WO2015152160A1 - Method for producing unsaturated hydrocarbon - Google Patents
Method for producing unsaturated hydrocarbon Download PDFInfo
- Publication number
- WO2015152160A1 WO2015152160A1 PCT/JP2015/059947 JP2015059947W WO2015152160A1 WO 2015152160 A1 WO2015152160 A1 WO 2015152160A1 JP 2015059947 W JP2015059947 W JP 2015059947W WO 2015152160 A1 WO2015152160 A1 WO 2015152160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc
- producing
- unsaturated hydrocarbon
- catalyst
- raw material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
- C07C5/3335—Catalytic processes with metals
- C07C5/3337—Catalytic processes with metals of the platinum group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/60—Platinum group metals with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/86—Borosilicates; Aluminoborosilicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0207—Pretreatment of the support
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
- C07C5/3335—Catalytic processes with metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
- C07C2523/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/56—Platinum group metals
- C07C2523/60—Platinum group metals with zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/03—Catalysts comprising molecular sieves not having base-exchange properties
- C07C2529/035—Crystalline silica polymorphs, e.g. silicalites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/86—Borosilicates; Aluminoborosilicates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing an unsaturated hydrocarbon by performing a hydrocarbon dehydrogenation reaction.
- Unsaturated hydrocarbons are very useful as basic raw materials for various derivatives in the petrochemical industry.
- Representative lower olefins and dienes include propylene, 1-butene, 2-butene, isobutene, 1,3-butadiene and the like. These lower olefins and dienes are also known to be produced by dehydrogenating the corresponding paraffins and / or olefins.
- a catalyst having chromium oxide supported on an alumina support, an alumina support or zinc aluminate It is known that such a catalyst having platinum supported on a spinel carrier is suitable for its production (Non-patent Document 1).
- Patent Documents 1 to 9 disclose that a catalyst in which platinum and zinc are supported on a zeolite carrier exhibits high activity over a long period of time as compared with other catalyst systems.
- metallic zinc is used under typical dehydrogenation reaction conditions that require high temperature and low pressure. Continues to evaporate from the catalyst, resulting in irreversible degradation of the catalyst.
- Patent Document 7 describes that the addition of a Group IVB element such as zirconium is effective.
- Patent Document 10 discloses a method of adding gallium to a zeolite carrying zinc as a propane aromatization catalyst.
- Patent Document 11 uses a zeolite containing zinc as a lower hydrocarbon aromatization catalyst.
- a method of supplying carbon dioxide, steam, thiophene and the like together with the raw material gas is disclosed.
- Patent Document 12 discloses that the formation of zinc aluminate by the reaction of the zinc component contained in the aromatization catalyst and alumina greatly contributes to the stabilization of zinc.
- the present invention provides a method for producing an unsaturated hydrocarbon by dehydrogenating a hydrocarbon using a dehydrogenation catalyst, and effectively suppressing the volatilization of zinc from the dehydrogenation catalyst. It is an object of the present invention to provide a method for stably producing unsaturated hydrocarbons, that is, olefins or dienes.
- the present inventors made contact with the catalyst after bringing the raw material-containing gas into contact with metallic zinc and / or a zinc compound, or made the raw material-containing gas containing zinc vapor into the catalyst. It has been found that, by contacting, volatilization of zinc from the catalyst can be effectively suppressed, and as a result, unsaturated hydrocarbons, that is, olefins and dienes can be produced stably over a long period of time.
- the raw material-containing gas (1) containing hydrocarbon is brought into contact with zinc metal or zinc compound or both, and then brought into contact with a dehydrogenation catalyst containing zinc as one of the active components.
- a method for producing an unsaturated hydrocarbon (hereinafter also referred to as “production method (1)”), which comprises a step of producing an unsaturated hydrocarbon by dehydrogenating the hydrocarbon.
- the raw material-containing gas (2) containing hydrocarbon and zinc vapor is brought into contact with a dehydrogenation catalyst containing zinc as one of the active components, and the hydrocarbon is dehydrogenated.
- This is a method for producing an unsaturated hydrocarbon including a step of producing unsaturated hydrocarbon (hereinafter also referred to as “production method (2)”).
- production method (2) The said raw material containing gas (2) can be obtained by making the said raw material containing gas (1) contact metal zinc or a zinc compound, or both.
