WO2015152374A1 - Intake device for supercharger-equipped internal combustion engine - Google Patents

Intake device for supercharger-equipped internal combustion engine Download PDF

Info

Publication number
WO2015152374A1
WO2015152374A1 PCT/JP2015/060474 JP2015060474W WO2015152374A1 WO 2015152374 A1 WO2015152374 A1 WO 2015152374A1 JP 2015060474 W JP2015060474 W JP 2015060474W WO 2015152374 A1 WO2015152374 A1 WO 2015152374A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
outlet pipe
internal combustion
combustion engine
intercooler
Prior art date
Application number
PCT/JP2015/060474
Other languages
French (fr)
Japanese (ja)
Inventor
聖人 藤阪
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to CN201580002689.4A priority Critical patent/CN105765208B/en
Priority to DE112015001679.1T priority patent/DE112015001679B4/en
Publication of WO2015152374A1 publication Critical patent/WO2015152374A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/02Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10124Ducts with special cross-sections, e.g. non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/16Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines characterised by use in vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an intake device for an internal combustion engine with a supercharger, and more particularly to an intake device for an internal combustion engine with a supercharger provided with an intercooler that cools air introduced from the supercharger into the internal combustion engine.
  • an intercooler that cools air that has been supercharged by a compressor of a supercharger and increased in temperature.
  • the charging efficiency of the internal combustion engine can be increased by lowering the temperature of the air through heat exchange with the outside air passing through the core portion.
  • Patent Document 1 and Patent Document 2 As conventional internal combustion engines equipped with this type of intercooler, those described in Patent Document 1 and Patent Document 2 are known.
  • an intercooler is installed in front of an internal combustion engine mounted in an engine room, and an intake manifold is installed behind the internal combustion engine and above the internal combustion engine.
  • the intercooler and the intake manifold are connected by an intercooler outlet pipe having the same inner diameter along the length direction.
  • the intercooler outlet pipe described in Patent Document 1 is directed from the upper tank of the intercooler to the upper side of the internal combustion engine along the other end in the vehicle width direction opposite to the one end in the vehicle width direction on the transmission side of the internal combustion engine. After extending obliquely upward of the vehicle, it is connected to the intake manifold so as to cross the upper part of the internal combustion engine from above the rear part of the internal combustion engine.
  • An air cleaner inlet pipe is installed on the front side in the front-rear direction of the vehicle with respect to the intercooler outlet pipe so as to overlap the front-rear direction of the vehicle.
  • the intercooler outlet pipe (third intake pipe) described in Patent Document 2 is formed to have the same inner diameter along the length direction, and the intercooler outlet pipe is connected to the internal combustion engine from the lower tank of the intercooler. It extends diagonally above the vehicle toward the upper side of the internal combustion engine along the other end in the vehicle width direction opposite to the one end in the vehicle width direction on the transmission side.
  • an air cleaner outlet pipe is installed on the front side in the front-rear direction of the vehicle with respect to the intercooler outlet pipe so as to overlap in the front-rear direction of the vehicle. For this reason, the traveling wind from the front of the vehicle is blocked by the air cleaner outlet pipe, making it difficult to hit the intercooler outlet pipe. Therefore, the arrangement structure described in Patent Document 1 cannot efficiently cool the air flowing through the intercooler outlet pipe.
  • the engine output may be reduced.
  • An object of the present invention is to provide an intake device for an internal combustion engine with a supercharger that can prevent a reduction in engine output performance.
  • a first aspect of the present invention is an intake device attached to an internal combustion engine having a supercharger, the surge tank being attached to a rear portion in the front-rear direction of the internal combustion engine, and the intake air introduction provided in the upstream portion of the surge tank.
  • An intake manifold having a pipe, an intercooler which is installed in front of the internal combustion engine and has an air outlet pipe portion and is connected to the supercharger via an intercooler linelet pipe, and an internal combustion air from the air outlet pipe portion of the intercooler And an intercooler outlet pipe that extends along the vehicle width direction end of the engine and is connected to the intake air inlet pipe.
  • the intercooler outlet pipe has a large diameter portion and a large diameter that have a large inner diameter of the intercooler outlet pipe.
  • a small-diameter portion whose inner diameter is smaller than the inner diameter portion, and the large-diameter portion is connected to the intake inlet pipe from the center in the longitudinal direction of the intercooler outlet pipe. And a one formed between to the downstream end to be continued.
  • an end portion in the vehicle width direction of the internal combustion engine is supported by the vehicle body via the mount device, and at the rear portion in the front-rear direction of the internal combustion engine and below the surge tank during operation.
  • An auxiliary machine that generates heat is attached, and the intake pipe is extended from the surge tank to the lower part of the vehicle, and at least the lower part of the auxiliary machine is extended in the height direction of the vehicle, and the air outlet pipe is extended in the height direction of the vehicle.
  • the upper part is installed above the mounting device, and the auxiliary equipment is installed below the mounting device, and the intercooler outlet pipe is connected from the air outlet pipe to the intake inlet pipe below the mounting device and below the auxiliary equipment.
  • the large-diameter portion passes at the lower side of the mounting device and from the rear portion of the vehicle in the front-rear direction of the mounting device to the lower side of the auxiliary equipment and at least separates downward from the intake pipe. It may be formed between the up position.
  • the internal diameter dimension of a large diameter part may be formed uniformly over the length direction of a large diameter part.
  • the large diameter portion in a state where the internal combustion engine is viewed from above, the large diameter portion may be installed around the accessory on the lower side of the accessory.
  • the large-diameter portion is continuous with the small-diameter portion, is lower than the upper end portion of the auxiliary machine, and is continuous with the linear portion passing through the lower portion of the mounting device,
  • An inclined portion extending from the straight portion toward the lower side of the auxiliary device, a first bending portion that is continuous with the inclined portion and curves from the inclined portion toward the lower side of the auxiliary device, and a first bending portion.
  • a second curved portion that extends continuously and passes under the auxiliary machine in the vehicle width direction, curves backward from the internal combustion engine in the longitudinal direction of the vehicle, and then extends toward the lower side of the intake pipe.
  • a tapered portion whose inner diameter is gradually reduced from the upstream side to the downstream side of the second curved portion, and the tapered portion and the intake air are introduced at the downstream end of the tapered portion.
  • intercooler outlet piping is comprised including the large diameter part with a larger internal diameter dimension of an intercooler outlet piping, and the small diameter part with a smaller internal diameter dimension than a large diameter part,
  • the large diameter portion is formed between the central portion in the longitudinal direction of the intercooler outlet pipe and the downstream end connected to the intake air introduction pipe.
  • the large diameter portion is provided in the downstream portion of the intercooler outlet pipe, the surface area of the downstream portion of the intercooler outlet pipe can be increased and the inner diameter dimension of the downstream portion of the intercooler outlet pipe can be increased.
  • the temperature of the air flowing through the intercooler outlet pipe can be further lowered by the traveling wind, the intake efficiency of the internal combustion engine can be increased more effectively, and the output of the internal combustion engine can be improved more effectively.
  • the intake air inlet pipe is extended from the surge tank to the lower side of the vehicle, and extended at least to the lower part of the auxiliary machine in the vehicle height direction, and the intercooler outlet pipe is connected to the air outlet pipe portion.
  • the intercooler outlet pipe is connected to the air outlet pipe portion.
  • the intercooler outlet pipe and the intake pipe can be installed so as to surround the auxiliary machine from the side to the lower side, and the intercooler outlet pipe and the intake pipe are exposed to the heat rising from the auxiliary machine. Can be prevented.
  • the air cooled by the intercooler can be prevented from being heated, and the air flowing through the intercooler outlet pipe can be kept at a low temperature.
  • the air cooled by the intercooler can be introduced into the internal combustion engine from the intercooler outlet pipe through the intake manifold, and the charging efficiency of the internal combustion engine can be further increased to increase the output performance of the internal combustion engine more effectively.
  • the air outlet pipe is installed above the mounting device in the height direction of the vehicle, and the auxiliary machine is installed below the mounting device, and the intercooler outlet pipe is connected from the air outlet pipe to the bottom of the mounting device. And connected to the intake pipe through the lower part of the accessory.
  • the intercooler outlet pipe can be installed low in the vehicle height direction from the front (upstream part) to the rear (downstream part) of the vehicle, and the height direction dimension of the intercooler outlet pipe in the vehicle height direction. Can be long.
  • the surface area where the traveling wind introduced into the vehicle from the front of the vehicle hits the intercooler outlet piping can be increased, and the intercooler outlet piping can be cooled efficiently.
  • the temperature of the air flowing through the intercooler outlet pipe can be further reduced by the traveling wind, and the charging efficiency of the internal combustion engine can be increased more effectively.
  • the large diameter part located in the downstream part of an intercooler outlet piping can be installed in the position lower than an upstream part in the height direction of a vehicle, the traveling wind which flows through the bottom part (for example, bottom part of an engine room) of a vehicle Large diameter part can be installed at many positions.
  • the large diameter portion is provided below the auxiliary machine, it is possible to prevent the large diameter part from being exposed to the heat rising from the auxiliary machine. For this reason, it can prevent that the air cooled with the intercooler is heated, and can introduce
  • the intercooler outlet piping is not installed in the space above the auxiliary machine, the space above the auxiliary machine can be expanded. For this reason, the accessory can be easily accessed from above, and the accessory can be easily attached to and detached from the internal combustion engine. Therefore, the workability of the maintenance work of the auxiliary machine can be improved.
  • the intercooler outlet pipe is obstructed by the intercooler outlet pipe when the internal combustion engine is assembled to the vehicle body from below with the intercooler outlet pipe attached to the internal combustion engine.
  • the internal combustion engine can be attached to the vehicle body via the mounting device. For this reason, the internal combustion engine can be easily assembled to the vehicle body.
  • the internal diameter dimension of a large diameter part is formed uniformly over the length direction of a large diameter part, it prevents that an intake pulsation is attenuate
  • the intake pulsation can be optimized. For this reason, it is possible to prevent the amount of air taken into the internal combustion engine from decreasing in the normal operating range of the internal combustion engine, improve the charging efficiency of the internal combustion engine more effectively, and improve the output of the internal combustion engine more effectively. it can.
  • a large diameter part is installed in the circumference
  • more air can be introduced into the internal combustion engine along the gentle curve with the volume of air passing through the large-diameter portion increased.
  • the amount of air taken into the internal combustion engine can be increased to improve the charging efficiency of the internal combustion engine more effectively, and the output of the internal combustion engine can be improved more effectively.
  • the large-diameter portion is continuous with the first curved portion that curves from the inclined portion toward the lower side of the auxiliary device, and passes through the lower portion of the auxiliary device in the vehicle width direction.
  • a second curved portion that extends downward from the internal combustion engine in the front-rear direction and then extends downward from the intake pipe.
  • a tapered portion whose inner diameter is gradually reduced from the upstream side of the second curved portion toward the downstream side is formed at the downstream portion of the second curved portion, and the tapered portion and the intake pipe are provided at the downstream end of the tapered portion.
  • the small diameter pipe part to be connected was formed, and the downstream part of the large diameter part constituted by the tapered part and the small diameter pipe part was formed in a curved shape.
  • the flow velocity of air can be increased by the small-diameter pipe portion before air is introduced into the intake air introduction pipe. Therefore, air with a high flow rate can be introduced into the surge tank, and the efficiency of filling the air introduced into the internal combustion engine can be increased effectively.
  • FIG. 1 is a view showing an intake device for an internal combustion engine with a supercharger according to an embodiment of the present invention, and is a plan view of a front portion of a vehicle.
  • FIG. 2 is a view showing an intake device for an internal combustion engine with a supercharger according to an embodiment of the present invention, and is a side view of a front portion of a vehicle.
  • FIG. 3 is a view showing an intake device for an internal combustion engine with a supercharger according to an embodiment of the present invention, and is a rear view of the internal combustion engine.
  • FIG. 4 is a view showing the intake device for the supercharged internal combustion engine according to the embodiment of the present invention, and is a side view of the internal combustion engine around the intercooler outlet pipe.
  • FIG. 5 is a view showing the intake device for the supercharged internal combustion engine according to the embodiment of the present invention, and is a plan view of the front portion of the vehicle with the alternator and the intake manifold removed.
  • FIG. 6 is a diagram showing the relationship between the engine speed and the charging efficiency in the intercooler outlet piping in the conventional example having a constant inner diameter size and the intercooler outlet piping in the present embodiment having a different inner diameter size.
  • FIG. 1 to 5 are views showing an intake device for an internal combustion engine with a supercharger according to an embodiment of the present invention.
  • the vehicle 1 includes a vehicle body 2, and the vehicle body 2 extends along the vehicle front-rear direction of the vehicle 1 and is installed on both sides in the vehicle width direction.
  • the vehicle body 2 includes a dash panel 3 at the front of the vehicle 1 in the front-rear direction of the vehicle.
  • the dash panel 3 divides the vehicle body 2 into an engine room 4 that is installed on the front side in the front-rear direction of the vehicle 1 and a vehicle compartment 5 that is installed on the rear side in the front-rear direction of the vehicle 1 and on which a passenger rides.
  • expressions representing front and rear, such as front and rear are directions with respect to the front-rear direction of the vehicle 1.
  • an engine 6 as an internal combustion engine is installed in the engine room 4.
  • the engine 6 is supported by the side frame 2A via a mount device 7 attached to one end 6a in the vehicle width direction.
  • the side frame 2A is set on the right side in the vehicle width direction, and the vehicle width direction one end portion 6a is set as the right end portion of the engine 6.
  • the mount device 7 is connected to the first mount bracket 7a fastened to one end 6a in the vehicle width direction of the engine 6, and is connected to the first mount bracket 7a and extends to the side frame 2A side.
  • a second mount bracket 7b and a mount insulator portion 7c connected to the second mount bracket 7b and attached to the side frame 2A are provided.
  • a transmission 8 is provided at the other end 6b of the engine 6 in the vehicle width direction.
  • the left end of the engine 6 in the vehicle width direction is set as the other end 6b in the vehicle width direction.
  • the transmission 8 provided at the other end 6b in the vehicle width direction is supported by the side frame 2B via a mount device (not shown).
  • the vehicle width direction one end portion 6a of the engine 6 corresponds to the vehicle width direction end portion of the internal combustion engine of the present invention.
  • the engine 6 is provided with a supercharger 9 and an intake device 10.
  • the intake device 10 is provided on the front side of the engine 6.
  • the intake device 10 includes an intake duct 11 that takes in air from the front of the vehicle 1, an air cleaner 12 that is connected to the downstream end of the intake duct 11 and purifies the air, and is purified by the air cleaner 12. And an air cleaner outlet pipe 13 for introducing the air into the compressor housing 9a of the supercharger 9.
  • the supercharger 9 includes a compressor (not shown) provided in the compressor housing 9a and a turbine housing 9b containing a turbine (not shown) that is rotated by the pressure of the exhaust gas. Yes.
  • the intake device 10 includes an intercooler line pipe 14, an intercooler 15, an intercooler outlet pipe 16, and an intake manifold 17.
  • the upstream end of the intercool line pipe 14 is connected to the compressor housing 9 a of the supercharger 9, and the downstream end of the inter cool line pipe 14 is connected to the intercooler 15. It is connected to the.
  • the upstream end 16 a of the intercooler outlet pipe 16 is connected to the intercooler 15.
  • a downstream end 16 b of the intercooler outlet pipe 16 is connected to the intake manifold 17.
  • upstream and downstream represent upstream and downstream with respect to the direction of air flow.
  • the supercharger 9 intercools air introduced from the air cleaner outlet pipe 13 to the compressor housing 9 a by a compressor that rotates integrally with a turbine that rotates under the pressure of exhaust gas. Supercharge the inlet pipe 14.
  • the intercooler 15 is installed in front of the engine 6.
  • the intercooler 15 includes a core portion 18, an upper tank 19, and a lower tank 20.
  • the core portion 18 cools the air supplied from the supercharger 9 by traveling wind, and a circulation portion (not shown) through which air flows passes in the vertical direction or the vehicle width direction via a running air flow passage (not shown). It is installed side by side.
  • the lower tank 20 is provided in the lower part of the core part 18.
  • the lower tank 20 is provided with an air inlet pipe portion 20a to which the intercool line pipe 14 is connected.
  • the lower tank 20 introduces air introduced from the intercool linelet pipe 14 through the air inlet pipe portion 20 a into the core portion 18.
  • the upper tank 19 is provided in the upper part of the core part 18. As shown in FIGS. 1 to 3, the upper tank 19 is provided with an air outlet pipe portion 19a to which the upstream end 16a of the intercooler outlet pipe 16 is connected.
  • the air cooled by the core portion 18 is introduced into the upper tank 19.
  • the air introduced into the upper tank 19 is introduced into the intercooler outlet pipe 16 from the air outlet pipe portion 19a.
  • the air introduced into the intercooler outlet pipe 16 is introduced into the intake manifold 17.
  • an alternator 21 is provided at the rear of the engine 6.
  • a water pump 22 is provided at one end 6 a in the vehicle width direction of the engine 6.
  • the alternator 21 shown in FIGS. 1 to 4 constitutes a generator.
  • the alternator 21 includes a rotor and a stator (not shown).
  • a rotor (not shown) is rotatably supported by the housing 21A of the alternator 21.
  • An alternator pulley 21B that protrudes outward from the vehicle width direction one end 6a of the engine 6 is provided at the end of the rotor.
  • the alternator 21 generates high-temperature heat during operation.
  • the alternator 21 of this embodiment corresponds to an auxiliary machine of the present invention.
  • a rotating shaft 22C to which an impeller (not shown) is attached protrudes outward in the vehicle width direction from one end 6a in the vehicle width direction of the engine.
  • a water pump pulley 22A is attached to the end of the rotating shaft 22C.
  • a timing belt 23 is wound around the alternator pulley 21B and the water pump pulley 22A.
  • the timing belt 23 is also wound around the crank pulley 24.
  • the crank pulley 24 is provided at the end of a crankshaft (not shown) and protrudes outward from one end 6a in the vehicle width direction of the engine 6.
  • the alternator 21 is installed below the surge tank 25 of the intake manifold 17 and near the vehicle width direction one end 6 a of the engine 6 on the side opposite to the transmission 8.
  • the alternator 21 is installed at the center of the engine 6 in the height direction of the vehicle 1.
  • the intake manifold 17 is attached to the rear part of the engine 6.
  • the intake manifold 17 has a surge tank 25 that distributes intake air to the engine 6 and an intake introduction pipe 26 that is provided upstream of the surge tank 25.
  • symbol W1 has shown the direction through which air flows.
  • the intake intake pipe 26 extends from the surge tank 25 toward the lower side of the vehicle 1.
  • the intake air introduction pipe 26 is connected to the intercooler outlet pipe 16.
  • the downstream end 16b has the intake inlet pipe 26. It is connected to.
  • the intercooler outlet pipe 16 is disposed so as to pass near the lower portion 21 a of the alternator 21.
  • the air outlet pipe portion 19 a is installed above the mount device 7 in the height direction of the vehicle 1.
  • the alternator 21 is installed below the first mount bracket 7a or the second mount bracket 7b constituting the mount device 7.
  • the height of the air outlet pipe portion 19 a is indicated by a symbol T.
  • the intercooler outlet pipe 16 is disposed so as to pass from the air outlet pipe portion 19a below the first mount bracket 7a or the second mount bracket 7b constituting the mount device 7. And is connected to the intake pipe 26 through the lower part of the alternator 21.
  • the intercooler outlet pipe 16 includes a large-diameter portion 16A having a large inner diameter and a small-diameter portion 16B having a smaller inner diameter than the large-diameter portion 16A.
  • the large-diameter portion 16A is formed from the central portion C in the longitudinal direction of the intercooler outlet pipe 16 to the downstream end 16b connected to the intake air introduction pipe 26.
  • the large-diameter portion 16 ⁇ / b> A is installed around the alternator 21 on the lower side of the alternator 21.
  • the air outlet pipe portion 19 a is installed above the mount device 7 in the height direction of the vehicle 1.
  • the alternator 21 is installed below the first mount bracket 7a or the second mount bracket 7b.
  • the intercooler outlet pipe 16 is connected from the air outlet pipe portion 19a to the intake inlet pipe 26 through the lower portion of the first mount bracket 7a or the second mount bracket 7b and the lower portion of the alternator 21.
  • the large-diameter portion 16A passes below the alternator 21 from the rear side of the mounting device 7 on the lower side of the first mounting bracket 7a or the second mounting bracket 7b. Has been placed.
  • the large diameter portion 16 ⁇ / b> A is formed to extend to a position below the intake introduction pipe 26.
  • the inner diameter of the large diameter portion 16A is formed to be the same over the length direction of the large diameter portion 16A.
  • the large diameter portion 16 ⁇ / b> A is connected to the small diameter portion 16 ⁇ / b> B via a tip portion whose diameter is gradually reduced, and constitutes the mount device 7 at a position lower than the upper end portion 21 b of the alternator 21.
  • the upper end portion 21b of the alternator 21 and the upper end portion 16u of the linear portion 16c Is indicated by a leader line.
  • the large-diameter portion 16A has a curved portion 16e that is curved from the inclined portion 16d toward the lower side of the alternator 21 continuously to the inclined portion 16d, and a vehicle width that extends continuously from the curved portion 16e and extends below the alternator 21. And a curved portion 16f that is curved toward the rear of the engine 6 and extends toward the lower side of the intake air intake pipe 26.
  • the bending portion 16e corresponds to the first bending portion of the present invention
  • the bending portion 16f corresponds to the second bending portion of the present invention.
  • a tapered portion 16g is formed in the downstream portion of the bending portion 16f.
  • the tapered portion 16g has an inner diameter that gradually decreases from the upstream side to the downstream side of the bending portion 16f.
  • a small-diameter pipe portion 16h that connects the taper portion 16g and the intake pipe 26 is formed at the downstream end of the taper portion 16g.
  • the large-diameter portion 16A of the present embodiment has a curved downstream portion formed by a tapered portion 16g and a small-diameter pipe portion 16h.
  • the large diameter portion 16A is integrally formed from the upstream end to the downstream end of the large diameter portion 16A.
  • the downstream end of the small diameter pipe portion 16 h constitutes the downstream end 16 b of the intercooler outlet pipe 16.
  • the upstream end of the small diameter portion 16 ⁇ / b> B constitutes the upstream end 16 a of the intercooler outlet pipe 16.
  • the lower part of FIG. 4 shows a range from the straight part 16c to the inclined part 16d and the curved parts 16e and 16f.
  • This intake pulsation occurs when a reflected wave is generated by opening and closing the intake valve, and the reflected wave flows from the intake manifold 17 through the intercooler outlet pipe 16 to the intercooler 15 and rebounds at the air outlet pipe portion 19a of the intercooler 15. A wave is generated.
  • the intercooler outlet pipe 16 When the intercooler outlet pipe 16 resonates in the normal rotation range (for example, 3000 to 4500 rpm) of the engine 6 due to this standing wave, the intake resistance in the downstream portion of the intercooler outlet pipe 16 increases and is sucked into the engine 6. The amount of air that is produced decreases. As a result, the charging efficiency of the engine 6 decreases in the normal rotation range of the engine 6 and the output of the engine 6 may decrease.
  • the intake device 10 includes an intercooler outlet pipe 16 that includes a large-diameter portion 16A having a large inner diameter and a small-diameter portion 16B having a smaller inner diameter than the large-diameter portion 16A. It consists of. Further, in the intake device 10 according to the present embodiment, the large-diameter portion 16A is formed between the central portion C in the length direction of the intercooler outlet pipe 16 and the downstream end 16b connected to the intake introduction pipe 26.
  • the intake pulsation can be shifted to the high rotation range of the engine 6 and the intake pulsation can be optimized. That is, in the intake device 10 according to the present embodiment, the intercooler outlet pipe 16 is provided with a large diameter portion 16A, and the internal diameter and length of the large diameter portion 16A are increased, whereby the natural vibration of the intercooler outlet pipe 16 is increased. The natural frequency can be shifted to the high rotation range of the engine 6 by increasing the number.
  • a standing wave generated inside the intercooler outlet pipe 16 becomes a pressure wave.
  • the large diameter portion 16A is provided in the downstream portion of the intercooler outlet pipe 16
  • a decrease in the attenuation amount of the reflected wave reflected from the intake valve is suppressed and the air outlet pipe portion 19a of the intercooler 15 is passed through the intercooler outlet pipe 16.
  • the reflected wave can be transmitted, and the intake pulsation can be shifted to the high rotation range of the engine 6.
  • the resonance frequency is lower than that of the intercooler outlet pipe having the large diameter portion 16A of the intake device 10 according to the present embodiment, and the normal rotation of the engine 6 is performed. Inspiratory pulsation shifts in the area.
  • the pressure of the reflected wave generated by the intake valve rapidly decreases at the portion of the intercooler outlet pipe where the small diameter portion changes to the large diameter portion.
  • the reflected wave is attenuated before reaching the upstream portion of the outlet pipe 16.
  • the intake pulsation cannot be shifted to the high rotation range of the engine 6 and the resonance frequency of the intercooler outlet pipe is in the normal rotation range.
  • the pulsation resonates and intake resistance increases downstream of the intercooler outlet pipe.
  • FIG. 6 shows the engine speed (rpm) and the charging efficiency (%) of the engine 6 in a conventional intercooler outlet pipe having a constant inner diameter dimension and the intercooler outlet pipe 16 of the present embodiment having a different inner diameter dimension. It is a figure which shows the result measured by experiment.
  • the intake device 10 increases the natural frequency of the intercooler outlet pipe 16 and suppresses the decrease in the attenuation of the reflected wave reflected from the intake valve, thereby reducing the air outlet pipe portion 19a of the intercooler 15.
  • the reflected wave can be transmitted to the.
  • the resonance point between the standing wave and the large-diameter portion 16A of the intercooler outlet pipe 16 is moved to the high rotation region, and the intercooler 15 is moved in the normal rotation region of the engine 6.
  • Downstream intake resistance can be reduced.
  • the amount of air sucked into the engine 6 in the normal rotation range of the engine 6 can be prevented, the charging efficiency of the engine 6 can be improved, and the output of the engine 6 can be improved. Can be improved.
  • the intercooler 15 is installed in front of the engine 6, and the intake manifold 17 is installed in the rear part of the engine 6.
  • An alternator 21 that generates high-temperature heat during operation is installed at one end 6a of the engine 6 in the vehicle width direction.
  • the intercooler outlet piping 16 needs to be laid out from the front of the engine 6 to the rear of the engine 6 through the vehicle width direction one end portion 6a.
  • the heat generated from the alternator 21 and rising (indicated by an arrow with a symbol H in FIG. 3) stays above the alternator 21.
  • the air cooled by the intercooler 15 may be heated by the heat accumulated in the upper part.
  • the intake device 10 by providing the large diameter portion 16A in the downstream portion of the intercooler outlet pipe 16, the surface area of the downstream portion of the intercooler outlet pipe 16 can be increased.
  • the inner diameter dimension of the downstream part of the intercooler outlet piping 16 can be increased.
  • the surface area on which the traveling wind W (see FIGS. 2 and 4) introduced into the vehicle 1 from the front of the vehicle 1 hits the intercooler outlet pipe 16 can be increased.
  • the air having a large flow rate flowing through the diameter portion 16 ⁇ / b> A can be efficiently cooled by the intercooler outlet pipe 16.
  • the temperature of the air flowing through the intercooler outlet pipe 16 can be further reduced by the traveling wind W, and the intake efficiency of the engine can be increased more effectively.
  • the output of 6 can be improved more effectively.
  • the intake inlet pipe 26 is extended from the surge tank 25 to the lower side of the vehicle 1 and is extended to the lower part of the alternator 21 in the height direction of the vehicle 1, so that the intercooler outlet pipe 16 is
  • the air outlet pipe portion 19a was connected to the intake air introduction pipe 26 through the lower portion of the first mount bracket 7a or the second mount bracket 7b constituting the mount device and the lower portion of the alternator 21.
  • the intercooler outlet pipe 16 and the intake introduction pipe 26 can be installed so as to surround the alternator 21 from the side to the lower side, and the heat rising from the alternator 21 It is possible to prevent the intercooler outlet pipe 16 and the intake air inlet pipe 26 from being exposed. Therefore, according to the intake device 10 according to the present embodiment, the air cooled by the intercooler 15 can be prevented from being heated, and the air flowing through the intercooler outlet pipe 16 can be kept at a low temperature.
  • the air cooled by the intercooler 15 can be introduced into the engine 6 from the intercooler outlet pipe 16 through the intake manifold 17, and the charging efficiency of the engine 6 can be improved to increase the engine 6. Output performance can be improved.
  • the air outlet pipe portion 19a is installed above the first mount bracket 7a or the second mount bracket 7b in the height direction of the vehicle 1, and the alternator 21 is installed in the first direction. It is installed below the first mount bracket 7a or the second mount bracket 7b.
  • the intercooler outlet pipe 16 is connected from the air outlet pipe portion 19a to the intake inlet pipe 26 through the lower portion of the first mount bracket 7a or the second mount bracket 7b and the lower portion of the alternator 21. did.
  • the intercooler outlet pipe 16 can be installed low in the height direction of the vehicle 1 from the front (upstream portion) to the rear (downstream portion) of the vehicle.
  • the height of the intercooler outlet pipe 16 can be increased in the height direction.
  • the surface area where the traveling wind W introduced into the vehicle 1 from the front of the vehicle 1 hits the intercooler outlet pipe 16 can be increased, and the intercooler outlet pipe 16 can be efficiently cooled.
  • the temperature of the air flowing through the intercooler outlet pipe 16 can be further reduced by the traveling wind W, and the charging efficiency of the engine 6 can be increased more effectively.
  • the large diameter portion 16A located at the downstream portion of the intercooler outlet pipe 16 can be installed at a position lower than the upstream portion in the height direction of the vehicle 1, the traveling wind flowing through the bottom of the engine room 4 is located at a large position. Large diameter part 16A can be installed. For this reason, in the intake device 10 according to the present embodiment, a larger amount of traveling wind can be applied to the large-diameter portion 16A having a large surface area, and the air can be cooled more effectively. Therefore, in the intake device 10 according to the present embodiment, the charging efficiency of the engine 6 can be more effectively increased.
  • the large-diameter portion 16A is provided below the alternator 21, so that the large-diameter portion 16A can be prevented from being exposed to heat rising from the alternator 21.
  • the air cooled by the intercooler 15 can be prevented from being heated, and low-temperature air can be introduced into the engine 6.
  • the space above the alternator 21 can be expanded.
  • the alternator 21 can be easily accessed from above, and the alternator 21 can be easily attached to and detached from the engine 6. Therefore, in the intake device 10 according to the present embodiment, the workability of the maintenance work of the alternator 21 can be improved.
  • the intercooler outlet pipe 16 is allowed to pass under the first mount bracket 7a or the second mount bracket 7b. Thereby, in the intake device 10 according to the present embodiment, the intercooler outlet pipe 16 is obstructed by the intercooler outlet pipe 16 when the engine 6 is assembled to the vehicle body 2 from below with the intercooler outlet pipe 16 attached to the engine 6. There is no.
  • the first mount bracket 7a provided in the engine 6 is directed to the second mount bracket 7b connected to the mout insulator portion 7c, whereby the engine 6 is mounted on the mount device. 7 can be attached to the side frame 2A. For this reason, according to the intake device 10 according to the present embodiment, the engine 6 can be easily assembled to the vehicle body 2.
  • the inner diameter of the large diameter portion 16A is formed to be the same over the length direction of the large diameter portion 16A, so that intake pulsation is generated in the large diameter portion 16A. It is possible to optimize the intake pulsation by preventing attenuation. For this reason, according to the intake device 10 according to the present embodiment, in the normal operation region of the engine 6, the amount of air sucked into the engine 6 is prevented from decreasing, and the charging efficiency of the engine 6 is more effectively improved. The output of the engine 6 can be improved more effectively.
  • the large-diameter portion 16A is installed around the alternator 21 on the lower side of the alternator 21 when the engine 6 is viewed from above. Therefore, if the large-diameter portion 16A has a curvature radius that draws a gentle curve, more air is introduced into the engine 6 along the gentle curve with the volume of air passing through the large-diameter portion 16A increased. it can. As a result, according to the intake device 10 according to the present embodiment, the amount of air sucked into the engine 6 can be increased to improve the charging efficiency of the engine 6 more effectively, and the output of the engine 6 can be improved more effectively. it can.
  • the large-diameter portion 16A includes the straight portion 16c, the inclined portion 16d, and the curved portions 16e and 16f, so that the amount of air introduced into the engine 6 can be increased and the traveling wind can be increased.
  • the surface area of the large-diameter portion 16A can be increased.
  • the large-diameter portion 16A is curved from the inclined portion 16d toward the lower side of the alternator 21, and is continuous to the curved portion 16e and disposed below the alternator 21 along the vehicle width direction. It is a shape that curves backward from the engine 6 in the front-rear direction, and includes a curved portion 16 f that extends toward the lower side of the intake air introduction pipe 26. For this reason, according to the intake device 10 according to the present embodiment, the air flowing from the upstream to the downstream of the intercooler outlet pipe 16 is introduced into the engine 6 while maintaining the momentum by the centrifugal force when passing through the curved portions 16e and 16f. it can.
  • a tapered portion 16g whose inner diameter dimension is gradually reduced from the upstream side to the downstream side of the curved portion 16f is formed in the downstream portion of the curved portion 16f, and is formed at the downstream end of the tapered portion 16g.
  • the flow velocity of air can be increased by the small-diameter pipe portion 16h before air is introduced into the intake introduction pipe 26. Therefore, in the intake device 10 according to the present embodiment, air with a high flow velocity can be introduced into the surge tank 25, and can be effectively enhanced by the charging efficiency of the air introduced into the engine 6.
  • the auxiliary machine is configured from the alternator 21, but the auxiliary machine is not limited to the alternator 21 as long as the auxiliary machine generates heat.

