5 side.
  • the pump mounting portion 32 includes a communication hole 33 extending in the direction of the exhaust camshaft 6 inside.
  • the cylinder member 31 includes a guide hole 34 that faces the exhaust camshaft 6 through a communication hole 33 therein.
  • the cylinder member 31 houses the plunger 35 in the guide hole 34 so as to be slidable, that is, in contact with and away from the exhaust camshaft 6.
  • the cylinder member 31 is formed with a pump chamber 36 surrounded by an end portion of the plunger 35 opposite to the exhaust cam shaft 6 and an end portion of the guide hole 34.
  • the plunger 35 has an end on the side facing the exhaust camshaft 6 protruding from the cylinder member 31 into the communication hole 33 and includes a spring receiving portion 37 at the tip.
  • the plunger 35 has a coil spring 38 interposed between the spring receiving portion 37 and the end of the cylinder member 31.
  • the coil spring 38 biases the plunger 35 toward the exhaust camshaft 6.
  • the plunger 35 has a tappet 39 attached to a spring receiving portion 37.
  • the tappet 39 is slidably accommodated in the communication hole 33.
  • a roller 40 is rotatably held by the tappet 39.
  • the roller 40 is pressed against the pump cam 41 attached to the intake cam shaft 6 by the urging force of the coil spring 38.
  • the roller 40 is driven by the rotation of the pump cam 41, moved to the side away from the exhaust cam shaft 6 and the side closer to the exhaust cam shaft 6 in the communication hole 33, and the direction in which the plunger 35 is inserted into the pump chamber 36 via the tappet 39 and the pump chamber. It moves to the direction extracted from 36.
  • the plunger 35 moves in the direction to be inserted into the pump chamber 36 by the rotation of the pump cam 41, the plunger 35 pressurizes the pump chamber 36 by reducing the volume of the pump chamber 36.
  • the volume of the pump chamber 36 is increased to depressurize the pump chamber 36.
  • the fuel pump 24 includes a fuel inlet 42 on the lower side of the cylinder member 31 facing the intake camshaft 5.
  • the fuel pump 24 is attached to the upper surface side of the second cylinder head portion 3b so that the fuel inlet 42 is positioned in the vicinity of the intake camshaft 5.
  • the fuel inlet 42 communicates with the pump chamber 36.
  • the fuel inlet 42 is connected to the second fuel supply piping portion 21b.
  • the fuel pump 24 sucks the fuel in the second fuel supply pipe portion 21b from the fuel inlet 42 into the pump chamber 36 which has been decompressed by extracting the plunger 35.
  • the fuel pump 24 includes a fuel outlet 43 on the tip end side of the cylinder member 31.
  • the fuel outlet 43 communicates with the pump chamber 36.
  • the fuel outlet 43 is connected to the third fuel supply pipe 21c.
  • the fuel pump 24 discharges the pressurized fuel from the pump chamber 36 pressurized by the insertion of the plunger 35 from the fuel outlet 43 to the third fuel supply piping portion 21c.
  • the fuel discharged to the third fuel supply piping part 21 c is supplied to the common rail 22.
  • the common rail 22 distributes an equal amount of fuel to the plurality of fuel injection valves 23 by the fourth fuel supply pipe portion 21d.
  • the plurality of fuel injection valves 23 inject fuel into each cylinder.
  • the fuel pump 24 includes a fuel return outlet 44 in the cylinder member 31.
  • the fuel return outlet 44 communicates with the pump chamber 36.
  • the fuel return outlet 44 is connected to the second fuel return pipe portion 26b.
  • a check valve (not shown) is disposed in the pump chamber 36 to prevent the fuel from flowing back from the common rail 22 or the second fuel return pipe portion 26b to the pump chamber 36 side.
  • the second fuel return pipe part 26b is connected to the joining part 28 together with the third fuel return pipe part 26c, and is connected to the fuel tank 19 by the fourth fuel return pipe part 26d.
  • the surplus fuel discharged to the second fuel return pipe portion 26 b is returned to the fuel tank 19. For this reason, it is possible to prevent the fuel pressure supplied to the fuel injection valve 23 from rising excessively.
  • Reference numeral 45 denotes a pump cover.
  • the fuel injection device 18 has a flow rate adjustment valve 25 joined to an end portion on the transmission 10 side in the cylinder row direction A of the cylinder head 3, and on the left side of the vehicle body from the main body portion of the cylinder head 3. It is attached to a chain case 9 protruding to The flow rate adjustment valve 25 supplies the fuel sent from the fuel tank 19 by the fuel feed pump 20 to the fuel pump 24.
  • the flow rate adjustment valve 25 has a base portion 46 fixed to the chain case 9 and a cylindrical portion 47 extending from the base portion 46 to the outside of the engine 1.
  • the flow rate adjusting valve 25 has a base portion 46 fixed to an attachment portion 49 of a wall surface 48 facing the transmission 10 side of the case 9.
  • the flow rate adjusting valve 25 is attached in the vicinity of the intake camshaft 5 on the other side (the rear side in FIGS. 1 and 7) of the row crossing direction B orthogonal to the cylinder row direction A of the chain case 9.
  • the fuel injection device 18 of the engine 1 since the fuel injection device 18 of the engine 1 has the flow rate adjusting valve 25 separately from the fuel pump 24 attached to the engine 1, the structure of the fuel pump 24 can be simplified, and the manufacturing cost of the fuel pump 24 can be reduced. . Further, the fuel injection device 18 attaches the flow rate adjustment valve 25 to the chain case 9 joined to the end of the cylinder head 3 in the cylinder row direction A on the transmission 10 side, while the fuel pump 24 is attached to the upper surface side of the cylinder head 3. In the cylinder row direction A, it is arranged in the vicinity of the end opposite to the chain case 9.
  • the fuel injection device 18 can be disposed on the transmission 10 side where the flow rate adjusting valve 25 is relatively easy to secure a space, and at a position away from the fuel pump 24 in the cylinder row direction A. Further, the fuel injection device 18 can be compactly arranged near the cylinder head 3 by forming the fuel supply pipe 21 communicating between the flow rate adjusting valve 25 and the fuel pump 24 in a shape with a relatively small bend, and the fuel supply. The connection workability of the piping 21 can be improved. Therefore, the fuel injection device 18 of the engine 1 can reduce the cost of the fuel injection device 18 and can efficiently arrange the components constituting the fuel injection device 18 in the vicinity of the cylinder head 3.
  • the engine 1 is an engine 1 having two cylinders. Accordingly, the fuel injection device 18 can adjust the flow rate more efficiently if the above-described structure is applied to the two-cylinder engine 1 having a short length in the cylinder row direction and a small space for mounting the flow rate adjustment valve 25.
  • the valve 25 can be arranged in the vicinity of the cylinder head 3.
  • the base portion 46 of the flow rate adjusting valve 25 having a base portion 46 and a cylindrical portion 47 is fixed to a wall surface 48 of the chain case 9 facing the transmission 10 side.
  • the fuel injection device 18 can efficiently arrange the flow rate adjustment valve 25 having the cylindrical portion 47 extending from the base portion 46 in the vicinity of the cylinder head 3 using the space above the transmission 10. .
  • an intake camshaft 5 and an exhaust camshaft 6 are disposed on both sides of the fuel injection valve 23 in a row crossing direction B orthogonal to the cylinder row direction A of the cylinder head 3.
  • the fuel injection device 18 drives the fuel pump 24 by the exhaust camshaft 6, and attaches the fuel pump 24 to the cylinder head 3 so that the fuel inlet 42 is positioned in the vicinity of the intake camshaft 5, and connects the flow rate adjusting valve 25 to the chain.
  • the case 9 is attached in the vicinity of the intake camshaft 5 in a row crossing direction B orthogonal to the cylinder row direction A.
  • the fuel injection device 18 can arrange the flow rate adjusting valve 25 at a position close to the fuel inlet 42 of the fuel pump 24 in the row crossing direction B orthogonal to the cylinder row direction A of the cylinder head 3.
  • the second fuel supply piping portion 21 b that communicates between the pumps 24 can be efficiently disposed in the vicinity of the cylinder head 3.
  • Example 2 relates to an intake device for an engine with a supercharger provided with an intercooler that cools air introduced from the supercharger into an engine as an internal combustion engine.
  • an engine of a vehicle such as an automobile is provided with an intercooler that cools air that is supercharged by a compressor of a supercharger and rises in temperature.
  • the charging efficiency of the engine can be increased by lowering the temperature of the air through heat exchange with the outside air passing through the core portion.
  • Patent Document 3 Japanese Patent Laid-Open No. 2011-21571
  • Patent Document 4 Japanese Patent Laid-Open No. 2009-227132
  • an intercooler is installed in front of the engine mounted in the engine room, and an intake manifold is installed behind the engine and in the upper part of the engine.
  • the intercooler and the intake manifold are connected by an intercooler outlet pipe having the same inner diameter.
  • the intercooler outlet pipe described in Patent Document 3 is arranged so that the intercooler outlet pipe extends from the upper tank of the intercooler to the upper side of the engine along the other end in the vehicle width direction opposite to the one end in the vehicle width direction on the transmission side of the engine. After extending obliquely upward, it is connected to the intake manifold so as to cross the upper part of the engine from the upper rear part of the engine.
  • An air cleaner inlet pipe is installed on the front side in the front-rear direction of the vehicle with respect to the intercooler outlet pipe so as to overlap the front-rear direction of the vehicle.
  • the intercooler outlet pipe (third intake pipe) described in Patent Document 4 has the same inner diameter, and the intercooler outlet pipe extends from the lower tank of the intercooler in the vehicle width direction on the transmission side of the engine.
  • the vehicle extends obliquely upward of the vehicle toward the upper side of the engine along the other end in the vehicle width direction opposite to the one end.
  • an air cleaner inlet pipe is installed on the front side in the front-rear direction of the vehicle with respect to the intercooler outlet pipe so as to overlap in the front-rear direction of the vehicle. For this reason, the traveling wind from the front of the vehicle is blocked by the air cleaner inlet pipe, is difficult to hit the intercooler outlet pipe, and the air flowing through the intercooler outlet pipe cannot be efficiently cooled.
  • the air cooled by the intercooler cannot be further cooled by the intercooler outlet piping, and the cooled air cannot be introduced into the engine via the intake manifold. Therefore, the charging efficiency of the engine cannot be increased, and it becomes difficult to improve the output performance of the engine.
  • the engine output may be reduced.
  • the second embodiment has been made by paying attention to the above-described problems, and can prevent the air flowing through the intercooler outlet pipe from being heated and improve the output performance of the engine.
  • the output performance can be prevented from deteriorating.
  • the first aspect of the second embodiment is an intake device attached to an engine having a supercharger, which is a surge tank attached to a rear portion in the front-rear direction of the engine and an intake intake pipe provided in an upstream portion of the surge tank.
  • An intake manifold having an air outlet, an air cooler installed in front of the engine and having an air outlet pipe, and connected to the turbocharger via an intercooler linelet pipe.
  • an intercooler outlet pipe that extends along the widthwise end and is connected to the intake air inlet pipe.
  • the intercooler outlet pipe has a larger inner diameter than the larger diameter section and the larger diameter section.
  • a small-diameter portion having a small inner diameter dimension, and the large-diameter portion from the central portion in the longitudinal direction of the intercooler outlet pipe. And a one formed until the downstream end connected.
  • the vehicle width direction end of the engine is supported by the vehicle body via the mounting device, and is heated at the time of operation at the rear in the front-rear direction of the engine and below the surge tank.
  • the intake pipe is extended from the surge tank to the lower part of the vehicle and at least the lower part of the auxiliary machine in the height direction of the vehicle, and the air outlet pipe part in the height direction of the vehicle. Is installed above the mounting device, the auxiliary equipment is installed below the mounting device, and the intercooler outlet pipe is connected from the air outlet pipe to the intake air inlet pipe through the mounting device and the auxiliary equipment.
  • the large-diameter portion passes through the lower side of the mounting device and from the rear part of the vehicle in the front-rear direction of the mounting device to the lower side of the auxiliary machine and at least downward from the intake pipe. It may be formed between the up interval position.
  • the inner diameter dimension of the large diameter portion may be the same over the length direction of the large diameter portion.
  • a large diameter part in the state which looked at the engine from the upper direction, a large diameter part may be installed in the circumference
  • the large-diameter portion is continuous with the small-diameter portion, and is continuous with the straight portion and the straight portion passing through the lower portion of the mounting device at a position lower than the upper end portion of the accessory.
  • An inclined portion extending from the straight portion toward the lower side of the auxiliary device, a first bending portion that is continuous with the inclined portion and curves from the inclined portion toward the lower side of the auxiliary device, and a first bending portion.
  • a second curved portion extending downward from the engine in the vehicle front-rear direction and curved rearward from the engine, and extending downward from the intake pipe.
  • a tapered portion whose inner diameter is gradually reduced from the upstream side to the downstream side of the second curved portion, and the tapered portion and the intake air are introduced at the downstream end of the tapered portion.
  • intercooler outlet piping is comprised including the large diameter part with a larger internal diameter dimension of an intercooler outlet piping, and the small diameter part with a smaller internal diameter dimension than a large diameter part,
  • the large diameter portion is formed between the central portion in the longitudinal direction of the intercooler outlet pipe and the downstream end connected to the intake air introduction pipe.
  • the large diameter portion is provided in the downstream portion of the intercooler outlet pipe, the surface area of the downstream portion of the intercooler outlet pipe can be increased and the inner diameter dimension of the downstream portion of the intercooler outlet pipe can be increased.
  • the temperature of the air flowing through the intercooler outlet pipe is further lowered by the traveling wind, and the intake efficiency of the engine can be increased more effectively and the output of the engine can be improved more effectively.
  • the intake air inlet pipe is extended from the surge tank to the lower side of the vehicle, and extended at least to the lower part of the auxiliary machine in the vehicle height direction, and the intercooler outlet pipe is connected to the air outlet pipe portion.
  • the intercooler outlet pipe is connected to the air outlet pipe portion.
  • the intercooler outlet pipe and the intake pipe can be installed so as to surround the auxiliary machine from the side to the lower side, and the intercooler outlet pipe and the intake pipe are exposed to the heat rising from the auxiliary machine. Can be prevented.
  • the air cooled by the intercooler can be prevented from being heated, and the air flowing through the intercooler outlet pipe can be kept at a low temperature.
  • the air cooled by the intercooler can be introduced into the engine from the intercooler outlet piping through the intake manifold, and the charging efficiency of the engine can be further increased and the output performance of the engine can be enhanced more effectively.
  • the air outlet pipe is installed above the mounting device in the height direction of the vehicle, and the auxiliary machine is installed below the mounting device, and the intercooler outlet pipe is connected from the air outlet pipe to the bottom of the mounting device. And connected to the intake pipe through the lower part of the accessory.
  • the intercooler outlet pipe can be installed low in the vehicle height direction from the front (upstream part) to the rear (downstream part) of the vehicle, and the height direction dimension of the intercooler outlet pipe in the vehicle height direction. Can be long.
  • the surface area where the traveling wind introduced into the vehicle from the front of the vehicle hits the intercooler outlet piping can be increased, and the intercooler outlet piping can be cooled efficiently.
  • the temperature of the air flowing through the intercooler outlet pipe can be further reduced by the traveling wind, and the charging efficiency of the engine can be increased more effectively.
  • the large diameter part located in the downstream part of an intercooler outlet piping can be installed in the position lower than an upstream part in the height direction of a vehicle, the traveling wind which flows through the bottom part (for example, bottom part of an engine room) of a vehicle Large diameter part can be installed at many positions.
  • the large diameter portion is provided below the auxiliary machine, it is possible to prevent the large diameter part from being exposed to the heat rising from the auxiliary machine. For this reason, the air cooled by the intercooler can be prevented from being heated, and low-temperature air can be introduced into the engine.
  • the intercooler outlet piping is not installed in the space above the auxiliary machine, the space above the auxiliary machine can be expanded. For this reason, the accessory can be easily accessed from above, and the accessory can be easily attached to and detached from the engine. Therefore, the workability of the maintenance work of the auxiliary machine can be improved.
  • the intercooler outlet piping is not obstructed by the intercooler outlet piping when the engine is assembled to the vehicle body from below with the intercooler outlet piping attached to the engine.
  • the engine can be attached to the vehicle body via a mounting device. For this reason, the engine can be easily assembled to the vehicle body.
  • the internal diameter dimension of a large diameter part is formed uniformly over the length direction of a large diameter part, it prevents that an intake pulsation is attenuate
  • the intake pulsation can be optimized. For this reason, it is possible to prevent a reduction in the amount of air taken into the engine in the normal operating range of the engine, to improve the charging efficiency of the engine more effectively, and to improve the output of the engine more effectively.
  • a large diameter part is installed in the circumference
  • more air can be introduced into the engine along the gentle curve with the volume of air passing through the large-diameter portion increased.
  • the amount of air taken into the engine can be increased to improve the charging efficiency of the engine more effectively, and the output of the engine can be improved more effectively.
  • the large-diameter portion is continuous with the first curved portion that curves from the inclined portion toward the lower side of the auxiliary device, and passes through the lower portion of the auxiliary device in the vehicle width direction.
  • a second curved portion that extends toward the lower side of the intake pipe after being bent rearward from the engine in the front-rear direction.
  • a tapered portion whose inner diameter is gradually reduced from the upstream side of the second curved portion toward the downstream side is formed at the downstream portion of the second curved portion, and the tapered portion and the intake pipe are provided at the downstream end of the tapered portion.
  • the small diameter pipe part to be connected was formed, and the downstream part of the large diameter part constituted by the tapered part and the small diameter pipe part was formed in a curved shape.
  • the flow velocity of air can be increased by the small-diameter pipe portion before air is introduced into the intake air introduction pipe. Therefore, air with a high flow rate can be introduced into the surge tank, and the efficiency of filling the air introduced into the engine can be effectively increased.
  • FIGS. 8 to 13 are views showing an intake device for an engine with a supercharger according to an embodiment of the present invention.
  • a vehicle 101 includes a vehicle body 102, and the vehicle body 102 includes side frames 102 ⁇ / b> A and 102 ⁇ / b> B that extend in the front-rear direction of the vehicle 101 and are installed in the vehicle width direction.
  • the vehicle body 102 includes a dash panel 103 in front of the vehicle 101 in the front-rear direction, and the dash panel 103 includes an engine room 104 and a vehicle installed in front of the vehicle 101 in the front-rear direction.
  • the vehicle is partitioned into a passenger compartment 105 that is installed behind the front-rear direction 101 and in which the passengers board.
  • expressions representing front and rear, such as front and rear, are directions with respect to the front-rear direction of the vehicle 101.
  • An engine 106 is installed in the engine room 104, and the engine 106 is supported by the side frame 102A via a mounting device 107 attached to one end 106a in the vehicle width direction.
  • the mount device 107 includes a first mount bracket 107a that is fastened to one end 106a in the vehicle width direction of the engine 106, and a second mount bracket 107b that is connected to the first mount bracket 107a and extends toward the side frame 102A. And a mount insulator portion 107c connected to the second mount bracket 107b and attached to the side frame 102A.
  • a transmission 108 is provided at the other end 106b in the vehicle width direction of the engine 106, and the transmission 108 is supported by the side frame 102B via a mount device (not shown).
  • the vehicle width direction one end portion 106a of the engine 106 constitutes the vehicle width direction end portion of the engine 106 of the second embodiment.
  • the engine 106 is provided with a supercharger 109 and an intake device 110.
  • the intake device 110 is provided in front of the engine 106, an intake duct 111 that takes in air from the front of the vehicle 101, and an air cleaner 112 that is connected to the downstream end of the intake duct 111 and purifies the air.
  • an air cleaner outlet pipe 113 for introducing the air purified by the air cleaner 112 into the compressor housing 109a of the supercharger 109.
  • the supercharger 109 includes a compressor (not shown) provided inside the compressor housing 109a and a turbine housing 109b containing a turbine (not shown) that is rotated by the pressure of the exhaust gas.
  • the intake device 110 includes an intercooler line 114, an intercooler 115, an intercooler outlet line 116, and an intake manifold 117.
  • the upstream end of the intercool line pipe 114 is connected to the compressor housing 109a of the supercharger 109, and the downstream end of the inter cool line pipe 114 is connected to the inter cooler 115.
  • the upstream end 116 a of the intercooler outlet pipe 116 is connected to the intercooler 115, and the downstream end 116 b of the intercooler outlet pipe 116 is connected to the intake manifold 117.
  • upstream and downstream represent upstream and downstream with respect to the direction of air flow.
  • the supercharger 109 supercharges the air introduced into the compressor housing 109a from the air cleaner outlet pipe 113 to the intercooler line pipe 114 by a compressor that rotates integrally with a turbine that rotates under the pressure of exhaust gas.
  • the hot air is introduced into the intercooler 115 and cooled by the intercooler 115. Thereby, the oxygen density of air is raised.
  • the air having an increased oxygen density is introduced into the combustion chamber from the intercooler outlet pipe 116 through the intake manifold 117 and through an intake port (not shown) of the engine 106.
  • the intake port is opened and closed by an intake valve (not shown).
  • the intercooler 115 is installed in front of the engine 106, and the intercooler 115 includes a core portion 118, an upper tank 119, and a lower tank 120.
  • the core part 118 cools the air supplied from the supercharger 109 by the traveling wind, and a circulation part (not shown) through which the air circulates passes in the vertical direction or the vehicle width direction via a running wind flow path (not shown). It is installed side by side.
  • the lower tank 120 is provided in the lower part of the core part 118, and the lower tank 120 is provided with an air inlet pipe part 120a to which the intercool line pipe 114 is connected.
  • the lower tank 120 introduces air introduced from the intercool linelet pipe 114 through the air inlet pipe part 120 a into the core part 118.
  • the upper tank 119 is provided in the upper part of the core part 118, and the upper tank 119 is provided with an air outlet pipe part 119a to which the upstream end 116a of the intercooler outlet pipe 116 is connected (see FIGS. 8 and 9). .
  • Air cooled by the core portion 118 is introduced into the upper tank 119, and the air introduced into the upper tank 119 is introduced from the air outlet pipe portion 119a into the intake manifold 117 via the intercooler outlet pipe 116. Is done.
  • an alternator 121 is provided at the rear of the engine 106, and a water pump 122 is provided at one end 106 a in the vehicle width direction of the engine 106.
  • the alternator 121 constitutes a generator and includes a rotor and a stator (not shown).
  • the rotor is rotatably supported by the housing 121A of the alternator 121, and an alternator pulley 121B that protrudes outward from one end 106a in the vehicle width direction of the engine 106 is provided at the end of the rotor. For this reason, the alternator 121 generates high-temperature heat during operation.
  • the alternator 121 of this embodiment constitutes an auxiliary machine of the present invention.
  • a rotating shaft to which an impeller (not shown) is attached protrudes outward from one end 106a in the vehicle width direction of the engine, and a water pump pulley 122A is attached to the end of the rotating shaft.
  • a timing belt 123 is wound around the alternator pulley 121B and the water pump pulley 122A.
  • the timing belt 123 is wound around a crank pulley 124.
  • the crank pulley 124 is provided at an end portion of a crankshaft (not shown) and protrudes outward from one end portion 106a in the vehicle width direction of the engine 106.
  • crankshaft rotation of the crankshaft is transmitted to the alternator 121 and the water pump 122 via the timing belt 123, and the alternator 121 and the water pump 122 are driven in synchronization with the rotation of the crankshaft.
  • the alternator 121 is installed below the surge tank 125 of the intake manifold 117 and near the vehicle width direction one end portion 106a of the engine 106 opposite to the transmission 108. It is installed in the center of the engine 106 in the vertical direction.
  • the intake manifold 117 is attached to the rear portion of the engine 106, and includes a surge tank 125 that distributes intake air to the engine 106 and an intake introduction pipe 126 that is provided upstream of the surge tank 125.
  • a small arrow indicated by an arrow W1 indicates a direction in which air flows.
  • the intake intake pipe 126 extends from the surge tank 125 to the lower side of the vehicle 101 and extends to the lower portion 121 a of the alternator 121 in the height direction of the vehicle 101.
  • the intercooler outlet pipe 116 extends from the air outlet pipe portion 119a of the intercooler 115 along the vehicle width direction one end portion 106a of the engine 106, and then the downstream end 116b is connected to the intake air introduction pipe 126. ing.
  • the air outlet pipe portion 119 a is installed above the mounting device 107 in the height direction of the vehicle 101, and the alternator 121 includes the first mounting bracket 107 a or the mounting device 107. It is installed below the second mount bracket 107b.
  • the height of the air outlet pipe part 119a is shown with the code
  • the intercooler outlet pipe 116 passes from below the first mount bracket 107 a or the second mount bracket 107 b constituting the mount device 107 from the air outlet pipe portion 119 a and then connects to the intake inlet pipe 126 through the lower portion of the alternator 121. Has been.
  • the intercooler outlet piping 116 is configured to include a large diameter portion 116A having a larger inner diameter size than the intercooler outlet piping 116 and a small diameter portion 116B having a smaller inner diameter size than the large diameter portion 116A.
  • the large-diameter portion 116A is formed between the central portion C in the longitudinal direction of the intercooler outlet pipe 116 and the downstream end 116b connected to the intake air introduction pipe 126. As shown in FIGS. In a state where 106 is viewed from above, the large diameter portion 116 ⁇ / b> A is installed around the alternator 121 on the lower side of the alternator 121.
  • the air outlet pipe portion 119a is installed above the mount device 107, and the alternator 121 is below the first mount bracket 107a or the second mount bracket 107b. is set up.
  • the intercooler outlet pipe 116 is connected from the air outlet pipe portion 119a to the intake inlet pipe 126 through the first mount bracket 107a or the second mount bracket 107b and the alternator 121.
  • the large-diameter portion 116A is located below the first mount bracket 107a or the second mount bracket 107b and from the rear of the mount device 107 below the alternator 121 and spaced downward from the intake introduction pipe 126.
  • the inner diameter dimension of the large diameter portion 116A installed in this range is the same over the length direction of the large diameter portion 116A.
  • the large diameter portion 116 ⁇ / b> A is connected to the small diameter portion 116 ⁇ / b> B via a tapered tip portion, and is located at a position lower than the upper end portion 121 b of the alternator 121 and constitutes the mounting device 107.
  • a straight portion 116 c that passes below the second mount bracket 107 b and an inclined portion 116 d that is continuous with the straight portion 116 c and extends from the straight portion 116 c toward the lower side of the alternator 121 are provided.
  • the large-diameter portion 116A is continuous with the inclined portion 116d and is curved toward the lower side of the alternator 121 from the inclined portion 116d.
  • the large-diameter portion 116A is continuous with the curved portion 116e and extends below the alternator 121 in the vehicle width direction.
  • a curved portion 116 f that passes and curves toward the rear of the engine 106 and then extends toward the lower side of the intake air intake pipe 126 is provided.
  • the bending portion 116e constitutes the first bending portion of the present invention
  • the bending portion 116f constitutes the second bending portion of the second embodiment.
  • a tapered portion 116g whose inner diameter dimension gradually decreases from the upstream side to the downstream side of the curved portion 116f is formed at the downstream portion of the curved portion 116f, and the tapered portion 116g and the intake air are formed at the downstream end of the tapered portion 116g.
  • the downstream portion constituted by the tapered portion 116g and the small diameter tube portion 116h is formed in a curved shape.
  • the large diameter portion 116A is integrally formed from the upstream end of the large diameter portion 116A toward the downstream end, and the downstream end of the small diameter pipe portion 116h constitutes the downstream end 116b of the intercooler outlet pipe 116. Further, the upstream end of the small diameter portion 116B constitutes the upstream end 116a of the intercooler outlet pipe 116.
  • FIG. 11 the range from the straight part 116c to the inclined part 116d and the curved parts 116e, 116f is shown.
  • This intake pulsation is generated when a reflected wave is generated by opening and closing the intake valve, and the reflected wave flows from the intake manifold 117 through the intercooler outlet pipe 116 to the intercooler 115 and rebounds at the air outlet pipe portion 119a of the intercooler 115. A wave is generated.
  • the intercooler outlet piping 116 When the intercooler outlet piping 116 resonates in the normal rotation range (for example, 3000 to 4500 rpm) of the engine 106 due to this standing wave, the intake resistance in the downstream portion of the intercooler outlet piping 116 increases and is sucked into the engine 106. The amount of air that is produced decreases. As a result, the charging efficiency of the engine 106 may decrease in the normal rotation range of the engine 106 and the output of the engine 106 may decrease.
  • the intercooler outlet pipe 116 is divided into a large diameter part 116A having a large inner diameter dimension and a small diameter part having a smaller inner diameter dimension than the large diameter part 116A.
  • 116B and the large diameter portion 116A is formed from the central portion C in the longitudinal direction of the intercooler outlet pipe 116 to the downstream end 116b connected to the intake air introduction pipe 126.
  • the intake pulsation can be shifted to the high rotation range of the engine 106, and the intake pulsation can be optimized. That is, in the intake device 110 of the present embodiment, the intercooler outlet pipe 116 is provided with a large diameter portion 116A, and the natural frequency of the intercooler outlet pipe 116 is increased by increasing the inner diameter dimension and the length dimension of the large diameter section 116A. And the natural frequency can be shifted to a high rotation range of the engine 106.
  • the intake pulsation is a reflected wave reflected from the intake valve when a standing wave generated inside the intercooler outlet pipe 116 becomes a pressure wave and a large-diameter portion 116A is provided downstream of the intercooler outlet pipe 116. Therefore, the reflected wave can be transmitted to the air outlet pipe portion 119a of the intercooler 115 through the intercooler outlet pipe 116, and the intake pulsation can be shifted to the high rotation range of the engine 106.
  • the resonance frequency is lower than that of the intercooler outlet pipe having the large diameter portion 116A of the present embodiment, and intake pulsation is generated in the normal rotation region of the engine 106. It will shift.
  • the pressure of the reflected wave generated by the intake valve suddenly decreases at the portion of the intercooler outlet pipe where the small diameter portion changes to the large diameter portion.
  • the reflected wave attenuates before reaching the upstream portion of the outlet pipe 116.
  • the intake pulsation cannot be shifted to the high rotation range of the engine 106, and the resonance frequency of the intercooler outlet pipe is in the normal rotation range.
  • the pulsation resonates and intake resistance increases downstream of the intercooler outlet pipe.
  • FIG. 13 shows the engine speed (rpm) and the charging efficiency (%) of the engine 106 in a conventional intercooler outlet pipe having a constant inner diameter dimension and the intercooler outlet pipe 116 of the present embodiment having a different inner diameter dimension. It is a figure which shows the result measured by experiment.
  • the intake device 110 of the present embodiment increases the natural frequency of the intercooler outlet pipe 116 and suppresses the decrease in the attenuation amount of the reflected wave reflected from the intake valve, so that the air outlet pipe portion 119a of the intercooler 115 is provided. A reflected wave can be transmitted.
  • the resonance point between the standing wave and the large diameter portion 116A of the intercooler outlet pipe 116 can be moved to the high rotation region, and the intake resistance downstream of the intercooler 115 can be reduced in the normal rotation region of the engine 106. .
  • the amount of air taken into the engine 106 in the normal rotation range of the engine 106 can be prevented, the charging efficiency of the engine 106 can be improved, and the output of the engine 106 can be improved.
  • the intercooler 115 is installed in front of the engine 106, and the intake manifold 117 is installed in the rear part of the engine 106.
  • An alternator 121 that generates high-temperature heat during operation is installed at one end 106a of the engine 106 in the vehicle width direction.
  • the intercooler outlet pipe 116 needs to be laid out from the front of the engine 106 to the rear of the engine 106 through the vehicle width direction one end 106a.
  • the heat generated by the alternator 121 and rising (shown by an arrow H in FIG. 10) stays above the alternator 121, and the intercooler outlet pipe 116 is installed above the alternator 121.
  • the air cooled by the intercooler 115 may be heated by the heat that stays upward.
  • the intake device 110 of the present embodiment since the large diameter portion 116A is provided in the downstream portion of the intercooler outlet pipe 116, the surface area of the downstream portion of the intercooler outlet pipe 116 can be increased and the intercooler. The inner diameter of the downstream part of the outlet pipe 116 can be increased.
  • the surface area on which the traveling wind W (see FIGS. 9 and 11) introduced into the vehicle 101 from the front of the vehicle 101 hits the intercooler outlet pipe 116 can be increased, and the air having a large flow rate flowing through the large diameter portion 116A is intercooled.
  • the outlet pipe 116 can efficiently cool.
  • the temperature of the air flowing through the intercooler outlet pipe 116 can be further lowered by the traveling wind W, the intake efficiency of the engine can be increased more effectively, and the output of the engine 106 can be improved more effectively.
  • the intake intake pipe 126 is extended from the surge tank 125 to the lower side of the vehicle 101 and is extended to the lower part of the alternator 121 in the height direction of the vehicle 101 to provide intercooler outlet piping.
  • 116 is connected to the intake air introduction pipe 126 from the air outlet pipe portion 119a through the lower portion of the first mount bracket 107a or the second mount bracket 107b constituting the mount device and the lower portion of the alternator 121.
  • the intercooler outlet pipe 116 and the intake inlet pipe 126 can be installed so as to surround the alternator 121 from the side to the lower side, and the intercooler outlet pipe 116 and the intake inlet pipe 126 are heated by the heat rising from the alternator 121. It can be prevented from being exposed. Therefore, the air cooled by the intercooler 115 can be prevented from being heated, and the air flowing through the intercooler outlet pipe 116 can be kept at a low temperature.
  • the air cooled by the intercooler 115 can be introduced into the engine 106 from the intercooler outlet pipe 116 through the intake manifold 117, so that the charging efficiency of the engine 106 can be enhanced and the output performance of the engine 106 can be enhanced.
  • the air outlet pipe portion 119a is installed above the first mount bracket 107a or the second mount bracket 107b in the height direction of the vehicle 101, and the alternator 121 is installed in the first mount bracket 107a or the second mount.
  • the intercooler outlet pipe 116 is connected from the air outlet pipe portion 119a to the intake inlet pipe 126 through the first mount bracket 107a or the second mount bracket 107b and the alternator 121. .
  • the intercooler outlet piping 116 can be installed low in the height direction of the vehicle 101 from the front (upstream portion) to the rear (downstream portion) of the vehicle, and the height of the intercooler outlet piping 116 in the height direction of the vehicle 101.
  • the vertical dimension can be increased.
  • the surface area where the traveling wind W introduced into the vehicle 101 from the front of the vehicle 101 hits the intercooler outlet pipe 116 can be increased, and the intercooler outlet pipe 116 can be efficiently cooled.
  • the temperature of the air flowing through the intercooler outlet pipe 116 can be further reduced by the traveling wind W, and the charging efficiency of the engine 106 can be increased more effectively.
  • the large-diameter portion 116A positioned at the downstream portion of the intercooler outlet pipe 116 can be installed at a position lower than the upstream portion in the height direction of the vehicle 101, the traveling wind flowing through the bottom of the engine room 104 is located at a large position.
  • the large diameter portion 116A can be installed. For this reason, more traveling wind can be applied more to the large diameter part 116A with a large surface area, and air can be cooled more effectively. Therefore, the charging efficiency of the engine 106 can be increased more effectively.
  • the large diameter portion 116A is provided below the alternator 121, it is possible to prevent the large diameter portion 116A from being exposed to heat rising from the alternator 121.
  • the air cooled by the intercooler 115 can be prevented from being heated, and low-temperature air can be introduced into the engine 106.
  • the intercooler outlet pipe 116 is not installed in the space above the alternator 121, the space above the alternator 121 can be expanded. Therefore, the alternator 121 can be easily accessed from above, and the alternator 121 can be easily attached to and detached from the engine 106. Therefore, the workability of the maintenance work of the alternator 121 can be improved.
  • the intercooler outlet pipe 116 is allowed to pass under the first mount bracket 107a or the second mount bracket 107b.
  • the intercooler outlet pipe 116 is not obstructed by the intercooler outlet pipe 116.
  • the engine 106 can be attached to the side frame 102 ⁇ / b> A via the mount device 107 by directing the mount bracket 107 a toward the second mount bracket 107 b connected to the mount insulator 107 c. For this reason, the engine 106 can be easily assembled to the vehicle body 102.
  • the inner diameter dimension of the large diameter portion 116A is formed to be the same over the length direction of the large diameter portion 116A, so that the intake pulsation is attenuated by the large diameter portion 116A. It is possible to optimize the intake air pulsation. For this reason, in the normal operation region of the engine 106, the amount of air taken into the engine 106 can be prevented from decreasing, the charging efficiency of the engine 106 can be improved more effectively, and the output of the engine 106 can be more effectively improved. It can be improved.
  • the large-diameter portion 116A is installed around the alternator 121 on the lower side of the alternator 121 when the engine 106 is viewed from above. Therefore, if the large-diameter portion 116A has a curvature radius that draws a gentle curve, more air is introduced into the engine 106 along the gentle curve with the volume of air passing through the large-diameter portion 116A increased. it can. As a result, the amount of air taken into the engine 106 can be increased, the charging efficiency of the engine 106 can be improved more effectively, and the output of the engine 106 can be improved more effectively.
  • the large-diameter portion 116A includes the straight portion 116c, the inclined portion 116d, and the curved portions 116e and 116f, so that the amount of air introduced into the engine 106 can be increased and the traveling wind can be increased.
  • the surface area of the large diameter portion 116A can be increased.
  • the large-diameter portion 116A is curved from the inclined portion 116d toward the lower side of the alternator 121, continues to the curved portion 116d, and passes below the alternator 121 in the vehicle width direction.
  • a curved portion 116 f extending downward from the intake pipe 126 after being curved rearward from the engine 106. For this reason, the air flowing from the upstream to the downstream of the intercooler outlet pipe 116 can be introduced into the engine 106 while maintaining the momentum by the centrifugal force when passing through the curved portions 116e and 116f.
  • a tapered portion 116g whose inner diameter dimension gradually decreases from the upstream side to the downstream side of the curved portion 116f is formed at the downstream portion of the curved portion 116f, and the tapered portion 116g and the intake air intake pipe 126 are provided at the downstream end of the tapered portion 116g.
  • the small-diameter pipe part 116h to be connected was formed, and the downstream part of the large-diameter part 116A constituted by the tapered part 116g and the small-diameter pipe part 116h was formed in a curved shape.
  • the auxiliary machine is configured by the alternator 121.
  • the auxiliary machine is not limited to the alternator 121 as long as the auxiliary machine generates heat.
  • Example 3 relates to a structure in which an auxiliary machine including an EGR valve and an EGR cooler is attached to an engine.
  • an auxiliary engine such as an EGR device (Exhaust Gas Recirculation device) is provided in an engine of a vehicle such as an automobile.
  • EGR device Exhaust Gas Recirculation device
  • a part of the exhaust gas after combustion discharged from the combustion chamber of the engine to the exhaust passage is guided to the intake pipe through the EGR pipe (pipe), and mixed with the intake air flowing through the intake pipe to enter the combustion chamber. It is designed to reflux.
  • the flow rate of the exhaust gas flowing through the EGR pipe is adjusted by an EGR valve provided in the EGR pipe.
  • This EGR device it is possible to mainly reduce nitrogen oxide (NOx) in the exhaust gas, and to improve fuel efficiency when the engine is partially loaded.
  • NOx nitrogen oxide
  • the third embodiment is made by paying attention to the above problems, and prevents the EGR valve from being exposed to liquid using the air cleaner while preventing the durability of the air cleaner from deteriorating. Thus, it is possible to prevent the reliability of the EGR valve from being lowered.
  • an EGR apparatus including an EGR pipe that recirculates a part of exhaust gas from an exhaust system member to an intake system member and an auxiliary device for exhaust gas recirculation, and the intake system member are inhaled.
  • an air cleaner for purifying the air, and a transmission is installed at the end in the vehicle width direction, and the auxiliary machine has an EGR valve for adjusting the flow rate of exhaust gas flowing through the EGR pipe, and the EGR pipe.
  • An EGR valve body that includes an EGR cooler that cools flowing exhaust gas, and an EGR valve having a valve body that adjusts the opening degree of the EGR pipe; and a drive actuator that is attached to the EGR valve body and drives the valve body
  • the EGR valve and the EGR cooler are arranged side by side in the front-rear direction of the vehicle, and at least one of the EGR valve and the EGR cooler is connected to the end of the engine in the vehicle width direction.
  • the air cleaner is mounted on the EGR valve and the EGR cooler via a bracket above the transmission, and at least the drive actuator of the EGR valve is installed between the transmission and the air cleaner in the vertical direction of the vehicle. Yes.
  • the bracket is composed of the first bracket and the second bracket, the first front fastening portion is formed at the front end portion in the front-rear direction of the vehicle of the EGR valve, and the air cleaner
  • a second front side fastening portion is formed at the front end portion of the vehicle in the front-rear direction
  • a first rear side fastening portion is formed at the rear end portion in the front-rear direction of the vehicle of the EGR cooler, and a rear end portion of the air cleaner in the front-rear direction of the vehicle
  • a second rear side fastening portion is formed, the first front side fastening portion and the second front side fastening portion are connected via the first bracket, and the first rear side fastening portion and the second rear side fastening portion are connected.
  • the parts may be connected via a second bracket.
  • the EGR cooler is provided in the EGR cooler body and the EGR cooler body, and has an exhaust gas inlet pipe portion through which exhaust gas is introduced from the EGR valve.
  • the EGR valve is installed closer to the lower part of the air cleaner than the transmission, the axis of the exhaust gas inlet pipe is inclined outward in the vehicle width direction with respect to the axis of the EGR cooler body, and the axis of the EGR valve is connected to the exhaust gas inlet pipe
  • the EGR valve may be extended below the air cleaner so as to be orthogonal to the axis of the part, and the drive actuator may be installed on the opposite side of the engine with respect to the EGR valve body.
  • the EGR valve main body protrudes forward from the EGR valve main body in the front-rear direction of the vehicle, has a boss portion that constitutes a first front side fastening portion, and the EGR cooler is connected to the EGR pipe.
  • You may have the flange part connected and comprising a 1st back side fastening part.
  • the EGR valve may be inclined upward from the EGR valve main body toward the drive actuator in a state where the EGR valve attached to the engine is viewed from the horizontal direction.
  • the second front fastening portion of the air cleaner protrudes downward from the lower portion of the air cleaner, and the drive actuator and the second front fastening portion are installed so as to overlap in the vehicle front-rear direction.
  • the front of the drive actuator in the front-rear direction of the vehicle may be covered with the second front fastening portion.
  • At least the drive actuator for the EGR valve is installed between the transmission and the air cleaner in the vertical direction of the vehicle.
  • the air cleaner was attached to the EGR valve and the EGR cooler via a bracket above the transmission. For this reason, it is possible to prevent the bracket from extending from the engine to the air cleaner, and to shorten the dimension of the bracket. Therefore, it is possible to prevent the bracket itself from vibrating due to engine vibration.
  • the EGR valve and the EGR cooler are installed side by side in the vehicle front-rear direction, and an air cleaner is attached to the EGR valve and the EGR cooler via a bracket.
  • the air cleaner can be supported in a wide range by the EGR valve and the EGR cooler which are relatively rigid and require a relatively large space.
  • the air cleaner can be prevented from vibrating due to the vibration of the engine, and the durability of the air cleaner can be prevented from deteriorating.
  • the first front side fastening part of the EGR valve and the second front side fastening part of the air cleaner are connected via the first bracket, and the first rear side fastening part of the EGR cooler and The second rear fastening portion of the air cleaner is connected via the second bracket.
  • the EGR valve and the EGR cooler can be installed between the front end and the rear end of the air cleaner when the air cleaner is viewed from above.
  • a sufficient distance between the front end and the rear end of the air cleaner can be secured, and the air cleaner can be supported in a wide range by the EGR valve and the EGR cooler. Therefore, it is possible to more effectively prevent the air cleaner from vibrating.
  • the EGR valve in the vertical direction of the vehicle, is installed closer to the lower portion of the air cleaner than the transmission, and the axis of the exhaust gas inlet pipe is set to the vehicle width with respect to the axis of the EGR cooler body.
  • the EGR valve extends to the lower part of the air cleaner so that the axis of the EGR valve is perpendicular to the axis of the exhaust gas inlet pipe, and the drive actuator is installed on the opposite side of the engine from the EGR valve body. did.
  • the EGR valve can be reliably installed near the lower portion of the air cleaner, and in particular, the drive actuator can be reliably covered with the air cleaner. Therefore, for example, when an air hole communicating with the atmosphere is formed in the drive actuator like a diaphragm type EGR valve, it is possible to prevent liquid from entering the drive actuator from the air hole. As a result, it is possible to prevent liquid from entering the valve body through the drive actuator, and to prevent deterioration and corrosion of the valve body.
  • the first front side fastening part of the EGR valve can be brought close to the second front side fastening part of the air cleaner, and the dimensions of the first bracket can be shortened.
  • the EGR valve main body protrudes forward from the EGR valve main body in the front-rear direction of the vehicle, has the boss portion constituting the first front side fastening portion, and the EGR cooler is connected to the EGR pipe. And having a flange portion constituting the first rear fastening portion.
  • the rigid boss portion and flange portion can be attached to the air cleaner via the first flange and the second flange, and the air cleaner can be stably attached to the EGR valve and the EGR cooler. Therefore, it is possible to more effectively prevent the air cleaner from vibrating due to the vibration of the engine, and it is possible to more effectively prevent the durability of the air cleaner from deteriorating.
  • the EGR valve is inclined upward from the EGR valve main body toward the drive actuator in a state where the EGR valve attached to the engine is viewed from the horizontal direction.
  • the drive actuator can be brought close to the bottom of the air cleaner, and the liquid dropped from above can be blocked by the air cleaner. Therefore, when the drive actuator has an air hole or the like, water can be more effectively prevented from entering the drive actuator through the air hole.
  • the liquid that enters from the front of the vehicle during the traveling of the vehicle is second front side fastening portion. Can be blocked by. For this reason, when the drive actuator has an air hole or the like, water can be prevented from entering the drive actuator through the air hole.
  • FIGS. 14 to 22 are views showing an engine accessory mounting structure according to the third embodiment.
  • a vehicle 201 includes a vehicle body 202, and the vehicle body 202 includes a dash panel 203 in front of the vehicle 201 in the front-rear direction.
  • the dash panel 203 divides the vehicle body 202 into an engine room 204 installed at the front in the front-rear direction of the vehicle 201 and a vehicle compartment 205 installed at the rear in the front-rear direction of the vehicle for passengers to board.
  • expressions indicating the front-rear direction such as front and rear are used in the description as directions relative to the front-rear direction of the vehicle 201.
  • An engine 206 is installed in the engine room 204, and a transmission 207 is attached to one end (left end) 206a in the vehicle width direction of the engine 206 as shown in FIGS.
  • the vehicle width direction one end portion 206a of the engine 206 constitutes the vehicle width direction end portion of the present invention.
  • the engine 206 is provided with a supercharger 208 and an intake device 209.
  • the intake device 209 includes an air cleaner 210 installed at one end 206a in the vehicle width direction of the engine 206 and at the top of the transmission 207.
  • the air cleaner 210 is sucked from the front of the vehicle 201 by an intake duct (not shown). Purify the air.
  • the intake device 209 includes an air cleaner outlet pipe 211 that introduces the air purified by the air cleaner 210 into the compressor housing 208 a of the supercharger 208.
  • the supercharger 208 is installed in front of the engine 206, and the supercharger 208 includes a compressor (not shown) provided inside the compressor housing 208a and a turbine (not shown) that is rotated by the pressure of exhaust gas. And a housing 208b.
  • the intake device 209 includes an intercool line pipe 212 (see FIG. 16), and the inter cool line pipe 212 is connected to an unshown intercooler installed in front of the engine 206.
  • the intake device 209 includes an intake manifold 213, and the intake manifold 213 is installed at the rear portion of the engine 206.
  • the intake manifold 213 is connected to the intercooler via an intercooler outlet pipe (not shown).
  • the intake manifold 213 introduces intake air introduced from the intercooler through the intercooler outlet into a combustion chamber (not shown) of the engine 206 via an intake port (not shown) of the engine 206.
  • the supercharger 208 supercharges the air introduced into the compressor housing 208 a from the air cleaner outlet pipe 211 to the intercooler line pipe 212 by a compressor that rotates integrally with the turbine that rotates under the pressure of the exhaust gas.
  • this hot air is introduced into the intercooler and cooled by the intercooler. Thereby, the oxygen density of air is raised.
  • the air whose oxygen density has been increased is introduced into the combustion chamber of the engine 206 from the intercooler line 212 through the intake manifold 213.
  • an exhaust manifold 214 is attached in front of the engine 206, and the exhaust manifold 214 is connected to the turbine housing 208 b of the supercharger 208. Exhaust gas exhausted from the combustion chamber is introduced into the exhaust manifold 214.
  • a catalytic converter 216 is connected to the turbine housing 208b via an exhaust pipe 215. Exhaust gas discharged from the turbine housing 208b is introduced into the catalytic converter 216 through the exhaust pipe 215 and purified by the catalytic converter 216.
  • the intake device 209 and the compressor housing 208a of the supercharger 208 constitute an intake system member of the present invention
  • the exhaust manifold 214, the exhaust pipe 215, the catalytic converter 216, and the turbine housing 208b of the supercharger 208 are The exhaust system member of the invention is configured.
  • the engine 206 is provided with an EGR device 217.
  • the EGR device 217 includes an EGR inlet (Exhaust Gas Recirculation) pipe (pipe) 218, an EGR valve 219, an EGR cooler 220, and an EGR outlet pipe (pipe) 221.
  • the upstream end 218a of the EGR inlet pipe 218 is connected to the exhaust manifold 214, and the downstream end 218b of the EGR inlet pipe 218 is connected to the EGR valve 219.
  • the EGR valve 219 constitutes an adjustment valve that adjusts the flow rate of the exhaust gas.
  • upstream and downstream represent directions in which exhaust gas flows.
  • An EGR cooler 220 is connected to the EGR valve 219.
  • the EGR cooler 220 is provided at the front end of the EGR cooler main body 220A and the EGR cooler main body 220A.
  • An exhaust gas outlet pipe portion 220C provided at the rear end portion of the EGR cooler main body 220A and connected to the EGR outlet pipe 221.
  • Exhaust gas is introduced from the EGR valve 219 into the exhaust gas inlet pipe 220B, and this exhaust gas is introduced into the EGR cooler body 220A.
  • the exhaust gas outlet pipe section 220C discharges exhaust gas from the EGR cooler body 220A to the EGR outlet pipe 221.
  • an EGR cooler main body 220A includes an inner pipe (not shown) through which exhaust gas flows, and an outer pipe that surrounds the inner pipe and forms a cooling water passage through which cooling water flows between the inner pipe. 220a.
  • the outer pipe 220a is provided with an introduction pipe 222A for introducing cooling water into the cooling water passage and a discharge pipe 222B for discharging cooling water from the cooling water passage, and the cooling water cooled by a radiator (not shown) is introduced into the introduction pipe 222A. Through the cooling water passage. For this reason, the exhaust gas flowing through the inlet pipe of the EGR cooler main body 220A is cooled by the cooling water.
  • the upstream end 221a of the EGR outlet pipe 221 is connected to the EGR cooler 220, and the downstream end 221b of the EGR outlet pipe 221 is connected to the intake manifold 213.
  • the EGR inlet pipe 218 and the EGR outlet pipe 221 constitute the EGR pipe of the present invention.
  • the EGR device 217 having the above configuration introduces part of the exhaust gas discharged to the exhaust manifold 214 from the EGR inlet pipe 218 to the intake manifold 213 via the EGR valve 219, the EGR cooler 220, and the EGR outlet pipe 221. .
  • the EGR valve 219 and the EGR cooler 220 of the EGR device 217 include an exhaust gas recirculation auxiliary device that recirculates a part of the exhaust gas from the exhaust system member to the intake system member through the EGR pipe (pipe).
  • the EGR valve 219 includes an EGR valve body 223 and a drive actuator 224.
  • the EGR valve body 223 includes a lower casing 225 in which an exhaust gas inlet 225 a into which exhaust gas from the EGR inlet pipe 218 is introduced and an exhaust gas outlet 225 b through which exhaust gas is discharged to the EGR cooler 220 are formed. I have.
  • a valve shaft 226 is slidably provided inside the lower casing 225, and a valve body 227 is attached to the tip of the valve shaft 226.
  • the valve body 227 opens and closes the exhaust gas inlet portion 225a.
  • the drive actuator 224 includes an upper casing 228 attached to the lower casing 225, and a diaphragm 229 and a coil spring 230 are accommodated in the upper casing 228.
  • the diaphragm 229 partitions the upper casing 228 into a negative pressure chamber 231 and an atmospheric chamber 232, and the coil spring 230 urges the diaphragm 229 downward.
  • the upper end of the valve shaft 226 is attached to the diaphragm 229.
  • the valve body 227 closes the exhaust gas inlet 225a.
  • a negative pressure tube 233 (see FIG. 18) is attached to the negative pressure chamber 231, and the negative pressure generated in the negative pressure chamber 231 is introduced into the negative pressure chamber 231 through the negative pressure tube 233.
  • the diaphragm 229 opens the exhaust gas inlet 225a against the biasing force of the coil spring 230. Thereby, the exhaust gas inlet part 225a and the exhaust gas outlet part 225b communicate.
  • air holes 228a are formed in the upper casing 228, and a plurality of air holes 228a are formed along the circumferential direction of the upper casing 228 (see FIG. 19).
  • the EGR valve 219 and the EGR cooler 220 are installed side by side in the front-rear direction of the vehicle 201.
  • the outer pipe 220a of the EGR cooler main body 220A is provided with a pair of brackets 220b protruding toward one end in the vehicle width direction of the engine 206, and the bracket 220b is attached to one end 206a in the vehicle width direction of the engine 206.
  • the EGR valve 219 may be attached to the engine 206, and both the EGR cooler 220 and the EGR valve 219 may be attached to the engine 206.
  • the air cleaner 210 is attached to the EGR valve 219 and the EGR cooler 220 via brackets 235 and 236 above the transmission 207, and in the vertical direction of the vehicle 201, the EGR valve main body 223 of the EGR valve 219 and The drive actuator 224 is installed between the transmission 207 and the air cleaner 210 (see FIGS. 16 and 17).
  • the bracket 235 constitutes the first bracket of the third embodiment
  • the bracket 236 constitutes the second bracket of the third embodiment.
  • a pair of boss portions 223a are formed at the front end portion of the outer pipe 220a of the EGR valve main body 223, and the boss portions 223a protrude forward from the EGR valve main body 223.
  • a front attachment portion 210A is formed at the front end of the air cleaner 210, and the boss portion 223a is connected to the front attachment portion 210A via a bracket 235.
  • the flange part 220c is provided in the exhaust gas outlet pipe part 220C attached to the downstream end of the EGR cooler 220.
  • a rear attachment portion 210B is formed at the rear end of the air cleaner 210, and the flange portion 220c is attached to the rear attachment portion 210B via a bracket 236.
  • the air cleaner 210 of this embodiment is attached to the EGR valve 219 and the EGR cooler 220 via the brackets 235 and 236.
  • the boss portion 223a of the EGR valve 219 of the present embodiment constitutes the first front side fastening portion of the third embodiment
  • the front side attachment portion 210A of the air cleaner 210 serves as the second front side fastening portion of the third embodiment.
  • the flange portion 220c of the EGR cooler 220 of the present embodiment constitutes the first rear side fastening portion of Example 3
  • the rear attachment portion 210B of the air cleaner 210 is the second rear side fastening portion of Example 3. Parts.
  • the EGR valve 219 is installed closer to the lower part 210 a of the air cleaner 210 than the transmission 207 in the vertical direction of the vehicle 201.
  • the axis A of the exhaust gas inlet pipe 220B is inclined outward in the vehicle width direction with respect to the axis B of the EGR cooler main body 220A. Further, in the EGR valve 219, the axis C of the EGR valve 219 extends to the lower part 210a of the air cleaner 210 so that the axis C of the EGR valve 219 is orthogonal to the axis A of the exhaust gas inlet pipe 220B. On the other hand, it is installed on the opposite side to the engine 206.
  • the EGR valve 219 is inclined upward from the EGR valve body 223 toward the drive actuator 224 when the EGR valve 219 attached to the engine 206 is viewed from the horizontal direction. That is, the EGR valve 219 is inclined upward by an angle ⁇ from the EGR valve body 223 toward the drive actuator 224 with respect to the horizontal axis D.
  • the front mounting portion 210A of the air cleaner 210 protrudes downward from the lower portion 210a of the air cleaner 210, and the drive actuator 224 and the front mounting portion 210A are installed so as to overlap in the front-rear direction of the vehicle 201. ing. Thereby, the front of the drive actuator 224 is covered with the front mounting portion 210A.
  • the diaphragm type EGR valve 219 includes a drive actuator 224 in which an air hole 228a is formed.
  • a liquid that has entered the engine room 204 for example, water, enters the upper casing 228 of the drive actuator 224 through the air hole 228a and adheres to the diaphragm 229 to prevent deterioration or corrosion of the diaphragm 229. There is a risk.
  • the upper casing 228 may travel along the lower casing 225 and adhere to the valve body 227, which may lead to deterioration or corrosion of the valve body 227. As a result, the reliability of the EGR valve 219 may be reduced.
  • the EGR valve 219 and the EGR cooler 220 are installed side by side in the front-rear direction of the vehicle 201, and the EGR cooler 220 is installed at one end 206a in the vehicle width direction of the engine 206.
  • the air cleaner 210 is mounted on the EGR valve 219 and the EGR cooler 220 via the brackets 235 and 236 above the transmission 207, and the EGR valve 219 is disposed between the transmission 207 and the air cleaner 210 in the vertical direction of the vehicle 201. Installed.
  • the air cleaner 210 is mounted on the EGR valve 219 and the EGR cooler 220 via the brackets 235 and 236 above the transmission 207. For this reason, it is possible to prevent the brackets 235 and 236 from extending from the engine 206 to the air cleaner 210 and to shorten the dimensions of the brackets 235 and 236. Therefore, it is possible to prevent the brackets 235 and 236 from vibrating due to the vibration of the engine 206.
  • the EGR valve 219 and the EGR cooler 220 were installed side by side in the front-rear direction of the vehicle 201, and the air cleaner 210 was attached to the EGR valve 219 and the EGR cooler 220 via brackets 235 and 236. For this reason, it is not necessary to provide an EGR pipe between the EGR valve 219 and the EGR cooler 220, and the rigidity of the EGR valve 219 and the EGR cooler 220 can be made relatively high. Further, the air cleaner 210 can be supported in a wide range by the EGR valve 219 and the EGR cooler 220 which are relatively rigid and require a relatively large space.
  • the air cleaner 210 can be prevented from vibrating due to the vibration of the engine 206, and the durability of the air cleaner 210 can be prevented from deteriorating.
  • the boss portion 223a of the EGR valve 219 and the air cleaner front side mounting portion 210A are connected via the bracket 235, and the flange portion 220c of the EGR cooler 220 and the rear side of the air cleaner 210 are connected.
  • the attachment portion 210B is connected via the bracket 236.
  • the EGR valve 219 and the EGR cooler 220 can be installed between the front end and the rear end of the air cleaner 210 when the air cleaner 210 is viewed from above. Accordingly, a sufficient distance between the front end and the rear end of the air cleaner 210 can be secured, and the air cleaner 210 can be supported by the EGR valve 219 and the EGR cooler 220 in a wide range. Therefore, it is possible to more effectively prevent the air cleaner 210 from vibrating.
  • the EGR valve 219 is installed closer to the lower part 210a of the air cleaner 210 than the transmission 207 in the vertical direction of the vehicle 201, and the axis A of the exhaust gas inlet pipe part 220B is The EGR cooler body 220A was inclined outward in the vehicle width direction with respect to the axis B of the main body 220A.
  • the EGR valve 219 extends to the lower part 210a of the air cleaner 210 so that the axis C of the EGR valve 219 is orthogonal to the axis A of the exhaust gas inlet pipe 220B, and the drive actuator 224 is moved with respect to the EGR valve main body 223. Installed on the opposite side of the engine 206.
  • the EGR valve 219 can be reliably installed near the lower part 210 a of the air cleaner 210, and the drive actuator 224 can be reliably covered with the air cleaner 210. Therefore, when the air hole 228a communicating with the atmosphere is formed in the drive actuator 224 like the diaphragm type EGR valve 219, water can be prevented from entering the drive actuator 224 from the air hole 228a.
  • boss portion 223a of the EGR valve 219 can be brought close to the front mounting portion 210A of the air cleaner 210, and the dimension of the bracket 235 can be shortened.
  • the EGR valve main body 223 has the boss portion 223a protruding forward from the EGR valve main body 223, and the EGR cooler 220 is connected to the upstream end of the EGR outlet pipe 221.
  • the flange portion 220c is provided.
  • the rigid boss portion 223a and the flange portion 220c can be attached to the air cleaner 210 via the brackets 235 and 236, and the air cleaner 210 can be stably attached to the EGR valve 219 and the EGR cooler 220. Therefore, it is possible to more effectively prevent the air cleaner 210 from vibrating due to the vibration of the engine 206, and it is possible to more effectively prevent the durability of the air cleaner 210 from deteriorating.
  • the EGR valve 219 mounted on the engine 206 in a state where the EGR valve 219 mounted on the engine 206 is viewed from the horizontal direction, the EGR valve 219 is moved upward from the EGR valve body 223 toward the drive actuator 224. Tilted.
  • the drive actuator 224 can be brought close to the lower part 210a of the air cleaner 210, and the water W dripped from above the engine room 204 can be blocked by the air cleaner 210. Therefore, it is possible to more effectively prevent water from entering the drive actuator 224 through the air hole 228a.
  • the front mounting portion 210A of the air cleaner 210 protrudes downward from the lower portion 210a of the air cleaner 210, and the drive actuator 224 and the front mounting portion 210A overlap in the longitudinal direction of the vehicle 201.
  • the front of the drive actuator 224 was covered with the front mounting portion 210A.
  • the EGR valve of this embodiment is comprised from the diaphragm-type EGR valve 219, it is not limited to this.
  • the EGR valve body 223 and the drive actuator 224 are installed below the air cleaner 210, but only the drive actuator 224 having the air holes 228a may be installed below the air cleaner 210.
  • the present invention can reduce the cost of a fuel injection device for a diesel engine, and can efficiently arrange the components constituting the fuel injection device in the vicinity of the cylinder head.
  • the present invention can also be applied to a gasoline engine equipped with a fuel injection device having a pump.
  • Fuel Injection Device 19 Fuel Tank 20 Fuel Feed Pump 21 Fuel Supply Piping 22 Common Rail 23 Fuel Injection Valve 24 Fuel Pump 25 Flow Rate Adjustment Valve 26 Fuel return piping 27 Fuel filter