- the reaction temperature of the dehydrogenation reaction is 300 to 800 ° C. and the reaction pressure is 0.01 to 1 MPa.
- the partial pressure of zinc vapor contained in the raw material-containing gas (2) is not more than the vapor pressure of zinc at the reaction temperature of the dehydrogenation reaction.
- the zinc vapor source is preferably metallic zinc or zinc oxide or both.
- the hydrocarbon as the raw material is preferably at least one selected from propane, n-butane and isobutane, or n-butene.
- the raw material-containing gas (1) preferably further contains water vapor and / or hydrogen.
- the raw material-containing gas (2) preferably further contains water vapor and / or hydrogen.
- a preferred form as the dehydrogenation catalyst is a catalyst in which zeolite is used as a carrier and zinc and a Group VIIIA metal are supported as active components.
- the amount of zinc contained in such a catalyst is preferably 0.01 to 15% by weight, with the total weight of the catalyst being 100% by weight, and the amount of the Group VIIIA metal is the total weight of the catalyst. When it is 100% by weight, it is preferably 0.01 to 5% by weight.
- the Group VIIIA metal is preferably platinum.
- silicalite or borosilicate is preferable, and one having an MFI structure is more preferable.
- a more preferable zeolite carrier is a silicate obtained by removing at least a part of boron atoms from MFI-type borosilicate, and the boron atom remaining rate in the silicate is 80% or less of the total amount of boron atoms in MFI-type borosilicate. Some are particularly preferred.
- the volatilization of zinc from the dehydrogenation catalyst can be effectively suppressed by a very simple method, and as a result, the high activity of the dehydrogenation catalyst can be obtained over a long period of time. It is possible to produce predominantly unsaturated hydrocarbons, ie olefins or dienes.
- production method (1) a raw material-containing gas (1) containing hydrocarbons is brought into contact with metal zinc and / or a zinc compound, and then one of the active ingredients. And a step of producing an unsaturated hydrocarbon by bringing the hydrocarbon into contact with a dehydrogenation catalyst containing zinc.
- an unsaturated hydrocarbon production method uses a raw material-containing gas (2) containing hydrocarbon and zinc vapor as one of the active components. It includes a step of producing an unsaturated hydrocarbon by contacting with a dehydrogenation catalyst containing zinc to perform a dehydrogenation reaction of the hydrocarbon.
- production method (2) uses a raw material-containing gas (2) containing hydrocarbon and zinc vapor as one of the active components. It includes a step of producing an unsaturated hydrocarbon by contacting with a dehydrogenation catalyst containing zinc to perform a dehydrogenation reaction of the hydrocarbon.
- the reaction temperature range during the dehydrogenation reaction is preferably 300 to 800 ° C., more preferably 400 to 700 ° C., and particularly preferably 450 to 650 ° C.
- the reaction temperature is equal to or higher than the lower limit, the hydrocarbon as a raw material is converted to an unsaturated hydrocarbon at a high equilibrium conversion rate, so that the unsaturated hydrocarbon is produced in a high yield with a single pass.
- the reaction temperature is not more than the above upper limit value, the coking speed is not increased, and the activity deterioration of the catalyst can be suppressed.
- the range of the reaction pressure is preferably 0.01 to 1 MPa, more preferably 0.01 to 0.5 MPa. The lower the reaction pressure, the higher the equilibrium conversion rate of the raw material hydrocarbon, and the higher the yield of unsaturated hydrocarbon in one pass.
- the reaction is preferably carried out in a continuous reaction apparatus.
- the amount of catalyst used is simply and appropriately expressed by the weight hourly space velocity WHSV (the weight of the feedstock hydrocarbon per unit weight of catalyst and unit time).
- Range of WHSV in the present invention is not particularly limited, preferably 0.01 ⁇ 50h -1, more preferably from 0.1 ⁇ 20h -1.
- the present invention is characterized in that a raw material-containing gas containing zinc vapor is brought into contact with a catalyst containing zinc as one of active components.
- a catalyst containing zinc as one of active components.
- the partial pressure of the zinc vapor contained in the raw material-containing gas in contact with the catalyst is equal to or lower than the vapor pressure of zinc at the reaction temperature, and the concentration (based on volume) of the zinc vapor contained in the raw material-containing gas exceeds 0%.
- it is 0.01% or more, More preferably, it is 0.05% or more.