Abstract

An intercooler outlet pipe (16) in this invention comprises a wide section (16A) that has a large inside diameter and a narrow section (16B) that has a smaller inside diameter than the wide section (16A). The wide section (16A) extends from the lengthwise middle (C) of the intercooler outlet pipe (16) to a downstream end (16b) thereof that is connected to an intake-air introduction tube. Said intake-air introduction tube extends from a surge tank towards the bottom of the vehicle (1), and in the height direction of the vehicle (1), extends to the bottom of an alternator (21). From an air-outlet tube section (19a), the intercooler outlet pipe (16) passes underneath a mount device (7) and the alternator (21) to connect to the intake-air introduction tube.

Description

過給機付き内燃機関の吸気装置Intake device for an internal combustion engine with a supercharger
 本発明は、過給機付き内燃機関の吸気装置に関し、特に、過給機から内燃機関に導入される空気を冷却するインタクーラを備えた過給機付き内燃機関の吸気装置に関する。 The present invention relates to an intake device for an internal combustion engine with a supercharger, and more particularly to an intake device for an internal combustion engine with a supercharger provided with an intercooler that cools air introduced from the supercharger into the internal combustion engine.
 一般に、自動車等の車両の内燃機関には、過給機のコンプレッサにより過給されて温度が上昇した空気を冷却するインタクーラが設けられている。このインタクーラでは、コア部を通過する外気との熱交換を通じて空気の温度を低下させることにより、内燃機関の充填効率を高めることができる。 Generally, in an internal combustion engine of a vehicle such as an automobile, an intercooler that cools air that has been supercharged by a compressor of a supercharger and increased in temperature is provided. In this intercooler, the charging efficiency of the internal combustion engine can be increased by lowering the temperature of the air through heat exchange with the outside air passing through the core portion.
 従来のこの種のインタクーラを備えた内燃機関としては、特許文献1および特許文献2に記載されたものが知られている。特許文献1および特許文献2に記載されたものは、エンジンルーム内に搭載された内燃機関の前方にインタクーラが設置されているとともに、内燃機関の後方で、かつ内燃機関の上部に吸気マニホールドが設置されており、インタクーラと吸気マニホールドとが、長さ方向に沿って内径寸法が同一のインタクーラアウトレット配管によって連結される。 As conventional internal combustion engines equipped with this type of intercooler, those described in Patent Document 1 and Patent Document 2 are known. In Patent Document 1 and Patent Document 2, an intercooler is installed in front of an internal combustion engine mounted in an engine room, and an intake manifold is installed behind the internal combustion engine and above the internal combustion engine. The intercooler and the intake manifold are connected by an intercooler outlet pipe having the same inner diameter along the length direction.
 特許文献1に記載されたインタクーラアウトレット配管は、インタクーラの上部タンクから内燃機関の変速機側の車幅方向一端部と反対側の車幅方向他端部に沿って内燃機関の上側に向けて車両の斜め上方に延びた後、内燃機関の後部上方から内燃機関の上方を横切るようにして吸気マニホールドに連結されている。
 また、インタクーラアウトレット配管に対して車両の前後方向前方側において、車両の前後方向に重なるようにしてエアクリーナインレット配管が設置されている。
The intercooler outlet pipe described in Patent Document 1 is directed from the upper tank of the intercooler to the upper side of the internal combustion engine along the other end in the vehicle width direction opposite to the one end in the vehicle width direction on the transmission side of the internal combustion engine. After extending obliquely upward of the vehicle, it is connected to the intake manifold so as to cross the upper part of the internal combustion engine from above the rear part of the internal combustion engine.
An air cleaner inlet pipe is installed on the front side in the front-rear direction of the vehicle with respect to the intercooler outlet pipe so as to overlap the front-rear direction of the vehicle.
 特許文献2に記載されたインタクーラアウトレット配管(第3の吸気管)は、長さ方向に沿って同一の内径寸法に形成されており、インタクーラアウトレット配管が、インタクーラの下部タンクから内燃機関の変速機側の車幅方向一端部と反対側の車幅方向他端部に沿って内燃機関の上側に向けて車両の斜め上方に延在している。 The intercooler outlet pipe (third intake pipe) described in Patent Document 2 is formed to have the same inner diameter along the length direction, and the intercooler outlet pipe is connected to the internal combustion engine from the lower tank of the intercooler. It extends diagonally above the vehicle toward the upper side of the internal combustion engine along the other end in the vehicle width direction opposite to the one end in the vehicle width direction on the transmission side.
特開2011-21571号公報JP 2011-21571 A 特開2009-227132号公報JP 2009-227132 A
 しかしながら、特許文献1、2に記載されたものにあっては、車幅方向他端部に熱を発生するオルタネータ等の補機が設置される場合に、インタクーラアウトレット配管が補機の上方に位置することになる。 However, in the devices described in Patent Documents 1 and 2, when an auxiliary machine such as an alternator that generates heat is installed at the other end in the vehicle width direction, the intercooler outlet pipe is located above the auxiliary machine. Will be located.
 このため、補機から発生して上昇する熱が補機の上方に滞留すると、インタクーラアウトレット配管がこの熱に晒されてしまい、インタクーラアウトレット配管を通過する空気が加熱されてしまうおそれがある。 For this reason, if the heat generated from the auxiliary machine rises and stays above the auxiliary machine, the intercooler outlet pipe is exposed to this heat, and the air passing through the intercooler outlet pipe may be heated. .
 また、特許文献1に記載されたものは、インタクーラアウトレット配管に対して車両の前後方向前方側において、車両の前後方向に重なるようにしてエアクリーナアウトレット配管が設置されている。このため、車両の前方からの走行風がエアクリーナアウトレット配管に遮られてしまい、インタクーラアウトレット配管に当たり難くなる。したがって、特許文献1に記載された配置構造では、インタクーラアウトレット配管を流れる空気を効率よく冷却できない。 Also, in the device described in Patent Document 1, an air cleaner outlet pipe is installed on the front side in the front-rear direction of the vehicle with respect to the intercooler outlet pipe so as to overlap in the front-rear direction of the vehicle. For this reason, the traveling wind from the front of the vehicle is blocked by the air cleaner outlet pipe, making it difficult to hit the intercooler outlet pipe. Therefore, the arrangement structure described in Patent Document 1 cannot efficiently cool the air flowing through the intercooler outlet pipe.
 以上の結果、特許文献1に記載された配置構造では、インタクーラによって冷却された空気をインタクーラアウトレット配管によってさらに冷却できず、吸気マニホールドを介して冷却した空気を内燃機関に導入できない。したがって、特許文献1に記載された配置構造では、内燃機関の充填効率を高めることができず、内燃機関の出力性能を高めることが困難となる。 As a result, in the arrangement structure described in Patent Document 1, the air cooled by the intercooler cannot be further cooled by the intercooler outlet pipe, and the cooled air cannot be introduced into the internal combustion engine via the intake manifold. Therefore, with the arrangement structure described in Patent Document 1, the charging efficiency of the internal combustion engine cannot be increased, and it becomes difficult to increase the output performance of the internal combustion engine.
 また、特許文献1、2に記載されるインタクーラアウトレット配管は、同一の内径寸法に形成されているため、例えば、インタクーラアウトレット配管を2気筒エンジンに適用した場合に、吸気脈動が最適化されず、吸気抵抗が増大してしまう。 Further, since the intercooler outlet pipes described in Patent Documents 1 and 2 are formed to have the same inner diameter, for example, when the intercooler outlet pipe is applied to a two-cylinder engine, intake pulsation is optimized. Therefore, the intake resistance increases.
 具体的には、2気筒エンジン等において、ピストンの位相が360°で上下動する場合には、吸気バルブによる吸気ポートの開閉タイミングが同一となって、所謂、間欠吸気が行われ、吸気脈動が発生し、吸気脈動に起因する圧力波が発生する。 Specifically, in a two-cylinder engine or the like, when the piston phase moves up and down at 360 °, the intake port opening and closing timing by the intake valve is the same, so-called intermittent intake is performed, and intake pulsation does not occur. And a pressure wave is generated due to the intake pulsation.
 インタクーラアウトレット配管の内径寸法が同一であると、インタクーラアウトレット配管の固有振動数が低くなり、インタクーラアウトレット配管と吸気バルブに衝突して跳ね返る反射波との共鳴により、エンジンの通常回転域(例えば、3000~4500rpm)において、インタクーラアウトレット配管の吸気抵抗が大きくなる。このため、エンジンに吸入される空気量が低下しまい、内燃機関における空気の充填効率が低下する。この結果、エンジンの出力が低下するおそれがある。 If the inner diameter of the intercooler outlet piping is the same, the natural frequency of the intercooler outlet piping will be low, and the resonance between the intercooler outlet piping and the reflected wave that bounces off the intake valve will cause normal engine rotation ( For example, at 3000 to 4500 rpm, the intake resistance of the intercooler outlet pipe increases. For this reason, the amount of air taken into the engine is reduced, and the air charging efficiency in the internal combustion engine is reduced. As a result, the engine output may be reduced.
 本発明は、上記のような問題点に着目してなされたものであり、インタクーラアウトレット配管を流れる空気が加熱されることを防止して、内燃機関の出力性能を高めることができるとともに、内燃機関の出力性能が低下することを防止できる過給機付き内燃機関の吸気装置を提供することを目的とする。 The present invention has been made paying attention to the above-described problems, and can prevent the air flowing through the intercooler outlet pipe from being heated, thereby improving the output performance of the internal combustion engine, An object of the present invention is to provide an intake device for an internal combustion engine with a supercharger that can prevent a reduction in engine output performance.
 本発明の第1の態様は、過給機を有する内燃機関に取付けられた吸気装置であって、内燃機関の前後方向後部に取付けられたサージタンクおよびサージタンクの上流部に設けられた吸気導入管を有する吸気マニホールドと、内燃機関の前方に設置されるとともに、空気出口管部を有し、過給機にインタクーラインレット配管を介して接続されるインタクーラと、インタクーラの空気出口管部から内燃機関の車幅方向端部に沿って延びた後、吸気導入管に連結されるインタクーラアウトレット配管とを備え、インタクーラアウトレット配管が、インタクーラアウトレット配管の内径寸法が大きい大径部と大径部よりも内径寸法が小さい小径部とを含んで構成され、大径部が、インタクーラアウトレット配管の長さ方向中央部から吸気導入管に接続される下流端までの間に形成されるものから構成されている。 A first aspect of the present invention is an intake device attached to an internal combustion engine having a supercharger, the surge tank being attached to a rear portion in the front-rear direction of the internal combustion engine, and the intake air introduction provided in the upstream portion of the surge tank. An intake manifold having a pipe, an intercooler which is installed in front of the internal combustion engine and has an air outlet pipe portion and is connected to the supercharger via an intercooler linelet pipe, and an internal combustion air from the air outlet pipe portion of the intercooler And an intercooler outlet pipe that extends along the vehicle width direction end of the engine and is connected to the intake air inlet pipe. The intercooler outlet pipe has a large diameter portion and a large diameter that have a large inner diameter of the intercooler outlet pipe. A small-diameter portion whose inner diameter is smaller than the inner diameter portion, and the large-diameter portion is connected to the intake inlet pipe from the center in the longitudinal direction of the intercooler outlet pipe. And a one formed between to the downstream end to be continued.
 本発明の第2の態様としては、内燃機関の車幅方向端部がマウント装置を介して車両の車体に支持されるとともに、内燃機関の前後方向後部で、かつサージタンクの下方に、作動時に熱を発生する補機が取付けられ、吸気導入管を、サージタンクから車両の下方に延長させるとともに、車両の高さ方向において少なくとも補機の下部に延長させ、車両の高さ方向において空気出口管部をマウント装置よりも上方に設置するとともに、補機をマウント装置よりも下方に設置し、インタクーラアウトレット配管を、空気出口管部からマウント装置の下方および補機の下方を通して吸気導入管に接続し、大径部を、マウント装置の下方側で、かつマウント装置の車両の前後方向後部から補機の下方を通過して、少なくとも吸気導入管から下方に離隔した位置までの間に形成してもよい。 As a second aspect of the present invention, an end portion in the vehicle width direction of the internal combustion engine is supported by the vehicle body via the mount device, and at the rear portion in the front-rear direction of the internal combustion engine and below the surge tank during operation. An auxiliary machine that generates heat is attached, and the intake pipe is extended from the surge tank to the lower part of the vehicle, and at least the lower part of the auxiliary machine is extended in the height direction of the vehicle, and the air outlet pipe is extended in the height direction of the vehicle. The upper part is installed above the mounting device, and the auxiliary equipment is installed below the mounting device, and the intercooler outlet pipe is connected from the air outlet pipe to the intake inlet pipe below the mounting device and below the auxiliary equipment. The large-diameter portion passes at the lower side of the mounting device and from the rear portion of the vehicle in the front-rear direction of the mounting device to the lower side of the auxiliary equipment and at least separates downward from the intake pipe. It may be formed between the up position.
 本発明の第3の態様としては、大径部の内径寸法が、大径部の長さ方向に亙って同一に形成されてもよい。
 本発明の第4の態様としては、内燃機関を上方から見た状態において、大径部が補機の下方側で補機の周囲に設置されてもよい。
As a 3rd aspect of this invention, the internal diameter dimension of a large diameter part may be formed uniformly over the length direction of a large diameter part.
As a fourth aspect of the present invention, in a state where the internal combustion engine is viewed from above, the large diameter portion may be installed around the accessory on the lower side of the accessory.
 本発明の第5の態様としては、大径部は、小径部に連続し、補機の上端部よりも低い位置で、かつマウント装置の下方を通過する直線部と、直線部に連続し、直線部から補機の下方側に向かって延在する傾斜部と、傾斜部に連続し、傾斜部から補機の下方側に向かって湾曲する第1の湾曲部と、第1の湾曲部に連続するとともに補機の下方を車幅方向に通過し、車両の前後方向で内燃機関から後方に向かって湾曲した後、吸気導入管の下方側に向かって延在する第2の湾曲部とを含んで構成され、第2の湾曲部の下流部に、第2の湾曲部の上流から下流に向かって内径寸法が漸次縮小するテーパ部を形成し、テーパ部の下流端にテーパ部と吸気導入管とを接続する小径管部を形成し、テーパ部および小径管部とによって構成される大径部の下流部を湾曲形状に形成してもよい。 As a fifth aspect of the present invention, the large-diameter portion is continuous with the small-diameter portion, is lower than the upper end portion of the auxiliary machine, and is continuous with the linear portion passing through the lower portion of the mounting device, An inclined portion extending from the straight portion toward the lower side of the auxiliary device, a first bending portion that is continuous with the inclined portion and curves from the inclined portion toward the lower side of the auxiliary device, and a first bending portion. A second curved portion that extends continuously and passes under the auxiliary machine in the vehicle width direction, curves backward from the internal combustion engine in the longitudinal direction of the vehicle, and then extends toward the lower side of the intake pipe. A tapered portion whose inner diameter is gradually reduced from the upstream side to the downstream side of the second curved portion, and the tapered portion and the intake air are introduced at the downstream end of the tapered portion. Forming a small-diameter pipe part connecting the pipe, and a large-diameter part constituted by a tapered part and a small-diameter pipe part. It may form a flow unit in a curved shape.
 このように上記の第1の態様によれば、インタクーラアウトレット配管が、インタクーラアウトレット配管の内径寸法が大きい大径部と大径部よりも内径寸法が小さい小径部とを含んで構成され、大径部が、インタクーラアウトレット配管の長さ方向中央部から吸気導入管に接続される下流端までの間に形成される。 Thus, according to said 1st aspect, intercooler outlet piping is comprised including the large diameter part with a larger internal diameter dimension of an intercooler outlet piping, and the small diameter part with a smaller internal diameter dimension than a large diameter part, The large diameter portion is formed between the central portion in the longitudinal direction of the intercooler outlet pipe and the downstream end connected to the intake air introduction pipe.