Abstract

The objective of the present invention is to make it possible to reduce the cost of a fuel injection device for a diesel engine and arrange the components constituting the fuel injection device near a cylinder head in an efficient manner. The present invention provides a fuel injection device (18) for an engine (diesel engine) (1), said device being characterized in that: the engine (1) is provided with a chain case (9) that is joined to an end of a cylinder head (3), said end being on a transmission (10) side in a cylinder row direction (A); a flow rate adjustment valve (25) is attached to the chain case (9); and a fuel pump (24) is disposed on the upper surface side of the cylinder head (3) and near an end of the cylinder head (3), said end being opposite to the chain case (9) in the cylinder row direction (A).

Description

ディーゼルエンジンの燃料噴射装置Fuel injection system for diesel engine
 この発明はディーゼルエンジンの燃料噴射装置に係り、特に、燃料ポンプで加圧された燃料を供給されるディーゼルエンジンの燃料噴射装置に関する。 The present invention relates to a fuel injection device for a diesel engine, and more particularly to a fuel injection device for a diesel engine supplied with fuel pressurized by a fuel pump.
 ディーゼルエンジンにおいては、燃料タンクから燃料フィードポンプで送られる燃料を受けるコモンレールと、コモンレールから供給される燃料を各気筒に噴射する複数個の燃料噴射弁と、燃料タンクと燃料噴射弁を連絡する燃料供給配管上に配置され、かつエンジンのカム軸によって駆動される燃料ポンプと、燃料供給配管の燃料ポンプより上流側に配置され、コモンレール内の燃料圧力に応じて燃料ポンプに供給する燃料の流量を調整する流量調整弁とを備える燃料噴射装置を搭載している。
 従来のディーゼルエンジンの燃料噴射装置には、吸気マニホールドの分岐管下流端に形成された取付フランジを分岐管の間において燃料供給配管外径よりも大きい距離の間隙部で切り離し、燃料ポンプと各燃料噴射弁とを接続する燃料供給配管を間隙部を通して配置することで、燃料供給配管を短い長さで等長化した構造が開示されている。(特許文献1)
 また、従来のディーゼルエンジンの燃料噴射装置には、流量調整弁の筒状部のスライダ孔に移動可能に配置される弁部材を制御スライダとし、低圧源から供給される燃料だけで制御スライダを駆動可能とし、構造を簡単にかつ低コストで製造できる構造が開示されている。(特許文献2)
In a diesel engine, a common rail that receives fuel sent from a fuel tank by a fuel feed pump, a plurality of fuel injection valves that inject fuel supplied from the common rail into each cylinder, and a fuel that connects the fuel tank and the fuel injection valve A fuel pump arranged on the supply pipe and driven by the camshaft of the engine, and arranged on the upstream side of the fuel pump in the fuel supply pipe, the flow rate of fuel supplied to the fuel pump according to the fuel pressure in the common rail A fuel injection device including a flow rate adjusting valve to be adjusted is mounted.
In a conventional diesel engine fuel injection device, a mounting flange formed at the downstream end of a branch pipe of an intake manifold is separated by a gap between the branch pipes at a distance larger than the outer diameter of the fuel supply pipe. There is disclosed a structure in which a fuel supply pipe connected to an injection valve is arranged through a gap so that the fuel supply pipe is made equal in length with a short length. (Patent Document 1)
Further, in a conventional diesel engine fuel injection device, a valve member that is movably disposed in a slider hole of a cylindrical portion of a flow rate adjusting valve is used as a control slider, and the control slider is driven only by fuel supplied from a low pressure source. A structure is disclosed that allows for the structure to be manufactured easily and at low cost. (Patent Document 2)
特開平8-28398号公報JP-A-8-28398 特開平11-65669号公報JP-A-11-65669
 ところで、ディーゼルエンジンの燃料噴射装置には、流量調整弁を燃料ポンプと一体化したものがある。しかし、一体化した場合、燃料ポンプの構造が複雑化して、燃料ポンプが高価になる。
 一方、流量調整弁を単独でシリンダヘッドの近傍に取付ける場合、シリンダヘッドの周辺にはエンジンの補機部品が多数配置されているため、流量調整弁を配置する空間を確保することが困難である。
 また、流量調整弁を配置する場合、燃料ポンプに対して適正な位置に配置しないと、流量調整弁と燃料ポンプの間を連絡する燃料供給配管の曲がりが大きくなり、燃料供給配管を設置するために大きな空間が必要になり、かつ燃料供給配管の接続作業性が悪くなる問題があった。
Incidentally, some fuel injection devices for diesel engines have a flow rate adjustment valve integrated with a fuel pump. However, when integrated, the structure of the fuel pump becomes complicated and the fuel pump becomes expensive.
On the other hand, when the flow rate adjustment valve is mounted alone in the vicinity of the cylinder head, it is difficult to secure a space for arranging the flow rate adjustment valve because a large number of engine auxiliary parts are arranged around the cylinder head. .
In addition, when arranging the flow adjustment valve, if it is not arranged at an appropriate position with respect to the fuel pump, the bend of the fuel supply pipe connecting between the flow adjustment valve and the fuel pump becomes large, and the fuel supply pipe is installed. However, there is a problem that a large space is required and connection workability of the fuel supply pipe is deteriorated.
 この発明は、ディーゼルエンジンの燃料噴射装置のコストを低減し、かつ燃料噴射装置を構成する部品類をシリンダヘッドの近傍に効率的に配置することが目的である。 An object of the present invention is to reduce the cost of a fuel injection device for a diesel engine and to efficiently arrange the components constituting the fuel injection device in the vicinity of the cylinder head.
 この発明は、エンジンの上部に配置されるシリンダヘッドと、シリンダヘッドの上部に配置され、コモンレールから燃料が供給される複数個の燃料噴射弁と、燃料タンクと燃料噴射弁を連絡する燃料供給配管上に配置され、かつエンジンのカム軸によって駆動される燃料ポンプと、燃料供給配管の燃料ポンプより上流側に配置され、コモンレール内の燃料圧力に応じて燃料ポンプに供給する燃料の流量を調整する流量調整弁と、を備えるディーゼルエンジンの燃料噴射装置において、エンジンはリンダヘッドの気筒列方向で変速機側の端部に接合されるチェーンケースを備え、流量調整弁をチェーンケースに取り付ける一方、燃料ポンプをシリンダヘッドの上面側かつ気筒列方向でチェーンケースと反対側の端部近傍に配置したことを特徴とする。 The present invention relates to a cylinder head disposed at an upper portion of an engine, a plurality of fuel injection valves disposed at an upper portion of the cylinder head and supplied with fuel from a common rail, and a fuel supply pipe connecting the fuel tank and the fuel injection valve. A fuel pump disposed above and driven by the camshaft of the engine, and disposed upstream of the fuel pump in the fuel supply piping, adjusts the flow rate of fuel supplied to the fuel pump according to the fuel pressure in the common rail. In a fuel injection device for a diesel engine comprising a flow rate adjustment valve, the engine includes a chain case joined to an end portion on the transmission side in the cylinder row direction of the cylinder head, and the flow rate adjustment valve is attached to the chain case, while the fuel The pump is located near the top of the cylinder head and near the end opposite to the chain case in the cylinder row direction. To.
 この発明は、燃料ポンプと別体の流量調整弁をエンジンに取り付けたため、燃料ポンプの構造を簡素化でき、燃料ポンプの製造コストを低減できる。
 また、この発明は、流量調整弁をシリンダヘッドの気筒列方向で変速機側の端部に接合されるチェーンケースに取り付ける一方、燃料ポンプをシリンダヘッドの上面側かつ気筒列方向でチェーンケースと反対側の端部近傍に配置した。
 このため、この発明は、流量調整弁を比較的空間が確保し易い変速機側であり、かつ燃料ポンプと離れた位置に配置できる。
 また、この発明は、流量調整弁と燃料ポンプの間を連絡する燃料供給配管を比較的曲げの少ない形状に形成してシリンダヘッドの近傍にコンパクトに配置でき、かつ燃料供給配管の接続作業性を向上させることができる。
 よって、この発明は、ディーゼルエンジンの燃料噴射装置のコストを低減し、かつ燃料噴射装置を構成する部品類をシリンダヘッドの近傍に効率的に配置することができる。
In the present invention, since the flow rate adjusting valve separate from the fuel pump is attached to the engine, the structure of the fuel pump can be simplified and the manufacturing cost of the fuel pump can be reduced.
Further, according to the present invention, the flow rate adjusting valve is attached to the chain case joined to the end of the cylinder head in the cylinder row direction on the transmission side, while the fuel pump is opposed to the chain case in the cylinder head upper surface side and the cylinder row direction. It was arranged near the end on the side.
For this reason, this invention can arrange | position the flow volume adjustment valve in the position which is a transmission side with which space is comparatively easy, and is distant from the fuel pump.
Further, according to the present invention, the fuel supply pipe that communicates between the flow regulating valve and the fuel pump can be formed in a shape with relatively little bending so that it can be arranged compactly in the vicinity of the cylinder head, and the connection workability of the fuel supply pipe can be improved. Can be improved.
Therefore, this invention can reduce the cost of the fuel injection device of a diesel engine, and can efficiently arrange the components constituting the fuel injection device in the vicinity of the cylinder head.
図1はディーゼルエンジンの平面図である。(実施例1)FIG. 1 is a plan view of a diesel engine. (Example 1) 図2はディーゼルエンジンの後面図である。(実施例1)FIG. 2 is a rear view of the diesel engine. (Example 1) 図3は図2の矢印IIIによるディーゼルエンジンの左側面図である。(実施例1)FIG. 3 is a left side view of the diesel engine taken along arrow III in FIG. (Example 1) 図4はディーゼルエンジンの燃料噴射装置のシステム図である。(実施例1)FIG. 4 is a system diagram of a fuel injection device for a diesel engine. (Example 1) 図5は図1の矢印Vによる燃料噴射装置の拡大後面図である。(実施例1)FIG. 5 is an enlarged rear view of the fuel injection device taken along arrow V in FIG. (Example 1) 図6は図5の矢印VIによる燃料ポンプの拡大側面図である。(実施例1)FIG. 6 is an enlarged side view of the fuel pump taken along arrow VI in FIG. (Example 1) 図7は図5のVII-VII線による燃料ポンプの拡大断面図である。(実施例1)FIG. 7 is an enlarged cross-sectional view of the fuel pump taken along line VII-VII in FIG. (Example 1) 図8は車両の前部の上面図である。(実施例2)FIG. 8 is a top view of the front portion of the vehicle. (Example 2) 図9は車両の前部の側面図である。(実施例2)FIG. 9 is a side view of the front portion of the vehicle. (Example 2) 図10はエンジンの後面図である。(実施例2)FIG. 10 is a rear view of the engine. (Example 2) 図11はインタクーラアウトレット配管の周辺のエンジンの側面図である。(実施例2)FIG. 11 is a side view of the engine around the intercooler outlet pipe. (Example 2) 図12はオルタネータおよび吸気マニホールドを取り外した状態の車両の前部の上面図である。(実施例2)FIG. 12 is a top view of the front portion of the vehicle with the alternator and the intake manifold removed. (Example 2) 図13は内径寸法が一定の従来のインタクーラアウトレット配管と、内径寸法が異なる本実施形態のインタクーラアウトレット配管とにおけるエンジン回転数と充填効率との関係を示す図である。(実施例2)FIG. 13 is a diagram showing the relationship between the engine speed and the charging efficiency in a conventional intercooler outlet pipe having a constant inner diameter and the intercooler outlet pipe of the present embodiment having a different inner diameter. (Example 2) 図14は車両の前部の側面図である。(実施例3)FIG. 14 is a side view of the front portion of the vehicle. (Example 3) 図15は車両の前部の上面図である。(実施例3)FIG. 15 is a top view of the front portion of the vehicle. (Example 3) 図16はエンジンの正面図である。(実施例3)FIG. 16 is a front view of the engine. (Example 3) 図17はエンジンの後面図である。(実施例3)FIG. 17 is a rear view of the engine. (Example 3) 図18は図16のXVIII-XVIII方向の矢視図である。(実施例3)18 is a view taken in the direction of arrows XVIII-XVIII in FIG. (Example 3) 図19はEGR装置の斜視図である。(実施例3)FIG. 19 is a perspective view of the EGR device. (Example 3) 図20は図18のXX-XX方向の矢視断面図である。(実施例3)20 is a cross-sectional view taken along the line XX-XX in FIG. (Example 3) 図21はEGR装置の周辺を前方から見た図である。(実施例3)FIG. 21 is a view of the periphery of the EGR device as viewed from the front. (Example 3) 図22はEGRバルブの断面図である。(実施例3)FIG. 22 is a sectional view of the EGR valve. (Example 3)
 以下、図面に基づいて、この発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1~図7は、この発明の実施例1を示すものである。図1~図3において、ディーゼルエンジン(以下「エンジン」と記す。)1は、直列に並べた2気筒を有するエンジン1である。エンジン1は、図1の平面視において、2気筒が並んでいる方向を気筒列方向Aとし、気筒列方向Aに対して直交する方向を列交差方向Bとする。エンジン1は、シリンダブロック2の上部にシリンダヘッド3を配置し、シリンダヘッド3の上部にシリンダヘッドカバー4を配置している。
 シリンダヘッド3は、シリンダブロック2に取付けられる第1シリンダヘッド部3aと、第1シリンダヘッド部3aに取り付けられる第2シリンダヘッド部3bとからなる。シリンダヘッド3は、図7に示すように、第1シリンダヘッド部3aと第2シリンダヘッド部3bとの間に気筒列方向Aに延びる吸気カム軸5と排気カム軸6とを軸支している。吸気カム軸5と排気カム軸6とは、気筒列方向Aと直交する列交差方向Bに平行に並べて配置されている。シリンダヘッド3は、第2シリンダヘッド部3bの上部の列交差方向Bの一側(図1において前側)に、気筒列方向Aに長いシリンダヘッドカバー4を取り付けている。
 また、エンジン1は、シリンダブロック2の下部にロアケース7を配置し、ロアケース7の下部にオイルパン8を配置している。シリンダブロック2は、下部に気筒列方向Aに延びるクランク軸を軸支している。オイルパン8は、気筒列方向Aの一側を、シリンダブロック2とシリンダヘッド3よりも突出している。エンジン1は、シリンダブロック2とシリンダヘッド3の気筒列方向Aの一側であってオイルパン8の上側に、チェーンケース9を配置している。エンジン1は、オイルパン8の気筒列方向Aの一側とチェーンケース9の気筒列方向Aの一側の下部とに、変速機10を連結している。
 エンジン1は、図3に示すように、変速機10の上部にエアクリーナ11を配置している。エンジン1は、変速機10とエアクリーナ11との間のチェーンケース9に、オイルフィルタ12とEGRクーラ13とを配置している。エンジン1は、シリンダブロック2とシリンダヘッド3との、気筒列方向Aと直交する列交差方向Bの他側(図3において後側)に、吸気マニホールド14を配置している。また、エンジン1は、シリンダブロック2とシリンダヘッド3との、気筒列方向Aと直交する列交差方向Bの一側(図3において前側)に、排気マニホールドと過給機15と排気管16と触媒ケース17とを配置している。
1 to 7 show Embodiment 1 of the present invention. 1 to 3, a diesel engine (hereinafter referred to as “engine”) 1 is an engine 1 having two cylinders arranged in series. In the plan view of FIG. 1, the engine 1 has a direction in which two cylinders are aligned as a cylinder row direction A and a direction orthogonal to the cylinder row direction A as a row crossing direction B. In the engine 1, a cylinder head 3 is disposed above the cylinder block 2, and a cylinder head cover 4 is disposed above the cylinder head 3.
The cylinder head 3 includes a first cylinder head portion 3a attached to the cylinder block 2 and a second cylinder head portion 3b attached to the first cylinder head portion 3a. As shown in FIG. 7, the cylinder head 3 pivotally supports an intake cam shaft 5 and an exhaust cam shaft 6 extending in the cylinder row direction A between the first cylinder head portion 3a and the second cylinder head portion 3b. Yes. The intake camshaft 5 and the exhaust camshaft 6 are arranged in parallel in a row crossing direction B orthogonal to the cylinder row direction A. In the cylinder head 3, a cylinder head cover 4 that is long in the cylinder row direction A is attached to one side (front side in FIG. 1) of the row crossing direction B at the upper part of the second cylinder head portion 3b.
In the engine 1, a lower case 7 is disposed below the cylinder block 2, and an oil pan 8 is disposed below the lower case 7. The cylinder block 2 supports a crankshaft extending in the cylinder row direction A at the lower portion. The oil pan 8 protrudes from the cylinder block 2 and the cylinder head 3 on one side in the cylinder row direction A. In the engine 1, a chain case 9 is disposed on one side of the cylinder block 2 and the cylinder head 3 in the cylinder row direction A and above the oil pan 8. In the engine 1, a transmission 10 is connected to one side of a cylinder row direction A of the oil pan 8 and a lower portion of one side of the chain case 9 in the cylinder row direction A.
As shown in FIG. 3, the engine 1 has an air cleaner 11 disposed above the transmission 10. In the engine 1, an oil filter 12 and an EGR cooler 13 are arranged in a chain case 9 between the transmission 10 and the air cleaner 11. In the engine 1, an intake manifold 14 is disposed on the other side (the rear side in FIG. 3) of the column crossing direction B perpendicular to the cylinder row direction A between the cylinder block 2 and the cylinder head 3. Further, the engine 1 has an exhaust manifold, a supercharger 15 and an exhaust pipe 16 on one side (front side in FIG. 3) of the cylinder block 2 and the cylinder head 3 in the column crossing direction B orthogonal to the cylinder column direction A. A catalyst case 17 is arranged.
 エンジン1は、各気筒に燃料を噴射する燃料噴射装置18を備えている。燃料噴射装置18は、図4に示すように、燃料タンク19の燃料を送り出す燃料フィードポンプ20と、燃料フィードポンプ20で送られる燃料が流れる燃料供給配管21と、燃料供給配管21から供給される燃料を受けるコモンレール22と、コモンレール22から供給される燃料を各気筒に噴射する複数個の燃料噴射弁23と、燃料タンク19と燃料噴射弁23を連絡する燃料供給配管21上に配置され、かつエンジン1の排気カム軸6によって駆動されて燃料を昇圧する燃料ポンプ24と、燃料供給配管21の燃料ポンプ24よりも上流側に配置され、コモンレール22内の燃料圧力に応じて燃料ポンプ24に供給する燃料の流量を調整する流量調整弁25と、燃料供給配管21が供給する燃料の一部を燃料タンク19に戻す燃料リターン配管26とを備える。
 燃料供給配管21は、燃料タンク19の燃料フィードポンプ20から流量調整弁25と燃料ポンプ24とコモンレール22とを介して燃料噴射弁23に接続される。これより、燃料供給配管21は、燃料フィードポンプ20を流量調整弁25に接続する第1燃料供給配管部21aと、流量調整弁25を燃料ポンプ24に接続する第2燃料供給配管部21bと、燃料ポンプ24をコモンレール22に接続する第3燃料供給配管部21cと、コモンレール22を燃料噴射弁23に接続する第4燃料供給配管部21dとから構成される。なお、この実施例のエンジン1は、2気筒を有しているので、2個の燃料噴射弁23にそれぞれ接続される2本の第4燃料供給配管部21dを備える。
 第1燃料供給配管部21aと第2燃料供給配管部21bとには、燃料フィードポンプ20が送る低圧の燃料が流れる。第3燃料供給配管部21cと第4燃料供給配管部21dとには、燃料ポンプ24が送る高圧の燃料が流れる。第1燃料供給配管部21aには、流量調整弁25に供給される燃料を濾過する燃料フィルタ27が配置される。
 燃料リターン配管26は、燃料噴射弁23と燃料ポンプ24と流量調整弁25とから合流部28を介して燃料タンク19に接続される。これより、燃料リターン配管26は、燃料噴射弁23を合流部28に接続する第1燃料リターン配管部26aと、燃料ポンプ24を合流部28に接続する第2燃料リターン配管部26bと、流量調整弁25を合流部28に接続する第3燃料リターン配管部26cと、合流部28を燃料タンク19に接続する第4燃料リターン配管部26dとから構成される。
The engine 1 includes a fuel injection device 18 that injects fuel into each cylinder. As shown in FIG. 4, the fuel injection device 18 is supplied from a fuel feed pump 20 that sends out fuel in a fuel tank 19, a fuel supply pipe 21 through which fuel sent by the fuel feed pump 20 flows, and a fuel supply pipe 21. A common rail 22 that receives fuel, a plurality of fuel injection valves 23 that inject fuel supplied from the common rail 22 into each cylinder, a fuel supply pipe 21 that connects the fuel tank 19 and the fuel injection valve 23, and A fuel pump 24 that is driven by the exhaust camshaft 6 of the engine 1 to boost the fuel, and is disposed upstream of the fuel pump 24 in the fuel supply pipe 21, and is supplied to the fuel pump 24 according to the fuel pressure in the common rail 22. A flow rate adjusting valve 25 for adjusting the flow rate of the fuel to be supplied, and a fuel retarder for returning a part of the fuel supplied by the fuel supply pipe 21 to the fuel tank 19 And a down pipe 26.
The fuel supply pipe 21 is connected from the fuel feed pump 20 of the fuel tank 19 to the fuel injection valve 23 via the flow rate adjustment valve 25, the fuel pump 24, and the common rail 22. Thus, the fuel supply pipe 21 includes a first fuel supply pipe part 21a that connects the fuel feed pump 20 to the flow rate adjustment valve 25, a second fuel supply pipe part 21b that connects the flow rate adjustment valve 25 to the fuel pump 24, and A third fuel supply piping portion 21c that connects the fuel pump 24 to the common rail 22 and a fourth fuel supply piping portion 21d that connects the common rail 22 to the fuel injection valve 23 are configured. Since the engine 1 of this embodiment has two cylinders, the engine 1 includes two fourth fuel supply pipe portions 21d connected to the two fuel injection valves 23, respectively.
Low-pressure fuel sent by the fuel feed pump 20 flows through the first fuel supply piping section 21a and the second fuel supply piping section 21b. High-pressure fuel sent by the fuel pump 24 flows through the third fuel supply piping portion 21c and the fourth fuel supply piping portion 21d. A fuel filter 27 that filters the fuel supplied to the flow rate adjustment valve 25 is disposed in the first fuel supply piping portion 21a.
The fuel return pipe 26 is connected to the fuel tank 19 from the fuel injection valve 23, the fuel pump 24, and the flow rate adjustment valve 25 via the junction 28. Thus, the fuel return pipe 26 includes a first fuel return pipe section 26a that connects the fuel injection valve 23 to the merging section 28, a second fuel return pipe section 26b that connects the fuel pump 24 to the merging section 28, and a flow rate adjustment. A third fuel return pipe part 26 c that connects the valve 25 to the junction 28 and a fourth fuel return pipe part 26 d that connects the junction 28 to the fuel tank 19 are configured.
 燃料噴射装置18は、燃料タンク19内の燃料フィードポンプ20が第1燃料供給配管部21aに送る燃料を燃料フィルタ27により浄化し、流量調整弁25に送る。流量調整弁25は、燃料を必要な流量に調整し、第2燃料供給配管部21bにより燃料ポンプ24へ送る。燃料ポンプ24は、昇圧した燃料を第3燃料供給配管部21cによりコモンレール22へ送る。コモンレール21は、各気筒の燃料噴射弁23へそれぞれ第4燃料供給配管部21dにより燃料を分配する。
 燃料噴射装置18は、コモンレール22内の燃料圧力を計測する燃圧センサ29を備える。燃圧センサ29は、計測した燃料圧力を制御部30に出力する。制御部30は、燃圧センサ29で計測した燃料圧力をフィードバックし、流量調整弁25の開度を調整する。流量調整弁25は、燃料ポンプ24へ送る燃料流量を調整する。
 燃料噴射弁23と燃料ポンプ24と流量調整弁25とは、余剰の燃料をそれぞれ第1燃料リターン配管部26aと第2燃料リターン配管部26bと第3燃料リターン配管部26cとに流す。第1燃料リターン配管部26aと第2燃料リターン配管部26bと第3燃料リターン配管部26cとに流れた燃料は、合流部28で合流されて第4燃料リターン配管部26dにより燃料タンク19に戻される。
The fuel injection device 18 purifies the fuel sent from the fuel feed pump 20 in the fuel tank 19 to the first fuel supply piping section 21 a by the fuel filter 27 and sends the fuel to the flow rate adjustment valve 25. The flow rate adjusting valve 25 adjusts the fuel to a necessary flow rate, and sends the fuel to the fuel pump 24 through the second fuel supply piping portion 21b. The fuel pump 24 sends the boosted fuel to the common rail 22 through the third fuel supply piping portion 21c. The common rail 21 distributes the fuel to the fuel injection valves 23 of the respective cylinders by the fourth fuel supply piping portion 21d.
The fuel injection device 18 includes a fuel pressure sensor 29 that measures the fuel pressure in the common rail 22. The fuel pressure sensor 29 outputs the measured fuel pressure to the control unit 30. The control unit 30 feeds back the fuel pressure measured by the fuel pressure sensor 29 and adjusts the opening degree of the flow rate adjustment valve 25. The flow rate adjustment valve 25 adjusts the flow rate of fuel sent to the fuel pump 24.
The fuel injection valve 23, the fuel pump 24, and the flow rate adjustment valve 25 allow excess fuel to flow through the first fuel return pipe part 26a, the second fuel return pipe part 26b, and the third fuel return pipe part 26c, respectively. The fuel that has flown through the first fuel return pipe part 26a, the second fuel return pipe part 26b, and the third fuel return pipe part 26c is joined at the joining part 28 and returned to the fuel tank 19 by the fourth fuel return pipe part 26d. It is.
 燃料噴射装置18は、図5に示すように、コモンレール22から燃料が供給される複数個の燃料噴射弁23を、シリンダヘッド3を構成する第2シリンダヘッド部3bの上部に気筒列方向Aに並べて配置している。第2シリンダヘッド部3には、2個の燃料噴射弁23の間に、コモンレール22を配置している。第2シリンダヘッド部3bには、図6、図7に示すように、気筒列方向Aと直交する列交差方向Bであって、燃料噴射弁23の両側部(図7において後側部と前側部)に、吸気カム軸5と排気カム軸6とを配置している。
 また、燃料噴射装置18は、エンジン1の排気カム軸6によって駆動される燃料ポンプ24を、燃料タンク19と燃料噴射弁23を連絡する燃料供給配管21上に配置している。さらに、燃料噴射装置18は、コモンレール22内の燃料圧力に応じて燃料ポンプ24に供給する燃料の流量を調整する流量調整弁25を、燃料供給配管21の燃料ポンプ24より上流側に配置している。
 燃料噴射装置18は、燃料フィードポンプ20を第1燃料供給配管部21aによって流量調整弁25に接続し、流量調整弁25を第2燃料供給配管部21bによって燃料ポンプ24に接続し、燃料ポンプ24を第3燃料供給配管部21cによってコモンレール22に接続し、コモンレール22を第4燃料供給配管部21dによって燃料噴射弁23に接続する。
 燃料噴射装置18は、燃料噴射弁23を第1燃料リターン配管部26aによって合流部28に接続し、燃料ポンプ24を第2燃料リターン配管部26bによって合流部28に接続し、流量調整弁25を第3燃料リターン配管部26cによって合流部28に接続し、合流部28を第4燃料リターン配管部26dによって燃料タンク19に接続する。
As shown in FIG. 5, the fuel injection device 18 includes a plurality of fuel injection valves 23 to which fuel is supplied from the common rail 22 in the cylinder row direction A above the second cylinder head portion 3 b constituting the cylinder head 3. They are arranged side by side. In the second cylinder head portion 3, a common rail 22 is disposed between the two fuel injection valves 23. As shown in FIGS. 6 and 7, the second cylinder head portion 3 b has a row crossing direction B orthogonal to the cylinder row direction A, and both side portions of the fuel injection valve 23 (rear side portion and front side portion in FIG. 7). The intake camshaft 5 and the exhaust camshaft 6 are arranged in the section).
In the fuel injection device 18, a fuel pump 24 driven by the exhaust camshaft 6 of the engine 1 is disposed on a fuel supply pipe 21 that connects the fuel tank 19 and the fuel injection valve 23. Further, the fuel injection device 18 is provided with a flow rate adjusting valve 25 for adjusting the flow rate of the fuel supplied to the fuel pump 24 according to the fuel pressure in the common rail 22 on the upstream side of the fuel pump 24 in the fuel supply pipe 21. Yes.
The fuel injection device 18 connects the fuel feed pump 20 to the flow rate adjustment valve 25 through the first fuel supply piping unit 21a, and connects the flow rate adjustment valve 25 to the fuel pump 24 through the second fuel supply piping unit 21b. Is connected to the common rail 22 by the third fuel supply piping section 21c, and the common rail 22 is connected to the fuel injection valve 23 by the fourth fuel supply piping section 21d.
In the fuel injection device 18, the fuel injection valve 23 is connected to the merging portion 28 by the first fuel return piping portion 26a, the fuel pump 24 is connected to the merging portion 28 by the second fuel return piping portion 26b, and the flow rate adjusting valve 25 is connected. The third fuel return pipe 26c is connected to the junction 28, and the junction 28 is connected to the fuel tank 19 by the fourth fuel return pipe 26d.
 エンジン1は、シリンダブロック2とシリンダヘッド3との気筒列方向Aで変速機10側の端部に接合されるチェーンケース9を備える。燃料噴射装置18は、図5に示すように、燃料ポンプ24を、シリンダヘッド3の第2シリンダヘッド部3bの上面側、かつ気筒列方向Aでチェーンケース9と反対側の端部近傍に配置している。
 燃料ポンプ24は、図6、図7に示すように、ポンプ本体部としてのシリンダ部材31を備える。シリンダ部材31は、第2シリンダヘッド部3bのポンプ取付部32に、吸気カム軸5側に傾くように取り付けられる。ポンプ取付部32は、内部に排気カム軸6方向に延びる連通孔33を備える。シリンダ部材31は、内部に連通孔33を介して排気カム軸6と対向するガイド孔34を備える。シリンダ部材31は、ガイド孔34にプランジャ35を摺動自在、すなわち、排気カム軸6に対して接離自在に収納している。シリンダ部材31には、プランジャ35の排気カム軸6と反対側の端部とガイド孔34の端部とによって囲まれるポンプ室36を形成している。
 プランジャ35は、排気カム軸6と対向する側の端部をシリンダ部材31から連通孔33内に突出され、先端にスプリング受け部37を備える。プランジャ35は、スプリング受け部37とシリンダ部材31の端部との間にコイルスプリング38を介装している。コイルスプリング38は、プランジャ35を排気カム軸6に向かって付勢している。
 プランジャ35は、スプリング受け部37にタペット39を取付けている。タペット39は、連通孔33内に摺動自在に収納されている。タペット39には、ローラ40が回転自在に保持されている。ローラ40は、吸気カム軸6に取付けられたポンプカム41にコイルスプリング38の付勢力で押圧される。ローラ40は、ポンプカム41の回転に従動し、連通孔33内において排気カム軸6から離れる側と近づく側とに移動され、タペット39を介してプランジャ35をポンプ室36に挿入する方向とポンプ室36から抜き出す方向とに移動させる。
 プランジャ35は、ポンプカム41の回転でポンプ室36に挿入される方向に移動すると、ポンプ室36の容積を減少することにより、ポンプ室36を加圧する。一方、プランジャ35は、ポンプカム41の回転でポンプ室36から抜き出される方向に移動すると、ポンプ室36の容積を拡大することにより、ポンプ室36を減圧する。
The engine 1 includes a chain case 9 joined to an end portion on the transmission 10 side in the cylinder row direction A between the cylinder block 2 and the cylinder head 3. As shown in FIG. 5, in the fuel injection device 18, the fuel pump 24 is disposed on the upper surface side of the second cylinder head portion 3 b of the cylinder head 3 and in the vicinity of the end opposite to the chain case 9 in the cylinder row direction A. is doing.
As shown in FIGS. 6 and 7, the fuel pump 24 includes a cylinder member 31 as a pump main body. The cylinder member 31 is attached to the pump attachment portion 32 of the second cylinder head portion 3b so as to be inclined toward the intake camshaft 5 side. The pump mounting portion 32 includes a communication hole 33 extending in the direction of the exhaust camshaft 6 inside. The cylinder member 31 includes a guide hole 34 that faces the exhaust camshaft 6 through a communication hole 33 therein. The cylinder member 31 houses the plunger 35 in the guide hole 34 so as to be slidable, that is, in contact with and away from the exhaust camshaft 6. The cylinder member 31 is formed with a pump chamber 36 surrounded by an end portion of the plunger 35 opposite to the exhaust cam shaft 6 and an end portion of the guide hole 34.
The plunger 35 has an end on the side facing the exhaust camshaft 6 protruding from the cylinder member 31 into the communication hole 33 and includes a spring receiving portion 37 at the tip. The plunger 35 has a coil spring 38 interposed between the spring receiving portion 37 and the end of the cylinder member 31. The coil spring 38 biases the plunger 35 toward the exhaust camshaft 6.
The plunger 35 has a tappet 39 attached to a spring receiving portion 37. The tappet 39 is slidably accommodated in the communication hole 33. A roller 40 is rotatably held by the tappet 39. The roller 40 is pressed against the pump cam 41 attached to the intake cam shaft 6 by the urging force of the coil spring 38. The roller 40 is driven by the rotation of the pump cam 41, moved to the side away from the exhaust cam shaft 6 and the side closer to the exhaust cam shaft 6 in the communication hole 33, and the direction in which the plunger 35 is inserted into the pump chamber 36 via the tappet 39 and the pump chamber. It moves to the direction extracted from 36.
When the plunger 35 moves in the direction to be inserted into the pump chamber 36 by the rotation of the pump cam 41, the plunger 35 pressurizes the pump chamber 36 by reducing the volume of the pump chamber 36. On the other hand, when the plunger 35 moves in the direction of being extracted from the pump chamber 36 by the rotation of the pump cam 41, the volume of the pump chamber 36 is increased to depressurize the pump chamber 36.
 燃料ポンプ24は、図7に示すように、シリンダ部材31の吸気カム軸5と対向する下側に燃料入口42を備えている。燃料ポンプ24は、燃料入口42が吸気カム軸5の近傍に位置するように、第2シリンダヘッド部3bの上面側に取り付けられる。燃料入口42は、ポンプ室36に連通している。燃料入口42には、第2燃料供給配管部21bが接続される。燃料ポンプ24は、プランジャ35が抜き出されることで減圧されたポンプ室36に、燃料入口42から第2燃料供給配管部21bの燃料を吸入する。
 また、燃料ポンプ24は、シリンダ部材31の先端側に燃料出口43を備える。燃料出口43は、ポンプ室36に連通している。燃料出口43には、第3燃料供給配管部21cが接続される。燃料ポンプ24は、プランジャ35が挿入されることで加圧されたポンプ室36から、昇圧した燃料を燃料出口43より第3燃料供給配管部21cに吐出する。
 第3燃料供給配管部21cに吐出された燃料は、コモンレール22に供給される。コモンレール22は、第4燃料供給配管部21dによって複数の燃料噴射弁23に均等な量の燃料を分配する。複数の燃料噴射弁23は、燃料を各気筒に噴射する。
 燃料ポンプ24は、シリンダ部材31に燃料リターン出口44を備えている。燃料リターン出口44は、ポンプ室36に連通している。燃料リターン出口44には、第2燃料リターン配管部26bが接続される。ポンプ室36には図示しないチェック弁が配置され、燃料がコモンレール22や第2燃料リターン配管部26bからポンプ室36側へ逆流することを防止している。
 第2燃料リターン配管部26bは、第3燃料リターン配管部26cとともに合流部28に接続され、第4燃料リターン配管部26dにより燃料タンク19に接続される。第2燃料リターン配管部26bに吐出された余剰燃料は、燃料タンク19に戻される。このため、燃料噴射弁23に供給される燃料圧力が、過度に上昇することを防止することができる。なお、符号45は、ポンプカバーである。
As shown in FIG. 7, the fuel pump 24 includes a fuel inlet 42 on the lower side of the cylinder member 31 facing the intake camshaft 5. The fuel pump 24 is attached to the upper surface side of the second cylinder head portion 3b so that the fuel inlet 42 is positioned in the vicinity of the intake camshaft 5. The fuel inlet 42 communicates with the pump chamber 36. The fuel inlet 42 is connected to the second fuel supply piping portion 21b. The fuel pump 24 sucks the fuel in the second fuel supply pipe portion 21b from the fuel inlet 42 into the pump chamber 36 which has been decompressed by extracting the plunger 35.
Further, the fuel pump 24 includes a fuel outlet 43 on the tip end side of the cylinder member 31. The fuel outlet 43 communicates with the pump chamber 36. The fuel outlet 43 is connected to the third fuel supply pipe 21c. The fuel pump 24 discharges the pressurized fuel from the pump chamber 36 pressurized by the insertion of the plunger 35 from the fuel outlet 43 to the third fuel supply piping portion 21c.
The fuel discharged to the third fuel supply piping part 21 c is supplied to the common rail 22. The common rail 22 distributes an equal amount of fuel to the plurality of fuel injection valves 23 by the fourth fuel supply pipe portion 21d. The plurality of fuel injection valves 23 inject fuel into each cylinder.