- Examples of the source of zinc vapor include metal zinc, zinc oxide, zinc nitrate, zinc chloride, zinc acetate, zinc aluminate and the like, and since zinc vapor is easily generated, metal zinc and / or zinc oxide is used. preferable.
- the source of zinc vapor is heated to generate zinc vapor having a predetermined partial pressure, but the temperature range is preferably 300 ° C. or higher and the reaction temperature or lower, more preferably 400 ° C. or higher and the reaction temperature or lower. Particularly preferably, it is 450 ° C. or higher and the reaction temperature or lower.
- the method for supplying zinc vapor to the raw material-containing gas there is no particular limitation on the method for supplying zinc vapor to the raw material-containing gas.
- the metallic zinc and / or zinc compound is heated to a predetermined temperature in a chamber separate from the reactor (that is, the vessel for performing the hydrocarbon dehydrogenation reaction).
- a mixed gas consisting of a hydrocarbon gas as a raw material and an inert gas optionally used, zinc vapor corresponding to the maximum vapor pressure and a hydrocarbon gas as a raw material and an inert gas You may include in the mixed gas which consists of.
- a catalyst layer containing the catalyst is formed in the reaction tube, and a layer of zinc oxide or zinc aluminate is provided on the upstream side of the gas flow in the reaction tube with respect to the catalyst layer, and this layer is formed as a reducing gas (for example, , Hydrogen gas) is heated in the presence of this gas to generate zinc vapor from this layer, including the raw material hydrocarbon gas, optionally used inert gas, and optionally unreacted reducing gas.
- a reducing gas for example, Hydrogen gas
- the supply of zinc vapor may be continuous or intermittent, but in the case of intermittent supply, it is necessary to provide a chamber separate from the reactor.
- hydrocarbons that are converted to unsaturated hydrocarbons by dehydrogenation are fed to the reactor.
- the unsaturated hydrocarbon produced in the present invention is preferably an olefin (unsaturated hydrocarbon in which one double bond exists in one molecule) and a diene (one double bond in one molecule) from the viewpoint of industrial usefulness. Unsaturated hydrocarbons present in the two). That is, the method for producing unsaturated hydrocarbons of the present invention is preferably a method for producing olefins or dienes.
- Particularly preferred compounds as the hydrocarbon as the raw material are propane, n-butane, isobutane, 1-butene, 2-butene and mixtures thereof, and particularly preferred compounds as the unsaturated hydrocarbon are propylene, 1-butene, 2 -Butene, isobutene, 1,3-butadiene and mixtures thereof.
- a mixture of 1-butene and 2-butene is usually referred to as n-butene.
- the raw material hydrocarbon gas may be supplied to the reactor together with other gases that do not impair the effects of the present invention.
- the other gases include water vapor, nitrogen gas, carbon dioxide gas, hydrogen gas, and methane gas. Can be mentioned. Among these, water vapor is particularly preferable from the viewpoint of extending the life of the dehydrogenation catalyst.
- steam from zinc oxide may be supplied as other gas.
- the mixing method and mixing ratio of the hydrocarbon gas and the other gas are not particularly limited.
- the reaction format used in the present invention is not particularly limited, and a known method can be employed, and examples thereof include a fixed bed, a moving bed, and a fluidized bed. From the viewpoint of ease of process design, a fixed bed type is particularly preferable.
- a dehydrogenation catalyst containing zinc is used as one of the active components, preferably a catalyst using zeolite as a carrier and carrying zinc and a Group VIIIA metal as the active components.
- Zinc and Group VIIIA metals can be supported on the zeolite using, for example, metal compounds such as the corresponding metal nitrates, metal chlorides or metal complexes.
- the loading on zeolite can be carried out by a known method such as an ion exchange method or an impregnation method, and the order of loading is not particularly limited.
- Examples of the zinc compound include zinc nitrate, zinc chloride, and zinc acetate.
- Examples of the Group VIIIA metal compound include chloroplatinic acid, tetraammineplatinum chloride, tetraammineplatinum hydroxide, and tetraammineplatinum nitrate.
- the range of the amount of zinc contained in the dehydrogenation catalyst is preferably from 0.01 to 15% by weight, more preferably from 0.05 to 15% by weight as the ratio of the weight of zinc metal atoms to the weight of the whole catalyst (100% by weight). 5% by weight, particularly preferably 0.1 to 3% by weight.