 このため、吸気バルブの開閉に伴い発生する吸気脈動を最適化して、内燃機関の高回転域でインタクーラアウトレット配管の共鳴を発生できる。したがって、内燃機関の通常回転域においてインタクーラアウトレット配管の下流部の吸気抵抗を小さくして、内燃機関に吸入される空気量が低下することを防止できる。この結果、内燃機関の充填効率を向上でき、内燃機関の出力を向上できる。 For this reason, it is possible to optimize the intake pulsation that occurs when the intake valve is opened and closed, and to generate resonance of the intercooler outlet pipe in the high rotation range of the internal combustion engine. Therefore, the intake resistance at the downstream portion of the intercooler outlet pipe can be reduced in the normal rotation range of the internal combustion engine, and the amount of air taken into the internal combustion engine can be prevented from decreasing. As a result, the charging efficiency of the internal combustion engine can be improved, and the output of the internal combustion engine can be improved.
 また、インタクーラアウトレット配管の下流部に大径部を設けたので、インタクーラアウトレット配管の下流部の表面積を増大できるとともにインタクーラアウトレット配管の下流部の内径寸法を増大できる。 Also, since the large diameter portion is provided in the downstream portion of the intercooler outlet pipe, the surface area of the downstream portion of the intercooler outlet pipe can be increased and the inner diameter dimension of the downstream portion of the intercooler outlet pipe can be increased.
 このため、車両の前方から車両に導入される走行風がインタクーラアウトレット配管に当たる表面積を増大でき、大径部を流れる流量の大きい空気をインタクーラアウトレット配管で効率よく冷却できる。 Therefore, it is possible to increase the surface area where the traveling wind introduced into the vehicle from the front of the vehicle hits the intercooler outlet pipe, and the air having a large flow rate flowing through the large diameter portion can be efficiently cooled by the intercooler outlet pipe.
 この結果、インタクーラアウトレット配管を流れる空気の温度を走行風によってさらに低下させて、内燃機関の吸気効率をより効果的に高めることができ、内燃機関の出力をより効果的に向上できる。 As a result, the temperature of the air flowing through the intercooler outlet pipe can be further lowered by the traveling wind, the intake efficiency of the internal combustion engine can be increased more effectively, and the output of the internal combustion engine can be improved more effectively.
 上記の第2の態様によれば、吸気導入管をサージタンクから車両の下方に延長させるとともに、車両の高さ方向において少なくとも補機の下部に延長させ、インタクーラアウトレット配管を、空気出口管部からマウント装置の下方および補機の下方を通して吸気導入管に接続した。 According to the second aspect, the intake air inlet pipe is extended from the surge tank to the lower side of the vehicle, and extended at least to the lower part of the auxiliary machine in the vehicle height direction, and the intercooler outlet pipe is connected to the air outlet pipe portion. To the intake pipe through the lower part of the mounting device and the auxiliary machine.
 このため、補機の側方から下側に亙って囲むようにインタクーラアウトレット配管および吸気導入管を設置でき、補機から上昇する熱にインタクーラアウトレット配管および吸気導入管が晒されることを防止できる。 For this reason, the intercooler outlet pipe and the intake pipe can be installed so as to surround the auxiliary machine from the side to the lower side, and the intercooler outlet pipe and the intake pipe are exposed to the heat rising from the auxiliary machine. Can be prevented.
 したがって、インタクーラで冷却された空気が加熱されることを防止でき、インタクーラアウトレット配管を流れる空気を低温に保つことができる。
 この結果、インタクーラで冷却された空気をインタクーラアウトレット配管から吸気マニホールドを通して内燃機関に導入でき、内燃機関の充填効率をより高めて内燃機関の出力性能をより効果的に高めることができる。
Therefore, the air cooled by the intercooler can be prevented from being heated, and the air flowing through the intercooler outlet pipe can be kept at a low temperature.
As a result, the air cooled by the intercooler can be introduced into the internal combustion engine from the intercooler outlet pipe through the intake manifold, and the charging efficiency of the internal combustion engine can be further increased to increase the output performance of the internal combustion engine more effectively.
 また、車両の高さ方向において空気出口管部をマウント装置よりも上方に設置するとともに、補機をマウント装置よりも下方に設置し、インタクーラアウトレット配管を、空気出口管部からマウント装置の下方および補機の下方を通して吸気導入管に接続した。 In addition, the air outlet pipe is installed above the mounting device in the height direction of the vehicle, and the auxiliary machine is installed below the mounting device, and the intercooler outlet pipe is connected from the air outlet pipe to the bottom of the mounting device. And connected to the intake pipe through the lower part of the accessory.
 このため、車両の高さ方向においてインタクーラアウトレット配管を車両の前方(上流部)から後方(下流部)に向かって低く設置でき、車両の高さ方向においてインタクーラアウトレット配管の高さ方向の寸法を長くできる。 For this reason, the intercooler outlet pipe can be installed low in the vehicle height direction from the front (upstream part) to the rear (downstream part) of the vehicle, and the height direction dimension of the intercooler outlet pipe in the vehicle height direction. Can be long.
 したがって、車両の前方から車両に導入される走行風がインタクーラアウトレット配管に当たる表面積を増大でき、インタクーラアウトレット配管を効率よく冷却できる。この結果、インタクーラアウトレット配管を流れる空気の温度を走行風によってさらに低下でき、内燃機関の充填効率をより効果的に高めることができる。 Therefore, the surface area where the traveling wind introduced into the vehicle from the front of the vehicle hits the intercooler outlet piping can be increased, and the intercooler outlet piping can be cooled efficiently. As a result, the temperature of the air flowing through the intercooler outlet pipe can be further reduced by the traveling wind, and the charging efficiency of the internal combustion engine can be increased more effectively.
 また、インタクーラアウトレット配管の下流部に位置する大径部を、車両の高さ方向において上流部よりも低い位置に設置できるので、車両の底部(例えば、エンジンルームの底部)を流れる走行風が多い位置に大径部を設置できる。 Moreover, since the large diameter part located in the downstream part of an intercooler outlet piping can be installed in the position lower than an upstream part in the height direction of a vehicle, the traveling wind which flows through the bottom part (for example, bottom part of an engine room) of a vehicle Large diameter part can be installed at many positions.
 このため、より多くの走行風を表面積の大きい大径部により多く当てることができ、空気をより効果的に冷却することができる。したがって、内燃機関の充填効率をより効果的に高めることができる。 For this reason, more traveling wind can be applied to the large-diameter portion having a large surface area, and the air can be cooled more effectively. Therefore, the charging efficiency of the internal combustion engine can be increased more effectively.
 また、補機の下方に大径部が設けられるので、補機から上昇する熱に大径部が晒されることを防止できる。このため、インタクーラで冷却された空気が加熱されることを防止でき、内燃機関に低温の空気を導入することができる。 Also, since the large diameter portion is provided below the auxiliary machine, it is possible to prevent the large diameter part from being exposed to the heat rising from the auxiliary machine. For this reason, it can prevent that the air cooled with the intercooler is heated, and can introduce | transduce low temperature air to an internal combustion engine.
 また、補機の上方のスペースにインタクーラアウトレット配管が設置されないので、補機の上方のスペースを拡大できる。このため、上方から補機に容易にアクセスでき、内燃機関に対して補機を容易に着脱できる。したがって、補機のメンテナンス作業の作業性を向上できる。 Also, since the intercooler outlet piping is not installed in the space above the auxiliary machine, the space above the auxiliary machine can be expanded. For this reason, the accessory can be easily accessed from above, and the accessory can be easily attached to and detached from the internal combustion engine. Therefore, the workability of the maintenance work of the auxiliary machine can be improved.
 さらに、インタクーラアウトレット配管をマウント装置の下方を通過させることにより、インタクーラアウトレット配管が内燃機関に取付けられた状態で、内燃機関を下方から車体に組み付ける作業時に、インタクーラアウトレット配管に邪魔されることなく、内燃機関を、マウント装置を介して車体に取付けることができる。このため、車体に内燃機関を容易に組み付けることができる。 Further, by passing the intercooler outlet pipe below the mount device, the intercooler outlet pipe is obstructed by the intercooler outlet pipe when the internal combustion engine is assembled to the vehicle body from below with the intercooler outlet pipe attached to the internal combustion engine. The internal combustion engine can be attached to the vehicle body via the mounting device. For this reason, the internal combustion engine can be easily assembled to the vehicle body.
 上記の第3の態様によれば、大径部の内径寸法が、大径部の長さ方向に亙って同一に形成されるので、大径部で吸気脈動が減衰されてしまうことを防止して、吸気脈動を最適化できる。このため、内燃機関の通常運転域において内燃機関に吸入される空気量が低下することを防止して、内燃機関の充填効率をより効果的に向上でき、内燃機関の出力をより効果的に向上できる。 According to said 3rd aspect, since the internal diameter dimension of a large diameter part is formed uniformly over the length direction of a large diameter part, it prevents that an intake pulsation is attenuate | damped by a large diameter part. Thus, the intake pulsation can be optimized. For this reason, it is possible to prevent the amount of air taken into the internal combustion engine from decreasing in the normal operating range of the internal combustion engine, improve the charging efficiency of the internal combustion engine more effectively, and improve the output of the internal combustion engine more effectively. it can.
 上記の第4の態様によれば、内燃機関を上方から見た状態において、大径部が補機の下方側で補機の周囲に設置される。このため、大径部を緩やかなカーブを描く曲率半径にすれば、大径部を通過する空気の体積を増大させた状態で緩やかなカーブに沿ってより多くの空気を内燃機関に導入できる。
 この結果、内燃機関に吸入される空気量を増大させて内燃機関の充填効率をより効果的に向上でき、内燃機関の出力をより効果的に向上できる。
According to said 4th aspect, in the state which looked at the internal combustion engine from the upper direction, a large diameter part is installed in the circumference | surroundings of an auxiliary machine in the downward side of an auxiliary machine. For this reason, if the large-diameter portion has a radius of curvature that draws a gentle curve, more air can be introduced into the internal combustion engine along the gentle curve with the volume of air passing through the large-diameter portion increased.
As a result, the amount of air taken into the internal combustion engine can be increased to improve the charging efficiency of the internal combustion engine more effectively, and the output of the internal combustion engine can be improved more effectively.
 上記の第5の態様によれば、大径部を、直線部、傾斜部および第1の湾曲部および第2の湾曲部から構成することで、内燃機関に導入される空気量を増加できるとともに、走行風が当たる大径部の表面積を増大できる。 According to said 5th aspect, while comprising a large diameter part from a linear part, an inclination part, a 1st curved part, and a 2nd curved part, while being able to increase the air quantity introduce | transduced into an internal combustion engine, It is possible to increase the surface area of the large diameter portion where the traveling wind hits.
 また、大径部が、傾斜部から補機の下方側に向かって湾曲する第1の湾曲部と、第1の湾曲部に連続するとともに補機の下方を車幅方向に通過し、車両の前後方向で内燃機関から後方に向かって湾曲した後、吸気導入管の下方側に向かって延在する第2の湾曲部とを含んで構成される。
このため、インタクーラアウトレット配管の上流から下流に流れる空気を第1の湾曲部および第2の湾曲部を通過するときの遠心力によって勢いを保ったままで内燃機関に導入できる。
In addition, the large-diameter portion is continuous with the first curved portion that curves from the inclined portion toward the lower side of the auxiliary device, and passes through the lower portion of the auxiliary device in the vehicle width direction. And a second curved portion that extends downward from the internal combustion engine in the front-rear direction and then extends downward from the intake pipe.
For this reason, the air flowing from the upstream to the downstream of the intercooler outlet pipe can be introduced into the internal combustion engine while maintaining the momentum by the centrifugal force when passing through the first curved portion and the second curved portion.
 また、第2の湾曲部の下流部に、第2の湾曲部の上流から下流に向かって内径寸法が漸次縮小するテーパ部を形成し、テーパ部の下流端にテーパ部と吸気導入管とを接続する小径管部を形成し、テーパ部および小径管部とによって構成される大径部の下流部を湾曲形状に形成した。 In addition, a tapered portion whose inner diameter is gradually reduced from the upstream side of the second curved portion toward the downstream side is formed at the downstream portion of the second curved portion, and the tapered portion and the intake pipe are provided at the downstream end of the tapered portion. The small diameter pipe part to be connected was formed, and the downstream part of the large diameter part constituted by the tapered part and the small diameter pipe part was formed in a curved shape.
 このため、吸気導入管に空気を導入する手前において小径管部によって空気の流速を高めることができる。したがって、流速の高い空気をサージタンクに導入することができ、内燃機関に導入される空気の充填効率により効果的に高めることができる。 For this reason, the flow velocity of air can be increased by the small-diameter pipe portion before air is introduced into the intake air introduction pipe. Therefore, air with a high flow rate can be introduced into the surge tank, and the efficiency of filling the air introduced into the internal combustion engine can be increased effectively.
図1は、本発明の実施形態に係る過給機付き内燃機関の吸気装置を示す図であり、車両の前部の平面図である。FIG. 1 is a view showing an intake device for an internal combustion engine with a supercharger according to an embodiment of the present invention, and is a plan view of a front portion of a vehicle. 図2は、本発明の実施形態に係る過給機付き内燃機関の吸気装置を示す図であり、車両の前部の側面図である。FIG. 2 is a view showing an intake device for an internal combustion engine with a supercharger according to an embodiment of the present invention, and is a side view of a front portion of a vehicle. 図3は、本発明の実施形態に係る過給機付き内燃機関の吸気装置を示す図であり、内燃機関の背面図である。FIG. 3 is a view showing an intake device for an internal combustion engine with a supercharger according to an embodiment of the present invention, and is a rear view of the internal combustion engine. 図4は、本発明の実施形態に係る過給機付き内燃機関の吸気装置を示す図であり、インタクーラアウトレット配管の周辺の内燃機関の側面図である。FIG. 4 is a view showing the intake device for the supercharged internal combustion engine according to the embodiment of the present invention, and is a side view of the internal combustion engine around the intercooler outlet pipe. 図5は、本発明の実施形態に係る過給機付き内燃機関の吸気装置を示す図であり、オルタネータおよび吸気マニホールドを取り外した状態の車両の前部の平面図である。FIG. 5 is a view showing the intake device for the supercharged internal combustion engine according to the embodiment of the present invention, and is a plan view of the front portion of the vehicle with the alternator and the intake manifold removed. 図6は、内径寸法が一定の従来例におけるインタクーラアウトレット配管と、内径寸法が異なる本実施形態におけるインタクーラアウトレット配管とにおけるエンジン回転数と充填効率との関係を示す図である。FIG. 6 is a diagram showing the relationship between the engine speed and the charging efficiency in the intercooler outlet piping in the conventional example having a constant inner diameter size and the intercooler outlet piping in the present embodiment having a different inner diameter size.
 以下、本発明に係る過給機付き内燃機関の吸気装置の実施形態について、図面を用いて説明する。図1~図5は、本発明に係る一実施形態の過給機付き内燃機関の吸気装置を示す図である。 Hereinafter, embodiments of an intake device for an internal combustion engine with a supercharger according to the present invention will be described with reference to the drawings. 1 to 5 are views showing an intake device for an internal combustion engine with a supercharger according to an embodiment of the present invention.
 まず、本実施形態に係る過給機付き内燃機関の吸気装置の構成を説明する。図1に示すように、車両1は、車体2を備えており、車体2は、車両1の車両前後方向に沿って延在するとともに車幅方向の両側にそれぞれ設置されるサイドフレーム2A、2Bを有する。 First, the configuration of an intake device for an internal combustion engine with a supercharger according to this embodiment will be described. As shown in FIG. 1, the vehicle 1 includes a vehicle body 2, and the vehicle body 2 extends along the vehicle front-rear direction of the vehicle 1 and is installed on both sides in the vehicle width direction. Have