The fuel pump 24 includes a fuel return outlet 44 in the cylinder member 31. The fuel return outlet 44 communicates with the pump chamber 36. The fuel return outlet 44 is connected to the second fuel return pipe portion 26b. A check valve (not shown) is disposed in the pump chamber 36 to prevent the fuel from flowing back from the common rail 22 or the second fuel return pipe portion 26b to the pump chamber 36 side.
The second fuel return pipe part 26b is connected to the joining part 28 together with the third fuel return pipe part 26c, and is connected to the fuel tank 19 by the fourth fuel return pipe part 26d. The surplus fuel discharged to the second fuel return pipe portion 26 b is returned to the fuel tank 19. For this reason, it is possible to prevent the fuel pressure supplied to the fuel injection valve 23 from rising excessively. Reference numeral 45 denotes a pump cover.
 燃料噴射装置18は、図5に示すように、流量調整弁25を、シリンダヘッド3の気筒列方向Aで変速機10側の端部に接合され、かつシリンダヘッド3の本体部よりも車体左側へ突出するチェーンケース9に取り付けている。流量調整弁25は、燃料タンク19から燃料フィードポンプ20によって送られた燃料を燃料ポンプ24に供給する。
 流量調整弁25は、チェーンケース9に固定される基部46と、基部46からエンジン1の外側に延びる筒状部47とを有している。流量調整弁25は、基部46をチェーケース9の変速機10側に向いた壁面48の取付部49に固定している。流量調整弁25は、チェーンケース9の気筒列方向Aと直交する列交差方向Bの他側(図1、図7の後側)で、吸気カム軸5の近傍に取り付けている。
As shown in FIG. 5, the fuel injection device 18 has a flow rate adjustment valve 25 joined to an end portion on the transmission 10 side in the cylinder row direction A of the cylinder head 3, and on the left side of the vehicle body from the main body portion of the cylinder head 3. It is attached to a chain case 9 protruding to The flow rate adjustment valve 25 supplies the fuel sent from the fuel tank 19 by the fuel feed pump 20 to the fuel pump 24.
The flow rate adjustment valve 25 has a base portion 46 fixed to the chain case 9 and a cylindrical portion 47 extending from the base portion 46 to the outside of the engine 1. The flow rate adjusting valve 25 has a base portion 46 fixed to an attachment portion 49 of a wall surface 48 facing the transmission 10 side of the case 9. The flow rate adjusting valve 25 is attached in the vicinity of the intake camshaft 5 on the other side (the rear side in FIGS. 1 and 7) of the row crossing direction B orthogonal to the cylinder row direction A of the chain case 9.
 このように、エンジン1の燃料噴射装置18は、燃料ポンプ24と別体の流量調整弁25をエンジン1に取り付けたため、燃料ポンプ24の構造を簡素化でき、燃料ポンプ24の製造コストを低減できる。
 また、燃料噴射装置18は、流量調整弁25をシリンダヘッド3の気筒列方向Aで変速機10側の端部に接合されるチェーンケース9に取り付ける一方、燃料ポンプ24をシリンダヘッド3の上面側かつ気筒列方向Aでチェーンケース9と反対側の端部近傍に配置している。
 このため、燃料噴射装置18は、流量調整弁25を比較的空間が確保し易い変速機10側であり、かつ燃料ポンプ24と気筒列方向Aで離れた位置に配置できる。
 また、燃料噴射装置18は、流量調整弁25と燃料ポンプ24の間を連絡する燃料供給配管21を比較的曲げの少ない形状に形成してシリンダヘッド3の近傍にコンパクトに配置でき、かつ燃料供給配管21の接続作業性を向上させることができる。
 よって、エンジン1の燃料噴射装置18は、燃料噴射装置18のコストを低減し、かつ燃料噴射装置18を構成する部品類をシリンダヘッド3の近傍に効率的に配置することができる。
As described above, since the fuel injection device 18 of the engine 1 has the flow rate adjusting valve 25 separately from the fuel pump 24 attached to the engine 1, the structure of the fuel pump 24 can be simplified, and the manufacturing cost of the fuel pump 24 can be reduced. .
Further, the fuel injection device 18 attaches the flow rate adjustment valve 25 to the chain case 9 joined to the end of the cylinder head 3 in the cylinder row direction A on the transmission 10 side, while the fuel pump 24 is attached to the upper surface side of the cylinder head 3. In the cylinder row direction A, it is arranged in the vicinity of the end opposite to the chain case 9.
For this reason, the fuel injection device 18 can be disposed on the transmission 10 side where the flow rate adjusting valve 25 is relatively easy to secure a space, and at a position away from the fuel pump 24 in the cylinder row direction A.
Further, the fuel injection device 18 can be compactly arranged near the cylinder head 3 by forming the fuel supply pipe 21 communicating between the flow rate adjusting valve 25 and the fuel pump 24 in a shape with a relatively small bend, and the fuel supply. The connection workability of the piping 21 can be improved.
Therefore, the fuel injection device 18 of the engine 1 can reduce the cost of the fuel injection device 18 and can efficiently arrange the components constituting the fuel injection device 18 in the vicinity of the cylinder head 3.
 エンジン1は、2気筒を有するエンジン1である。これにより、燃料噴射装置18は、気筒列方向の長さが短く、流量調整弁25を搭載する空間が少ない2気筒のエンジン1に対して上述の構造を適用すれば、より効率的に流量調整弁25をシリンダヘッド3の近傍に配置することができる。
 燃料噴射装置18は、基部46と筒状部47とを有する流量調整弁25の基部46を、チェーンケース9の変速機10側に向いた壁面48に固定している。これにより、燃料噴射装置18は、基部46から延びる筒状部47を有する流量調整弁25を、変速機10の上方の空間を利用して効率的にシリンダヘッド3の近傍に配置することができる。
 エンジン1は、シリンダヘッド3の気筒列方向Aと直交する列交差方向Bで燃料噴射弁23の両側部に吸気カム軸5と排気カム軸6を配置している。燃料噴射装置18は、燃料ポンプ24を排気カム軸6で駆動する一方、この燃料ポンプ24を燃料入口42が吸気カム軸5の近傍に位置するようシリンダヘッド3に取り付け、流量調整弁25をチェーンケース9の気筒列方向Aと直交する列交差方向Bで吸気カム軸5の近傍に取り付けている。
 これにより、燃料噴射装置18は、シリンダヘッド3の気筒列方向Aと直交する列交差方向Bで流量調整弁25を燃料ポンプ24の燃料入口42に近い位置に配置でき、流量調整弁25と燃料ポンプ24の間を連絡する第2燃料供給配管部21bをシリンダヘッド3の近傍に効率的に配置することができる。
The engine 1 is an engine 1 having two cylinders. Accordingly, the fuel injection device 18 can adjust the flow rate more efficiently if the above-described structure is applied to the two-cylinder engine 1 having a short length in the cylinder row direction and a small space for mounting the flow rate adjustment valve 25. The valve 25 can be arranged in the vicinity of the cylinder head 3.
In the fuel injection device 18, the base portion 46 of the flow rate adjusting valve 25 having a base portion 46 and a cylindrical portion 47 is fixed to a wall surface 48 of the chain case 9 facing the transmission 10 side. Thus, the fuel injection device 18 can efficiently arrange the flow rate adjustment valve 25 having the cylindrical portion 47 extending from the base portion 46 in the vicinity of the cylinder head 3 using the space above the transmission 10. .
In the engine 1, an intake camshaft 5 and an exhaust camshaft 6 are disposed on both sides of the fuel injection valve 23 in a row crossing direction B orthogonal to the cylinder row direction A of the cylinder head 3. The fuel injection device 18 drives the fuel pump 24 by the exhaust camshaft 6, and attaches the fuel pump 24 to the cylinder head 3 so that the fuel inlet 42 is positioned in the vicinity of the intake camshaft 5, and connects the flow rate adjusting valve 25 to the chain. The case 9 is attached in the vicinity of the intake camshaft 5 in a row crossing direction B orthogonal to the cylinder row direction A.
As a result, the fuel injection device 18 can arrange the flow rate adjusting valve 25 at a position close to the fuel inlet 42 of the fuel pump 24 in the row crossing direction B orthogonal to the cylinder row direction A of the cylinder head 3. The second fuel supply piping portion 21 b that communicates between the pumps 24 can be efficiently disposed in the vicinity of the cylinder head 3.
 実施例2は、過給機から内燃機関としてのエンジンに導入される空気を冷却するインタクーラを備えた過給機付きエンジンの吸気装置に関する。 Example 2 relates to an intake device for an engine with a supercharger provided with an intercooler that cools air introduced from the supercharger into an engine as an internal combustion engine.
 一般に、自動車等の車両のエンジンには、過給機のコンプレッサにより過給されて温度が上昇した空気を冷却するインタクーラが設けられている。このインタクーラでは、コア部を通過する外気との熱交換を通じて空気の温度を低下させることにより、エンジンの充填効率を高めることができる。 Generally, an engine of a vehicle such as an automobile is provided with an intercooler that cools air that is supercharged by a compressor of a supercharger and rises in temperature. In this intercooler, the charging efficiency of the engine can be increased by lowering the temperature of the air through heat exchange with the outside air passing through the core portion.
 従来のこの種のインタクーラを備えたエンジンとしては、特許文献3(特開2011-21571号公報)および特許文献4(特開2009-227132号公報)に記載されたものが知られている。特許文献3および特許文献4に記載されたものは、エンジンルーム内に搭載されたエンジンの前方にインタクーラが設置されているとともに、エンジンの後方で、かつエンジンの上部に吸気マニホールドが設置されており、インタクーラと吸気マニホールドとが、内径寸法が同一のインタクーラアウトレット配管によって連結される。 As an engine provided with this type of conventional intercooler, those described in Patent Document 3 (Japanese Patent Laid-Open No. 2011-21571) and Patent Document 4 (Japanese Patent Laid-Open No. 2009-227132) are known. In Patent Document 3 and Patent Document 4, an intercooler is installed in front of the engine mounted in the engine room, and an intake manifold is installed behind the engine and in the upper part of the engine. The intercooler and the intake manifold are connected by an intercooler outlet pipe having the same inner diameter.
 特許文献3に記載されたインタクーラアウトレット配管は、インタクーラの上部タンクからエンジンの変速機側の車幅方向一端部と反対側の車幅方向他端部に沿ってエンジンの上側に向けて車両の斜め上方に延びた後、エンジンの後部上方からエンジンの上方を横切るようにして吸気マニホールドに連結されている。
 また、インタクーラアウトレット配管に対して車両の前後方向前方側において、車両の前後方向に重なるようにしてエアクリーナインレット配管が設置されている。
The intercooler outlet pipe described in Patent Document 3 is arranged so that the intercooler outlet pipe extends from the upper tank of the intercooler to the upper side of the engine along the other end in the vehicle width direction opposite to the one end in the vehicle width direction on the transmission side of the engine. After extending obliquely upward, it is connected to the intake manifold so as to cross the upper part of the engine from the upper rear part of the engine.
An air cleaner inlet pipe is installed on the front side in the front-rear direction of the vehicle with respect to the intercooler outlet pipe so as to overlap the front-rear direction of the vehicle.
 特許文献4に記載されたインタクーラアウトレット配管(第3の吸気管)は、同一の内径寸法に形成されており、インタクーラアウトレット配管が、インタクーラの下部タンクからエンジンの変速機側の車幅方向一端部と反対側の車幅方向他端部に沿ってエンジンの上側に向けて車両の斜め上方に延在している。 The intercooler outlet pipe (third intake pipe) described in Patent Document 4 has the same inner diameter, and the intercooler outlet pipe extends from the lower tank of the intercooler in the vehicle width direction on the transmission side of the engine. The vehicle extends obliquely upward of the vehicle toward the upper side of the engine along the other end in the vehicle width direction opposite to the one end.
 しかしながら、特許文献3、4に記載されたものにあっては、車幅方向他端部に熱を発生するオルタネータ等の補機が設置される場合に、インタクーラアウトレット配管が補機の上方に位置することになる。 However, in the ones described in Patent Documents 3 and 4, when an auxiliary machine such as an alternator that generates heat is installed at the other end in the vehicle width direction, the intercooler outlet pipe is located above the auxiliary machine. Will be located.
 このため、補機から発生して上昇する熱が補機の上方に滞留すると、インタクーラアウトレット配管がこの熱に晒されてしまい、インタクーラアウトレット配管を通過する空気が加熱されてしまうおそれがある。 For this reason, if the heat generated from the auxiliary machine rises and stays above the auxiliary machine, the intercooler outlet pipe is exposed to this heat, and the air passing through the intercooler outlet pipe may be heated. .
 また、特許文献3に記載されたものは、インタクーラアウトレット配管に対して車両の前後方向前方側において、車両の前後方向に重なるようにしてエアクリーナインレット配管が設置されている。このため、車両の前方からの走行風がエアクリーナインレット配管に遮られてしまい、インタクーラアウトレット配管に当たり難く、インタクーラアウトレット配管を流れる空気を効率よく冷却できない。 Also, in the device described in Patent Document 3, an air cleaner inlet pipe is installed on the front side in the front-rear direction of the vehicle with respect to the intercooler outlet pipe so as to overlap in the front-rear direction of the vehicle. For this reason, the traveling wind from the front of the vehicle is blocked by the air cleaner inlet pipe, is difficult to hit the intercooler outlet pipe, and the air flowing through the intercooler outlet pipe cannot be efficiently cooled.
 以上の結果、インタクーラによって冷却された空気をインタクーラアウトレット配管によってさらに冷却できず、吸気マニホールドを介して冷却した空気をエンジンに導入できない。したがって、エンジンの充填効率を高めることができず、エンジンの出力性能を高めることが困難となる。 As a result, the air cooled by the intercooler cannot be further cooled by the intercooler outlet piping, and the cooled air cannot be introduced into the engine via the intake manifold. Therefore, the charging efficiency of the engine cannot be increased, and it becomes difficult to improve the output performance of the engine.
 また、特許文献3、4に記載されるインタクーラアウトレット配管は、同一の内径寸法に形成されているため、例えば、インタクーラアウトレット配管を2気筒エンジンに適用した場合に、吸気脈動が最適化されず、吸気抵抗が増大してしまう。 Further, since the intercooler outlet pipes described in Patent Documents 3 and 4 are formed to have the same inner diameter, for example, when the intercooler outlet pipe is applied to a two-cylinder engine, intake pulsation is optimized. Therefore, the intake resistance increases.
 具体的には、2気筒エンジン等において、ピストンの位相が360°で上下動する場合には、吸気バルブによる吸気ポートの開閉タイミングが同一となって、所謂、間欠吸気が行われ、吸気脈動が発生し、吸気脈動に起因する圧力波が発生する。 Specifically, in a two-cylinder engine or the like, when the piston phase moves up and down at 360 °, the intake port opening and closing timing by the intake valve is the same, so-called intermittent intake is performed, and intake pulsation does not occur. And a pressure wave is generated due to the intake pulsation.
 インタクーラアウトレット配管の内径寸法が同一であると、インタクーラアウトレット配管の固有振動数が低くなり、インタクーラアウトレット配管と吸気バルブに衝突して跳ね返る反射波との共鳴により、エンジンの通常回転域(例えば、3000~4500rpm)において、インタクーラアウトレット配管の吸気抵抗が大きくなる。このため、エンジンに吸入される空気量が低下しまい、エンジンにおける空気の充填効率が低下する。この結果、エンジンの出力が低下するおそれがある。 If the inner diameter of the intercooler outlet piping is the same, the natural frequency of the intercooler outlet piping will be low, and the resonance between the intercooler outlet piping and the reflected wave that bounces off the intake valve will cause normal engine rotation ( For example, at 3000 to 4500 rpm, the intake resistance of the intercooler outlet pipe increases. For this reason, the amount of air sucked into the engine is reduced, and the air charging efficiency in the engine is reduced. As a result, the engine output may be reduced.
 実施例2は、上記のような問題点に着目してなされたものであり、インタクーラアウトレット配管を流れる空気が加熱されることを防止して、エンジンの出力性能を高めることができるとともに、エンジンの出力性能が低下することを防止できるものである。 The second embodiment has been made by paying attention to the above-described problems, and can prevent the air flowing through the intercooler outlet pipe from being heated and improve the output performance of the engine. The output performance can be prevented from deteriorating.
 実施例2の第1の態様は、過給機を有するエンジンに取付けられた吸気装置であって、エンジンの前後方向後部に取付けられたサージタンクおよびサージタンクの上流部に設けられた吸気導入管を有する吸気マニホールドと、エンジンの前方に設置されるとともに、空気出口管部を有し、過給機にインタクーラインレット配管を介して接続されるインタクーラと、インタクーラの空気出口管部からエンジンの車幅方向端部に沿って延びた後、吸気導入管に連結されるインタクーラアウトレット配管とを備え、インタクーラアウトレット配管が、インタクーラアウトレット配管の内径寸法が大きい大径部と大径部よりも内径寸法が小さい小径部とを含んで構成され、大径部が、インタクーラアウトレット配管の長さ方向中央部から吸気導入管に接続される下流端までの間に形成されるものから構成されている。 The first aspect of the second embodiment is an intake device attached to an engine having a supercharger, which is a surge tank attached to a rear portion in the front-rear direction of the engine and an intake intake pipe provided in an upstream portion of the surge tank. An intake manifold having an air outlet, an air cooler installed in front of the engine and having an air outlet pipe, and connected to the turbocharger via an intercooler linelet pipe. And an intercooler outlet pipe that extends along the widthwise end and is connected to the intake air inlet pipe. The intercooler outlet pipe has a larger inner diameter than the larger diameter section and the larger diameter section. A small-diameter portion having a small inner diameter dimension, and the large-diameter portion from the central portion in the longitudinal direction of the intercooler outlet pipe. And a one formed until the downstream end connected.
 実施例2の第2の態様としては、エンジンの車幅方向端部がマウント装置を介して車両の車体に支持されるとともに、エンジンの前後方向後部で、かつサージタンクの下方に、作動時に熱を発生する補機が取付けられ、吸気導入管を、サージタンクから車両の下方に延長させるとともに、車両の高さ方向において少なくとも補機の下部に延長させ、車両の高さ方向において空気出口管部をマウント装置よりも上方に設置するとともに、補機をマウント装置よりも下方に設置し、インタクーラアウトレット配管を、空気出口管部からマウント装置の下方および補機の下方を通して吸気導入管に接続し、大径部を、マウント装置の下方側で、かつマウント装置の車両の前後方向後部から補機の下方を通過して、少なくとも吸気導入管から下方に離隔した位置までの間に形成してもよい。 As a second aspect of the second embodiment, the vehicle width direction end of the engine is supported by the vehicle body via the mounting device, and is heated at the time of operation at the rear in the front-rear direction of the engine and below the surge tank. The intake pipe is extended from the surge tank to the lower part of the vehicle and at least the lower part of the auxiliary machine in the height direction of the vehicle, and the air outlet pipe part in the height direction of the vehicle. Is installed above the mounting device, the auxiliary equipment is installed below the mounting device, and the intercooler outlet pipe is connected from the air outlet pipe to the intake air inlet pipe through the mounting device and the auxiliary equipment. The large-diameter portion passes through the lower side of the mounting device and from the rear part of the vehicle in the front-rear direction of the mounting device to the lower side of the auxiliary machine and at least downward from the intake pipe. It may be formed between the up interval position.
 実施例2の第3の態様としては、大径部の内径寸法が、大径部の長さ方向に亙って同一に形成されてもよい。
 実施例2の第4の態様としては、エンジンを上方から見た状態において、大径部が補機の下方側で補機の周囲に設置されてもよい。
As a third aspect of the second embodiment, the inner diameter dimension of the large diameter portion may be the same over the length direction of the large diameter portion.
As a 4th aspect of Example 2, in the state which looked at the engine from the upper direction, a large diameter part may be installed in the circumference | surroundings of an auxiliary machine in the downward side of an auxiliary machine.
 実施例2の第5の態様としては、大径部は、小径部に連続し、補機の上端部よりも低い位置で、かつマウント装置の下方を通過する直線部と、直線部に連続し、直線部から補機の下方側に向かって延在する傾斜部と、傾斜部に連続し、傾斜部から補機の下方側に向かって湾曲する第1の湾曲部と、第1の湾曲部に連続するとともに補機の下方を車幅方向に通過し、車両の前後方向でエンジンから後方に向かって湾曲した後、吸気導入管の下方側に向かって延在する第2の湾曲部とを含んで構成され、第2の湾曲部の下流部に、第2の湾曲部の上流から下流に向かって内径寸法が漸次縮小するテーパ部を形成し、テーパ部の下流端にテーパ部と吸気導入管とを接続する小径管部を形成し、テーパ部および小径管部とによって構成される大径部の下流部を湾曲形状に形成してもよい。 As a fifth aspect of the second embodiment, the large-diameter portion is continuous with the small-diameter portion, and is continuous with the straight portion and the straight portion passing through the lower portion of the mounting device at a position lower than the upper end portion of the accessory. An inclined portion extending from the straight portion toward the lower side of the auxiliary device, a first bending portion that is continuous with the inclined portion and curves from the inclined portion toward the lower side of the auxiliary device, and a first bending portion. And a second curved portion extending downward from the engine in the vehicle front-rear direction and curved rearward from the engine, and extending downward from the intake pipe. A tapered portion whose inner diameter is gradually reduced from the upstream side to the downstream side of the second curved portion, and the tapered portion and the intake air are introduced at the downstream end of the tapered portion. A large-diameter part that forms a small-diameter pipe part that connects the pipe and is composed of a tapered part and a small-diameter pipe part It may be formed downstream portion in a curved shape.
 このように上記の第1の態様によれば、インタクーラアウトレット配管が、インタクーラアウトレット配管の内径寸法が大きい大径部と大径部よりも内径寸法が小さい小径部とを含んで構成され、大径部が、インタクーラアウトレット配管の長さ方向中央部から吸気導入管に接続される下流端までの間に形成される。 Thus, according to said 1st aspect, intercooler outlet piping is comprised including the large diameter part with a larger internal diameter dimension of an intercooler outlet piping, and the small diameter part with a smaller internal diameter dimension than a large diameter part, The large diameter portion is formed between the central portion in the longitudinal direction of the intercooler outlet pipe and the downstream end connected to the intake air introduction pipe.
 このため、吸気バルブの開閉に伴い発生する吸気脈動を最適化して、エンジンの高回転域でインタクーラアウトレット配管の共鳴を発生できる。したがって、エンジンの通常回転域においてインタクーラアウトレット配管の下流部の吸気抵抗を小さくして、エンジンに吸入される空気量が低下することを防止できる。この結果、エンジンの充填効率を向上でき、エンジンの出力を向上できる。 For this reason, it is possible to optimize the intake pulsation that occurs as the intake valve opens and closes, and to generate resonance in the intercooler outlet piping in the high engine speed range. Therefore, it is possible to reduce the intake resistance in the downstream portion of the intercooler outlet pipe in the normal rotation range of the engine and prevent the amount of air taken into the engine from decreasing. As a result, the charging efficiency of the engine can be improved and the output of the engine can be improved.
 また、インタクーラアウトレット配管の下流部に大径部を設けたので、インタクーラアウトレット配管の下流部の表面積を増大できるとともにインタクーラアウトレット配管の下流部の内径寸法を増大できる。 Also, since the large diameter portion is provided in the downstream portion of the intercooler outlet pipe, the surface area of the downstream portion of the intercooler outlet pipe can be increased and the inner diameter dimension of the downstream portion of the intercooler outlet pipe can be increased.
 このため、車両の前方から車両に導入される走行風がインタクーラアウトレット配管に当たる表面積を増大でき、大径部を流れる流量の大きい空気をインタクーラアウトレット配管で効率よく冷却できる。 Therefore, it is possible to increase the surface area where the traveling wind introduced into the vehicle from the front of the vehicle hits the intercooler outlet pipe, and the air having a large flow rate flowing through the large diameter portion can be efficiently cooled by the intercooler outlet pipe.
 この結果、インタクーラアウトレット配管を流れる空気の温度を走行風によってさらに低下させて、エンジンの吸気効率をより効果的に高めることができ、エンジンの出力をより効果的に向上できる。 As a result, the temperature of the air flowing through the intercooler outlet pipe is further lowered by the traveling wind, and the intake efficiency of the engine can be increased more effectively and the output of the engine can be improved more effectively.
 上記の第2の態様によれば、吸気導入管をサージタンクから車両の下方に延長させるとともに、車両の高さ方向において少なくとも補機の下部に延長させ、インタクーラアウトレット配管を、空気出口管部からマウント装置の下方および補機の下方を通して吸気導入管に接続した。 According to the second aspect, the intake air inlet pipe is extended from the surge tank to the lower side of the vehicle, and extended at least to the lower part of the auxiliary machine in the vehicle height direction, and the intercooler outlet pipe is connected to the air outlet pipe portion. To the intake pipe through the lower part of the mounting device and the auxiliary machine.
 このため、補機の側方から下側に亙って囲むようにインタクーラアウトレット配管および吸気導入管を設置でき、補機から上昇する熱にインタクーラアウトレット配管および吸気導入管が晒されることを防止できる。 For this reason, the intercooler outlet pipe and the intake pipe can be installed so as to surround the auxiliary machine from the side to the lower side, and the intercooler outlet pipe and the intake pipe are exposed to the heat rising from the auxiliary machine. Can be prevented.
 したがって、インタクーラで冷却された空気が加熱されることを防止でき、インタクーラアウトレット配管を流れる空気を低温に保つことができる。
 この結果、インタクーラで冷却された空気をインタクーラアウトレット配管から吸気マニホールドを通してエンジンに導入でき、エンジンの充填効率をより高めてエンジンの出力性能をより効果的に高めることができる。
Therefore, the air cooled by the intercooler can be prevented from being heated, and the air flowing through the intercooler outlet pipe can be kept at a low temperature.
As a result, the air cooled by the intercooler can be introduced into the engine from the intercooler outlet piping through the intake manifold, and the charging efficiency of the engine can be further increased and the output performance of the engine can be enhanced more effectively.
 また、車両の高さ方向において空気出口管部をマウント装置よりも上方に設置するとともに、補機をマウント装置よりも下方に設置し、インタクーラアウトレット配管を、空気出口管部からマウント装置の下方および補機の下方を通して吸気導入管に接続した。 In addition, the air outlet pipe is installed above the mounting device in the height direction of the vehicle, and the auxiliary machine is installed below the mounting device, and the intercooler outlet pipe is connected from the air outlet pipe to the bottom of the mounting device. And connected to the intake pipe through the lower part of the accessory.
 このため、車両の高さ方向においてインタクーラアウトレット配管を車両の前方(上流部)から後方(下流部)に向かって低く設置でき、車両の高さ方向においてインタクーラアウトレット配管の高さ方向の寸法を長くできる。 For this reason, the intercooler outlet pipe can be installed low in the vehicle height direction from the front (upstream part) to the rear (downstream part) of the vehicle, and the height direction dimension of the intercooler outlet pipe in the vehicle height direction. Can be long.
 したがって、車両の前方から車両に導入される走行風がインタクーラアウトレット配管に当たる表面積を増大でき、インタクーラアウトレット配管を効率よく冷却できる。この結果、インタクーラアウトレット配管を流れる空気の温度を走行風によってさらに低下でき、エンジンの充填効率をより効果的に高めることができる。 Therefore, the surface area where the traveling wind introduced into the vehicle from the front of the vehicle hits the intercooler outlet piping can be increased, and the intercooler outlet piping can be cooled efficiently. As a result, the temperature of the air flowing through the intercooler outlet pipe can be further reduced by the traveling wind, and the charging efficiency of the engine can be increased more effectively.
 また、インタクーラアウトレット配管の下流部に位置する大径部を、車両の高さ方向において上流部よりも低い位置に設置できるので、車両の底部(例えば、エンジンルームの底部)を流れる走行風が多い位置に大径部を設置できる。 Moreover, since the large diameter part located in the downstream part of an intercooler outlet piping can be installed in the position lower than an upstream part in the height direction of a vehicle, the traveling wind which flows through the bottom part (for example, bottom part of an engine room) of a vehicle Large diameter part can be installed at many positions.
 このため、より多くの走行風を表面積の大きい大径部により多く当てることができ、空気をより効果的に冷却することができる。したがって、エンジンの充填効率をより効果的に高めることができる。 For this reason, more traveling wind can be applied to the large-diameter portion having a large surface area, and the air can be cooled more effectively. Therefore, the charging efficiency of the engine can be increased more effectively.
 また、補機の下方に大径部が設けられるので、補機から上昇する熱に大径部が晒されることを防止できる。このため、インタクーラで冷却された空気が加熱されることを防止でき、エンジンに低温の空気を導入することができる。 Also, since the large diameter portion is provided below the auxiliary machine, it is possible to prevent the large diameter part from being exposed to the heat rising from the auxiliary machine. For this reason, the air cooled by the intercooler can be prevented from being heated, and low-temperature air can be introduced into the engine.
 また、補機の上方のスペースにインタクーラアウトレット配管が設置されないので、補機の上方のスペースを拡大できる。このため、上方から補機に容易にアクセスでき、エンジンに対して補機を容易に着脱できる。したがって、補機のメンテナンス作業の作業性を向上できる。 Also, since the intercooler outlet piping is not installed in the space above the auxiliary machine, the space above the auxiliary machine can be expanded. For this reason, the accessory can be easily accessed from above, and the accessory can be easily attached to and detached from the engine. Therefore, the workability of the maintenance work of the auxiliary machine can be improved.
 さらに、インタクーラアウトレット配管をマウント装置の下方を通過させることにより、インタクーラアウトレット配管がエンジンに取付けられた状態で、エンジンを下方から車体に組み付ける作業時に、インタクーラアウトレット配管に邪魔されることなく、エンジンを、マウント装置を介して車体に取付けることができる。このため、車体にエンジンを容易に組み付けることができる。 Furthermore, by passing the intercooler outlet piping below the mounting device, the intercooler outlet piping is not obstructed by the intercooler outlet piping when the engine is assembled to the vehicle body from below with the intercooler outlet piping attached to the engine. The engine can be attached to the vehicle body via a mounting device. For this reason, the engine can be easily assembled to the vehicle body.
 上記の第3の態様によれば、大径部の内径寸法が、大径部の長さ方向に亙って同一に形成されるので、大径部で吸気脈動が減衰されてしまうことを防止して、吸気脈動を最適化できる。このため、エンジンの通常運転域においてエンジンに吸入される空気量が低下することを防止して、エンジンの充填効率をより効果的に向上でき、エンジンの出力をより効果的に向上できる。 According to said 3rd aspect, since the internal diameter dimension of a large diameter part is formed uniformly over the length direction of a large diameter part, it prevents that an intake pulsation is attenuate | damped by a large diameter part. Thus, the intake pulsation can be optimized. For this reason, it is possible to prevent a reduction in the amount of air taken into the engine in the normal operating range of the engine, to improve the charging efficiency of the engine more effectively, and to improve the output of the engine more effectively.
 上記の第4の態様によれば、エンジンを上方から見た状態において、大径部が補機の下方側で補機の周囲に設置される。このため、大径部を緩やかなカーブを描く曲率半径にすれば、大径部を通過する空気の体積を増大させた状態で緩やかなカーブに沿ってより多くの空気をエンジンに導入できる。
 この結果、エンジンに吸入される空気量を増大させてエンジンの充填効率をより効果的に向上でき、エンジンの出力をより効果的に向上できる。
According to said 4th aspect, in the state which looked at the engine from the upper direction, a large diameter part is installed in the circumference | surroundings of an auxiliary machine in the downward side of an auxiliary machine. For this reason, if the large-diameter portion has a curvature radius that draws a gentle curve, more air can be introduced into the engine along the gentle curve with the volume of air passing through the large-diameter portion increased.
As a result, the amount of air taken into the engine can be increased to improve the charging efficiency of the engine more effectively, and the output of the engine can be improved more effectively.
 上記の第5の態様によれば、大径部を、直線部、傾斜部および第1の湾曲部および第2の湾曲部から構成することで、エンジンに導入される空気量を増加できるとともに、走行風が当たる大径部の表面積を増大できる。 According to said 5th aspect, while comprising a large diameter part from a linear part, an inclination part, a 1st curved part, and a 2nd curved part, while being able to increase the air quantity introduce | transduced into an engine, It is possible to increase the surface area of the large diameter portion where the traveling wind hits.
 また、大径部が、傾斜部から補機の下方側に向かって湾曲する第1の湾曲部と、第1の湾曲部に連続するとともに補機の下方を車幅方向に通過し、車両の前後方向でエンジンから後方に向かって湾曲した後、吸気導入管の下方側に向かって延在する第2の湾曲部とを含んで構成される。
 このため、インタクーラアウトレット配管の上流から下流に流れる空気を第1の湾曲部および第2の湾曲部を通過するときの遠心力によって勢いを保ったままでエンジンに導入できる。
In addition, the large-diameter portion is continuous with the first curved portion that curves from the inclined portion toward the lower side of the auxiliary device, and passes through the lower portion of the auxiliary device in the vehicle width direction. And a second curved portion that extends toward the lower side of the intake pipe after being bent rearward from the engine in the front-rear direction.
For this reason, the air flowing from the upstream to the downstream of the intercooler outlet pipe can be introduced into the engine while maintaining the momentum by the centrifugal force when passing through the first curved portion and the second curved portion.