- the range of the amount of the Group VIIIA metal contained in the dehydrogenation catalyst is preferably 0.01 to 5% by weight, more preferably as a ratio of the weight of the Group VIIIA metal atom to the total weight (100% by weight) of the catalyst. Is 0.05 to 3% by weight, particularly preferably 0.1 to 1.5% by weight.
- the ratio of zinc to the Group VIIIA metal is usually 0.5 or more, preferably 0.5 to 50, more preferably 1 to 30, in terms of molar ratio (number of moles of Zn / number of moles of Group VIIIA metal). Preferably it is 1-20.
- the Group VIIIA metal is an old IUPAC system notation, which is a Group 8-10 metal in the IUPAC system.
- Examples of the Group VIIIA metal include platinum, palladium, ruthenium, iridium, rhodium, and nickel. Among these, platinum is preferable from the viewpoint of catalytic activity.
- the zinc compound and optionally the Group VIIIA metal compound are supported on zeolite, followed by drying and calcination.
- the drying conditions are not particularly limited, but the drying is usually performed at 80 to 150 ° C. for a predetermined time.
- the firing conditions are not particularly limited, but the firing is usually performed at 400 to 600 ° C. for a predetermined time.
- the atmosphere during firing is not particularly limited, but usually drying and firing are carried out under air circulation.
- zeolite is a name used as a general term for crystalline porous aluminosilicate, and is classified by a structure code according to the topology. For each structure code, information about structure, composition, crystallographic data is known (for example, Atlas of Zeolite Structure Types, 4th Ed., Elsevier 1996, and Collection of Simulated XRD Powder Pattern 19). ).
- silicalite not containing aluminum, metallosilicate containing iron, gallium, titanium, etc. instead of aluminum are also included in zeolite (for example, the science of zeolite And engineering, Kodansha Scientific).
- silicalite containing no aluminum or borosilicate which is a metallosilicate containing boron instead of aluminum is preferably used as a catalyst carrier.
- the aluminum content in the silicalite or borosilicate used in the present invention is not particularly limited, but the silica / alumina molar ratio (number of moles of SiO 2 / number of moles of Al 2 O 3 ) in these zeolites is 100 or more. Is more preferably 500 or more, particularly preferably 1000 or more, and most preferably 2000 or more.
- the silica / alumina molar ratio is 100 or more, side reactions such as oligomerization that proceeds on acid sites caused by aluminum are suppressed. If the silica / alumina molar ratio is 2000 or more, such side reactions can be more effectively suppressed.
- the boron content in the borosilicate is not particularly limited, but is preferably 100 to 30000 ppm, more preferably 500 to 10000 ppm, and particularly preferably 1000 to 80000 ppm.
- the content of alkali metal and alkaline earth metal in silicalite or borosilicate is not particularly limited, but it is preferable that these metals are not substantially present. “Substantially absent” means that the content of alkali metal and alkaline earth metal in silicalite or borosilicate is 300 ppm or less, respectively.
- the silicalite and the borosilicate have an MFI structure.
- a borosilicate having an MFI structure (hereinafter also referred to as “MFI-type borosilicate”) may be used as a carrier as it is, but a silicate obtained by removing at least a part of boron atoms from the MFI-type borosilicate is used as a carrier. It is preferable to use it.
- the boron atom remaining rate in the silicate after removing at least a part of boron atoms from the MFI-type borosilicate is preferably 80% or less of the total amount of boron atoms in the borosilicate, and is 50% or less. Is more preferably 30% or less, and most preferably 20% or less.
- the boron atom residual ratio is calculated by comparing the boron atom content in the borosilicate before removing the boron atom and the boron atom content in the silicate after removing the boron atom.
- the method for removing at least a part of boron atoms from the borosilicate is not limited, and a known method such as a method of treating with an aqueous solution of an inorganic acid or an organic acid is employed.
- the catalyst charged in the reactor may be in the form of a powder or a molded body.
- molding method Well-known methods, such as extrusion molding, tableting shaping
- a pretreatment for activating the catalyst may be performed after the catalyst is charged into the reactor and before the start of the reaction.
- the catalyst is usually a reducing gas such as hydrogen or carbon monoxide. Contact. These reducing gases may be used without being diluted, or may be appropriately diluted with the above-described inert gas.