 図1および図2に示すように、車体2は、車両1の車両前後方向の前部にダッシュパネル3を備えている。ダッシュパネル3は、車体2を、車両1の前後方向前側に設置されるエンジンルーム4と、車両1の前後方向後側に設置されて搭乗者が搭乗する車室5と、に区画する。以後、前方、後方等のような前と後とを表す表現は、車両1の前後方向に対する方向である。 As shown in FIGS. 1 and 2, the vehicle body 2 includes a dash panel 3 at the front of the vehicle 1 in the front-rear direction of the vehicle. The dash panel 3 divides the vehicle body 2 into an engine room 4 that is installed on the front side in the front-rear direction of the vehicle 1 and a vehicle compartment 5 that is installed on the rear side in the front-rear direction of the vehicle 1 and on which a passenger rides. Hereinafter, expressions representing front and rear, such as front and rear, are directions with respect to the front-rear direction of the vehicle 1.
 図1、図2、および図5に示すように、エンジンルーム4には、内燃機関としてのエンジン6が設置されている。エンジン6は、車幅方向一端部6aに取付けられたマウント装置7を介してサイドフレーム2Aに支持される。なお、本実施形態では、サイドフレーム2Aは車幅方向において右側に設定され、車幅方向一端部6aはエンジン6の右側の端部として設定されている。 As shown in FIGS. 1, 2, and 5, an engine 6 as an internal combustion engine is installed in the engine room 4. The engine 6 is supported by the side frame 2A via a mount device 7 attached to one end 6a in the vehicle width direction. In the present embodiment, the side frame 2A is set on the right side in the vehicle width direction, and the vehicle width direction one end portion 6a is set as the right end portion of the engine 6.
 図1に示すように、マウント装置7は、エンジン6の車幅方向一端部6aに締結する第1のマウントブラケット7aと、この第1のマウントブラケット7aに連結して、サイドフレーム2A側に延びる第2のマウントブラケット7bと、この第2のマウントブラケット7bに連結して、サイドフレーム2Aに取付けられるマウントインシュレータ部7cと、を有する。 As shown in FIG. 1, the mount device 7 is connected to the first mount bracket 7a fastened to one end 6a in the vehicle width direction of the engine 6, and is connected to the first mount bracket 7a and extends to the side frame 2A side. A second mount bracket 7b and a mount insulator portion 7c connected to the second mount bracket 7b and attached to the side frame 2A are provided.
 図3に示すように、エンジン6の車幅方向他端部6bには変速機8が設けられている。なお、本実施形態では、エンジン6の車幅方向の左側の端部を車幅方向他端部6bと設定している。この車幅方向他端部6bに設けられた変速機8は、図示しないマウント装置を介してサイドフレーム2Bに支持される。ここで、エンジン6の車幅方向一端部6aは、本発明の内燃機関の車幅方向端部に相当する。 As shown in FIG. 3, a transmission 8 is provided at the other end 6b of the engine 6 in the vehicle width direction. In the present embodiment, the left end of the engine 6 in the vehicle width direction is set as the other end 6b in the vehicle width direction. The transmission 8 provided at the other end 6b in the vehicle width direction is supported by the side frame 2B via a mount device (not shown). Here, the vehicle width direction one end portion 6a of the engine 6 corresponds to the vehicle width direction end portion of the internal combustion engine of the present invention.
 図1および図2に示すように、エンジン6には、過給機9および吸気装置10が設けられている。図1および図3に示すように、吸気装置10は、エンジン6の前側に設けられている。図1および図5に示すように、吸気装置10は、車両1の前方から空気を取り入れる吸気ダクト11と、吸気ダクト11の下流端に接続され、空気を浄化するエアクリーナ12と、エアクリーナ12によって浄化された空気を過給機9のコンプレッサハウジング9aに導入するエアクリーナアウトレット配管13と、を備えている。 As shown in FIGS. 1 and 2, the engine 6 is provided with a supercharger 9 and an intake device 10. As shown in FIGS. 1 and 3, the intake device 10 is provided on the front side of the engine 6. As shown in FIGS. 1 and 5, the intake device 10 includes an intake duct 11 that takes in air from the front of the vehicle 1, an air cleaner 12 that is connected to the downstream end of the intake duct 11 and purifies the air, and is purified by the air cleaner 12. And an air cleaner outlet pipe 13 for introducing the air into the compressor housing 9a of the supercharger 9.
 図1および図5に示すように、過給機9は、コンプレッサハウジング9aの内部に設けられた図示しないコンプレッサと、排気ガスの圧力によって回転する図示しないタービンを内蔵するタービンハウジング9bとを備えている。 As shown in FIGS. 1 and 5, the supercharger 9 includes a compressor (not shown) provided in the compressor housing 9a and a turbine housing 9b containing a turbine (not shown) that is rotated by the pressure of the exhaust gas. Yes.
 図1、図2、および図5に示すように、吸気装置10は、インタクーラインレット配管14、インタクーラ15、インタクーラアウトレット配管16および吸気マニホールド17を備えている。 As shown in FIGS. 1, 2, and 5, the intake device 10 includes an intercooler line pipe 14, an intercooler 15, an intercooler outlet pipe 16, and an intake manifold 17.
 図1、図2、および図5に示すように、インタクーラインレット配管14の上流端は、過給機9のコンプレッサハウジング9aに接続されており、インタクーラインレット配管14の下流端は、インタクーラ15に接続されている。 As shown in FIGS. 1, 2, and 5, the upstream end of the intercool line pipe 14 is connected to the compressor housing 9 a of the supercharger 9, and the downstream end of the inter cool line pipe 14 is connected to the intercooler 15. It is connected to the.
 図1および図5に示すように、インタクーラ15には、インタクーラアウトレット配管16の上流端16aが接続されている。インタクーラアウトレット配管16の下流端16bは、吸気マニホールド17に接続されている。ここで、上流、下流とは空気の流れる方向に対して、上流、下流を表す。 As shown in FIG. 1 and FIG. 5, the upstream end 16 a of the intercooler outlet pipe 16 is connected to the intercooler 15. A downstream end 16 b of the intercooler outlet pipe 16 is connected to the intake manifold 17. Here, upstream and downstream represent upstream and downstream with respect to the direction of air flow.
 図1および図5に示すように、過給機9は、排気ガスの圧力を受けて回転するタービンと共に一体的に回転するコンプレッサによってエアクリーナアウトレット配管13からコンプレッサハウジング9aに導入される空気をインタクーラインレット配管14に過給する。 As shown in FIGS. 1 and 5, the supercharger 9 intercools air introduced from the air cleaner outlet pipe 13 to the compressor housing 9 a by a compressor that rotates integrally with a turbine that rotates under the pressure of exhaust gas. Supercharge the inlet pipe 14.
 この過給された空気は、温度が上昇する。そこで、この高温の空気は、インタクーラ15に導入されてインタクーラ15によって冷却される。このように過給された空気が冷却されることにより、空気の酸素密度が高められる。この酸素密度が高められた空気は、インタクーラアウトレット配管16から吸気マニホールド17を介してエンジン6の図示しない吸気ポートを介して燃焼室に導入される。なお、吸気ポートは、図示しない吸気バルブによって開閉される。 ¡The temperature of this supercharged air rises. Therefore, this high-temperature air is introduced into the intercooler 15 and cooled by the intercooler 15. By cooling the supercharged air in this way, the oxygen density of the air is increased. The air having an increased oxygen density is introduced from the intercooler outlet pipe 16 through the intake manifold 17 into the combustion chamber through an intake port (not shown) of the engine 6. The intake port is opened and closed by an intake valve (not shown).
 図2に示すように、インタクーラ15は、エンジン6の前方に設置されている。インタクーラ15は、コア部18、アッパタンク19およびロアタンク20を備えている。コア部18は、過給機9から供給される空気を走行風によって冷却するものであり、空気が流通する図示しない流通部が図示しない走行風の流通路を介して上下方向または車幅方向に並んで設置されている。 As shown in FIG. 2, the intercooler 15 is installed in front of the engine 6. The intercooler 15 includes a core portion 18, an upper tank 19, and a lower tank 20. The core portion 18 cools the air supplied from the supercharger 9 by traveling wind, and a circulation portion (not shown) through which air flows passes in the vertical direction or the vehicle width direction via a running air flow passage (not shown). It is installed side by side.
 ロアタンク20は、コア部18の下部に設けられている。ロアタンク20には、インタクーラインレット配管14が接続される空気入口管部20aが設けられている。ロアタンク20は、インタクーラインレット配管14から空気入口管部20aを通して導入される空気をコア部18に導入する。 The lower tank 20 is provided in the lower part of the core part 18. The lower tank 20 is provided with an air inlet pipe portion 20a to which the intercool line pipe 14 is connected. The lower tank 20 introduces air introduced from the intercool linelet pipe 14 through the air inlet pipe portion 20 a into the core portion 18.
 アッパタンク19は、コア部18の上部に設けられている。図1~図3に示すように、アッパタンク19には、インタクーラアウトレット配管16の上流端16aが接続される空気出口管部19aが設けられている。 The upper tank 19 is provided in the upper part of the core part 18. As shown in FIGS. 1 to 3, the upper tank 19 is provided with an air outlet pipe portion 19a to which the upstream end 16a of the intercooler outlet pipe 16 is connected.
 図2に示すように、アッパタンク19には、コア部18で冷却された空気が導入されるようになっている。アッパタンク19に導入される空気は、空気出口管部19aからインタクーラアウトレット配管16に導入される。図3に示すように、インタクーラアウトレット配管16に導入された空気は、吸気マニホールド17に導入される。 As shown in FIG. 2, the air cooled by the core portion 18 is introduced into the upper tank 19. The air introduced into the upper tank 19 is introduced into the intercooler outlet pipe 16 from the air outlet pipe portion 19a. As shown in FIG. 3, the air introduced into the intercooler outlet pipe 16 is introduced into the intake manifold 17.
 図4に示すように、エンジン6の後部にはオルタネータ21が設けられている。エンジン6の車幅方向一端部6aには、ウォータポンプ22が設けられている。 As shown in FIG. 4, an alternator 21 is provided at the rear of the engine 6. A water pump 22 is provided at one end 6 a in the vehicle width direction of the engine 6.
 図1~図4に示すオルタネータ21は、発電機を構成する。このオルタネータ21は、図示しないロータおよびステータ等を備えている。図示しないロータは、オルタネータ21のハウジング21Aに回転自在に支持されている。ロータの端部には、エンジン6の車幅方向一端部6aから外方に突出するオルタネータプーリ21Bが設けられている。オルタネータ21は、作動時に高温の熱を発生する。本実施形態のオルタネータ21は、本発明の補機に相当する。 The alternator 21 shown in FIGS. 1 to 4 constitutes a generator. The alternator 21 includes a rotor and a stator (not shown). A rotor (not shown) is rotatably supported by the housing 21A of the alternator 21. An alternator pulley 21B that protrudes outward from the vehicle width direction one end 6a of the engine 6 is provided at the end of the rotor. The alternator 21 generates high-temperature heat during operation. The alternator 21 of this embodiment corresponds to an auxiliary machine of the present invention.
 図2および図4に示すように、ウォータポンプ22は、例えば、図示しないインペラが取付けられる回転軸22Cがエンジンの車幅方向一端部6aから車幅方向外側へ向けて突出している。この回転軸22Cの端部には、ウォータポンププーリ22Aが取付けられる。 2 and 4, in the water pump 22, for example, a rotating shaft 22C to which an impeller (not shown) is attached protrudes outward in the vehicle width direction from one end 6a in the vehicle width direction of the engine. A water pump pulley 22A is attached to the end of the rotating shaft 22C.
 図2および図4に示すように、オルタネータプーリ21Bおよびウォータポンププーリ22Aには、タイミングベルト23が巻き掛けられている。加えて、タイミングベルト23は、クランクプーリ24にも巻き掛けられている。なお、クランクプーリ24は、図示しないクランクシャフトの端部に設けられ、エンジン6の車幅方向一端部6aから外方に突出している。 2 and 4, a timing belt 23 is wound around the alternator pulley 21B and the water pump pulley 22A. In addition, the timing belt 23 is also wound around the crank pulley 24. The crank pulley 24 is provided at the end of a crankshaft (not shown) and protrudes outward from one end 6a in the vehicle width direction of the engine 6.
 これにより、オルタネータ21およびウォータポンプ22には、クランクシャフトの回転がタイミングベルト23を介して伝達される。したがって、オルタネータ21およびウォータポンプ22は、クランクシャフトの回転に同期して駆動される。 Thereby, rotation of the crankshaft is transmitted to the alternator 21 and the water pump 22 via the timing belt 23. Therefore, the alternator 21 and the water pump 22 are driven in synchronization with the rotation of the crankshaft.
 図3に示すように、オルタネータ21は、吸気マニホールド17のサージタンク25の下方で、かつ変速機8と反対側のエンジン6の車幅方向一端部6a寄りに設置されている。このオルタネータ21は、車両1の高さ方向において、エンジン6の中央部に設置されている。 As shown in FIG. 3, the alternator 21 is installed below the surge tank 25 of the intake manifold 17 and near the vehicle width direction one end 6 a of the engine 6 on the side opposite to the transmission 8. The alternator 21 is installed at the center of the engine 6 in the height direction of the vehicle 1.
 図3に示すように、吸気マニホールド17は、エンジン6の後部に取付けられている。吸気マニホールド17は、エンジン6に吸入空気を分配するサージタンク25およびサージタンク25の上流部に設けられた吸気導入管26を有する。ここで、図1、図2、および図5において、符号W1で示す小さい矢印は、空気の流れる方向を示している。図3に示すように、吸気導入管26は、サージタンク25から車両1の下方に向けて延長している。この吸気導入管26は、インタクーラアウトレット配管16に接続されている。 As shown in FIG. 3, the intake manifold 17 is attached to the rear part of the engine 6. The intake manifold 17 has a surge tank 25 that distributes intake air to the engine 6 and an intake introduction pipe 26 that is provided upstream of the surge tank 25. Here, in FIG. 1, FIG. 2, and FIG. 5, the small arrow shown with the code | symbol W1 has shown the direction through which air flows. As shown in FIG. 3, the intake intake pipe 26 extends from the surge tank 25 toward the lower side of the vehicle 1. The intake air introduction pipe 26 is connected to the intercooler outlet pipe 16.
 図1~図4に示すように、インタクーラアウトレット配管16は、インタクーラ15の空気出口管部19aからエンジン6の車幅方向一端部6aに沿って延びた後、下流端16bが吸気導入管26に連結されている。なお、インタクーラアウトレット配管16は、オルタネータ21の下部21aの近傍を通るように配置されている。 As shown in FIGS. 1 to 4, after the intercooler outlet pipe 16 extends from the air outlet pipe portion 19a of the intercooler 15 along the vehicle width direction one end portion 6a of the engine 6, the downstream end 16b has the intake inlet pipe 26. It is connected to. The intercooler outlet pipe 16 is disposed so as to pass near the lower portion 21 a of the alternator 21.
 図4に示すように、空気出口管部19aは、車両1の高さ方向において、マウント装置7よりも上方に設置されている。オルタネータ21は、マウント装置7を構成する第1のマウントブラケット7aまたは第2のマウントブラケット7bよりも下方に設置されている。なお、図4において、空気出口管部19aの高さを符号Tで示す。 As shown in FIG. 4, the air outlet pipe portion 19 a is installed above the mount device 7 in the height direction of the vehicle 1. The alternator 21 is installed below the first mount bracket 7a or the second mount bracket 7b constituting the mount device 7. In FIG. 4, the height of the air outlet pipe portion 19 a is indicated by a symbol T.
 図1~図4に示すように、インタクーラアウトレット配管16は、空気出口管部19aからマウント装置7を構成する第1のマウントブラケット7aまたは第2のマウントブラケット7bの下方を通るように配置され、かつオルタネータ21の下方を通して吸気導入管26に接続されている。 As shown in FIGS. 1 to 4, the intercooler outlet pipe 16 is disposed so as to pass from the air outlet pipe portion 19a below the first mount bracket 7a or the second mount bracket 7b constituting the mount device 7. And is connected to the intake pipe 26 through the lower part of the alternator 21.
 図1および図5に示すように、インタクーラアウトレット配管16は、内径寸法が大きい大径部16Aと、大径部16Aよりも内径寸法が小さい小径部16Bと、を含んで構成されている。 As shown in FIG. 1 and FIG. 5, the intercooler outlet pipe 16 includes a large-diameter portion 16A having a large inner diameter and a small-diameter portion 16B having a smaller inner diameter than the large-diameter portion 16A.
 図4に示すように、大径部16Aは、インタクーラアウトレット配管16の長さ方向中央部Cから吸気導入管26に接続される下流端16bまでの間に亘って形成されている。図4および図5に示すように、大径部16Aは、オルタネータ21の下方側でオルタネータ21の周囲に設置される。 As shown in FIG. 4, the large-diameter portion 16A is formed from the central portion C in the longitudinal direction of the intercooler outlet pipe 16 to the downstream end 16b connected to the intake air introduction pipe 26. As shown in FIGS. 4 and 5, the large-diameter portion 16 </ b> A is installed around the alternator 21 on the lower side of the alternator 21.
 図4に示すように、車両1の高さ方向において、空気出口管部19aは、マウント装置7よりも上方に設置されている。オルタネータ21は、第1のマウントブラケット7aまたは第2のマウントブラケット7bよりも下方に設置されている。 As shown in FIG. 4, the air outlet pipe portion 19 a is installed above the mount device 7 in the height direction of the vehicle 1. The alternator 21 is installed below the first mount bracket 7a or the second mount bracket 7b.
 インタクーラアウトレット配管16は、空気出口管部19aから第1のマウントブラケット7aまたは第2のマウントブラケット7bの下方およびオルタネータ21の下方を通して吸気導入管26に接続されている。 The intercooler outlet pipe 16 is connected from the air outlet pipe portion 19a to the intake inlet pipe 26 through the lower portion of the first mount bracket 7a or the second mount bracket 7b and the lower portion of the alternator 21.