 また、第2の湾曲部の下流部に、第2の湾曲部の上流から下流に向かって内径寸法が漸次縮小するテーパ部を形成し、テーパ部の下流端にテーパ部と吸気導入管とを接続する小径管部を形成し、テーパ部および小径管部とによって構成される大径部の下流部を湾曲形状に形成した。 In addition, a tapered portion whose inner diameter is gradually reduced from the upstream side of the second curved portion toward the downstream side is formed at the downstream portion of the second curved portion, and the tapered portion and the intake pipe are provided at the downstream end of the tapered portion. The small diameter pipe part to be connected was formed, and the downstream part of the large diameter part constituted by the tapered part and the small diameter pipe part was formed in a curved shape.
 このため、吸気導入管に空気を導入する手前において小径管部によって空気の流速を高めることができる。したがって、流速の高い空気をサージタンクに導入することができ、エンジンに導入される空気の充填効率により効果的に高めることができる。 For this reason, the flow velocity of air can be increased by the small-diameter pipe portion before air is introduced into the intake air introduction pipe. Therefore, air with a high flow rate can be introduced into the surge tank, and the efficiency of filling the air introduced into the engine can be effectively increased.
 以下、実施例2の実施形態について、図面を用いて説明する。
 図8~図13は、実施例2に係る一実施形態の過給機付きエンジンの吸気装置を示す図である。
Hereinafter, an embodiment of Example 2 will be described with reference to the drawings.
FIGS. 8 to 13 are views showing an intake device for an engine with a supercharger according to an embodiment of the present invention.
 まず、構成を説明する。
 図8において、車両101は、車体102を備えており、車体102は、車両101の前後方向に延在するとともに車幅方向に設置されるサイドフレーム102A、102Bを有する。
First, the configuration will be described.
In FIG. 8, a vehicle 101 includes a vehicle body 102, and the vehicle body 102 includes side frames 102 </ b> A and 102 </ b> B that extend in the front-rear direction of the vehicle 101 and are installed in the vehicle width direction.
 図8、図9において、車体102は、車両101の前後方向前方にダッシュパネル103を備えており、ダッシュパネル103は、車体102を、車両101の前後方向前方に設置されるエンジンルーム104と車両101の前後方向後方に設置されて搭乗者が搭乗する車室105とに区画する。以後、前方、後方等のような前と後とを表す表現は、車両101の前後方向に対する方向である。 8 and 9, the vehicle body 102 includes a dash panel 103 in front of the vehicle 101 in the front-rear direction, and the dash panel 103 includes an engine room 104 and a vehicle installed in front of the vehicle 101 in the front-rear direction. The vehicle is partitioned into a passenger compartment 105 that is installed behind the front-rear direction 101 and in which the passengers board. Hereinafter, expressions representing front and rear, such as front and rear, are directions with respect to the front-rear direction of the vehicle 101.
 エンジンルーム104にはエンジン106が設置されており、エンジン106は、車幅方向一端部106aに取付けられたマウント装置107を介してサイドフレーム102Aに支持される。 An engine 106 is installed in the engine room 104, and the engine 106 is supported by the side frame 102A via a mounting device 107 attached to one end 106a in the vehicle width direction.
 また、マウント装置107は、エンジン106の車幅方向一端部106aに締結する第1のマウントブラケット107aと、第1のマウントブラケット107aに連結して、サイドフレーム102A側に延びる第2のマウントブラケット107bと、第2のマウントブラケット107bに連結して、サイドフレーム102Aに取付けられるマウントインシュレータ部107cとを有する。 The mount device 107 includes a first mount bracket 107a that is fastened to one end 106a in the vehicle width direction of the engine 106, and a second mount bracket 107b that is connected to the first mount bracket 107a and extends toward the side frame 102A. And a mount insulator portion 107c connected to the second mount bracket 107b and attached to the side frame 102A.
 図10に示すように、エンジン106の車幅方向他端部106bには変速機108が設けられており、変速機108は、図示しないマウント装置を介してサイドフレーム102Bに支持される。ここで、エンジン106の車幅方向一端部106aは、実施例2のエンジン106の車幅方向端部を構成する。 As shown in FIG. 10, a transmission 108 is provided at the other end 106b in the vehicle width direction of the engine 106, and the transmission 108 is supported by the side frame 102B via a mount device (not shown). Here, the vehicle width direction one end portion 106a of the engine 106 constitutes the vehicle width direction end portion of the engine 106 of the second embodiment.
 図8、図9において、エンジン106には過給機109および吸気装置110が設けられている。図8~図10において、吸気装置110は、エンジン106の前方に設けられ、車両101の前方から空気を取り入れる吸気ダクト111と、吸気ダクト111の下流端に接続され、空気を浄化するエアクリーナ112と、エアクリーナ112によって浄化された空気を過給機109のコンプレッサハウジング109aに導入するエアクリーナアウトレット配管113とを備えている。 8 and 9, the engine 106 is provided with a supercharger 109 and an intake device 110. 8 to 10, the intake device 110 is provided in front of the engine 106, an intake duct 111 that takes in air from the front of the vehicle 101, and an air cleaner 112 that is connected to the downstream end of the intake duct 111 and purifies the air. And an air cleaner outlet pipe 113 for introducing the air purified by the air cleaner 112 into the compressor housing 109a of the supercharger 109.
 図8において、過給機109は、コンプレッサハウジング109aの内部に設けられた図示しないコンプレッサと、排気ガスの圧力によって回転する図示しないタービンを内蔵するタービンハウジング109bとを備えている。 8, the supercharger 109 includes a compressor (not shown) provided inside the compressor housing 109a and a turbine housing 109b containing a turbine (not shown) that is rotated by the pressure of the exhaust gas.
 また、吸気装置110は、インタクーラインレット配管114、インタクーラ115、インタクーラアウトレット配管116および吸気マニホールド117を備えている。 The intake device 110 includes an intercooler line 114, an intercooler 115, an intercooler outlet line 116, and an intake manifold 117.
 インタクーラインレット配管114の上流端は、過給機109のコンプレッサハウジング109aに接続されており、インタクーラインレット配管114の下流端は、インタクーラ115に接続されている。 The upstream end of the intercool line pipe 114 is connected to the compressor housing 109a of the supercharger 109, and the downstream end of the inter cool line pipe 114 is connected to the inter cooler 115.
 インタクーラ115にはインタクーラアウトレット配管116の上流端116aが接続されており、インタクーラアウトレット配管116の下流端116bは、吸気マニホールド117に接続されている。ここで、上流、下流とは空気の流れる方向に対して、上流、下流を表す。 The upstream end 116 a of the intercooler outlet pipe 116 is connected to the intercooler 115, and the downstream end 116 b of the intercooler outlet pipe 116 is connected to the intake manifold 117. Here, upstream and downstream represent upstream and downstream with respect to the direction of air flow.
 過給機109は、排気ガスの圧力を受けて回転するタービンと共に一体的に回転するコンプレッサによってエアクリーナアウトレット配管113からコンプレッサハウジング109aに導入される空気をインタクーラインレット配管114に過給する。 The supercharger 109 supercharges the air introduced into the compressor housing 109a from the air cleaner outlet pipe 113 to the intercooler line pipe 114 by a compressor that rotates integrally with a turbine that rotates under the pressure of exhaust gas.
 この過給された空気は、温度が上昇するので、この高温の空気は、インタクーラ115に導入されてインタクーラ115によって冷却される。これにより、空気の酸素密度が高められる。この酸素密度が高められた空気は、インタクーラアウトレット配管116から吸気マニホールド117を介してエンジン106の図示しない吸気ポートを介して燃焼室に導入される。なお、吸気ポートは、図示しない吸気バルブによって開閉される。 Since the temperature of the supercharged air rises, the hot air is introduced into the intercooler 115 and cooled by the intercooler 115. Thereby, the oxygen density of air is raised. The air having an increased oxygen density is introduced into the combustion chamber from the intercooler outlet pipe 116 through the intake manifold 117 and through an intake port (not shown) of the engine 106. The intake port is opened and closed by an intake valve (not shown).
 図9において、インタクーラ115は、エンジン106の前方に設置されており、インタクーラ115は、コア部118、アッパタンク119およびロアタンク120を備えている。コア部118は、過給機109から供給される空気を走行風によって冷却するものであり、空気が流通する図示しない流通部が図示しない走行風の流通路を介して上下方向または車幅方向に並んで設置されている。 9, the intercooler 115 is installed in front of the engine 106, and the intercooler 115 includes a core portion 118, an upper tank 119, and a lower tank 120. The core part 118 cools the air supplied from the supercharger 109 by the traveling wind, and a circulation part (not shown) through which the air circulates passes in the vertical direction or the vehicle width direction via a running wind flow path (not shown). It is installed side by side.
 ロアタンク120は、コア部118の下部に設けられており、ロアタンク120にはインタクーラインレット配管114が接続される空気入口管部120aが設けられている。ロアタンク120は、インタクーラインレット配管114から空気入口管部120aを通して導入される空気をコア部118に導入する。 The lower tank 120 is provided in the lower part of the core part 118, and the lower tank 120 is provided with an air inlet pipe part 120a to which the intercool line pipe 114 is connected. The lower tank 120 introduces air introduced from the intercool linelet pipe 114 through the air inlet pipe part 120 a into the core part 118.
 アッパタンク119は、コア部118の上部に設けられており、アッパタンク119にはインタクーラアウトレット配管116の上流端116aが接続される空気出口管部119aが設けられている(図8、図9参照)。 The upper tank 119 is provided in the upper part of the core part 118, and the upper tank 119 is provided with an air outlet pipe part 119a to which the upstream end 116a of the intercooler outlet pipe 116 is connected (see FIGS. 8 and 9). .
 アッパタンク119にはコア部118で冷却された空気が導入されるようになっており、アッパタンク119に導入される空気は、空気出口管部119aからインタクーラアウトレット配管116を介して吸気マニホールド117に導入される。 Air cooled by the core portion 118 is introduced into the upper tank 119, and the air introduced into the upper tank 119 is introduced from the air outlet pipe portion 119a into the intake manifold 117 via the intercooler outlet pipe 116. Is done.
 図11において、エンジン106の後部にはオルタネータ121が設けられており、エンジン106の車幅方向一端部106aにはウォータポンプ122が設けられている。 In FIG. 11, an alternator 121 is provided at the rear of the engine 106, and a water pump 122 is provided at one end 106 a in the vehicle width direction of the engine 106.
 オルタネータ121は、発電機を構成するものであり、図示しないロータおよびステータ等を備えている。ロータは、オルタネータ121のハウジング121Aに回転自在に支持されており、ロータの端部にはエンジン106の車幅方向一端部106aから外方に突出するオルタネータプーリ121Bが設けられている。このため、オルタネータ121は、作動時に高温の熱を発生する。本実施形態のオルタネータ121は、本発明の補機を構成する。 The alternator 121 constitutes a generator and includes a rotor and a stator (not shown). The rotor is rotatably supported by the housing 121A of the alternator 121, and an alternator pulley 121B that protrudes outward from one end 106a in the vehicle width direction of the engine 106 is provided at the end of the rotor. For this reason, the alternator 121 generates high-temperature heat during operation. The alternator 121 of this embodiment constitutes an auxiliary machine of the present invention.
 ウォータポンプ122は、例えば、図示しないインペラが取付けられる回転軸がエンジンの車幅方向一端部106aから外方に突出しており、この回転軸の端部にウォータポンププーリ122Aが取付けられる。 In the water pump 122, for example, a rotating shaft to which an impeller (not shown) is attached protrudes outward from one end 106a in the vehicle width direction of the engine, and a water pump pulley 122A is attached to the end of the rotating shaft.
 オルタネータプーリ121Bおよびウォータポンププーリ122Aにはタイミングベルト123が巻き掛けられている。タイミングベルト123は、クランクプーリ124に巻き掛けられており、クランクプーリ124は、図示しないクランクシャフトの端部に設けられ、エンジン106の車幅方向一端部106aから外方に突出している。 A timing belt 123 is wound around the alternator pulley 121B and the water pump pulley 122A. The timing belt 123 is wound around a crank pulley 124. The crank pulley 124 is provided at an end portion of a crankshaft (not shown) and protrudes outward from one end portion 106a in the vehicle width direction of the engine 106.
 これにより、オルタネータ121およびウォータポンプ122にはクランクシャフトの回転がタイミングベルト123を介して伝達され、オルタネータ121およびウォータポンプ122は、クランクシャフトの回転に同期して駆動される。 Thus, rotation of the crankshaft is transmitted to the alternator 121 and the water pump 122 via the timing belt 123, and the alternator 121 and the water pump 122 are driven in synchronization with the rotation of the crankshaft.
 図8~図10において、オルタネータ121は、吸気マニホールド117のサージタンク125の下方で、かつ変速機108と反対側のエンジン106の車幅方向一端部106a寄りに設置されており、車両101の高さ方向において、エンジン106の中央部に設置されている。 8 to 10, the alternator 121 is installed below the surge tank 125 of the intake manifold 117 and near the vehicle width direction one end portion 106a of the engine 106 opposite to the transmission 108. It is installed in the center of the engine 106 in the vertical direction.
 図10において、吸気マニホールド117は、エンジン106の後部に取付けられており、エンジン106に吸入空気を分配するサージタンク125およびサージタンク125の上流部に設けられた吸気導入管126を有する。ここで、図8、図9、図12において、矢印W1で示す小さい矢印は、空気の流れる方向を示している。
 図10に示すように、吸気導入管126は、サージタンク125から車両101の下方に延長しており、車両101の高さ方向においてオルタネータ121の下部121aに延長している。
In FIG. 10, the intake manifold 117 is attached to the rear portion of the engine 106, and includes a surge tank 125 that distributes intake air to the engine 106 and an intake introduction pipe 126 that is provided upstream of the surge tank 125. Here, in FIGS. 8, 9, and 12, a small arrow indicated by an arrow W1 indicates a direction in which air flows.
As shown in FIG. 10, the intake intake pipe 126 extends from the surge tank 125 to the lower side of the vehicle 101 and extends to the lower portion 121 a of the alternator 121 in the height direction of the vehicle 101.
 図8~図11において、インタクーラアウトレット配管116は、インタクーラ115の空気出口管部119aからエンジン106の車幅方向一端部106aに沿って延びた後、下流端116bが吸気導入管126に連結されている。 8 to 11, the intercooler outlet pipe 116 extends from the air outlet pipe portion 119a of the intercooler 115 along the vehicle width direction one end portion 106a of the engine 106, and then the downstream end 116b is connected to the intake air introduction pipe 126. ing.
 図11に示すように、車両101の高さ方向において空気出口管部119aは、マウント装置107よりも上方に設置されており、オルタネータ121は、マウント装置107を構成する第1のマウントブラケット107aまたは第2のマウントブラケット107bよりも下方に設置されている。なお、図11において、空気出口管部119aの高さを符号Tで示す。 As shown in FIG. 11, the air outlet pipe portion 119 a is installed above the mounting device 107 in the height direction of the vehicle 101, and the alternator 121 includes the first mounting bracket 107 a or the mounting device 107. It is installed below the second mount bracket 107b. In addition, in FIG. 11, the height of the air outlet pipe part 119a is shown with the code | symbol T. In FIG.
 インタクーラアウトレット配管116は、空気出口管部119aからマウント装置107を構成する第1のマウントブラケット107aまたは第2のマウントブラケット107bの下方を通過した後、オルタネータ121の下方を通して吸気導入管126に接続されている。 The intercooler outlet pipe 116 passes from below the first mount bracket 107 a or the second mount bracket 107 b constituting the mount device 107 from the air outlet pipe portion 119 a and then connects to the intake inlet pipe 126 through the lower portion of the alternator 121. Has been.
 インタクーラアウトレット配管116は、インタクーラアウトレット配管116の内径寸法が大きい大径部116Aと大径部116Aよりも内径寸法が小さい小径部116Bとを含んで構成されている。 The intercooler outlet piping 116 is configured to include a large diameter portion 116A having a larger inner diameter size than the intercooler outlet piping 116 and a small diameter portion 116B having a smaller inner diameter size than the large diameter portion 116A.
 大径部116Aは、インタクーラアウトレット配管116の長さ方向中央部Cから吸気導入管126に接続される下流端116bまでの間に形成されており、図11、図12に示すように、エンジン106を上方から見た状態において、大径部116Aは、オルタネータ121の下方側でオルタネータ121の周囲に設置される。 The large-diameter portion 116A is formed between the central portion C in the longitudinal direction of the intercooler outlet pipe 116 and the downstream end 116b connected to the intake air introduction pipe 126. As shown in FIGS. In a state where 106 is viewed from above, the large diameter portion 116 </ b> A is installed around the alternator 121 on the lower side of the alternator 121.
 また、車両101の高さ方向において、空気出口管部119aは、マウント装置107よりも上方に設置されており、オルタネータ121は、第1のマウントブラケット107aまたは第2のマウントブラケット107bよりも下方に設置されている。 Further, in the height direction of the vehicle 101, the air outlet pipe portion 119a is installed above the mount device 107, and the alternator 121 is below the first mount bracket 107a or the second mount bracket 107b. is set up.
 インタクーラアウトレット配管116は、空気出口管部119aから第1のマウントブラケット107aまたは第2のマウントブラケット107bの下方およびオルタネータ121の下方を通して吸気導入管126に接続されている。 The intercooler outlet pipe 116 is connected from the air outlet pipe portion 119a to the intake inlet pipe 126 through the first mount bracket 107a or the second mount bracket 107b and the alternator 121.
 大径部116Aは、第1のマウントブラケット107aまたは第2のマウントブラケット107bの下方側で、かつマウント装置107の後部からオルタネータ121の下方を通過して、吸気導入管126から下方に離隔した位置までの間に形成されており、この範囲に設置される大径部116Aの内径寸法は、大径部116Aの長さ方向に亙って同一に形成される。 The large-diameter portion 116A is located below the first mount bracket 107a or the second mount bracket 107b and from the rear of the mount device 107 below the alternator 121 and spaced downward from the intake introduction pipe 126. The inner diameter dimension of the large diameter portion 116A installed in this range is the same over the length direction of the large diameter portion 116A.
 図11において、大径部116Aは、テーパ状の先端部を介して小径部116Bに連結され、オルタネータ121の上端部121bよりも低い位置で、かつマウント装置107を構成する第1のマウントブラケット107aまたは第2のマウントブラケット107bの下方を通過する直線部116cと、直線部116cに連続し、直線部116cからオルタネータ121の下方側に向かって延在する傾斜部116dとを備えている。 In FIG. 11, the large diameter portion 116 </ b> A is connected to the small diameter portion 116 </ b> B via a tapered tip portion, and is located at a position lower than the upper end portion 121 b of the alternator 121 and constitutes the mounting device 107. Alternatively, a straight portion 116 c that passes below the second mount bracket 107 b and an inclined portion 116 d that is continuous with the straight portion 116 c and extends from the straight portion 116 c toward the lower side of the alternator 121 are provided.
 ここで、図11において、オルタネータ121の上端部121bと直線部116cの上端部116uとの位置関係を分かり易くするために、オルタネータ121の上端部121bと直線部116cの上端部116uとを引き出し線で示す。 Here, in FIG. 11, in order to make it easy to understand the positional relationship between the upper end portion 121b of the alternator 121 and the upper end portion 116u of the linear portion 116c, the upper end portion 121b of the alternator 121 and the upper end portion 116u of the linear portion 116c are drawn out. It shows with.
 また、大径部116Aは、傾斜部116dに連続し、傾斜部116dからオルタネータ121の下方側に向かって湾曲する湾曲部116eと、湾曲部116eに連続するとともにオルタネータ121の下方を車幅方向に通過し、エンジン106の後方に向かって湾曲した後、吸気導入管126の下方側に向かって延在する湾曲部116fとを備えている。ここで、湾曲部116eは、本発明の第1の湾曲部を構成し、湾曲部116fは、実施例2の第2の湾曲部を構成する。 The large-diameter portion 116A is continuous with the inclined portion 116d and is curved toward the lower side of the alternator 121 from the inclined portion 116d. The large-diameter portion 116A is continuous with the curved portion 116e and extends below the alternator 121 in the vehicle width direction. A curved portion 116 f that passes and curves toward the rear of the engine 106 and then extends toward the lower side of the intake air intake pipe 126 is provided. Here, the bending portion 116e constitutes the first bending portion of the present invention, and the bending portion 116f constitutes the second bending portion of the second embodiment.
 図12において、湾曲部116fの下流部には湾曲部116fの上流から下流に向かって内径寸法が漸次縮小するテーパ部116gが形成されており、テーパ部116gの下流端にはテーパ部116gと吸気導入管126とを接続する小径管部116hが形成されている。 In FIG. 12, a tapered portion 116g whose inner diameter dimension gradually decreases from the upstream side to the downstream side of the curved portion 116f is formed at the downstream portion of the curved portion 116f, and the tapered portion 116g and the intake air are formed at the downstream end of the tapered portion 116g. A small-diameter pipe portion 116h that connects the introduction pipe 126 is formed.
 これにより、本実施形態の大径部116Aは、テーパ部116gおよび小径管部116hによって構成される下流部が湾曲形状に形成される。 Thereby, in the large diameter portion 116A of the present embodiment, the downstream portion constituted by the tapered portion 116g and the small diameter tube portion 116h is formed in a curved shape.
 なお、大径部116Aは、大径部116Aの上流端から下流端に向かって一体で成形されており、小径管部116hの下流端がインタクーラアウトレット配管116の下流端116bを構成する。また、小径部116Bの上流端がインタクーラアウトレット配管116の上流端116aを構成する。図11において、直線部116cから傾斜部116d、湾曲部116e、116fまでの範囲を示す。 The large diameter portion 116A is integrally formed from the upstream end of the large diameter portion 116A toward the downstream end, and the downstream end of the small diameter pipe portion 116h constitutes the downstream end 116b of the intercooler outlet pipe 116. Further, the upstream end of the small diameter portion 116B constitutes the upstream end 116a of the intercooler outlet pipe 116. In FIG. 11, the range from the straight part 116c to the inclined part 116d and the curved parts 116e, 116f is shown.
 次に、作用を説明する。
 2気筒エンジン等において、ピストンの位相が360°で上下動する場合には、吸気ポートの開閉タイミングが同一となって、所謂、間欠吸気が行われ、吸気脈動が発生し、吸気脈動に起因する圧力波が発生する。
Next, the operation will be described.
In a two-cylinder engine or the like, when the piston phase moves up and down at 360 °, the intake port opening / closing timing is the same, so-called intermittent intake is performed, and intake pulsation occurs, resulting from intake pulsation. A pressure wave is generated.
 この吸気脈動は、吸気バルブの開閉で反射波が発生し、反射波が吸気マニホールド117からインタクーラアウトレット配管116を通ってインタクーラ115に流れ、インタクーラ115の空気出口管部119aで跳ね返ることで定在波が発生する。 This intake pulsation is generated when a reflected wave is generated by opening and closing the intake valve, and the reflected wave flows from the intake manifold 117 through the intercooler outlet pipe 116 to the intercooler 115 and rebounds at the air outlet pipe portion 119a of the intercooler 115. A wave is generated.
 この定在波により、インタクーラアウトレット配管116がエンジン106の通常回転域(例えば、3000~4500rpm)において共鳴すると、インタクーラアウトレット配管116の下流部の吸気抵抗が増大してしまい、エンジン106に吸入される空気量が低下する。これにより、エンジン106の通常回転域でエンジン106の充填効率が低下してエンジン106の出力が低下するおそれかある。 When the intercooler outlet piping 116 resonates in the normal rotation range (for example, 3000 to 4500 rpm) of the engine 106 due to this standing wave, the intake resistance in the downstream portion of the intercooler outlet piping 116 increases and is sucked into the engine 106. The amount of air that is produced decreases. As a result, the charging efficiency of the engine 106 may decrease in the normal rotation range of the engine 106 and the output of the engine 106 may decrease.
 これに対して、本実施形態の吸気装置110によれば、インタクーラアウトレット配管116を、インタクーラアウトレット配管116の内径寸法が大きい大径部116Aと大径部116Aよりも内径寸法が小さい小径部116Bとを含んで構成し、大径部116Aを、インタクーラアウトレット配管116の長さ方向中央部Cから吸気導入管126に接続される下流端116bまでの間に形成した。 On the other hand, according to the intake device 110 of the present embodiment, the intercooler outlet pipe 116 is divided into a large diameter part 116A having a large inner diameter dimension and a small diameter part having a smaller inner diameter dimension than the large diameter part 116A. 116B, and the large diameter portion 116A is formed from the central portion C in the longitudinal direction of the intercooler outlet pipe 116 to the downstream end 116b connected to the intake air introduction pipe 126.
 このため、吸気脈動をエンジン106の高回転域にずらすことができ、吸気脈動を最適化できる。すなわち、本実施形態の吸気装置110は、インタクーラアウトレット配管116に大径部116Aを設け、大径部116Aの内径寸法や長さ寸法を拡大することで、インタクーラアウトレット配管116の固有振動数を高めて、固有振動数をエンジン106の高回転域にずらすことができる。 Therefore, the intake pulsation can be shifted to the high rotation range of the engine 106, and the intake pulsation can be optimized. That is, in the intake device 110 of the present embodiment, the intercooler outlet pipe 116 is provided with a large diameter portion 116A, and the natural frequency of the intercooler outlet pipe 116 is increased by increasing the inner diameter dimension and the length dimension of the large diameter section 116A. And the natural frequency can be shifted to a high rotation range of the engine 106.
 また、吸気脈動は、インタクーラアウトレット配管116の内部で発生する定在波が圧力波となり、インタクーラアウトレット配管116の下流部に大径部116Aを設けた場合に、吸気バルブから反射する反射波の減衰量の低下を抑えて、インタクーラアウトレット配管116を通してインタクーラ115の空気出口管部119aに反射波を伝達することができ、吸気脈動をエンジン106の高回転域にずらすことができる。 The intake pulsation is a reflected wave reflected from the intake valve when a standing wave generated inside the intercooler outlet pipe 116 becomes a pressure wave and a large-diameter portion 116A is provided downstream of the intercooler outlet pipe 116. Therefore, the reflected wave can be transmitted to the air outlet pipe portion 119a of the intercooler 115 through the intercooler outlet pipe 116, and the intake pulsation can be shifted to the high rotation range of the engine 106.
 これに対して、インタクーラアウトレット配管の内径寸法が同一であると、本実施形態の大径部116Aを有するインタクーラアウトレット配管よりも共鳴周波数が低くなり、エンジン106の通常回転域に吸気脈動がずれてしまう。 In contrast, if the inner diameter of the intercooler outlet pipe is the same, the resonance frequency is lower than that of the intercooler outlet pipe having the large diameter portion 116A of the present embodiment, and intake pulsation is generated in the normal rotation region of the engine 106. It will shift.
 また、大径部をインタクーラアウトレット配管116の上流部に設けると、吸気バルブによって生じる反射波の圧力が、小径部から大径部に変化するインタクーラアウトレット配管の部位で急激に下がり、インタクーラアウトレット配管116の上流部に到達するまでに反射波が減衰してしまう。 Further, when the large diameter portion is provided upstream of the intercooler outlet pipe 116, the pressure of the reflected wave generated by the intake valve suddenly decreases at the portion of the intercooler outlet pipe where the small diameter portion changes to the large diameter portion. The reflected wave attenuates before reaching the upstream portion of the outlet pipe 116.
 このように反射波が減衰してしまうと、吸気脈動をエンジン106の高回転域にずらすことができず、しかも、インタクーラアウトレット配管の共鳴周波数が通常回転域にあるため、通常回転域で吸気脈動が共鳴してしまい、インタクーラアウトレット配管の下流で吸気抵抗が大きくなる。 If the reflected wave is attenuated in this way, the intake pulsation cannot be shifted to the high rotation range of the engine 106, and the resonance frequency of the intercooler outlet pipe is in the normal rotation range. The pulsation resonates and intake resistance increases downstream of the intercooler outlet pipe.
 図13は、内径寸法が一定の従来のインタクーラアウトレット配管と、内径寸法が異なる本実施形態のインタクーラアウトレット配管116とにおけるエンジン回転数(rpm)とエンジン106の充填効率(%)とを、実験によって測定した結果を示す図である。 FIG. 13 shows the engine speed (rpm) and the charging efficiency (%) of the engine 106 in a conventional intercooler outlet pipe having a constant inner diameter dimension and the intercooler outlet pipe 116 of the present embodiment having a different inner diameter dimension. It is a figure which shows the result measured by experiment.
 図13から明らかなように、内径寸法が同一のインタクーラアウトレット配管を用いた場合(矢印Aで示す)よりも、下流部に大径部116Aを有するインタクーラアウトレット配管116を用いた場合(矢印Bで示す)の方が、エンジン106の高回転域においてエンジン106の充填効率を、矢印Cで示す分だけ向上することが証明された。 As apparent from FIG. 13, when the intercooler outlet pipe 116 having the large-diameter portion 116 </ b> A in the downstream portion is used (arrow) than when the intercooler outlet pipe having the same inner diameter is used (indicated by the arrow A). It is proved that the charging efficiency of the engine 106 is improved by the amount indicated by the arrow C in the high rotation range of the engine 106.
 このように本実施形態の吸気装置110は、インタクーラアウトレット配管116の固有振動数を高めること、および吸気バルブから反射する反射波の減衰量の低下を抑えてインタクーラ115の空気出口管部119aに反射波を伝達することができる。 As described above, the intake device 110 of the present embodiment increases the natural frequency of the intercooler outlet pipe 116 and suppresses the decrease in the attenuation amount of the reflected wave reflected from the intake valve, so that the air outlet pipe portion 119a of the intercooler 115 is provided. A reflected wave can be transmitted.
 これにより、定在波とインタクーラアウトレット配管116の大径部116Aとの共鳴点を高回転領域に移動させて、エンジン106の通常回転域でインタクーラ115の下流の吸気抵抗を低下させることができる。この結果、エンジン106の通常回転域においてエンジン106に吸入される空気量が低下することを防止して、エンジン106の充填効率を向上でき、エンジン106の出力を向上できる。 As a result, the resonance point between the standing wave and the large diameter portion 116A of the intercooler outlet pipe 116 can be moved to the high rotation region, and the intake resistance downstream of the intercooler 115 can be reduced in the normal rotation region of the engine 106. . As a result, the amount of air taken into the engine 106 in the normal rotation range of the engine 106 can be prevented, the charging efficiency of the engine 106 can be improved, and the output of the engine 106 can be improved.
 一方、本実施形態の吸気装置110において、インタクーラ115は、エンジン106の前方に設置されており、吸気マニホールド117は、エンジン106の後部に設置されている。また、エンジン106の車幅方向一端部106aには作動時に高温の熱を発生するオルタネータ121が設置されている。 On the other hand, in the intake device 110 of the present embodiment, the intercooler 115 is installed in front of the engine 106, and the intake manifold 117 is installed in the rear part of the engine 106. An alternator 121 that generates high-temperature heat during operation is installed at one end 106a of the engine 106 in the vehicle width direction.
 このため、インタクーラアウトレット配管116は、エンジン106の前方から車幅方向一端部106aを通してエンジン106の後方にレイアウトする必要がある。ところが、エンジン106の運転時に、オルタネータ121から発生して上昇する熱(図10に矢印Hで示す)がオルタネータ121の上方に滞留しており、インタクーラアウトレット配管116をオルタネータ121の上方に設置すると、インタクーラ115によって冷却された空気が上方に滞留する熱によって加熱されるおそれがある。 Therefore, the intercooler outlet pipe 116 needs to be laid out from the front of the engine 106 to the rear of the engine 106 through the vehicle width direction one end 106a. However, when the engine 106 is operated, the heat generated by the alternator 121 and rising (shown by an arrow H in FIG. 10) stays above the alternator 121, and the intercooler outlet pipe 116 is installed above the alternator 121. The air cooled by the intercooler 115 may be heated by the heat that stays upward.
 これに対して、本実施形態の吸気装置110によれば、インタクーラアウトレット配管116の下流部に大径部116Aを設けたので、インタクーラアウトレット配管116の下流部の表面積を増大できるとともにインタクーラアウトレット配管116の下流部の内径寸法を増大できる。 In contrast, according to the intake device 110 of the present embodiment, since the large diameter portion 116A is provided in the downstream portion of the intercooler outlet pipe 116, the surface area of the downstream portion of the intercooler outlet pipe 116 can be increased and the intercooler. The inner diameter of the downstream part of the outlet pipe 116 can be increased.
 このため、車両101の前方から車両101に導入される走行風W(図9、図11参照)がインタクーラアウトレット配管116に当たる表面積を増大でき、大径部116Aを流れる流量の大きい空気をインタクーラアウトレット配管116で効率よく冷却できる。 For this reason, the surface area on which the traveling wind W (see FIGS. 9 and 11) introduced into the vehicle 101 from the front of the vehicle 101 hits the intercooler outlet pipe 116 can be increased, and the air having a large flow rate flowing through the large diameter portion 116A is intercooled. The outlet pipe 116 can efficiently cool.
 この結果、インタクーラアウトレット配管116を流れる空気の温度を走行風Wによってさらに低下させて、エンジンの吸気効率をより効果的に高めることができ、エンジン106の出力をより効果的に向上できる。 As a result, the temperature of the air flowing through the intercooler outlet pipe 116 can be further lowered by the traveling wind W, the intake efficiency of the engine can be increased more effectively, and the output of the engine 106 can be improved more effectively.
 また、本実施形態の吸気装置110によれば、吸気導入管126をサージタンク125から車両101の下方に延長させるとともに、車両101の高さ方向においてオルタネータ121の下部に延長させ、インタクーラアウトレット配管116を、空気出口管部119aからマウント装置を構成する第1のマウントブラケット107aまたは第2のマウントブラケット107bの下方およびオルタネータ121の下方を通して吸気導入管126に接続した。 In addition, according to the intake device 110 of the present embodiment, the intake intake pipe 126 is extended from the surge tank 125 to the lower side of the vehicle 101 and is extended to the lower part of the alternator 121 in the height direction of the vehicle 101 to provide intercooler outlet piping. 116 is connected to the intake air introduction pipe 126 from the air outlet pipe portion 119a through the lower portion of the first mount bracket 107a or the second mount bracket 107b constituting the mount device and the lower portion of the alternator 121.