- the reaction may be stopped and the catalyst may be reactivated by a method called regeneration treatment.
- the method is not particularly limited, but usually a method of burning and removing heavy hydrocarbons called coke deposited on the catalyst surface by bringing a gas containing oxygen into contact with the catalyst at a predetermined temperature.
- the washed cake was dried for 3 hours in a static electric furnace in which air was circulated and maintained at 120 ° C., and then calcined at 500 ° C. for 4 hours.
- a silicate from which part was removed was obtained.
- the amount of boron atoms in the obtained silicate was 260 ppm, and the residual ratio of boron atoms at this time was 8%.
- Catalyst preparation 2 To 2 g of the silicate obtained in Catalyst Preparation 1, 0.66 g of an aqueous solution containing 0.058 g of zinc nitrate hexahydrate was added and impregnated with zinc ions by the incipient-wetness method. The silicate impregnated with zinc ions was dried for 3 hours in a static electric furnace maintained at 120 ° C. through which air was circulated, and then baked at 500 ° C. for 4 hours to form a silicate on which zinc was supported. Prepared.
- Catalyst preparation 3 Add 0.375 g of an aqueous solution containing 0.0127 g of chloroplatinic acid hexahydrate to 1.5 g of the zinc-supported silicate obtained in Catalyst Preparation 2, and impregnate it with platinum ions by the incipient-wetness method. It was. The silicate impregnated with platinum ions was dried for 3 hours in a static electric furnace in which air was circulated and maintained at 120 ° C., followed by firing at 500 ° C. for 4 hours to support platinum and zinc. Silicate catalyst powder was obtained. This silicate catalyst had a platinum loading of 0.32 wt% and a zinc loading of 0.64 wt%.
- Example 1 An SUS tube equipped with an inner tube of alumina with an inner diameter of 6 mm was filled with 0.2 g of the silicate catalyst carrying platinum and zinc obtained in Catalyst Preparation 3, and then oxidized upstream of the catalyst with silica wool in between.
- a reaction tube was manufactured by charging 0.1 g of zinc (manufactured by Sigma-Aldrich), filling alumina balls before and after them, and fixing the catalyst and zinc oxide.
- the catalyst was pretreated by flowing a mixed gas consisting of 20 sccm of hydrogen and 0.064 g / min of water vapor at 600 ° C.
- reaction tube was pretreated with 2.1 sccm of hydrogen, 13.55 sccm of propane, and 0.
- the propane dehydrogenation reaction was started by feeding 022 g / min.
- reaction temperature was raised to 650 degreeC with the start of reaction.
- the catalyst showed stable activity over a long period of time, with a propylene yield of 60% over about 120 hours.
- Example 1 A reaction tube was produced in the same manner as in Example 1 except that zinc oxide was not charged, and propane dehydrogenation reaction was started under the same pretreatment conditions and reaction conditions as in Example 1.
- the catalyst showed a propylene yield of 60% over about 60 hours.
- Example 2 A reaction tube was manufactured in the same manner as in Example 1 except that the silicate catalyst was not charged. As in Example 1, the reaction tube was charged with 20 sccm of hydrogen and 0.064 g / min of water vapor at 600 ° C. and normal pressure. After flowing the mixed gas for 2 hours, 2.1 sccm of hydrogen, 13.55 sccm of propane, and 0.022 g / min of water vapor were supplied at 650 ° C. Zinc oxide did not show any catalytic activity in the propane dehydrogenation reaction. From the above results, it is clear that the zinc oxide itself charged upstream of the catalyst has no catalytic activity, while the presence of zinc oxide exhibits a high activity over a long period of time.
- a reaction tube was manufactured in the same manner as in Comparative Example 2 except that a quartz tube that had been processed to fix the catalyst was used instead of the SUS tube that was fitted with an alumina intubation tube, and the alumina balls were not filled.
- a mixed gas composed of hydrogen at 20 ° C. and water vapor at 0.064 g / min at 600 ° C. and normal pressure for 2 hours, 650 ° C. at 2.1 sccm of hydrogen and propane 13.55 sccm and water vapor 0.022 g / min were fed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
[Problem] To provide a method for producing an unsaturated hydrocarbon by dehydrogenating a hydrocarbon with use of a dehydrogenation catalyst, which stably produces an unsaturated hydrocarbon, namely an olefin and/or a diene for a long period of time by effectively suppressing volatilization of zinc from the dehydrogenation catalyst.