 図1および図3に示すように、大径部16Aは、第1のマウントブラケット7aまたは第2のマウントブラケット7bの下方側で、かつマウント装置7の後部からオルタネータ21の下方を通過するように配置されている。大径部16Aは、吸気導入管26の下方位置まで延びるように形成されている。大径部16Aの内径寸法は、この大径部16Aの長さ方向に亙って同一に形成される。 As shown in FIGS. 1 and 3, the large-diameter portion 16A passes below the alternator 21 from the rear side of the mounting device 7 on the lower side of the first mounting bracket 7a or the second mounting bracket 7b. Has been placed. The large diameter portion 16 </ b> A is formed to extend to a position below the intake introduction pipe 26. The inner diameter of the large diameter portion 16A is formed to be the same over the length direction of the large diameter portion 16A.
 図4に示すように、大径部16Aは、径寸法が漸次小さくなる先端部を介して小径部16Bに連結され、オルタネータ21の上端部21bよりも低い位置で、かつマウント装置7を構成する第1のマウントブラケット7aまたは第2のマウントブラケット7bの下方を通過する直線部16cと、直線部16cに連続し、直線部16cからオルタネータ21の下方側に向かって延在する傾斜部16dとを備えている。 As shown in FIG. 4, the large diameter portion 16 </ b> A is connected to the small diameter portion 16 </ b> B via a tip portion whose diameter is gradually reduced, and constitutes the mount device 7 at a position lower than the upper end portion 21 b of the alternator 21. A straight portion 16c that passes below the first mount bracket 7a or the second mount bracket 7b, and an inclined portion 16d that continues to the straight portion 16c and extends from the straight portion 16c toward the lower side of the alternator 21. I have.
 ここで、図4に示すように、オルタネータ21の上端部21bと直線部16cの上端部16uとの位置関係を分かり易くするために、オルタネータ21の上端部21bと直線部16cの上端部16uとを引き出し線で示す。 Here, as shown in FIG. 4, in order to facilitate understanding of the positional relationship between the upper end portion 21b of the alternator 21 and the upper end portion 16u of the linear portion 16c, the upper end portion 21b of the alternator 21 and the upper end portion 16u of the linear portion 16c Is indicated by a leader line.
 また、大径部16Aは、傾斜部16dに連続してこの傾斜部16dからオルタネータ21の下方側に向かって湾曲する湾曲部16eと、この湾曲部16eに連続するとともにオルタネータ21の下方を車幅方向に通過し、エンジン6の後方に向かって湾曲し、吸気導入管26の下方側に向かって延在する湾曲部16fと、の2つの湾曲部を備えている。ここで、湾曲部16eは、本発明の第1の湾曲部に相当し、湾曲部16fは、本発明の第2の湾曲部に相当する。 The large-diameter portion 16A has a curved portion 16e that is curved from the inclined portion 16d toward the lower side of the alternator 21 continuously to the inclined portion 16d, and a vehicle width that extends continuously from the curved portion 16e and extends below the alternator 21. And a curved portion 16f that is curved toward the rear of the engine 6 and extends toward the lower side of the intake air intake pipe 26. Here, the bending portion 16e corresponds to the first bending portion of the present invention, and the bending portion 16f corresponds to the second bending portion of the present invention.
 図5に示すように、湾曲部16fの下流部には、湾曲部16fの上流から下流に向かって内径寸法が漸次縮小するテーパ部16gが形成されている。テーパ部16gの下流端には、テーパ部16gと吸気導入管26とを接続する小径管部16hが形成されている。 As shown in FIG. 5, a tapered portion 16g is formed in the downstream portion of the bending portion 16f. The tapered portion 16g has an inner diameter that gradually decreases from the upstream side to the downstream side of the bending portion 16f. A small-diameter pipe portion 16h that connects the taper portion 16g and the intake pipe 26 is formed at the downstream end of the taper portion 16g.
 図3に示すように、本実施形態の大径部16Aは、テーパ部16gおよび小径管部16hによって構成される下流部が湾曲形状に形成される。 As shown in FIG. 3, the large-diameter portion 16A of the present embodiment has a curved downstream portion formed by a tapered portion 16g and a small-diameter pipe portion 16h.
 なお、大径部16Aは、大径部16Aの上流端から下流端に向かって一体に成形されている。小径管部16hの下流端は、インタクーラアウトレット配管16の下流端16bを構成する。図1、図2、図4、および図5に示すように、小径部16Bの上流端がインタクーラアウトレット配管16の上流端16aを構成する。図4の下部には、直線部16cから傾斜部16d、湾曲部16e、16fまでの範囲を示す。 The large diameter portion 16A is integrally formed from the upstream end to the downstream end of the large diameter portion 16A. The downstream end of the small diameter pipe portion 16 h constitutes the downstream end 16 b of the intercooler outlet pipe 16. As shown in FIGS. 1, 2, 4, and 5, the upstream end of the small diameter portion 16 </ b> B constitutes the upstream end 16 a of the intercooler outlet pipe 16. The lower part of FIG. 4 shows a range from the straight part 16c to the inclined part 16d and the curved parts 16e and 16f.
 次に、本実施形態に係る過給機付き内燃機関の吸気装置の作用を説明する。2気筒エンジン等において、ピストンの位相が360°で上下動する場合には、吸気ポートの開閉タイミングが同一となって、所謂、間欠吸気が行われ、吸気脈動が発生し、吸気脈動に起因する圧力波が発生する。 Next, the operation of the intake device for the supercharged internal combustion engine according to this embodiment will be described. In a two-cylinder engine or the like, when the piston phase moves up and down at 360 °, the intake port opening / closing timing is the same, so-called intermittent intake is performed, and intake pulsation occurs, resulting from intake pulsation. A pressure wave is generated.
 この吸気脈動は、吸気バルブの開閉で反射波が発生し、反射波が吸気マニホールド17からインタクーラアウトレット配管16を通ってインタクーラ15に流れ、インタクーラ15の空気出口管部19aで跳ね返ることで定在波が発生する。 This intake pulsation occurs when a reflected wave is generated by opening and closing the intake valve, and the reflected wave flows from the intake manifold 17 through the intercooler outlet pipe 16 to the intercooler 15 and rebounds at the air outlet pipe portion 19a of the intercooler 15. A wave is generated.
 この定在波により、インタクーラアウトレット配管16がエンジン6の通常回転域(例えば、3000~4500rpm)において共鳴すると、インタクーラアウトレット配管16の下流部の吸気抵抗が増大してしまい、エンジン6に吸入される空気量が低下する。これにより、エンジン6の通常回転域でエンジン6の充填効率が低下してエンジン6の出力が低下する虞がある。 When the intercooler outlet pipe 16 resonates in the normal rotation range (for example, 3000 to 4500 rpm) of the engine 6 due to this standing wave, the intake resistance in the downstream portion of the intercooler outlet pipe 16 increases and is sucked into the engine 6. The amount of air that is produced decreases. As a result, the charging efficiency of the engine 6 decreases in the normal rotation range of the engine 6 and the output of the engine 6 may decrease.
 これに対して、本実施形態に係る吸気装置10によれば、エンジン6の通常回転域でエンジン6の充填効率が低下してエンジン6の出力が低下することを防止できる。すなわち、本実施形態に係る吸気装置10は、インタクーラアウトレット配管16を、インタクーラアウトレット配管16の内径寸法が大きい大径部16Aと大径部16Aよりも内径寸法が小さい小径部16Bとを含んで構成している。また、本実施形態に係る吸気装置10は、大径部16Aを、インタクーラアウトレット配管16の長さ方向中央部Cから吸気導入管26に接続される下流端16bまでの間に形成した。 On the other hand, according to the intake device 10 according to the present embodiment, it is possible to prevent the charging efficiency of the engine 6 from being lowered in the normal rotation range of the engine 6 and the output of the engine 6 from being lowered. That is, the intake device 10 according to the present embodiment includes an intercooler outlet pipe 16 that includes a large-diameter portion 16A having a large inner diameter and a small-diameter portion 16B having a smaller inner diameter than the large-diameter portion 16A. It consists of. Further, in the intake device 10 according to the present embodiment, the large-diameter portion 16A is formed between the central portion C in the length direction of the intercooler outlet pipe 16 and the downstream end 16b connected to the intake introduction pipe 26.
 このため、本実施形態に係る吸気装置10では、吸気脈動をエンジン6の高回転域にずらすことができ、吸気脈動を最適化できる。すなわち、本実施形態に係る吸気装置10は、インタクーラアウトレット配管16に大径部16Aを設け、大径部16Aの内径寸法や長さ寸法を拡大することで、インタクーラアウトレット配管16の固有振動数を高めて、固有振動数をエンジン6の高回転域にずらすことができる。 For this reason, in the intake device 10 according to the present embodiment, the intake pulsation can be shifted to the high rotation range of the engine 6 and the intake pulsation can be optimized. That is, in the intake device 10 according to the present embodiment, the intercooler outlet pipe 16 is provided with a large diameter portion 16A, and the internal diameter and length of the large diameter portion 16A are increased, whereby the natural vibration of the intercooler outlet pipe 16 is increased. The natural frequency can be shifted to the high rotation range of the engine 6 by increasing the number.
 また、吸気脈動は、インタクーラアウトレット配管16の内部で発生する定在波が圧力波となる。インタクーラアウトレット配管16の下流部に大径部16Aを設けた場合に、吸気バルブから反射する反射波の減衰量の低下を抑えて、インタクーラアウトレット配管16を通してインタクーラ15の空気出口管部19aに反射波を伝達することができ、吸気脈動をエンジン6の高回転域にずらすことができる。 In addition, in the intake pulsation, a standing wave generated inside the intercooler outlet pipe 16 becomes a pressure wave. When the large diameter portion 16A is provided in the downstream portion of the intercooler outlet pipe 16, a decrease in the attenuation amount of the reflected wave reflected from the intake valve is suppressed and the air outlet pipe portion 19a of the intercooler 15 is passed through the intercooler outlet pipe 16. The reflected wave can be transmitted, and the intake pulsation can be shifted to the high rotation range of the engine 6.
 これに対して、インタクーラアウトレット配管の内径寸法が同一であると、本実施形態に係る吸気装置10の大径部16Aを有するインタクーラアウトレット配管よりも共鳴周波数が低くなり、エンジン6の通常回転域に吸気脈動がずれてしまう。 On the other hand, if the inner diameter of the intercooler outlet pipe is the same, the resonance frequency is lower than that of the intercooler outlet pipe having the large diameter portion 16A of the intake device 10 according to the present embodiment, and the normal rotation of the engine 6 is performed. Inspiratory pulsation shifts in the area.
 また、大径部をインタクーラアウトレット配管16の上流部に設けると、吸気バルブによって生じる反射波の圧力が、小径部から大径部に変化するインタクーラアウトレット配管の部位で急激に下がり、インタクーラアウトレット配管16の上流部に到達するまでに反射波が減衰してしまう。 Further, when the large diameter portion is provided upstream of the intercooler outlet pipe 16, the pressure of the reflected wave generated by the intake valve rapidly decreases at the portion of the intercooler outlet pipe where the small diameter portion changes to the large diameter portion. The reflected wave is attenuated before reaching the upstream portion of the outlet pipe 16.
 このように反射波が減衰してしまうと、吸気脈動をエンジン6の高回転域にずらすことができず、しかも、インタクーラアウトレット配管の共鳴周波数が通常回転域にあるため、通常回転域で吸気脈動が共鳴してしまい、インタクーラアウトレット配管の下流で吸気抵抗が大きくなる。 If the reflected wave is attenuated in this way, the intake pulsation cannot be shifted to the high rotation range of the engine 6 and the resonance frequency of the intercooler outlet pipe is in the normal rotation range. The pulsation resonates and intake resistance increases downstream of the intercooler outlet pipe.
 図6は、内径寸法が一定の従来のインタクーラアウトレット配管と、内径寸法が異なる本実施形態のインタクーラアウトレット配管16とにおけるエンジン回転数(rpm)とエンジン6の充填効率(%)とを、実験によって測定した結果を示す図である。 FIG. 6 shows the engine speed (rpm) and the charging efficiency (%) of the engine 6 in a conventional intercooler outlet pipe having a constant inner diameter dimension and the intercooler outlet pipe 16 of the present embodiment having a different inner diameter dimension. It is a figure which shows the result measured by experiment.
 図6から明らかなように、内径寸法が同一のインタクーラアウトレット配管を用いた場合(符号Aで示す)よりも、下流部に大径部16Aを有するインタクーラアウトレット配管16を用いた場合(符号Bで示す)の方が、エンジン6の高回転域においてエンジン6の充填効率を、矢印Cで示す分だけ向上することが証明された。 As apparent from FIG. 6, when the intercooler outlet pipe 16 having the large-diameter portion 16 </ b> A is used downstream (indicated by reference numeral A) than when the intercooler outlet pipe having the same inner diameter dimension is used (indicated by reference numeral A). It is proved that the charging efficiency of the engine 6 is improved by the amount indicated by the arrow C in the high rotation range of the engine 6.
 このように本実施形態に係る吸気装置10は、インタクーラアウトレット配管16の固有振動数を高めること、および吸気バルブから反射する反射波の減衰量の低下を抑えてインタクーラ15の空気出口管部19aに反射波を伝達することができる。 As described above, the intake device 10 according to the present embodiment increases the natural frequency of the intercooler outlet pipe 16 and suppresses the decrease in the attenuation of the reflected wave reflected from the intake valve, thereby reducing the air outlet pipe portion 19a of the intercooler 15. The reflected wave can be transmitted to the.
 これにより、本実施形態に係る吸気装置10では、定在波とインタクーラアウトレット配管16の大径部16Aとの共鳴点を高回転領域に移動させて、エンジン6の通常回転域でインタクーラ15の下流の吸気抵抗を低下させることができる。この結果、本実施形態に係る吸気装置10では、エンジン6の通常回転域においてエンジン6に吸入される空気量が低下することを防止して、エンジン6の充填効率を向上でき、エンジン6の出力を向上できる。 Thereby, in the intake device 10 according to the present embodiment, the resonance point between the standing wave and the large-diameter portion 16A of the intercooler outlet pipe 16 is moved to the high rotation region, and the intercooler 15 is moved in the normal rotation region of the engine 6. Downstream intake resistance can be reduced. As a result, in the intake device 10 according to the present embodiment, the amount of air sucked into the engine 6 in the normal rotation range of the engine 6 can be prevented, the charging efficiency of the engine 6 can be improved, and the output of the engine 6 can be improved. Can be improved.
 一方、本実施形態に係る吸気装置10において、インタクーラ15は、エンジン6の前方に設置されており、吸気マニホールド17は、エンジン6の後部に設置されている。また、エンジン6の車幅方向一端部6aには、作動時に高温の熱を発生するオルタネータ21が設置されている。 On the other hand, in the intake device 10 according to the present embodiment, the intercooler 15 is installed in front of the engine 6, and the intake manifold 17 is installed in the rear part of the engine 6. An alternator 21 that generates high-temperature heat during operation is installed at one end 6a of the engine 6 in the vehicle width direction.
 このため、インタクーラアウトレット配管16は、エンジン6の前方から車幅方向一端部6aを通してエンジン6の後方にレイアウトする必要がある。ところが、エンジン6の運転時に、オルタネータ21から発生して上昇する熱(図3に符号Hを付した矢印で示す)がオルタネータ21の上方に滞留している。このため、インタクーラアウトレット配管16をオルタネータ21の上方に設置すると、インタクーラ15によって冷却された空気が上方に滞留する熱によって加熱される虞がある。 Therefore, the intercooler outlet piping 16 needs to be laid out from the front of the engine 6 to the rear of the engine 6 through the vehicle width direction one end portion 6a. However, during operation of the engine 6, the heat generated from the alternator 21 and rising (indicated by an arrow with a symbol H in FIG. 3) stays above the alternator 21. For this reason, when the intercooler outlet pipe 16 is installed above the alternator 21, the air cooled by the intercooler 15 may be heated by the heat accumulated in the upper part.
 これに対して、本実施形態に係る吸気装置10によれば、インタクーラアウトレット配管16の下流部に大径部16Aを設けたことにより、インタクーラアウトレット配管16の下流部の表面積を増大できるとともにインタクーラアウトレット配管16の下流部の内径寸法を増大できる。 On the other hand, according to the intake device 10 according to the present embodiment, by providing the large diameter portion 16A in the downstream portion of the intercooler outlet pipe 16, the surface area of the downstream portion of the intercooler outlet pipe 16 can be increased. The inner diameter dimension of the downstream part of the intercooler outlet piping 16 can be increased.
 このため、本実施形態に係る吸気装置10によれば、車両1の前方から車両1に導入される走行風W(図2、図4参照)がインタクーラアウトレット配管16に当たる表面積を増大でき、大径部16Aを流れる流量の大きい空気をインタクーラアウトレット配管16で効率よく冷却できる。 For this reason, according to the intake device 10 according to the present embodiment, the surface area on which the traveling wind W (see FIGS. 2 and 4) introduced into the vehicle 1 from the front of the vehicle 1 hits the intercooler outlet pipe 16 can be increased. The air having a large flow rate flowing through the diameter portion 16 </ b> A can be efficiently cooled by the intercooler outlet pipe 16.