 このため、オルタネータ121の側方から下側に亙って囲むようにインタクーラアウトレット配管116および吸気導入管126を設置でき、オルタネータ121から上昇する熱にインタクーラアウトレット配管116および吸気導入管126が晒されることを防止できる。したがって、インタクーラ115で冷却された空気が加熱されることを防止でき、インタクーラアウトレット配管116を流れる空気を低温に保つことができる。 For this reason, the intercooler outlet pipe 116 and the intake inlet pipe 126 can be installed so as to surround the alternator 121 from the side to the lower side, and the intercooler outlet pipe 116 and the intake inlet pipe 126 are heated by the heat rising from the alternator 121. It can be prevented from being exposed. Therefore, the air cooled by the intercooler 115 can be prevented from being heated, and the air flowing through the intercooler outlet pipe 116 can be kept at a low temperature.
 この結果、インタクーラ115で冷却された空気をインタクーラアウトレット配管116から吸気マニホールド117を通してエンジン106に導入でき、エンジン106の充填効率を高めてエンジン106の出力性能を高めることができる。 As a result, the air cooled by the intercooler 115 can be introduced into the engine 106 from the intercooler outlet pipe 116 through the intake manifold 117, so that the charging efficiency of the engine 106 can be enhanced and the output performance of the engine 106 can be enhanced.
 また、車両101の高さ方向において空気出口管部119aを第1のマウントブラケット107aまたは第2のマウントブラケット107bよりも上方に設置するとともに、オルタネータ121を第1のマウントブラケット107aまたは第2のマウントブラケット107bよりも下方に設置し、インタクーラアウトレット配管116を、空気出口管部119aから第1のマウントブラケット107aまたは第2のマウントブラケット107bの下方およびオルタネータ121の下方を通して吸気導入管126に接続した。 In addition, the air outlet pipe portion 119a is installed above the first mount bracket 107a or the second mount bracket 107b in the height direction of the vehicle 101, and the alternator 121 is installed in the first mount bracket 107a or the second mount. Installed below the bracket 107b, the intercooler outlet pipe 116 is connected from the air outlet pipe portion 119a to the intake inlet pipe 126 through the first mount bracket 107a or the second mount bracket 107b and the alternator 121. .
 このため、車両101の高さ方向においてインタクーラアウトレット配管116を車両の前方(上流部)から後方(下流部)に向かって低く設置でき、車両101の高さ方向においてインタクーラアウトレット配管116の高さ方向の寸法を長くできる。 For this reason, the intercooler outlet piping 116 can be installed low in the height direction of the vehicle 101 from the front (upstream portion) to the rear (downstream portion) of the vehicle, and the height of the intercooler outlet piping 116 in the height direction of the vehicle 101. The vertical dimension can be increased.
 したがって、車両101の前方から車両101に導入される走行風Wがインタクーラアウトレット配管116に当たる表面積を増大でき、インタクーラアウトレット配管116を効率よく冷却できる。この結果、インタクーラアウトレット配管116を流れる空気の温度を走行風Wによってさらに低下でき、エンジン106の充填効率をより効果的に高めることができる。 Therefore, the surface area where the traveling wind W introduced into the vehicle 101 from the front of the vehicle 101 hits the intercooler outlet pipe 116 can be increased, and the intercooler outlet pipe 116 can be efficiently cooled. As a result, the temperature of the air flowing through the intercooler outlet pipe 116 can be further reduced by the traveling wind W, and the charging efficiency of the engine 106 can be increased more effectively.
 また、インタクーラアウトレット配管116の下流部に位置する大径部116Aを、車両101の高さ方向において上流部よりも低い位置に設置できるので、エンジンルーム104の底部を流れる走行風が多い位置に大径部116Aを設置できる。このため、より多くの走行風を表面積の大きい大径部116Aにより多く当てることができ、空気をより効果的に冷却することができる。したがって、エンジン106の充填効率をより効果的に高めることができる。 Further, since the large-diameter portion 116A positioned at the downstream portion of the intercooler outlet pipe 116 can be installed at a position lower than the upstream portion in the height direction of the vehicle 101, the traveling wind flowing through the bottom of the engine room 104 is located at a large position. The large diameter portion 116A can be installed. For this reason, more traveling wind can be applied more to the large diameter part 116A with a large surface area, and air can be cooled more effectively. Therefore, the charging efficiency of the engine 106 can be increased more effectively.
 また、オルタネータ121の下方に大径部116Aが設けられるので、オルタネータ121から上昇する熱に大径部116Aが晒されることを防止できる。インタクーラ115で冷却された空気が加熱されることを防止でき、エンジン106に低温の空気を導入することができる。 Also, since the large diameter portion 116A is provided below the alternator 121, it is possible to prevent the large diameter portion 116A from being exposed to heat rising from the alternator 121. The air cooled by the intercooler 115 can be prevented from being heated, and low-temperature air can be introduced into the engine 106.
 また、オルタネータ121の上方のスペースにインタクーラアウトレット配管116が設置されないので、オルタネータ121の上方のスペースを拡大できる。このため、上方からオルタネータ121に容易にアクセスでき、エンジン106に対してオルタネータ121を容易に着脱できる。したがって、オルタネータ121のメンテナンス作業の作業性を向上できる。 Also, since the intercooler outlet pipe 116 is not installed in the space above the alternator 121, the space above the alternator 121 can be expanded. Therefore, the alternator 121 can be easily accessed from above, and the alternator 121 can be easily attached to and detached from the engine 106. Therefore, the workability of the maintenance work of the alternator 121 can be improved.
 さらに、インタクーラアウトレット配管116を第1のマウントブラケット107aまたは第2のマウントブラケット107bの下方を通過させるようにした。これにより、インタクーラアウトレット配管116がエンジン106に取付けられた状態で、エンジン106を下方から車体102に組み付ける作業時に、インタクーラアウトレット配管116に邪魔されることなく、エンジン106に設けられた第1のマウントブラケット107aを、マウントインシュレータ部107cに連結された第2のマウントブラケット107bに向けることで、エンジン106を、マウント装置107を介してサイドフレーム102Aに取付けることができる。このため、車体102にエンジン106を容易に組み付けることができる。 Further, the intercooler outlet pipe 116 is allowed to pass under the first mount bracket 107a or the second mount bracket 107b. As a result, when the intercooler outlet pipe 116 is attached to the engine 106, when the engine 106 is assembled to the vehicle body 102 from below, the intercooler outlet pipe 116 is not obstructed by the intercooler outlet pipe 116. The engine 106 can be attached to the side frame 102 </ b> A via the mount device 107 by directing the mount bracket 107 a toward the second mount bracket 107 b connected to the mount insulator 107 c. For this reason, the engine 106 can be easily assembled to the vehicle body 102.
 また、本実施形態の吸気装置110によれば、大径部116Aの内径寸法が、大径部116Aの長さ方向に亙って同一に形成されるので、大径部116Aで吸気脈動が減衰されてしまうことを防止して、吸気脈動を最適化できる。このため、エンジン106の通常運転域において、エンジン106に吸入される空気量が低下することを防止して、エンジン106の充填効率をより効果的に向上でき、エンジン106の出力をより効果的に向上できる。 Further, according to the intake device 110 of the present embodiment, the inner diameter dimension of the large diameter portion 116A is formed to be the same over the length direction of the large diameter portion 116A, so that the intake pulsation is attenuated by the large diameter portion 116A. It is possible to optimize the intake air pulsation. For this reason, in the normal operation region of the engine 106, the amount of air taken into the engine 106 can be prevented from decreasing, the charging efficiency of the engine 106 can be improved more effectively, and the output of the engine 106 can be more effectively improved. It can be improved.
 また、本実施形態の吸気装置110によれば、エンジン106を上方から見た状態において、大径部116Aがオルタネータ121の下方側でオルタネータ121の周囲に設置される。このため、大径部116Aを緩やかなカーブを描く曲率半径にすれば、大径部116Aを通過する空気の体積を増大させた状態で緩やかなカーブに沿ってより多くの空気をエンジン106に導入できる。
 この結果、エンジン106に吸入される空気量を増大させてエンジン106の充填効率をより効果的に向上でき、エンジン106の出力をより効果的に向上できる。
Further, according to the intake device 110 of the present embodiment, the large-diameter portion 116A is installed around the alternator 121 on the lower side of the alternator 121 when the engine 106 is viewed from above. Therefore, if the large-diameter portion 116A has a curvature radius that draws a gentle curve, more air is introduced into the engine 106 along the gentle curve with the volume of air passing through the large-diameter portion 116A increased. it can.
As a result, the amount of air taken into the engine 106 can be increased, the charging efficiency of the engine 106 can be improved more effectively, and the output of the engine 106 can be improved more effectively.
 また、本実施形態によれば、大径部116Aを、直線部116c、傾斜部116dおよび湾曲部116e、116fから構成することで、エンジン106に導入される空気量を増加できるとともに、走行風が当たる大径部116Aの表面積を増大できる。 Further, according to the present embodiment, the large-diameter portion 116A includes the straight portion 116c, the inclined portion 116d, and the curved portions 116e and 116f, so that the amount of air introduced into the engine 106 can be increased and the traveling wind can be increased. The surface area of the large diameter portion 116A can be increased.
 また、大径部116Aが傾斜部116dからオルタネータ121の下方側に向かって湾曲する湾曲部116dと、湾曲部116dに連続するとともにオルタネータ121の下方を車幅方向に通過し、車両101の前後方向でエンジン106から後方に向かって湾曲した後、吸気導入管126の下方側に向かって延在する湾曲部116fとを含んで構成される。
 このため、インタクーラアウトレット配管116の上流から下流に流れる空気を湾曲部116e、116fを通過するときの遠心力によって勢いを保ったままでエンジン106に導入できる。
In addition, the large-diameter portion 116A is curved from the inclined portion 116d toward the lower side of the alternator 121, continues to the curved portion 116d, and passes below the alternator 121 in the vehicle width direction. And a curved portion 116 f extending downward from the intake pipe 126 after being curved rearward from the engine 106.
For this reason, the air flowing from the upstream to the downstream of the intercooler outlet pipe 116 can be introduced into the engine 106 while maintaining the momentum by the centrifugal force when passing through the curved portions 116e and 116f.
 また、湾曲部116fの下流部に、湾曲部116fの上流から下流に向かって内径寸法が漸次縮小するテーパ部116gを形成し、テーパ部116gの下流端にテーパ部116gと吸気導入管126とを接続する小径管部116hを形成し、テーパ部116gおよび小径管部116hとによって構成される大径部116Aの下流部を湾曲形状に形成した。 In addition, a tapered portion 116g whose inner diameter dimension gradually decreases from the upstream side to the downstream side of the curved portion 116f is formed at the downstream portion of the curved portion 116f, and the tapered portion 116g and the intake air intake pipe 126 are provided at the downstream end of the tapered portion 116g. The small-diameter pipe part 116h to be connected was formed, and the downstream part of the large-diameter part 116A constituted by the tapered part 116g and the small-diameter pipe part 116h was formed in a curved shape.
 このため、吸気導入管126に空気を導入する手前において小径管部116hによって空気の流速を高めることができる。したがって、流速の高い空気をサージタンク125に導入することができ、エンジン106に導入される空気の充填効率をより効果的に高めることができる。
 なお、本実施形態の吸気装置110において、補機をオルタネータ121から構成したが、熱を発生する補機であれば、オルタネータ121に限定されるものではない。
For this reason, the air flow velocity can be increased by the small-diameter pipe portion 116 h before air is introduced into the intake air introduction pipe 126. Therefore, air having a high flow velocity can be introduced into the surge tank 125, and the charging efficiency of air introduced into the engine 106 can be more effectively increased.
In addition, in the intake device 110 of the present embodiment, the auxiliary machine is configured by the alternator 121. However, the auxiliary machine is not limited to the alternator 121 as long as the auxiliary machine generates heat.
 実施例2の実施形態を開示したが、当業者によっては実施例2の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正および等価物が次の請求項に含まれることが意図されている。 Although the embodiment of the second embodiment has been disclosed, it is obvious that a person skilled in the art can make changes without departing from the scope of the second embodiment. All such modifications and equivalents are intended to be included in the following claims.
 実施例3は、EGRバルブおよびEGRクーラを含んだ補機をエンジンに取り付けた構造に関する。 Example 3 relates to a structure in which an auxiliary machine including an EGR valve and an EGR cooler is attached to an engine.
 一般に、自動車等の車両のエンジンには、EGR装置(Exhaust Gas Recirculation装置)等の補機が設けられている。このEGR装置は、エンジンの燃焼室から排気通路に排出される燃焼後の排気の一部を、EGR配管(パイプ)を介して吸気配管に導き、吸気配管を流れる吸気と混合させて燃焼室に還流させるようになっている。 Generally, an auxiliary engine such as an EGR device (Exhaust Gas Recirculation device) is provided in an engine of a vehicle such as an automobile. In this EGR device, a part of the exhaust gas after combustion discharged from the combustion chamber of the engine to the exhaust passage is guided to the intake pipe through the EGR pipe (pipe), and mixed with the intake air flowing through the intake pipe to enter the combustion chamber. It is designed to reflux.
 EGR配管を流れる排気ガスの流量は、EGR配管に設けられるEGRバルブにより調整される。このEGR装置によって、主として排気中の窒素酸化物(NOx)を低減させることができ、エンジンの部分負荷時における燃費向上を図ることができる。 The flow rate of the exhaust gas flowing through the EGR pipe is adjusted by an EGR valve provided in the EGR pipe. With this EGR device, it is possible to mainly reduce nitrogen oxide (NOx) in the exhaust gas, and to improve fuel efficiency when the engine is partially loaded.
 従来、この種のEGRバルブとしては、エンジンの前部に設けられたものが知られている(例えば、特許文献5としての特開2003-74432号公報参照)。また、エンジンの車幅方向端部にはブラケットを介してエアクリーナが取付けられており、エアクリーナとEGRバルブは、車幅方向に離隔して設けられている。 Conventionally, as this type of EGR valve, one provided at the front of the engine is known (see, for example, Japanese Patent Application Laid-Open No. 2003-74432 as Patent Document 5). In addition, an air cleaner is attached to the end of the engine in the vehicle width direction via a bracket, and the air cleaner and the EGR valve are spaced apart in the vehicle width direction.
 しかしながら、このような従来のEGRバルブにあっては、上方にEGRバルブを遮る車載部品が設けられていないため、エンジンルームに侵入した水等の液体(例えば、エンジンフードの裏面に付着した雫、洗車時に生じる水、走行時にエンジンルームに流れ込んだ雨水等)がEGRバルブに落下してEGRバルブの内部に侵入するおそれがある。このため、EGRバルブの内部の弁体等の劣化や腐食等を引き起こしてしまい、EGRバルブの信頼性が低下するおそれがある。 However, in such a conventional EGR valve, since there is no on-vehicle component that blocks the EGR valve above, a liquid such as water that has entered the engine room (for example, a soot adhering to the back of the engine hood, There is a risk that water generated during car washing, rainwater flowing into the engine room during traveling, etc. will fall into the EGR valve and enter the EGR valve. For this reason, the valve body and the like inside the EGR valve may be deteriorated or corroded, and the reliability of the EGR valve may be reduced.
 また、比較的に大型なエアクリーナがブラケットを介してエンジンに接続されているため、ブラケットの寸法を大きくする必要がある。このため、エンジンの振動に伴ってエアクリーナが振動してしまい、エアクリーナの耐久性が悪化するおそれがある。 Also, since a relatively large air cleaner is connected to the engine via a bracket, it is necessary to increase the size of the bracket. For this reason, the air cleaner vibrates with the vibration of the engine, which may deteriorate the durability of the air cleaner.
 実施例3は、上記のような問題点に着目してなされたものであり、エアクリーナの耐久性が悪化することを防止しつつ、エアクリーナを利用してEGRバルブが液体に晒されることを防止して、EGRバルブの信頼性が低下することを防止できる。 The third embodiment is made by paying attention to the above problems, and prevents the EGR valve from being exposed to liquid using the air cleaner while preventing the durability of the air cleaner from deteriorating. Thus, it is possible to prevent the reliability of the EGR valve from being lowered.
 実施例3の第1の態様は、排気ガスの一部を排気系部材から吸気系部材に還流するEGR配管と排気ガス還流用の補機とを備えたEGR装置と、吸気系部材に吸入される空気を浄化するエアクリーナとを有し、車幅方向端部に変速機が設置される構造であって、補機が、EGR配管を流れる排気ガスの流量を調整するEGRバルブと、EGR配管を流れる排気ガスを冷却するEGRクーラとを含んで構成され、EGRバルブが、EGR配管の開度を調整する弁体を有するEGRバルブ本体と、EGRバルブ本体に取付けられ、弁体を駆動する駆動アクチュエータとを含んで構成され、EGRバルブとEGRクーラとを車両の前後方向に並べて設置するとともに、EGRバルブおよびEGRクーラの少なくとも一方をエンジンの車幅方向端部に取付け、エアクリーナを、変速機の上方においてブラケットを介してEGRバルブおよびEGRクーラに取付け、車両の上下方向において、EGRバルブの少なくとも駆動アクチュエータを変速機とエアクリーナとの間に設置したものから構成されている。 In the first embodiment of the third embodiment, an EGR apparatus including an EGR pipe that recirculates a part of exhaust gas from an exhaust system member to an intake system member and an auxiliary device for exhaust gas recirculation, and the intake system member are inhaled. And an air cleaner for purifying the air, and a transmission is installed at the end in the vehicle width direction, and the auxiliary machine has an EGR valve for adjusting the flow rate of exhaust gas flowing through the EGR pipe, and the EGR pipe. An EGR valve body that includes an EGR cooler that cools flowing exhaust gas, and an EGR valve having a valve body that adjusts the opening degree of the EGR pipe; and a drive actuator that is attached to the EGR valve body and drives the valve body The EGR valve and the EGR cooler are arranged side by side in the front-rear direction of the vehicle, and at least one of the EGR valve and the EGR cooler is connected to the end of the engine in the vehicle width direction. The air cleaner is mounted on the EGR valve and the EGR cooler via a bracket above the transmission, and at least the drive actuator of the EGR valve is installed between the transmission and the air cleaner in the vertical direction of the vehicle. Yes.
 実施例3の第2の態様としては、ブラケットが第1のブラケットおよび第2のブラケットから構成され、EGRバルブの車両の前後方向前端部に第1の前側締結部が形成されるとともに、エアクリーナの車両の前後方向前端部に第2の前側締結部が形成され、EGRクーラの車両の前後方向後端部に第1の後側締結部が形成されるとともに、エアクリーナの車両の前後方向後端部に第2の後側締結部が形成され、第1の前側締結部および第2の前側締結部が第1のブラケットを介して連結され、第1の後側締結部および第2の後側締結部が第2のブラケットを介して連結されてもよい。 As a second aspect of the third embodiment, the bracket is composed of the first bracket and the second bracket, the first front fastening portion is formed at the front end portion in the front-rear direction of the vehicle of the EGR valve, and the air cleaner A second front side fastening portion is formed at the front end portion of the vehicle in the front-rear direction, a first rear side fastening portion is formed at the rear end portion in the front-rear direction of the vehicle of the EGR cooler, and a rear end portion of the air cleaner in the front-rear direction of the vehicle A second rear side fastening portion is formed, the first front side fastening portion and the second front side fastening portion are connected via the first bracket, and the first rear side fastening portion and the second rear side fastening portion are connected. The parts may be connected via a second bracket.
 実施例3の第3の態様としては、EGRクーラが、EGRクーラ本体およびEGRクーラ本体に設けられ、EGRバルブから排気ガスが導入される排気ガス入口管部を有し、車両の上下方向において、EGRバルブを変速機よりもエアクリーナの下部寄りに設置し、排気ガス入口管部の軸線を、EGRクーラ本体の軸線に対して車幅方向外方に傾斜させ、EGRバルブの軸線が排気ガス入口管部の軸線と直交するようにEGRバルブをエアクリーナの下部に延在させ、駆動アクチュエータをEGRバルブ本体に対してエンジンと反対側に設置してもよい。 As a third aspect of the third embodiment, the EGR cooler is provided in the EGR cooler body and the EGR cooler body, and has an exhaust gas inlet pipe portion through which exhaust gas is introduced from the EGR valve. The EGR valve is installed closer to the lower part of the air cleaner than the transmission, the axis of the exhaust gas inlet pipe is inclined outward in the vehicle width direction with respect to the axis of the EGR cooler body, and the axis of the EGR valve is connected to the exhaust gas inlet pipe The EGR valve may be extended below the air cleaner so as to be orthogonal to the axis of the part, and the drive actuator may be installed on the opposite side of the engine with respect to the EGR valve body.
 実施例3の第4の態様としては、EGRバルブ本体が、EGRバルブ本体から車両の前後方向前方に突出し、第1の前側締結部を構成するボス部を有し、EGRクーラが、EGR配管に接続され、第1の後側締結部を構成するフランジ部を有してもよい。 As a fourth aspect of the third embodiment, the EGR valve main body protrudes forward from the EGR valve main body in the front-rear direction of the vehicle, has a boss portion that constitutes a first front side fastening portion, and the EGR cooler is connected to the EGR pipe. You may have the flange part connected and comprising a 1st back side fastening part.
 実施例3の第5の態様としては、エンジンに取付けられたEGRバルブを水平方向から目視した状態において、EGRバルブがEGRバルブ本体から駆動アクチュエータに向かって上方に傾斜してもよい。 As a fifth aspect of the third embodiment, the EGR valve may be inclined upward from the EGR valve main body toward the drive actuator in a state where the EGR valve attached to the engine is viewed from the horizontal direction.
 実施例3の第6の態様としては、エアクリーナの第2の前側締結部がエアクリーナの下部から下方に突出し、駆動アクチュエータと第2の前側締結部とが車両の前後方向において重なるように設置され、駆動アクチュエータの車両の前後方向前方が第2の前側締結部によって覆われてもよい。 As a sixth aspect of the third embodiment, the second front fastening portion of the air cleaner protrudes downward from the lower portion of the air cleaner, and the drive actuator and the second front fastening portion are installed so as to overlap in the vehicle front-rear direction. The front of the drive actuator in the front-rear direction of the vehicle may be covered with the second front fastening portion.
 このように上記の第1の態様によれば、車両の上下方向において、少なくともEGRバルブの駆動アクチュエータを変速機とエアクリーナとの間に設置した。これにより、上方から滴下される水をエアクリーナで遮るとともに、下方から飛散する水を変速機で遮ることができる。 Thus, according to the first aspect, at least the drive actuator for the EGR valve is installed between the transmission and the air cleaner in the vertical direction of the vehicle. Thus, water dripped from above can be blocked by the air cleaner, and water scattered from below can be blocked by the transmission.
 このため、EGRバルブに対して上下方向から液体が掛かることを防止でき、EGRバルブの内部に液体が侵入することを防止できる。したがって、EGRバルブの弁体の劣化や腐食を防止して、EGRバルブの信頼性が低下することを防止できる。 For this reason, it is possible to prevent liquid from being applied to the EGR valve from above and below, and to prevent the liquid from entering the EGR valve. Therefore, it is possible to prevent deterioration and corrosion of the valve body of the EGR valve and prevent the reliability of the EGR valve from being lowered.
 また、エアクリーナを、変速機の上方においてブラケットを介してEGRバルブおよびEGRクーラに取付けた。このため、ブラケットをエンジンからエアクリーナに延長することを防止してブラケットの寸法を短くできる。したがって、エンジンの振動によってブラケット自体が振動することを防止できる。 Also, the air cleaner was attached to the EGR valve and the EGR cooler via a bracket above the transmission. For this reason, it is possible to prevent the bracket from extending from the engine to the air cleaner, and to shorten the dimension of the bracket. Therefore, it is possible to prevent the bracket itself from vibrating due to engine vibration.
 これに加えて、EGRバルブとEGRクーラとを車両の前後方向に並んで設置し、EGRバルブとEGRクーラにブラケットを介してエアクリーナが取付けられる。このため、比較的剛性が高く、かつ比較的スペースを要するEGRバルブとEGRクーラとにより広い範囲でエアクリーナを支持できる。
 これらの結果、エンジンの振動によってエアクリーナが振動することを防止でき、エアクリーナの耐久性が悪化することを防止できる。
In addition, the EGR valve and the EGR cooler are installed side by side in the vehicle front-rear direction, and an air cleaner is attached to the EGR valve and the EGR cooler via a bracket. For this reason, the air cleaner can be supported in a wide range by the EGR valve and the EGR cooler which are relatively rigid and require a relatively large space.
As a result, the air cleaner can be prevented from vibrating due to the vibration of the engine, and the durability of the air cleaner can be prevented from deteriorating.
 上記の第2の態様によれば、EGRバルブの第1の前側締結部およびエアクリーナの第2の前側締結部が第1のブラケットを介して連結され、EGRクーラの第1の後側締結部およびエアクリーナの第2の後側締結部が第2のブラケットを介して連結される。 According to the second aspect, the first front side fastening part of the EGR valve and the second front side fastening part of the air cleaner are connected via the first bracket, and the first rear side fastening part of the EGR cooler and The second rear fastening portion of the air cleaner is connected via the second bracket.
 このため、エアクリーナを上面から見た状態において、EGRバルブおよびEGRクーラをエアクリーナの前端と後端との間に設置できる。これによって、エアクリーナの前端と後端との距離を十分に確保して、EGRバルブとEGRクーラとにより広い範囲でエアクリーナを支持できる。したがって、エアクリーナが振動することをより効果的に防止できる。 Therefore, the EGR valve and the EGR cooler can be installed between the front end and the rear end of the air cleaner when the air cleaner is viewed from above. Thus, a sufficient distance between the front end and the rear end of the air cleaner can be secured, and the air cleaner can be supported in a wide range by the EGR valve and the EGR cooler. Therefore, it is possible to more effectively prevent the air cleaner from vibrating.
 上記の第3の態様によれば、車両の上下方向において、EGRバルブを変速機よりもエアクリーナの下部寄りに設置し、排気ガス入口管部の軸線を、EGRクーラ本体の軸線に対して車幅方向外方に傾斜させ、EGRバルブの軸線が排気ガス入口管部の軸線と直交するようにEGRバルブをエアクリーナの下部に延在させ、駆動アクチュエータをEGRバルブ本体に対してエンジンと反対側に設置した。 According to the third aspect, in the vertical direction of the vehicle, the EGR valve is installed closer to the lower portion of the air cleaner than the transmission, and the axis of the exhaust gas inlet pipe is set to the vehicle width with respect to the axis of the EGR cooler body. The EGR valve extends to the lower part of the air cleaner so that the axis of the EGR valve is perpendicular to the axis of the exhaust gas inlet pipe, and the drive actuator is installed on the opposite side of the engine from the EGR valve body. did.
 このため、EGRバルブをエアクリーナの下部寄りに確実に設置でき、特に、駆動アクチュエータをエアクリーナで確実に覆うことができる。したがって、例えば、ダイヤフラム式のEGRバルブのように駆動アクチュエータに大気に連通する空気孔が形成される場合に、空気孔から駆動アクチュエータの内部に液体が侵入することを防止できる。
 この結果、駆動アクチュエータを通して弁体に液体が侵入すること等を防止でき、弁体の劣化や腐食を防止できる。
For this reason, the EGR valve can be reliably installed near the lower portion of the air cleaner, and in particular, the drive actuator can be reliably covered with the air cleaner. Therefore, for example, when an air hole communicating with the atmosphere is formed in the drive actuator like a diaphragm type EGR valve, it is possible to prevent liquid from entering the drive actuator from the air hole.
As a result, it is possible to prevent liquid from entering the valve body through the drive actuator, and to prevent deterioration and corrosion of the valve body.
 また、EGRバルブの第1の前側締結部をエアクリーナの第2の前側締結部に近づけることができ、第1のブラケットの寸法を短くできる。 Also, the first front side fastening part of the EGR valve can be brought close to the second front side fastening part of the air cleaner, and the dimensions of the first bracket can be shortened.
 上記の第4の態様によれば、EGRバルブ本体が、EGRバルブ本体から車両の前後方向前方に突出し、第1の前側締結部を構成するボス部を有し、EGRクーラが、EGR配管に接続され、第1の後側締結部を構成するフランジ部を有する。 According to the fourth aspect, the EGR valve main body protrudes forward from the EGR valve main body in the front-rear direction of the vehicle, has the boss portion constituting the first front side fastening portion, and the EGR cooler is connected to the EGR pipe. And having a flange portion constituting the first rear fastening portion.
 このため、剛性を有するボス部およびフランジ部を第1のフランジおよび第2のフランジを介してエアクリーナに取付けることができ、エアクリーナをEGRバルブおよびEGRクーラに安定して取付けることがきる。したがって、エンジンの振動によってエアクリーナが振動することをより効果的に防止でき、エアクリーナの耐久性が悪化することをより効果的に防止できる。 Therefore, the rigid boss portion and flange portion can be attached to the air cleaner via the first flange and the second flange, and the air cleaner can be stably attached to the EGR valve and the EGR cooler. Therefore, it is possible to more effectively prevent the air cleaner from vibrating due to the vibration of the engine, and it is possible to more effectively prevent the durability of the air cleaner from deteriorating.
 上記の第5の態様によれば、エンジンに取付けられたEGRバルブを水平方向から目視した状態において、EGRバルブがEGRバルブ本体から駆動アクチュエータに向かって上方に傾斜する。 According to the fifth aspect, the EGR valve is inclined upward from the EGR valve main body toward the drive actuator in a state where the EGR valve attached to the engine is viewed from the horizontal direction.
 このため、駆動アクチュエータをエアクリーナの底部に近づけることができ、上方から滴下される液体をエアクリーナで遮ることができる。したがって、駆動アクチュエータが空気孔等を有する場合に、空気孔を通して駆動アクチュエータの内部に水が侵入することをより効果的に防止できる。 For this reason, the drive actuator can be brought close to the bottom of the air cleaner, and the liquid dropped from above can be blocked by the air cleaner. Therefore, when the drive actuator has an air hole or the like, water can be more effectively prevented from entering the drive actuator through the air hole.
 上記の第6の態様によれば、駆動アクチュエータの車両の前後方向前方がエアクリーナの第2の前側締結部によって覆われるので、車両の走行時に車両の前方から侵入する液体を第2の前側締結部によって遮ることができる。このため、駆動アクチュエータが空気孔等を有する場合に、空気孔を通して駆動アクチュエータの内部に水が侵入することを防止できる。 According to the sixth aspect, since the front-rear direction front of the vehicle of the drive actuator is covered by the second front side fastening portion of the air cleaner, the liquid that enters from the front of the vehicle during the traveling of the vehicle is second front side fastening portion. Can be blocked by. For this reason, when the drive actuator has an air hole or the like, water can be prevented from entering the drive actuator through the air hole.
 以下、実施例3に係るエンジンの補機取付け構造の実施形態について、図面を用いて説明する。
 図14~図22は、実施例3に係るエンジンの補機取付け構造を示す図である。
Hereinafter, an embodiment of an engine accessory mounting structure according to a third embodiment will be described with reference to the drawings.
FIGS. 14 to 22 are views showing an engine accessory mounting structure according to the third embodiment.
 まず、構成を説明する。
 図14、図15において、車両201は、車体202を備えており、車体202は、車両201の前後方向前方にダッシュパネル203を備えている。ダッシュパネル203は、車体202を、車両201の前後方向前方に設置されるエンジンルーム204と車両の前後方向後方に設置されて搭乗者が搭乗する車室205とに区画する。以後、前方、後方等のように前後の方向を指す表現は、車両201の前後方向に対する方向として説明に用いる。
First, the configuration will be described.
14 and 15, a vehicle 201 includes a vehicle body 202, and the vehicle body 202 includes a dash panel 203 in front of the vehicle 201 in the front-rear direction. The dash panel 203 divides the vehicle body 202 into an engine room 204 installed at the front in the front-rear direction of the vehicle 201 and a vehicle compartment 205 installed at the rear in the front-rear direction of the vehicle for passengers to board. Hereinafter, expressions indicating the front-rear direction such as front and rear are used in the description as directions relative to the front-rear direction of the vehicle 201.
 エンジンルーム204にはエンジン206が設置されており、図14~図17に示すように、エンジン206の車幅方向一端部(左端部)206aには変速機207が取付けられている。なお、エンジン206の車幅方向一端部206aは、本発明の車幅方向端部を構成する。 An engine 206 is installed in the engine room 204, and a transmission 207 is attached to one end (left end) 206a in the vehicle width direction of the engine 206 as shown in FIGS. The vehicle width direction one end portion 206a of the engine 206 constitutes the vehicle width direction end portion of the present invention.
 図15、図16において、エンジン206には過給機208および吸気装置209が設けられている。吸気装置209は、エンジン206の車幅方向一端部206aで、かつ、変速機207の上部に設置されたエアクリーナ210を備えており、エアクリーナ210は、図示しない吸気ダクトによって車両201の前方から吸入された空気を浄化する。 15 and 16, the engine 206 is provided with a supercharger 208 and an intake device 209. The intake device 209 includes an air cleaner 210 installed at one end 206a in the vehicle width direction of the engine 206 and at the top of the transmission 207. The air cleaner 210 is sucked from the front of the vehicle 201 by an intake duct (not shown). Purify the air.
 吸気装置209は、エアクリーナ210によって浄化された空気を過給機208のコンプレッサハウジング208aに導入するエアクリーナアウトレット配管211を備えている。 The intake device 209 includes an air cleaner outlet pipe 211 that introduces the air purified by the air cleaner 210 into the compressor housing 208 a of the supercharger 208.