[Solution] A method for producing an unsaturated hydrocarbon which comprises a step wherein a starting material-containing gas (1), which contains a hydrocarbon, is brought into contact with zinc metal and/or a zinc compound, and then the starting material-containing gas (1) is brought into contact with a dehydrogenation catalyst which contains zinc as one active component, thereby performing a dehydrogenation reaction of the hydrocarbon so as to produce an unsaturated hydrocarbon.
Description
本発明は、炭化水素の脱水素反応を行うことによって不飽和炭化水素を製造する方法に関する。
The present invention relates to a method for producing an unsaturated hydrocarbon by performing a hydrocarbon dehydrogenation reaction.
不飽和炭化水素、特にオレフィンおよびジエンは、石油化学工業における種々の誘導体の基礎原料として大変有用である。代表的な低級オレフィンおよびジエンとして、プロピレン、1-ブテン、2-ブテン、イソブテン、1,3-ブタジエンなどが挙げられる。これらの低級オレフィンおよびジエンは、対応するパラフィンおよびまたはオレフィンを脱水素することによっても製造されることが知られており、例えばアルミナ担体上に酸化クロムを担持した触媒、アルミナ担体もしくはアルミン酸亜鉛のようなスピネル担体上に白金を担持した触媒などが、その製造に好適であることが知られている(非特許文献1)。また、特許文献1~9には、ゼオライト担体上に白金と亜鉛を担持した触媒は、他の触媒系に比べて長期に亘って高い活性を示すことが開示されている。
Unsaturated hydrocarbons, especially olefins and dienes, are very useful as basic raw materials for various derivatives in the petrochemical industry. Representative lower olefins and dienes include propylene, 1-butene, 2-butene, isobutene, 1,3-butadiene and the like. These lower olefins and dienes are also known to be produced by dehydrogenating the corresponding paraffins and / or olefins. For example, a catalyst having chromium oxide supported on an alumina support, an alumina support or zinc aluminate. It is known that such a catalyst having platinum supported on a spinel carrier is suitable for its production (Non-patent Document 1). Patent Documents 1 to 9 disclose that a catalyst in which platinum and zinc are supported on a zeolite carrier exhibits high activity over a long period of time as compared with other catalyst systems.
一方、金属亜鉛の融点は約420℃と低く、しかも高い蒸気圧を有することから、活性成分として金属亜鉛を含む脱水素触媒の場合、高温低圧を要する典型的な脱水素反応条件下では金属亜鉛が継続的に触媒上から揮散し続け、その結果として触媒には非可逆的な劣化が引き起こされる。
On the other hand, since the melting point of metallic zinc is as low as about 420 ° C. and has a high vapor pressure, in the case of a dehydrogenation catalyst containing metallic zinc as an active component, metallic zinc is used under typical dehydrogenation reaction conditions that require high temperature and low pressure. Continues to evaporate from the catalyst, resulting in irreversible degradation of the catalyst.
触媒上からの亜鉛の揮散を抑制する方法として、例えば特許文献7の本文中にはジルコニウムのような第IVB族元素の添加が効果的であると記載されている。また特許文献10には、プロパンの芳香族化触媒として亜鉛が担持されたゼオライトにガリウムを添加する方法が、特許文献11には低級炭化水素の芳香族化触媒として亜鉛を含有するゼオライトを用い、原料ガスとともに二酸化炭素やスチーム、チオフェンなどを供給する方法が開示されている。さらに特許文献12には、芳香族化触媒中に含まれる亜鉛成分とアルミナの反応によるアルミン酸亜鉛の形成が、亜鉛の安定化に大きく貢献することが開示されている。
As a method of suppressing the volatilization of zinc from the catalyst, for example, the text of Patent Document 7 describes that the addition of a Group IVB element such as zirconium is effective. Patent Document 10 discloses a method of adding gallium to a zeolite carrying zinc as a propane aromatization catalyst. Patent Document 11 uses a zeolite containing zinc as a lower hydrocarbon aromatization catalyst. A method of supplying carbon dioxide, steam, thiophene and the like together with the raw material gas is disclosed. Furthermore, Patent Document 12 discloses that the formation of zinc aluminate by the reaction of the zinc component contained in the aromatization catalyst and alumina greatly contributes to the stabilization of zinc.