 この結果、本実施形態に係る吸気装置10によれば、インタクーラアウトレット配管16を流れる空気の温度を走行風Wによってさらに低下させて、エンジンの吸気効率をより効果的に高めることができ、エンジン6の出力をより効果的に向上できる。 As a result, according to the intake device 10 according to the present embodiment, the temperature of the air flowing through the intercooler outlet pipe 16 can be further reduced by the traveling wind W, and the intake efficiency of the engine can be increased more effectively. The output of 6 can be improved more effectively.
 また、本実施形態の吸気装置10では、吸気導入管26をサージタンク25から車両1の下方に延長させるとともに、車両1の高さ方向においてオルタネータ21の下部に延長させ、インタクーラアウトレット配管16を、空気出口管部19aからマウント装置を構成する第1のマウントブラケット7aまたは第2のマウントブラケット7bの下方およびオルタネータ21の下方を通して吸気導入管26に接続した。 Further, in the intake device 10 of the present embodiment, the intake inlet pipe 26 is extended from the surge tank 25 to the lower side of the vehicle 1 and is extended to the lower part of the alternator 21 in the height direction of the vehicle 1, so that the intercooler outlet pipe 16 is The air outlet pipe portion 19a was connected to the intake air introduction pipe 26 through the lower portion of the first mount bracket 7a or the second mount bracket 7b constituting the mount device and the lower portion of the alternator 21.
 このため、本実施形態に係る吸気装置10によれば、オルタネータ21の側方から下側に亙って囲むようにインタクーラアウトレット配管16および吸気導入管26を設置でき、オルタネータ21から上昇する熱にインタクーラアウトレット配管16および吸気導入管26が晒されることを防止できる。したがって、本実施形態に係る吸気装置10によれば、インタクーラ15で冷却された空気が加熱されることを防止でき、インタクーラアウトレット配管16を流れる空気を低温に保つことができる。 Therefore, according to the intake device 10 according to the present embodiment, the intercooler outlet pipe 16 and the intake introduction pipe 26 can be installed so as to surround the alternator 21 from the side to the lower side, and the heat rising from the alternator 21 It is possible to prevent the intercooler outlet pipe 16 and the intake air inlet pipe 26 from being exposed. Therefore, according to the intake device 10 according to the present embodiment, the air cooled by the intercooler 15 can be prevented from being heated, and the air flowing through the intercooler outlet pipe 16 can be kept at a low temperature.
 この結果、本実施形態に係る吸気装置10によれば、インタクーラ15で冷却された空気をインタクーラアウトレット配管16から吸気マニホールド17を通してエンジン6に導入でき、エンジン6の充填効率を高めてエンジン6の出力性能を高めることができる。 As a result, according to the intake device 10 according to the present embodiment, the air cooled by the intercooler 15 can be introduced into the engine 6 from the intercooler outlet pipe 16 through the intake manifold 17, and the charging efficiency of the engine 6 can be improved to increase the engine 6. Output performance can be improved.
 また、本実施形態に係る吸気装置10では、車両1の高さ方向において空気出口管部19aを第1のマウントブラケット7aまたは第2のマウントブラケット7bよりも上方に設置するとともに、オルタネータ21を第1のマウントブラケット7aまたは第2のマウントブラケット7bよりも下方に設置している。本実施形態に係る吸気装置10では、インタクーラアウトレット配管16を、空気出口管部19aから第1のマウントブラケット7aまたは第2のマウントブラケット7bの下方およびオルタネータ21の下方を通して吸気導入管26に接続した。 Further, in the intake device 10 according to the present embodiment, the air outlet pipe portion 19a is installed above the first mount bracket 7a or the second mount bracket 7b in the height direction of the vehicle 1, and the alternator 21 is installed in the first direction. It is installed below the first mount bracket 7a or the second mount bracket 7b. In the intake device 10 according to the present embodiment, the intercooler outlet pipe 16 is connected from the air outlet pipe portion 19a to the intake inlet pipe 26 through the lower portion of the first mount bracket 7a or the second mount bracket 7b and the lower portion of the alternator 21. did.
 このため、本実施形態に係る吸気装置10によれば、車両1の高さ方向においてインタクーラアウトレット配管16を車両の前方(上流部)から後方(下流部)に向かって低く設置でき、車両1の高さ方向においてインタクーラアウトレット配管16の高さ方向の寸法を長くできる。 For this reason, according to the intake device 10 according to the present embodiment, the intercooler outlet pipe 16 can be installed low in the height direction of the vehicle 1 from the front (upstream portion) to the rear (downstream portion) of the vehicle. The height of the intercooler outlet pipe 16 can be increased in the height direction.
 したがって、車両1の前方から車両1に導入される走行風Wがインタクーラアウトレット配管16に当たる表面積を増大でき、インタクーラアウトレット配管16を効率よく冷却できる。この結果、インタクーラアウトレット配管16を流れる空気の温度を走行風Wによってさらに低下でき、エンジン6の充填効率をより効果的に高めることができる。 Therefore, the surface area where the traveling wind W introduced into the vehicle 1 from the front of the vehicle 1 hits the intercooler outlet pipe 16 can be increased, and the intercooler outlet pipe 16 can be efficiently cooled. As a result, the temperature of the air flowing through the intercooler outlet pipe 16 can be further reduced by the traveling wind W, and the charging efficiency of the engine 6 can be increased more effectively.
 また、インタクーラアウトレット配管16の下流部に位置する大径部16Aを、車両1の高さ方向において上流部よりも低い位置に設置できるので、エンジンルーム4の底部を流れる走行風が多い位置に大径部16Aを設置できる。このため、本実施形態に係る吸気装置10では、より多くの走行風を表面積の大きい大径部16Aにより多く当てることができ、空気をより効果的に冷却することができる。したがって、本実施形態に係る吸気装置10では、エンジン6の充填効率をより効果的に高めることができる。 Further, since the large diameter portion 16A located at the downstream portion of the intercooler outlet pipe 16 can be installed at a position lower than the upstream portion in the height direction of the vehicle 1, the traveling wind flowing through the bottom of the engine room 4 is located at a large position. Large diameter part 16A can be installed. For this reason, in the intake device 10 according to the present embodiment, a larger amount of traveling wind can be applied to the large-diameter portion 16A having a large surface area, and the air can be cooled more effectively. Therefore, in the intake device 10 according to the present embodiment, the charging efficiency of the engine 6 can be more effectively increased.
 また、本実施形態に係る吸気装置10では、オルタネータ21の下方に大径部16Aが設けられるので、オルタネータ21から上昇する熱に大径部16Aが晒されることを防止できる。本実施形態に係る吸気装置10によれば、インタクーラ15で冷却された空気が加熱されることを防止でき、エンジン6に低温の空気を導入することができる。 Moreover, in the intake device 10 according to the present embodiment, the large-diameter portion 16A is provided below the alternator 21, so that the large-diameter portion 16A can be prevented from being exposed to heat rising from the alternator 21. According to the intake device 10 according to the present embodiment, the air cooled by the intercooler 15 can be prevented from being heated, and low-temperature air can be introduced into the engine 6.
 また、本実施形態に係る吸気装置10では、オルタネータ21の上方のスペースにインタクーラアウトレット配管16が設置されないので、オルタネータ21の上方のスペースを拡大できる。このため、本実施形態に係る吸気装置10によれば、上方からオルタネータ21に容易にアクセスでき、エンジン6に対してオルタネータ21を容易に着脱できる。したがって、本実施形態に係る吸気装置10では、オルタネータ21のメンテナンス作業の作業性を向上できる。 Further, in the intake device 10 according to the present embodiment, since the intercooler outlet pipe 16 is not installed in the space above the alternator 21, the space above the alternator 21 can be expanded. For this reason, according to the intake device 10 according to the present embodiment, the alternator 21 can be easily accessed from above, and the alternator 21 can be easily attached to and detached from the engine 6. Therefore, in the intake device 10 according to the present embodiment, the workability of the maintenance work of the alternator 21 can be improved.
 さらに、本実施形態に係る吸気装置10では、インタクーラアウトレット配管16を第1のマウントブラケット7aまたは第2のマウントブラケット7bの下方を通過させるようにした。これにより、本実施形態に係る吸気装置10では、インタクーラアウトレット配管16がエンジン6に取付けられた状態で、エンジン6を下方から車体2に組み付ける作業時に、インタクーラアウトレット配管16に邪魔されることがない。本実施形態に係る吸気装置10では、エンジン6に設けられた第1のマウントブラケット7aを、マンウトインシュレータ部7cに連結された第2のマウントブラケット7bに向けることで、エンジン6を、マウント装置7を介してサイドフレーム2Aに取付けることができる。このため、本実施形態に係る吸気装置10によれば、車体2にエンジン6を容易に組み付けることができる。 Furthermore, in the intake device 10 according to the present embodiment, the intercooler outlet pipe 16 is allowed to pass under the first mount bracket 7a or the second mount bracket 7b. Thereby, in the intake device 10 according to the present embodiment, the intercooler outlet pipe 16 is obstructed by the intercooler outlet pipe 16 when the engine 6 is assembled to the vehicle body 2 from below with the intercooler outlet pipe 16 attached to the engine 6. There is no. In the intake device 10 according to the present embodiment, the first mount bracket 7a provided in the engine 6 is directed to the second mount bracket 7b connected to the mout insulator portion 7c, whereby the engine 6 is mounted on the mount device. 7 can be attached to the side frame 2A. For this reason, according to the intake device 10 according to the present embodiment, the engine 6 can be easily assembled to the vehicle body 2.
 また、本実施形態に係る吸気装置10によれば、大径部16Aの内径寸法が、大径部16Aの長さ方向に亙って同一に形成されるので、大径部16Aで吸気脈動が減衰されてしまうことを防止して、吸気脈動を最適化できる。このため、本実施形態に係る吸気装置10によれば、エンジン6の通常運転域において、エンジン6に吸入される空気量が低下することを防止して、エンジン6の充填効率をより効果的に向上でき、エンジン6の出力をより効果的に向上できる。 Further, according to the intake device 10 according to the present embodiment, the inner diameter of the large diameter portion 16A is formed to be the same over the length direction of the large diameter portion 16A, so that intake pulsation is generated in the large diameter portion 16A. It is possible to optimize the intake pulsation by preventing attenuation. For this reason, according to the intake device 10 according to the present embodiment, in the normal operation region of the engine 6, the amount of air sucked into the engine 6 is prevented from decreasing, and the charging efficiency of the engine 6 is more effectively improved. The output of the engine 6 can be improved more effectively.
 また、本実施形態の吸気装置10によれば、エンジン6を上方から見た状態において、大径部16Aがオルタネータ21の下方側でオルタネータ21の周囲に設置される。このため、大径部16Aを緩やかなカーブを描く曲率半径にすれば、大径部16Aを通過する空気の体積を増大させた状態で緩やかなカーブに沿ってより多くの空気をエンジン6に導入できる。この結果、本実施形態に係る吸気装置10によれば、エンジン6に吸入される空気量を増大させてエンジン6の充填効率をより効果的に向上でき、エンジン6の出力をより効果的に向上できる。 Further, according to the intake device 10 of the present embodiment, the large-diameter portion 16A is installed around the alternator 21 on the lower side of the alternator 21 when the engine 6 is viewed from above. Therefore, if the large-diameter portion 16A has a curvature radius that draws a gentle curve, more air is introduced into the engine 6 along the gentle curve with the volume of air passing through the large-diameter portion 16A increased. it can. As a result, according to the intake device 10 according to the present embodiment, the amount of air sucked into the engine 6 can be increased to improve the charging efficiency of the engine 6 more effectively, and the output of the engine 6 can be improved more effectively. it can.
 また、本実施形態によれば、大径部16Aを、直線部16c、傾斜部16dおよび湾曲部16e、16fから構成することで、エンジン6に導入される空気量を増加できるとともに、走行風が当たる大径部16Aの表面積を増大できる。 Further, according to the present embodiment, the large-diameter portion 16A includes the straight portion 16c, the inclined portion 16d, and the curved portions 16e and 16f, so that the amount of air introduced into the engine 6 can be increased and the traveling wind can be increased. The surface area of the large-diameter portion 16A can be increased.
 また、大径部16Aが傾斜部16dからオルタネータ21の下方側に向かって湾曲する湾曲部16eと、湾曲部16eに連続するとともにオルタネータ21の下方を車幅方向に沿って配置され、車両1の前後方向でエンジン6から後方に向かって湾曲した形状であり、吸気導入管26の下方側に向かって延在する湾曲部16fとを含んで構成される。このため、本実施形態に係る吸気装置10によれば、インタクーラアウトレット配管16の上流から下流に流れる空気を湾曲部16e、16fを通過するときの遠心力によって勢いを保ったままでエンジン6に導入できる。 Further, the large-diameter portion 16A is curved from the inclined portion 16d toward the lower side of the alternator 21, and is continuous to the curved portion 16e and disposed below the alternator 21 along the vehicle width direction. It is a shape that curves backward from the engine 6 in the front-rear direction, and includes a curved portion 16 f that extends toward the lower side of the intake air introduction pipe 26. For this reason, according to the intake device 10 according to the present embodiment, the air flowing from the upstream to the downstream of the intercooler outlet pipe 16 is introduced into the engine 6 while maintaining the momentum by the centrifugal force when passing through the curved portions 16e and 16f. it can.
 また、本実施形態に係る吸気装置10では、湾曲部16fの下流部に、湾曲部16fの上流から下流に向かって内径寸法が漸次縮小するテーパ部16gを形成し、テーパ部16gの下流端にテーパ部16gと吸気導入管26とを接続する小径管部16hを形成し、テーパ部16gおよび小径管部16hとによって構成される大径部16Aの下流部を湾曲形状に形成した。 Further, in the intake device 10 according to the present embodiment, a tapered portion 16g whose inner diameter dimension is gradually reduced from the upstream side to the downstream side of the curved portion 16f is formed in the downstream portion of the curved portion 16f, and is formed at the downstream end of the tapered portion 16g. A small-diameter pipe portion 16h that connects the tapered portion 16g and the intake pipe 26 is formed, and a downstream portion of the large-diameter portion 16A constituted by the tapered portion 16g and the small-diameter pipe portion 16h is formed in a curved shape.
 このため、本実施形態に係る吸気装置10によれば、吸気導入管26に空気を導入する手前において小径管部16hによって空気の流速を高めることができる。したがって、本実施形態に係る吸気装置10では、流速の高い空気をサージタンク25に導入することができ、エンジン6に導入される空気の充填効率により効果的に高めることができる。なお、本実施形態に係る吸気装置10において、補機をオルタネータ21から構成したが、熱を発生する補機であれば、オルタネータ21に限定されるものではない。 For this reason, according to the intake device 10 according to the present embodiment, the flow velocity of air can be increased by the small-diameter pipe portion 16h before air is introduced into the intake introduction pipe 26. Therefore, in the intake device 10 according to the present embodiment, air with a high flow velocity can be introduced into the surge tank 25, and can be effectively enhanced by the charging efficiency of the air introduced into the engine 6. In addition, in the intake device 10 according to the present embodiment, the auxiliary machine is configured from the alternator 21, but the auxiliary machine is not limited to the alternator 21 as long as the auxiliary machine generates heat.
 本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正および等価物が次の請求項に含まれることが意図されている。 Although embodiments of the present invention have been disclosed, it will be apparent to those skilled in the art that changes may be made without departing from the scope of the present invention. All such modifications and equivalents are intended to be included in the following claims.
 1 車両
 2 車体
 6 エンジン(内燃機関)
 6a 車幅方向一端部(車幅方向端部)
 7 マウント装置
 9 過給機
 10 吸気装置
 15 インタクーラ
 16 インタクーラアウトレット配管
 16A 大径部
 16B 小径部
 16c 直線部
 16d 傾斜部
 16e 湾曲部(第1の湾曲部)
 16f 湾曲部(第2の湾曲部)
 16d テーパ部
 16h 小径管部
 17 吸気マニホールド
 19a 空気出口管部
 21 オルタネータ(補機)
 21b 上端部(補機の上端部)
 25 サージタンク
 26 吸気導入管
1 vehicle 2 vehicle body 6 engine (internal combustion engine)
6a One end in the vehicle width direction (end in the vehicle width direction)
7 mount device 9 supercharger 10 intake device 15 intercooler 16 intercooler outlet piping 16A large diameter portion 16B small diameter portion 16c linear portion 16d inclined portion 16e curved portion (first curved portion)
16f bending portion (second bending portion)
16d Taper part 16h Small diameter pipe part 17 Intake manifold 19a Air outlet pipe part 21 Alternator (auxiliary machine)
21b Upper end (upper end of auxiliary machine)
25 Surge tank 26 Air intake pipe