 過給機208は、エンジン206の前方の設置されており、過給機208は、コンプレッサハウジング208aの内部に設けられた図示しないコンプレッサと、排気ガスの圧力によって回転する図示しないタービンを内蔵するタービンハウジング208bとを備えている。 The supercharger 208 is installed in front of the engine 206, and the supercharger 208 includes a compressor (not shown) provided inside the compressor housing 208a and a turbine (not shown) that is rotated by the pressure of exhaust gas. And a housing 208b.
 また、吸気装置209は、インタクーラインレット配管212を備えており(図16参照)、インタクーラインレット配管212は、エンジン206の前方に設置された図示しないインタクーラに接続されている。 Further, the intake device 209 includes an intercool line pipe 212 (see FIG. 16), and the inter cool line pipe 212 is connected to an unshown intercooler installed in front of the engine 206.
 吸気装置209は、吸気マニホルド213を備えており、吸気マニホルド213は、エンジン206の後部に設置されている。吸気マニホルド213は、図示しないインタクーラアウトレット配管を介してインタクーラに接続されている。吸気マニホルド213は、インタクーラからインタクーラアウトレットを介して導入される吸入空気を、エンジン206の図示しない吸気ポートを介してエンジン206の図示しない燃焼室に導入する。 The intake device 209 includes an intake manifold 213, and the intake manifold 213 is installed at the rear portion of the engine 206. The intake manifold 213 is connected to the intercooler via an intercooler outlet pipe (not shown). The intake manifold 213 introduces intake air introduced from the intercooler through the intercooler outlet into a combustion chamber (not shown) of the engine 206 via an intake port (not shown) of the engine 206.
 過給機208は、排気ガスの圧力を受けて回転するタービンと共に一体的に回転するコンプレッサによってエアクリーナアウトレット配管211からコンプレッサハウジング208aに導入される空気をインタクーラインレット配管212に過給する。 The supercharger 208 supercharges the air introduced into the compressor housing 208 a from the air cleaner outlet pipe 211 to the intercooler line pipe 212 by a compressor that rotates integrally with the turbine that rotates under the pressure of the exhaust gas.
 この過給された空気は、温度が上昇するので、この高温の空気は、インタクーラに導入されてインタクーラによって冷却される。これにより、空気の酸素密度が高められる。この酸素密度が高められた空気は、インタクーラインレット配管212から吸気マニホルド213を介してエンジン206の燃焼室に導入される。 Since the temperature of this supercharged air rises, this hot air is introduced into the intercooler and cooled by the intercooler. Thereby, the oxygen density of air is raised. The air whose oxygen density has been increased is introduced into the combustion chamber of the engine 206 from the intercooler line 212 through the intake manifold 213.
 図16において、エンジン206の前方には排気マニホルド214が取付けられており、排気マニホルド214は、過給機208のタービンハウジング208bに接続されている。排気マニホルド214には燃焼室から排気される排気ガスが導入される。 16, an exhaust manifold 214 is attached in front of the engine 206, and the exhaust manifold 214 is connected to the turbine housing 208 b of the supercharger 208. Exhaust gas exhausted from the combustion chamber is introduced into the exhaust manifold 214.
 タービンハウジング208bには排気管215を介して触媒コンバータ216が接続されており、タービンハウジング208bから排出された排気ガスは、排気管215を通して触媒コンバータ216に導入され、触媒コンバータ216によって浄化される。ここで、吸気装置209および過給機208のコンプレッサハウジング208aは、本発明の吸気系部材を構成し、排気マニホルド214、排気管215、触媒コンバータ216および過給機208のタービンハウジング208bは、本発明の排気系部材を構成する。 A catalytic converter 216 is connected to the turbine housing 208b via an exhaust pipe 215. Exhaust gas discharged from the turbine housing 208b is introduced into the catalytic converter 216 through the exhaust pipe 215 and purified by the catalytic converter 216. Here, the intake device 209 and the compressor housing 208a of the supercharger 208 constitute an intake system member of the present invention, and the exhaust manifold 214, the exhaust pipe 215, the catalytic converter 216, and the turbine housing 208b of the supercharger 208 are The exhaust system member of the invention is configured.
 一方、エンジン206にはEGR装置217が設けられている。図18、図19において、EGR装置217は、EGRインレット(Exhaust Gas Recirculation)配管(パイプ)218と、EGRバルブ219と、EGRクーラ220と、EGRアウトレット配管(パイプ)221とを備えている。 On the other hand, the engine 206 is provided with an EGR device 217. 18 and 19, the EGR device 217 includes an EGR inlet (Exhaust Gas Recirculation) pipe (pipe) 218, an EGR valve 219, an EGR cooler 220, and an EGR outlet pipe (pipe) 221.
 EGRインレット配管218の上流端218aは、排気マニホルド214に接続されており、EGRインレット配管218の下流端218bは、EGRバルブ219に接続されている。EGRバルブ219は、排気ガスの流量を調整する調整弁を構成している。ここで、上流、下流とは、排気ガスの流れる方向を表す。 The upstream end 218a of the EGR inlet pipe 218 is connected to the exhaust manifold 214, and the downstream end 218b of the EGR inlet pipe 218 is connected to the EGR valve 219. The EGR valve 219 constitutes an adjustment valve that adjusts the flow rate of the exhaust gas. Here, upstream and downstream represent directions in which exhaust gas flows.
 EGRバルブ219にはEGRクーラ220が接続されており、EGRクーラ220は、EGRクーラ本体220Aと、EGRクーラ本体220Aの前端部に設けられ、EGRバルブ219に接続される排気ガス入口管部220Bと、EGRクーラ本体220Aの後端部に設けられ、EGRアウトレット配管221に接続される排気ガス出口管部220Cとを備えている。 An EGR cooler 220 is connected to the EGR valve 219. The EGR cooler 220 is provided at the front end of the EGR cooler main body 220A and the EGR cooler main body 220A. , An exhaust gas outlet pipe portion 220C provided at the rear end portion of the EGR cooler main body 220A and connected to the EGR outlet pipe 221.
 排気ガス入口管部220BにはEGRバルブ219から排気ガスが導入されるようになっており、この排気ガスは、EGRクーラ本体220Aに導入される。排気ガス出口管部220Cは、EGRクーラ本体220Aから排気ガスをEGRアウトレット配管221に排出する。 Exhaust gas is introduced from the EGR valve 219 into the exhaust gas inlet pipe 220B, and this exhaust gas is introduced into the EGR cooler body 220A. The exhaust gas outlet pipe section 220C discharges exhaust gas from the EGR cooler body 220A to the EGR outlet pipe 221.
 図18、図19において、EGRクーラ本体220Aは、内部に排気ガスが流れる図示しないインナー配管と、このインナー配管を取り囲んでインナー配管との間で冷却水が流通する冷却水通路を形成するアウター配管220aとを備えている。 18 and 19, an EGR cooler main body 220A includes an inner pipe (not shown) through which exhaust gas flows, and an outer pipe that surrounds the inner pipe and forms a cooling water passage through which cooling water flows between the inner pipe. 220a.
 アウター配管220aには冷却水通路に冷却水を導入する導入管222Aと、冷却水通路から冷却水を排出する排出管222Bとを備えており、図示しないラジエータによって冷却された冷却水が導入管222Aを通して冷却水通路に導入される。このため、EGRクーラ本体220Aのインレット配管を流れる排気ガスが冷却水によって冷却される。 The outer pipe 220a is provided with an introduction pipe 222A for introducing cooling water into the cooling water passage and a discharge pipe 222B for discharging cooling water from the cooling water passage, and the cooling water cooled by a radiator (not shown) is introduced into the introduction pipe 222A. Through the cooling water passage. For this reason, the exhaust gas flowing through the inlet pipe of the EGR cooler main body 220A is cooled by the cooling water.
 EGRアウトレット配管221の上流端221aは、EGRクーラ220に接続されており、EGRアウトレット配管221の下流端221bは、吸気マニホルド213に接続される。ここで、EGRインレット配管218およびEGRアウトレット配管221は、本発明のEGR配管を構成する。 The upstream end 221a of the EGR outlet pipe 221 is connected to the EGR cooler 220, and the downstream end 221b of the EGR outlet pipe 221 is connected to the intake manifold 213. Here, the EGR inlet pipe 218 and the EGR outlet pipe 221 constitute the EGR pipe of the present invention.
 以上の構成を有するEGR装置217は、排気マニホルド214に排出される排気ガスの一部を、EGRインレット配管218からEGRバルブ219、EGRクーラ220およびEGRアウトレット配管221を介して吸気マニホルド213に導入する。 The EGR device 217 having the above configuration introduces part of the exhaust gas discharged to the exhaust manifold 214 from the EGR inlet pipe 218 to the intake manifold 213 via the EGR valve 219, the EGR cooler 220, and the EGR outlet pipe 221. .
 これにより、吸気マニホルド213において、新気とEGR装置217から還流される排気ガスとが混合されて燃焼室に導入され、主として排気中の窒素酸化物(NOx)を低減させることができ、エンジン206の部分負荷時における燃費を向上できる。 Thereby, in the intake manifold 213, fresh air and exhaust gas recirculated from the EGR device 217 are mixed and introduced into the combustion chamber, and nitrogen oxide (NOx) in the exhaust gas can be mainly reduced. Can improve fuel efficiency at partial load.
 ここで、実施例3のEGR装置217のEGRバルブ219およびEGRクーラ220は、排気系部材からEGR配管(パイプ)を通して排気ガスの一部を吸気系部材に還流する排気ガス還流用の補機を構成する。
 図19~図21において、EGRバルブ219は、EGRバルブ本体223と、駆動アクチュエータ224を含んで構成される。
Here, the EGR valve 219 and the EGR cooler 220 of the EGR device 217 according to the third embodiment include an exhaust gas recirculation auxiliary device that recirculates a part of the exhaust gas from the exhaust system member to the intake system member through the EGR pipe (pipe). Constitute.
19 to 21, the EGR valve 219 includes an EGR valve body 223 and a drive actuator 224.
 図22において、EGRバルブ本体223は、EGRインレット配管218からの排気ガスが導入される排気ガス入口部225aおよびEGRクーラ220に排気ガスを排出する排気ガス出口部225bが形成される下ケーシング225を備えている。 In FIG. 22, the EGR valve body 223 includes a lower casing 225 in which an exhaust gas inlet 225 a into which exhaust gas from the EGR inlet pipe 218 is introduced and an exhaust gas outlet 225 b through which exhaust gas is discharged to the EGR cooler 220 are formed. I have.
 下ケーシング225の内部には弁軸226が摺動自在に設けられており、弁軸226の先端には弁体227が取付けられている。弁体227は、排気ガス入口部225aを開閉するようになっており、弁体227によって排気ガス入口部225aの開度を調整することにより、EGRインレット配管218からEGRクーラ220に流れる排気ガスの流量が調整される。 A valve shaft 226 is slidably provided inside the lower casing 225, and a valve body 227 is attached to the tip of the valve shaft 226. The valve body 227 opens and closes the exhaust gas inlet portion 225a. By adjusting the opening of the exhaust gas inlet portion 225a by the valve body 227, the exhaust gas flowing from the EGR inlet pipe 218 to the EGR cooler 220 is controlled. The flow rate is adjusted.
 駆動アクチュエータ224は下ケーシング225に取付けられた上ケーシング228を備えており、上ケーシング228にはダイヤフラム229およびコイルスプリング230が収容されている。 The drive actuator 224 includes an upper casing 228 attached to the lower casing 225, and a diaphragm 229 and a coil spring 230 are accommodated in the upper casing 228.
 ダイヤフラム229は、上ケーシング228を負圧室231と大気室232とに区画しており、コイルスプリング230は、ダイヤフラム229を下方に付勢する。ダイヤフラム229には弁軸226の上端が取付けられており、ダイヤフラム229がコイルスプリング230によって付勢されると、弁体227が排気ガス入口部225aを閉止する。 The diaphragm 229 partitions the upper casing 228 into a negative pressure chamber 231 and an atmospheric chamber 232, and the coil spring 230 urges the diaphragm 229 downward. The upper end of the valve shaft 226 is attached to the diaphragm 229. When the diaphragm 229 is biased by the coil spring 230, the valve body 227 closes the exhaust gas inlet 225a.
 負圧室231には負圧管233(図18参照)が取付けられており、負圧室231には負圧管233を通して吸気系部材の吸入負圧が導入され、負圧室231に発生する負圧によってダイヤフラム229がコイルスプリング230の付勢力に抗して排気ガス入口部225aを開放する。これにより、排気ガス入口部225aと排気ガス出口部225bとが連通する。 A negative pressure tube 233 (see FIG. 18) is attached to the negative pressure chamber 231, and the negative pressure generated in the negative pressure chamber 231 is introduced into the negative pressure chamber 231 through the negative pressure tube 233. Thus, the diaphragm 229 opens the exhaust gas inlet 225a against the biasing force of the coil spring 230. Thereby, the exhaust gas inlet part 225a and the exhaust gas outlet part 225b communicate.
 また、上ケーシング228には空気孔228aが形成されており、この空気孔228aは、上ケーシング228の円周方向に沿って複数個形成されている(図19参照)。
 図18において、EGRバルブ219およびEGRクーラ220は、車両201の前後方向に並んで設置されている。EGRクーラ本体220Aのアウター配管220aにはエンジン206の車幅方向一端部に向かって突出する一対のブラケット220bが設けられており、ブラケット220bは、エンジン206の車幅方向一端部206aに取付けられる。なお、EGRクーラ220をエンジン206に取付けることに代えて、EGRバルブ219をエンジン206に取付けてもよく、EGRクーラ220とEGRバルブ219の両方をエンジン206に取付けてもよい。
In addition, air holes 228a are formed in the upper casing 228, and a plurality of air holes 228a are formed along the circumferential direction of the upper casing 228 (see FIG. 19).
In FIG. 18, the EGR valve 219 and the EGR cooler 220 are installed side by side in the front-rear direction of the vehicle 201. The outer pipe 220a of the EGR cooler main body 220A is provided with a pair of brackets 220b protruding toward one end in the vehicle width direction of the engine 206, and the bracket 220b is attached to one end 206a in the vehicle width direction of the engine 206. Instead of attaching the EGR cooler 220 to the engine 206, the EGR valve 219 may be attached to the engine 206, and both the EGR cooler 220 and the EGR valve 219 may be attached to the engine 206.
 図18において、エアクリーナ210は、変速機207の上方においてブラケット235、236を介してEGRバルブ219およびEGRクーラ220に取付けられており、車両201の上下方向において、EGRバルブ219のEGRバルブ本体223および駆動アクチュエータ224は、変速機207とエアクリーナ210との間に設置される(図16、図17参照)。ここで、ブラケット235は、実施例3の第1のブラケットを構成し、ブラケット236は、実施例3の第2のブラケットを構成する。 In FIG. 18, the air cleaner 210 is attached to the EGR valve 219 and the EGR cooler 220 via brackets 235 and 236 above the transmission 207, and in the vertical direction of the vehicle 201, the EGR valve main body 223 of the EGR valve 219 and The drive actuator 224 is installed between the transmission 207 and the air cleaner 210 (see FIGS. 16 and 17). Here, the bracket 235 constitutes the first bracket of the third embodiment, and the bracket 236 constitutes the second bracket of the third embodiment.
 図18において、EGRバルブ本体223のアウター配管220aの前端部には一対のボス部223aが形成されており、ボス部223aは、EGRバルブ本体223から前方に突出している。エアクリーナ210の前端部には前側取付け部210Aが形成されており、ボス部223aは、ブラケット235を介して前側取付け部210Aに連結される。 18, a pair of boss portions 223a are formed at the front end portion of the outer pipe 220a of the EGR valve main body 223, and the boss portions 223a protrude forward from the EGR valve main body 223. A front attachment portion 210A is formed at the front end of the air cleaner 210, and the boss portion 223a is connected to the front attachment portion 210A via a bracket 235.
 EGRクーラ220の下流端に取付けられた排気ガス出口管部220Cにはフランジ部220cが設けられている。また、エアクリーナ210の後端部には後側取付け部210Bが形成されており、フランジ部220cは、ブラケット236を介して後側取付け部210Bに取付けられる。 The flange part 220c is provided in the exhaust gas outlet pipe part 220C attached to the downstream end of the EGR cooler 220. A rear attachment portion 210B is formed at the rear end of the air cleaner 210, and the flange portion 220c is attached to the rear attachment portion 210B via a bracket 236.
 したがって、本実施形態のエアクリーナ210は、ブラケット235、236を介してEGRバルブ219およびEGRクーラ220に取付けられる。 Therefore, the air cleaner 210 of this embodiment is attached to the EGR valve 219 and the EGR cooler 220 via the brackets 235 and 236.
 ここで、本実施形態のEGRバルブ219のボス部223aは、実施例3の第1の前側締結部を構成し、エアクリーナ210の前側取付け部210Aは、実施例3の第2の前側締結部を構成する。また、本実施形態のEGRクーラ220のフランジ部220cは、実施例3の第1の後側締結部を構成し、エアクリーナ210の後側取付け部210Bは、実施例3の第2の後側締結部を構成する。
 図17に示すように、車両201の上下方向において、EGRバルブ219は、変速機207よりもエアクリーナ210の下部210a寄りに設置されている。
Here, the boss portion 223a of the EGR valve 219 of the present embodiment constitutes the first front side fastening portion of the third embodiment, and the front side attachment portion 210A of the air cleaner 210 serves as the second front side fastening portion of the third embodiment. Constitute. Further, the flange portion 220c of the EGR cooler 220 of the present embodiment constitutes the first rear side fastening portion of Example 3, and the rear attachment portion 210B of the air cleaner 210 is the second rear side fastening portion of Example 3. Parts.
As shown in FIG. 17, the EGR valve 219 is installed closer to the lower part 210 a of the air cleaner 210 than the transmission 207 in the vertical direction of the vehicle 201.
 図18において、排気ガス入口管部220Bの軸線Aは、EGRクーラ本体220Aの軸線Bに対して車幅方向外方に傾斜している。また、EGRバルブ219において、EGRバルブ219の軸線Cが排気ガス入口管部220Bの軸線Aと直交するようにエアクリーナ210の下部210aに延在しており、駆動アクチュエータ224は、EGRバルブ本体223に対してエンジン206と反対側に設置される。 18, the axis A of the exhaust gas inlet pipe 220B is inclined outward in the vehicle width direction with respect to the axis B of the EGR cooler main body 220A. Further, in the EGR valve 219, the axis C of the EGR valve 219 extends to the lower part 210a of the air cleaner 210 so that the axis C of the EGR valve 219 is orthogonal to the axis A of the exhaust gas inlet pipe 220B. On the other hand, it is installed on the opposite side to the engine 206.
 図20に示すように、エンジン206に取付けられたEGRバルブ219を水平方向から目視した状態において、EGRバルブ219が、EGRバルブ本体223から駆動アクチュエータ224に向かって上方に傾斜している。すなわち、EGRバルブ219は、水平方向軸Dに対してEGRバルブ本体223から駆動アクチュエータ224に向かって角度θだけ上方に傾斜している。 20, the EGR valve 219 is inclined upward from the EGR valve body 223 toward the drive actuator 224 when the EGR valve 219 attached to the engine 206 is viewed from the horizontal direction. That is, the EGR valve 219 is inclined upward by an angle θ from the EGR valve body 223 toward the drive actuator 224 with respect to the horizontal axis D.
 図20、図21において、エアクリーナ210の前側取付け部210Aは、エアクリーナ210の下部210aから下方に突出しており、駆動アクチュエータ224と前側取付け部210Aとは、車両201の前後方向において重なるように設置されている。これにより、駆動アクチュエータ224の前方が前側取付け部210Aによって覆われる。 20 and 21, the front mounting portion 210A of the air cleaner 210 protrudes downward from the lower portion 210a of the air cleaner 210, and the drive actuator 224 and the front mounting portion 210A are installed so as to overlap in the front-rear direction of the vehicle 201. ing. Thereby, the front of the drive actuator 224 is covered with the front mounting portion 210A.
 次に、作用を説明する。
 本実施形態のようにダイヤフラム式のEGRバルブ219は、空気孔228aが形成される駆動アクチュエータ224を備えている。このようなEGRバルブ219にはエンジンルーム204に侵入した液体、例えば、水が空気孔228aを介して駆動アクチュエータ224の上ケーシング228に侵入し、ダイヤフラム229に付着してダイヤフラム229の劣化や腐食に至るおそれがある。
Next, the operation will be described.
As in the present embodiment, the diaphragm type EGR valve 219 includes a drive actuator 224 in which an air hole 228a is formed. In such an EGR valve 219, a liquid that has entered the engine room 204, for example, water, enters the upper casing 228 of the drive actuator 224 through the air hole 228a and adheres to the diaphragm 229 to prevent deterioration or corrosion of the diaphragm 229. There is a risk.
 また、上ケーシング228から下ケーシング225を伝って弁体227に付着し、弁体227の劣化や腐食に至るおそれがある。この結果、EGRバルブ219の信頼性が低下するおそれがある。 Also, the upper casing 228 may travel along the lower casing 225 and adhere to the valve body 227, which may lead to deterioration or corrosion of the valve body 227. As a result, the reliability of the EGR valve 219 may be reduced.
 EGRバルブ219に水が侵入する可能性としては、まず、図示しない補機を駆動するベルトによって掻き上げられた水が、エンジンフード204A(図14参照)の裏面に付着し、これらが雫となり、エンジンフード204Aから滴下することが考えられる。 As for the possibility of water intruding into the EGR valve 219, first, water scooped up by a belt that drives an auxiliary machine (not shown) adheres to the back surface of the engine hood 204A (see FIG. 14), and these become traps. It may be dripped from the engine hood 204A.
 また、車両201を洗車する際に、エンジンルーム204に侵入することが考えられる。さらに、車両201の雨天走行時に雨水がエンジンルーム204に侵入したり、車両201の停車時にエンジンフード204Aと車体202との隙間からエンジンルーム204に侵入することが考えられる。 Also, when the vehicle 201 is washed, it is conceivable to enter the engine room 204. Furthermore, it is conceivable that rainwater enters the engine room 204 when the vehicle 201 travels in the rain, or enters the engine room 204 through a gap between the engine hood 204A and the vehicle body 202 when the vehicle 201 stops.
 これに対して、本実施形態の補機取付け構造によれば、EGRバルブ219とEGRクーラ220とを車両201の前後方向に並べて設置するとともに、EGRクーラ220をエンジン206の車幅方向一端部206aに取付け、エアクリーナ210を、変速機207の上方においてブラケット235、236を介してEGRバルブ219およびEGRクーラ220に取付け、車両201の上下方向において、EGRバルブ219を変速機207とエアクリーナ210との間に設置した。 On the other hand, according to the accessory mounting structure of the present embodiment, the EGR valve 219 and the EGR cooler 220 are installed side by side in the front-rear direction of the vehicle 201, and the EGR cooler 220 is installed at one end 206a in the vehicle width direction of the engine 206. The air cleaner 210 is mounted on the EGR valve 219 and the EGR cooler 220 via the brackets 235 and 236 above the transmission 207, and the EGR valve 219 is disposed between the transmission 207 and the air cleaner 210 in the vertical direction of the vehicle 201. Installed.
 これにより、図14、図20、図21に示すように、エンジンルーム204の上方から滴下される水Wをエアクリーナ210で遮るとともに、エンジンルーム204の下方から飛散する水を変速機207で遮ることができる。 As a result, as shown in FIGS. 14, 20, and 21, the water W dropped from above the engine room 204 is blocked by the air cleaner 210, and the water scattered from below the engine room 204 is blocked by the transmission 207. Can do.
 このため、EGRバルブ219に対して上下方向から水が掛かることを防止でき、EGRバルブ219の内部に水が侵入することを防止できる。したがって、EGRバルブ219の弁体227の劣化や腐食を防止して、EGRバルブ219の信頼性が低下することを防止できる。 Therefore, it is possible to prevent water from splashing on the EGR valve 219 from above and below, and to prevent water from entering the EGR valve 219. Therefore, the deterioration and corrosion of the valve body 227 of the EGR valve 219 can be prevented, and the reliability of the EGR valve 219 can be prevented from being lowered.
 また、本実施形態の補機取付け構造によれば、エアクリーナ210を、変速機207の上方においてブラケット235、236を介してEGRバルブ219およびEGRクーラ220に取付けた。このため、ブラケット235、236をエンジン206からエアクリーナ210に延長することを防止してブラケット235、236の寸法を短くできる。したがって、エンジン206の振動によってブラケット235、236が振動することを防止できる。 Further, according to the auxiliary machine mounting structure of the present embodiment, the air cleaner 210 is mounted on the EGR valve 219 and the EGR cooler 220 via the brackets 235 and 236 above the transmission 207. For this reason, it is possible to prevent the brackets 235 and 236 from extending from the engine 206 to the air cleaner 210 and to shorten the dimensions of the brackets 235 and 236. Therefore, it is possible to prevent the brackets 235 and 236 from vibrating due to the vibration of the engine 206.
 これに加えて、EGRバルブ219とEGRクーラ220とを車両201の前後方向に並んで設置し、EGRバルブ219とEGRクーラ220とにブラケット235、236を介してエアクリーナ210を取付けた。このため、EGRバルブ219とEGRクーラ220との間にEGR配管を設ける必要がなくなり、EGRバルブ219とEGRクーラ220との剛性を比較的高くできる。さらに、比較的剛性が高く、かつ比較的スペースを要するEGRバルブ219とEGRクーラ220とにより広い範囲でエアクリーナ210を支持できる。 In addition to this, the EGR valve 219 and the EGR cooler 220 were installed side by side in the front-rear direction of the vehicle 201, and the air cleaner 210 was attached to the EGR valve 219 and the EGR cooler 220 via brackets 235 and 236. For this reason, it is not necessary to provide an EGR pipe between the EGR valve 219 and the EGR cooler 220, and the rigidity of the EGR valve 219 and the EGR cooler 220 can be made relatively high. Further, the air cleaner 210 can be supported in a wide range by the EGR valve 219 and the EGR cooler 220 which are relatively rigid and require a relatively large space.
 これらの結果、エンジン206の振動によってエアクリーナ210が振動することを防止でき、エアクリーナ210の耐久性が悪化することを防止できる。 As a result, the air cleaner 210 can be prevented from vibrating due to the vibration of the engine 206, and the durability of the air cleaner 210 can be prevented from deteriorating.
 また、本実施形態の補機取付け構造によれば、EGRバルブ219のボス部223aおよびエアクリーナの前側取付け部210Aがブラケット235を介して連結され、EGRクーラ220のフランジ部220cおよびエアクリーナ210の後側取付け部210Bがブラケット236を介して連結される。 Further, according to the auxiliary machine mounting structure of the present embodiment, the boss portion 223a of the EGR valve 219 and the air cleaner front side mounting portion 210A are connected via the bracket 235, and the flange portion 220c of the EGR cooler 220 and the rear side of the air cleaner 210 are connected. The attachment portion 210B is connected via the bracket 236.
 このため、エアクリーナ210を上面から見た状態において、EGRバルブ219およびEGRクーラ220をエアクリーナ210の前端と後端との間に設置できる。これによって、エアクリーナ210の前端と後端との距離を十分に確保して、EGRバルブ219とEGRクーラ220とにより広い範囲でエアクリーナ210を支持できる。したがって、エアクリーナ210が振動することをより効果的に防止できる。 Therefore, the EGR valve 219 and the EGR cooler 220 can be installed between the front end and the rear end of the air cleaner 210 when the air cleaner 210 is viewed from above. Accordingly, a sufficient distance between the front end and the rear end of the air cleaner 210 can be secured, and the air cleaner 210 can be supported by the EGR valve 219 and the EGR cooler 220 in a wide range. Therefore, it is possible to more effectively prevent the air cleaner 210 from vibrating.
 また、本実施形態の補機取付け構造によれば、車両201の上下方向において、EGRバルブ219を変速機207よりもエアクリーナ210の下部210a寄りに設置し、排気ガス入口管部220Bの軸線Aを、EGRクーラ本体220Aの軸線Bに対して車幅方向外方に傾斜させた。
 これに加えて、EGRバルブ219の軸線Cが排気ガス入口管部220Bの軸線Aと直交するようにEGRバルブ219をエアクリーナ210の下部210aに延在させ、駆動アクチュエータ224をEGRバルブ本体223に対してエンジン206と反対側に設置した。
Further, according to the auxiliary machine mounting structure of the present embodiment, the EGR valve 219 is installed closer to the lower part 210a of the air cleaner 210 than the transmission 207 in the vertical direction of the vehicle 201, and the axis A of the exhaust gas inlet pipe part 220B is The EGR cooler body 220A was inclined outward in the vehicle width direction with respect to the axis B of the main body 220A.
In addition, the EGR valve 219 extends to the lower part 210a of the air cleaner 210 so that the axis C of the EGR valve 219 is orthogonal to the axis A of the exhaust gas inlet pipe 220B, and the drive actuator 224 is moved with respect to the EGR valve main body 223. Installed on the opposite side of the engine 206.
 このため、EGRバルブ219をエアクリーナ210の下部210a寄りに確実に設置でき、駆動アクチュエータ224をエアクリーナ210で確実に覆うことができる。したがって、ダイヤフラム式のEGRバルブ219のように駆動アクチュエータ224に大気に連通する空気孔228aが形成される場合に、空気孔228aから駆動アクチュエータ224の内部に水が侵入することを防止できる。 Therefore, the EGR valve 219 can be reliably installed near the lower part 210 a of the air cleaner 210, and the drive actuator 224 can be reliably covered with the air cleaner 210. Therefore, when the air hole 228a communicating with the atmosphere is formed in the drive actuator 224 like the diaphragm type EGR valve 219, water can be prevented from entering the drive actuator 224 from the air hole 228a.
 この結果、駆動アクチュエータ224を通して弁体227に水が侵入すること等を防止でき、弁体227の劣化や腐食を防止できる。 As a result, it is possible to prevent water from entering the valve body 227 through the drive actuator 224, and to prevent deterioration and corrosion of the valve body 227.
 また、EGRバルブ219のボス部223aをエアクリーナ210の前側取付け部210Aに近づけることができ、ブラケット235の寸法を短くできる。 Further, the boss portion 223a of the EGR valve 219 can be brought close to the front mounting portion 210A of the air cleaner 210, and the dimension of the bracket 235 can be shortened.
 また、本実施形態の補機取付け構造によれば、EGRバルブ本体223が、EGRバルブ本体223から前方に突出するボス部223aを有し、EGRクーラ220が、EGRアウトレット配管221の上流端に接続されるフランジ部220cを有する。 Further, according to the auxiliary machine mounting structure of the present embodiment, the EGR valve main body 223 has the boss portion 223a protruding forward from the EGR valve main body 223, and the EGR cooler 220 is connected to the upstream end of the EGR outlet pipe 221. The flange portion 220c is provided.
 このため、剛性を有するボス部223aおよびフランジ部220cを、ブラケット235、236を介してエアクリーナ210に取付けることができ、エアクリーナ210をEGRバルブ219およびEGRクーラ220に安定して取付けることがきる。したがって、エンジン206の振動によってエアクリーナ210が振動することをより効果的に防止でき、エアクリーナ210の耐久性が悪化することをより効果的に防止できる。 Therefore, the rigid boss portion 223a and the flange portion 220c can be attached to the air cleaner 210 via the brackets 235 and 236, and the air cleaner 210 can be stably attached to the EGR valve 219 and the EGR cooler 220. Therefore, it is possible to more effectively prevent the air cleaner 210 from vibrating due to the vibration of the engine 206, and it is possible to more effectively prevent the durability of the air cleaner 210 from deteriorating.
 また、本実施形態の補機取付け構造によれば、エンジン206に取付けられたEGRバルブ219を水平方向から目視した状態において、EGRバルブ219を、EGRバルブ本体223から駆動アクチュエータ224に向かって上方に傾斜させた。 Further, according to the auxiliary machine mounting structure of the present embodiment, in a state where the EGR valve 219 mounted on the engine 206 is viewed from the horizontal direction, the EGR valve 219 is moved upward from the EGR valve body 223 toward the drive actuator 224. Tilted.
 このため、駆動アクチュエータ224をエアクリーナ210の下部210aに近づけることができ、エンジンルーム204の上方から滴下される水Wをエアクリーナ210で遮ることができる。したがって、空気孔228aを通して駆動アクチュエータ224の内部に水が侵入することをより効果的に防止できる。 For this reason, the drive actuator 224 can be brought close to the lower part 210a of the air cleaner 210, and the water W dripped from above the engine room 204 can be blocked by the air cleaner 210. Therefore, it is possible to more effectively prevent water from entering the drive actuator 224 through the air hole 228a.
 また、本実施形態の補機取付け構造によれば、エアクリーナ210の前側取付け部210Aをエアクリーナ210の下部210aから下方に突出させ、駆動アクチュエータ224と前側取付け部210Aとを車両201の前後方向において重なるように設置し、駆動アクチュエータ224の前方を前側取付け部210Aによって覆った。 Further, according to the accessory mounting structure of the present embodiment, the front mounting portion 210A of the air cleaner 210 protrudes downward from the lower portion 210a of the air cleaner 210, and the drive actuator 224 and the front mounting portion 210A overlap in the longitudinal direction of the vehicle 201. The front of the drive actuator 224 was covered with the front mounting portion 210A.
 これにより、車両201の走行時に前方から侵入する水を前側取付け部210Aによって遮ることができる。したがって、空気孔228aを通して駆動アクチュエータ224の内部に水が侵入することを防止できる。 Thereby, water entering from the front during traveling of the vehicle 201 can be blocked by the front mounting portion 210A. Therefore, it is possible to prevent water from entering the drive actuator 224 through the air hole 228a.
 なお、本実施形態のEGRバルブは、ダイヤフラム式のEGRバルブ219から構成されるが、これに限定されるものではない。また、本実施形態のEGRバルブ219は、EGRバルブ本体223および駆動アクチュエータ224をエアクリーナ210の下方に設置したが、空気孔228aを有する駆動アクチュエータ224のみをエアクリーナ210の下方に設置してもよい。 In addition, although the EGR valve of this embodiment is comprised from the diaphragm-type EGR valve 219, it is not limited to this. In the EGR valve 219 of this embodiment, the EGR valve body 223 and the drive actuator 224 are installed below the air cleaner 210, but only the drive actuator 224 having the air holes 228a may be installed below the air cleaner 210.
 実施例3の実施形態を開示したが、当業者によっては実施例3の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正および等価物が次の請求項に含まれることが意図されている。 Although the embodiment of the third embodiment has been disclosed, it is obvious that those skilled in the art can make changes without departing from the scope of the third embodiment. All such modifications and equivalents are intended to be included in the following claims.
 この発明は、ディーゼルエンジンの燃料噴射装置のコストを低減し、燃料噴射装置を構成する部品類をシリンダヘッドの近傍に効率的に配置することができ、ディーゼルエンジンにかぎらず、流量調整弁と燃料ポンプとを有する燃料噴射装置を搭載したガソリンエンジンにも適用することができる。 The present invention can reduce the cost of a fuel injection device for a diesel engine, and can efficiently arrange the components constituting the fuel injection device in the vicinity of the cylinder head. The present invention can also be applied to a gasoline engine equipped with a fuel injection device having a pump.
 1 エンジン(ディーゼルエンジン)
 2 シリンダブロック
 3 シリンダヘッド
 4 シリンダヘッドカバー
 5 吸気カム軸
 6 排気カム軸
 9 チェーンケース
 10 変速機
 18 燃料噴射装置
 19 燃料タンク
 20 燃料フィードポンプ
 21 燃料供給配管
 22 コモンレール
 23 燃料噴射弁
 24 燃料ポンプ
 25 流量調整弁
 26 燃料リターン配管
 27 燃料フィルタ
1 engine (diesel engine)
2 Cylinder Block 3 Cylinder Head 4 Cylinder Head Cover 5 Intake Cam Shaft 6 Exhaust Cam Shaft 9 Chain Case 10 Transmission 18 Fuel Injection Device 19 Fuel Tank 20 Fuel Feed Pump 21 Fuel Supply Piping 22 Common Rail 23 Fuel Injection Valve 24 Fuel Pump 25 Flow Rate Adjustment Valve 26 Fuel return piping 27 Fuel filter