しかしながら、本発明者らが、これら芳香族化触媒の開発において見出された亜鉛の揮散抑制技術を脱水素触媒に応用したところ、いずれも得られる効果が小さい、もしくは活性の大幅な減少を伴うなど、上記の亜鉛揮散抑制技術は、決して満足できるとは言い難いことが分かった。それゆえ、脱水素触媒に適用可能な、効果的な亜鉛の安定化方法の確立が望まれる。
However, when the present inventors applied the zinc volatilization suppression technology found in the development of these aromatization catalysts to a dehydrogenation catalyst, all of the obtained effects were small or accompanied by a significant decrease in activity. Thus, it was found that the above zinc volatilization suppression technology is never satisfactory. Therefore, establishment of an effective zinc stabilization method applicable to a dehydrogenation catalyst is desired.
したがって本発明は、脱水素触媒を用いて炭化水素を脱水素して不飽和炭化水素を製造する方法において、脱水素触媒上からの亜鉛の揮散を効果的に抑制することにより、長期に亘って安定的に不飽和炭化水素、すなわちオレフィンまたはジエンを製造する方法を提供することを課題とする。
Therefore, the present invention provides a method for producing an unsaturated hydrocarbon by dehydrogenating a hydrocarbon using a dehydrogenation catalyst, and effectively suppressing the volatilization of zinc from the dehydrogenation catalyst. It is an object of the present invention to provide a method for stably producing unsaturated hydrocarbons, that is, olefins or dienes.
本発明者らは上記課題を解決すべく鋭意検討した結果、原料含有ガスを金属亜鉛および/または亜鉛化合物と接触させた後に触媒と接触させることにより、あるいは亜鉛蒸気を含む原料含有ガスを触媒と接触させることにより、触媒からの亜鉛の揮散を効果的に抑制し、結果として長期に亘って安定的に不飽和炭化水素すなわちオレフィン、ジエンを製造できることを見出した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors made contact with the catalyst after bringing the raw material-containing gas into contact with metallic zinc and / or a zinc compound, or made the raw material-containing gas containing zinc vapor into the catalyst. It has been found that, by contacting, volatilization of zinc from the catalyst can be effectively suppressed, and as a result, unsaturated hydrocarbons, that is, olefins and dienes can be produced stably over a long period of time.
すなわち本発明の一つの態様は、炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させ、次いで活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含む不飽和炭化水素の製造方法(以下「製造方法(1)」ともいう。)である。
That is, in one embodiment of the present invention, the raw material-containing gas (1) containing hydrocarbon is brought into contact with zinc metal or zinc compound or both, and then brought into contact with a dehydrogenation catalyst containing zinc as one of the active components. , A method for producing an unsaturated hydrocarbon (hereinafter also referred to as “production method (1)”), which comprises a step of producing an unsaturated hydrocarbon by dehydrogenating the hydrocarbon.
また、本発明の他の態様は、炭化水素および亜鉛蒸気を含む原料含有ガス(2)を、活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含む不飽和炭化水素の製造方法(以下「製造方法(2)」ともいう。)である。
前記原料含有ガス(2)は、前記原料含有ガス(1)を金属亜鉛もしくは亜鉛化合物またはその両方と接触させることにより、得ることができる。 In another embodiment of the present invention, the raw material-containing gas (2) containing hydrocarbon and zinc vapor is brought into contact with a dehydrogenation catalyst containing zinc as one of the active components, and the hydrocarbon is dehydrogenated. This is a method for producing an unsaturated hydrocarbon including a step of producing unsaturated hydrocarbon (hereinafter also referred to as “production method (2)”).
The said raw material containing gas (2) can be obtained by making the said raw material containing gas (1) contact metal zinc or a zinc compound, or both.
前記原料含有ガス(2)は、前記原料含有ガス(1)を金属亜鉛もしくは亜鉛化合物またはその両方と接触させることにより、得ることができる。 In another embodiment of the present invention, the raw material-containing gas (2) containing hydrocarbon and zinc vapor is brought into contact with a dehydrogenation catalyst containing zinc as one of the active components, and the hydrocarbon is dehydrogenated. This is a method for producing an unsaturated hydrocarbon including a step of producing unsaturated hydrocarbon (hereinafter also referred to as “production method (2)”).