Claims (5)

  1.  過給機を有する内燃機関に取付けられた吸気装置であって、
     前記内燃機関の前後方向後部に取付けられたサージタンクおよび前記サージタンクの上流部に設けられた吸気導入管を有する吸気マニホールドと、
     前記内燃機関の前方に設置されるとともに、空気出口管部を有し、前記過給機にインタクーラインレット配管を介して接続されるインタクーラと、
     前記インタクーラの前記空気出口管部から前記内燃機関の車幅方向端部に沿って延びた後、前記吸気導入管に連結されるインタクーラアウトレット配管とを備え、
     前記インタクーラアウトレット配管が、前記インタクーラアウトレット配管の内径寸法が大きい大径部と前記大径部よりも内径寸法が小さい小径部とを含んで構成され、
     前記大径部が、前記インタクーラアウトレット配管の長さ方向中央部から前記吸気導入管に接続される下流端までの間に形成されることを特徴とする過給機付き内燃機関の吸気装置。
    An intake device attached to an internal combustion engine having a supercharger,
    An intake manifold having a surge tank attached to a rear portion in the front-rear direction of the internal combustion engine and an intake introduction pipe provided in an upstream portion of the surge tank;
    An intercooler installed in front of the internal combustion engine, having an air outlet pipe, and connected to the supercharger via an intercool line pipe;
    An intercooler outlet pipe that extends from the air outlet pipe portion of the intercooler along the vehicle width direction end of the internal combustion engine and is connected to the intake air introduction pipe;
    The intercooler outlet pipe is configured to include a large diameter part having a large inner diameter dimension of the intercooler outlet pipe and a small diameter part having a smaller inner diameter dimension than the large diameter part,
    The intake device for an internal combustion engine with a supercharger, wherein the large diameter portion is formed between a central portion in a longitudinal direction of the intercooler outlet pipe and a downstream end connected to the intake introduction pipe.
  2.  前記内燃機関の車幅方向端部がマウント装置を介して車両の車体に支持されるとともに、前記内燃機関の前後方向後部で、かつ前記サージタンクの下方に、作動時に熱を発生する補機が取付けられ、
     前記吸気導入管を、前記サージタンクから前記車両の下方に延長させるとともに、前記車両の高さ方向において少なくとも前記補機の下部に延長させ、
     前記車両の高さ方向において前記空気出口管部を前記マウント装置よりも上方に設置するとともに、前記補機を前記マウント装置よりも下方に設置し、
     前記インタクーラアウトレット配管を、前記空気出口管部から前記マウント装置の下方および前記補機の下方を通して前記吸気導入管に接続し、
     前記大径部を、前記マウント装置の下方側で、かつ前記マウント装置の前記車両の前後方向後部から前記補機の下方を通過して、少なくとも前記吸気導入管から下方に離隔した位置までの間に形成したことを特徴とする請求項1に記載の過給機付き内燃機関の吸気装置。
    An auxiliary machine that generates heat at the time of operation is supported at the vehicle width direction end of the internal combustion engine via a mounting device on the vehicle body, and at the rear part in the front-rear direction of the internal combustion engine and below the surge tank. Installed and
    The intake pipe is extended from the surge tank to the lower side of the vehicle, and extended at least to the lower part of the auxiliary machine in the height direction of the vehicle,
    In the height direction of the vehicle, the air outlet pipe portion is installed above the mount device, and the auxiliary machine is installed below the mount device,
    Connecting the intercooler outlet pipe from the air outlet pipe part to the intake pipe through the lower part of the mounting device and the auxiliary machine,
    The large-diameter portion is on the lower side of the mounting device and from the rear portion of the mounting device in the front-rear direction of the vehicle to the position separated from the intake air introduction pipe at least downward from the auxiliary machine. The intake device for an internal combustion engine with a supercharger according to claim 1, characterized in that the intake device is formed as described above.
  3.  前記大径部の内径寸法が、前記大径部の長さ方向に亙って同一に形成されることを特徴とする請求項2に記載の過給機付き内燃機関の吸気装置。 The intake device for an internal combustion engine with a supercharger according to claim 2, wherein the inner diameter of the large diameter portion is the same in the length direction of the large diameter portion.
  4.  前記内燃機関を上方から見た状態において、前記大径部が前記補機の下方側で前記補機の周囲に設置されることを特徴とする請求項2または請求項3に記載の過給機付き内燃機関の吸気装置。 4. The turbocharger according to claim 2, wherein the large-diameter portion is installed around the auxiliary machine on a lower side of the auxiliary machine when the internal combustion engine is viewed from above. 5. Intake device for internal combustion engine.
  5.  前記大径部は、前記小径部に連続し、前記補機の上端部よりも低い位置で、かつ前記マウント装置の下方を通過する直線部と、前記直線部に連続し、前記直線部から前記補機の下方側に向かって延在する傾斜部と、前記傾斜部に連続し、前記傾斜部から前記補機の下方側に向かって湾曲する第1の湾曲部と、前記第1の湾曲部に連続するとともに前記補機の下方を車幅方向に通過し、前記車両の前後方向で前記内燃機関から後方に向かって湾曲した後、前記吸気導入管の下方側に向かって延在する第2の湾曲部とを含んで構成され、
     前記第2の湾曲部の下流部に、前記第2の湾曲部の上流から下流に向かって内径寸法が漸次縮小するテーパ部を形成し、前記テーパ部の下流端に前記テーパ部と前記吸気導入管とを接続する小径管部を形成し、前記テーパ部および前記小径管部とによって構成される前記大径部の下流部を湾曲形状に形成したことを特徴とする請求項2ないし請求項4のいずれか1項に記載の過給機付き内燃機関の吸気装置。
    The large-diameter portion is continuous with the small-diameter portion, is at a position lower than the upper end portion of the auxiliary machine, and is continuous with the linear portion passing through the lower portion of the mount device. An inclined portion extending toward the lower side of the accessory, a first curved portion that is continuous with the inclined portion and curves from the inclined portion toward the lower side of the auxiliary device, and the first curved portion And a second portion that extends downward from the internal combustion engine and extends downward from the internal combustion engine in the front-rear direction of the vehicle. And a curved portion,
    A tapered portion whose inner diameter dimension gradually decreases from upstream to downstream of the second curved portion is formed in the downstream portion of the second curved portion, and the tapered portion and the intake air introduction are provided at the downstream end of the tapered portion. 5. A small-diameter pipe portion connected to a pipe is formed, and a downstream portion of the large-diameter portion constituted by the tapered portion and the small-diameter pipe portion is formed in a curved shape. The intake device for an internal combustion engine with a supercharger according to any one of the above.
PCT/JP2015/060474 2014-04-04 2015-04-02 Intake device for supercharger-equipped internal combustion engine WO2015152374A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580002689.4A CN105765208B (en) 2014-04-04 2015-04-02 The inlet duct of internal combustion engine with booster
DE112015001679.1T DE112015001679B4 (en) 2014-04-04 2015-04-02 Air intake device for an internal combustion engine with a supercharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-077675 2014-04-04
JP2014077675A JP6331603B2 (en) 2014-04-04 2014-04-04 Intake device for an internal combustion engine with a supercharger