Claims (4)

  1.  エンジンの上部に配置されるシリンダヘッドと、前記シリンダヘッドの上部に配置され、コモンレールから燃料が供給される複数個の燃料噴射弁と、燃料タンクと前記燃料噴射弁を連絡する燃料供給配管上に配置され、かつ前記エンジンのカム軸によって駆動される燃料ポンプと、前記燃料供給配管の前記燃料ポンプより上流側に配置され、前記コモンレール内の燃料圧力に応じて前記燃料ポンプに供給する燃料の流量を調整する流量調整弁と、を備えるディーゼルエンジンの燃料噴射装置において、前記エンジンは前記シリンダヘッドの気筒列方向で変速機側の端部に接合されるチェーンケースを備え、前記流量調整弁を前記チェーンケースに取り付ける一方、前記燃料ポンプを前記シリンダヘッドの上面側かつ気筒列方向で前記チェーンケースと反対側の端部近傍に配置したことを特徴とするディーゼルエンジンの燃料噴射装置。 A cylinder head disposed at an upper portion of the engine; a plurality of fuel injection valves disposed at an upper portion of the cylinder head and supplied with fuel from a common rail; and a fuel supply pipe connecting the fuel tank and the fuel injection valve. A fuel pump disposed and driven by a camshaft of the engine; and a fuel flow rate disposed upstream of the fuel pump in the fuel supply pipe and supplied to the fuel pump in accordance with fuel pressure in the common rail A fuel injection device for a diesel engine comprising: a chain case joined to an end portion on a transmission side in a cylinder row direction of the cylinder head; and the flow control valve While attached to the chain case, the fuel pump is connected to the chain head on the upper surface side of the cylinder head and in the cylinder row direction. The fuel injection system of a diesel engine, characterized in that arranged in the vicinity of the end of the casing opposite.
  2.  前記エンジンは2気筒を有するエンジンであることを特徴とする請求項1に記載のディーゼルエンジンの燃料噴射装置。 The fuel injection device for a diesel engine according to claim 1, wherein the engine is an engine having two cylinders.
  3.  前記流量調整弁は前記チェーンケースに固定される基部と、基部から外側に延びる筒状部とを有し、前記基部を前記チェーンケースの変速機側に向いた壁面に固定したことを特徴とする請求項1または請求項2に記載のディーゼルエンジンの燃料噴射装置。 The flow rate adjusting valve has a base portion fixed to the chain case and a cylindrical portion extending outward from the base portion, and the base portion is fixed to a wall surface facing the transmission side of the chain case. A fuel injection device for a diesel engine according to claim 1 or 2.
  4.  前記シリンダヘッドの気筒列方向と直交する方向で前記燃料噴射弁の両側部に吸気カム軸と排気カム軸を配置し、前記燃料ポンプを前記排気カム軸で駆動する一方、この燃料ポンプを燃料入口が前記吸気カム軸の近傍に位置するよう前記シリンダヘッドに取り付け、前記流量調整弁を前記チェーンケースの気筒列方向と直交する方向で前記吸気カム軸の近傍に取り付けたことを特徴とする請求項1から請求項3のいずれか1項に記載のディーゼルエンジンの燃料噴射装置。 An intake cam shaft and an exhaust cam shaft are arranged on both sides of the fuel injection valve in a direction perpendicular to the cylinder row direction of the cylinder head, and the fuel pump is driven by the exhaust cam shaft, and the fuel pump is connected to a fuel inlet 2 is attached to the cylinder head so as to be positioned in the vicinity of the intake camshaft, and the flow rate adjusting valve is attached to the vicinity of the intake camshaft in a direction orthogonal to the cylinder row direction of the chain case. The fuel injection device for a diesel engine according to any one of claims 1 to 3.
PCT/JP2015/060618 2014-04-04 2015-04-03 Fuel injection device for diesel engine WO2015152404A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015000072.0T DE112015000072B4 (en) 2014-04-04 2015-04-03 Fuel injector for diesel engine
CN201580001060.8A CN105339642B (en) 2014-04-04 2015-04-03 The fuel injection device of diesel engine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-077675 2014-04-04
JP2014077675A JP6331603B2 (en) 2014-04-04 2014-04-04 Intake device for an internal combustion engine with a supercharger
JP2014078509A JP6281386B2 (en) 2014-04-07 2014-04-07 Auxiliary attachment structure for internal combustion engine for vehicle
JP2014-078509 2014-04-07
JP2014-083108 2014-04-14
JP2014083108A JP6248771B2 (en) 2014-04-14 2014-04-14 Fuel injection system for diesel engine