Publications (1)

Publication Number Publication Date
WO2015152374A1 true WO2015152374A1 (en) 2015-10-08

Family

ID=54240682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060474 WO2015152374A1 (en) 2014-04-04 2015-04-02 Intake device for supercharger-equipped internal combustion engine

Country Status (4)

Country Link
JP (1) JP6331603B2 (en)
CN (1) CN105765208B (en)
DE (1) DE112015001679B4 (en)
WO (1) WO2015152374A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051678A (en) * 2017-08-25 2020-04-21 马自达汽车株式会社 Engine with supercharger
US20230129282A1 (en) * 2021-10-26 2023-04-27 Honda Motor Co., Ltd. Intake device of internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614220B2 (en) * 2017-09-29 2019-12-04 スズキ株式会社 Intake device for internal combustion engine for vehicle
JP6849093B2 (en) * 2017-10-11 2021-03-24 マツダ株式会社 Engine with supercharger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141415A (en) * 1997-11-07 1999-05-25 Toyota Motor Corp Intake air temperature control device for vehicular engine
JP2003326988A (en) * 2002-05-15 2003-11-19 Mitsubishi Fuso Truck & Bus Corp Cooler, and intake cooler for engine
JP2011021571A (en) * 2009-07-17 2011-02-03 Suzuki Motor Corp Intake device for vehicular engine
JP2013079598A (en) * 2011-10-04 2013-05-02 Suzuki Motor Corp Egr cooler unit protection device for vehicular engine
JP2013122170A (en) * 2011-12-09 2013-06-20 Suzuki Motor Corp Intake device of vehicular engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650261B2 (en) * 2005-12-28 2011-03-16 スズキ株式会社 Intercooler arrangement structure for turbocharged engine
JP2009227132A (en) * 2008-03-24 2009-10-08 Mazda Motor Corp Front part structure of vehicle body
JP5754914B2 (en) * 2010-10-26 2015-07-29 ダイハツ工業株式会社 Internal combustion engine
JP5948883B2 (en) * 2012-01-17 2016-07-06 マツダ株式会社 Engine intake system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141415A (en) * 1997-11-07 1999-05-25 Toyota Motor Corp Intake air temperature control device for vehicular engine
JP2003326988A (en) * 2002-05-15 2003-11-19 Mitsubishi Fuso Truck & Bus Corp Cooler, and intake cooler for engine
JP2011021571A (en) * 2009-07-17 2011-02-03 Suzuki Motor Corp Intake device for vehicular engine
JP2013079598A (en) * 2011-10-04 2013-05-02 Suzuki Motor Corp Egr cooler unit protection device for vehicular engine
JP2013122170A (en) * 2011-12-09 2013-06-20 Suzuki Motor Corp Intake device of vehicular engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051678A (en) * 2017-08-25 2020-04-21 马自达汽车株式会社 Engine with supercharger
CN111051678B (en) * 2017-08-25 2022-01-28 马自达汽车株式会社 Engine with supercharger
US20230129282A1 (en) * 2021-10-26 2023-04-27 Honda Motor Co., Ltd. Intake device of internal combustion engine
US11773766B2 (en) * 2021-10-26 2023-10-03 Honda Motor Co., Ltd. Intake device of internal combustion engine

Also Published As

Publication number Publication date
DE112015001679B4 (en) 2018-02-22
CN105765208B (en) 2018-10-16
JP6331603B2 (en) 2018-05-30
DE112015001679T5 (en) 2017-01-05
JP2015200184A (en) 2015-11-12
CN105765208A (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5948883B2 (en) Engine intake system
JP5321852B2 (en) Engine blow-by gas recirculation system
WO2015152374A1 (en) Intake device for supercharger-equipped internal combustion engine
US8820071B2 (en) Integrated compressor housing and inlet
JP2008157235A (en) Low-restriction turbine outlet housing
JP6221891B2 (en) Intake device for an internal combustion engine with a supercharger
WO2015152403A1 (en) Engine intake device
JP2012149588A (en) Controller for internal combustion engine
CN104487694B (en) Booster silencer and booster
CN108138706B (en) Air intake device for engine with supercharger
KR101235296B1 (en) Heated Air Cooling Device Of Compressor Housing
KR100786297B1 (en) Engine inhalation device
JP2010196643A (en) Device for guiding air currents caused by vehicle travel to intercooler in vehicle
JP6399041B2 (en) Turbocharged engine
WO2015152404A1 (en) Fuel injection device for diesel engine
JP2020200782A (en) Intake device of internal combustion engine with supercharger
JP6462351B2 (en) Internal combustion engine
JP2012219691A (en) Turbocharger
KR101294083B1 (en) Device for reducing air current noise of turbo-charger engine
JP2010138713A (en) Engine intake air cooling structure for construction machine
JP6723977B2 (en) Supercharger
KR20120059245A (en) Device for reducing air current noise of turbo-charger engine
JPH08312359A (en) Intake system of supercharged engine
JP5814537B2 (en) Blowby gas recirculation system
JP2012219696A (en) Intake air device for vehicle engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015001679

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15772820

Country of ref document: EP

Kind code of ref document: A1