Publications (1)

Publication Number Publication Date
WO2015152404A1 true WO2015152404A1 (en) 2015-10-08

Family

ID=54240711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060618 WO2015152404A1 (en) 2014-04-04 2015-04-03 Fuel injection device for diesel engine

Country Status (3)

Country Link
CN (1) CN105339642B (en)
DE (1) DE112015000072B4 (en)
WO (1) WO2015152404A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583368B2 (en) * 2017-08-24 2019-10-02 マツダ株式会社 Powertrain unit for vehicles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350649A (en) * 1986-08-20 1988-03-03 Toyota Motor Corp Fuel injection controller for internal combustion engine
JPH0542739U (en) * 1991-11-01 1993-06-11 株式会社クボタ Bearing device for engine crankshaft end
JPH10238360A (en) * 1997-02-25 1998-09-08 Mitsubishi Motors Corp Cam shaft structure of internal combustion engine
JPH11200949A (en) * 1998-01-12 1999-07-27 Isuzu Motors Ltd Cylinder block structure
JP2002021568A (en) * 2000-07-11 2002-01-23 Hachiro Hattori Internal combustion engine
JP2003184688A (en) * 2001-12-19 2003-07-03 Suzuki Motor Corp Fuel pump device of engine
EP1357256A2 (en) * 2002-04-26 2003-10-29 Iveco Motorenforschung AG An internal combustion engine with an improved distribution control device
US20070193558A1 (en) * 2004-03-15 2007-08-23 Erwin Achleitner Method and system for controlling an internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828398A (en) 1994-07-15 1996-01-30 Mazda Motor Corp Fuel injector of diesel engine
DE19725472A1 (en) 1997-06-17 1998-12-24 Bosch Gmbh Robert Flow control valve
JP3683841B2 (en) 2001-09-03 2005-08-17 本田技研工業株式会社 Intake device for internal combustion engine
JP4626814B2 (en) 2005-12-28 2011-02-09 スズキ株式会社 Cover device for vehicle engine
JP2009227132A (en) 2008-03-24 2009-10-08 Mazda Motor Corp Front part structure of vehicle body
JP5229145B2 (en) 2009-07-17 2013-07-03 スズキ株式会社 Intake device for vehicle engine
US8869776B2 (en) 2011-11-25 2014-10-28 Honda Motor Co., Ltd. Auxiliary device mounting structure for an internal combustion engine
JP6000552B2 (en) * 2012-01-19 2016-09-28 ヤンマー株式会社 Engine equipment
JP5910149B2 (en) 2012-02-17 2016-04-27 スズキ株式会社 Fuel pump device for vehicle engine
CN104204488B (en) * 2012-03-28 2017-03-08 洋马株式会社 Engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350649A (en) * 1986-08-20 1988-03-03 Toyota Motor Corp Fuel injection controller for internal combustion engine
JPH0542739U (en) * 1991-11-01 1993-06-11 株式会社クボタ Bearing device for engine crankshaft end
JPH10238360A (en) * 1997-02-25 1998-09-08 Mitsubishi Motors Corp Cam shaft structure of internal combustion engine
JPH11200949A (en) * 1998-01-12 1999-07-27 Isuzu Motors Ltd Cylinder block structure
JP2002021568A (en) * 2000-07-11 2002-01-23 Hachiro Hattori Internal combustion engine
JP2003184688A (en) * 2001-12-19 2003-07-03 Suzuki Motor Corp Fuel pump device of engine
EP1357256A2 (en) * 2002-04-26 2003-10-29 Iveco Motorenforschung AG An internal combustion engine with an improved distribution control device
US20070193558A1 (en) * 2004-03-15 2007-08-23 Erwin Achleitner Method and system for controlling an internal combustion engine

Also Published As

Publication number Publication date
DE112015000072B4 (en) 2019-02-07
CN105339642A (en) 2016-02-17
CN105339642B (en) 2017-12-26
DE112015000072T5 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
US8615998B2 (en) Lubrication device of turbocharger of engine for vehicle
JP7043849B2 (en) Engine intake / exhaust device
JPWO2013073052A1 (en) Internal combustion engine with a supercharger
KR20200130876A (en) Engine device
KR20220025278A (en) Engine device
WO2015152403A1 (en) Engine intake device
CN111051678B (en) Engine with supercharger
WO2015152374A1 (en) Intake device for supercharger-equipped internal combustion engine
JP5393375B2 (en) Internal combustion engine
KR102049135B1 (en) Engine device
WO2015152404A1 (en) Fuel injection device for diesel engine
JP2019127917A (en) Intake/exhaust system for engine
US10900411B2 (en) Engine with supercharger arrangement
JP2010138776A (en) Fuel supply apparatus
JP4321198B2 (en) Engine intake system
JP2019127916A (en) Intake/exhaust system for engine
JP2014012497A (en) Engine apparatus
JP5345033B2 (en) Internal combustion engine
JPH09242548A (en) Intake device for engine with mechanical supercharger
JP2021143627A (en) Cooling device for engine
JP2022100373A (en) Engine device
JP2021143626A (en) Cooling device for engine
JP2012197719A (en) Structure of exhaust gas recirculation device
JP2011069255A (en) Fuel delivery pipe for internal combustion engine
JP2019127918A (en) Intake/exhaust system for engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001060.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120150000720

Country of ref document: DE

Ref document number: 112015000072

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15773637

Country of ref document: EP

Kind code of ref document: A1