The said raw material containing gas (2) can be obtained by making the said raw material containing gas (1) contact metal zinc or a zinc compound, or both.
前記脱水素反応の反応温度が300~800℃、かつ反応圧力が0.01~1MPaであることが好ましい。
前記原料含有ガス(2)に含まれる亜鉛蒸気の分圧は、前記脱水素反応の反応温度における亜鉛の蒸気圧以下である。亜鉛蒸気の供給源としては、金属亜鉛もしくは酸化亜鉛またはその両方が好ましい。 It is preferable that the reaction temperature of the dehydrogenation reaction is 300 to 800 ° C. and the reaction pressure is 0.01 to 1 MPa.
The partial pressure of zinc vapor contained in the raw material-containing gas (2) is not more than the vapor pressure of zinc at the reaction temperature of the dehydrogenation reaction. The zinc vapor source is preferably metallic zinc or zinc oxide or both.
前記原料含有ガス(2)に含まれる亜鉛蒸気の分圧は、前記脱水素反応の反応温度における亜鉛の蒸気圧以下である。亜鉛蒸気の供給源としては、金属亜鉛もしくは酸化亜鉛またはその両方が好ましい。 It is preferable that the reaction temperature of the dehydrogenation reaction is 300 to 800 ° C. and the reaction pressure is 0.01 to 1 MPa.
The partial pressure of zinc vapor contained in the raw material-containing gas (2) is not more than the vapor pressure of zinc at the reaction temperature of the dehydrogenation reaction. The zinc vapor source is preferably metallic zinc or zinc oxide or both.
原料である前記炭化水素は、好ましくはプロパン、n-ブタンおよびイソブタンから選ばれる少なくとも1種であるか、またはn-ブテンである。
前記製造方法(1)において、前記原料含有ガス(1)は、好ましくは水蒸気および/または水素をさらに含有する。
前記製造方法(2)において、前記原料含有ガス(2)は、好ましくは水蒸気および/または水素をさらに含有する。 The hydrocarbon as the raw material is preferably at least one selected from propane, n-butane and isobutane, or n-butene.
In the production method (1), the raw material-containing gas (1) preferably further contains water vapor and / or hydrogen.
In the production method (2), the raw material-containing gas (2) preferably further contains water vapor and / or hydrogen.
前記製造方法(1)において、前記原料含有ガス(1)は、好ましくは水蒸気および/または水素をさらに含有する。
前記製造方法(2)において、前記原料含有ガス(2)は、好ましくは水蒸気および/または水素をさらに含有する。 The hydrocarbon as the raw material is preferably at least one selected from propane, n-butane and isobutane, or n-butene.
In the production method (1), the raw material-containing gas (1) preferably further contains water vapor and / or hydrogen.
In the production method (2), the raw material-containing gas (2) preferably further contains water vapor and / or hydrogen.
また、前記脱水素触媒として好ましい形態は、ゼオライトを担体とし、活性成分として亜鉛および第VIIIA族金属が担持された触媒である。このような触媒に含まれる亜鉛の量は、該触媒全体の重量を100重量%とすると、好ましくは0.01~15重量%であり、第VIIIA族金属の量は、該触媒全体の重量を100重量%とすると、好ましくは0.01~5重量%である。また前記第VIIIA族金属としては白金が好ましい。
Further, a preferred form as the dehydrogenation catalyst is a catalyst in which zeolite is used as a carrier and zinc and a Group VIIIA metal are supported as active components. The amount of zinc contained in such a catalyst is preferably 0.01 to 15% by weight, with the total weight of the catalyst being 100% by weight, and the amount of the Group VIIIA metal is the total weight of the catalyst. When it is 100% by weight, it is preferably 0.01 to 5% by weight. The Group VIIIA metal is preferably platinum.
前記ゼオライトとしてはシリカライトまたはボロシリケートが好ましく、MFI構造を有するものがより好ましい。さらに好ましいゼオライト担体は、MFI型ボロシリケートからホウ素原子の少なくとも一部を除去して得られるシリケートであり、シリケート中のホウ素原子残存率が、MFI型ボロシリケート中のホウ素原子全量の80%以下であるものが特に好ましい。
As the zeolite, silicalite or borosilicate is preferable, and one having an MFI structure is more preferable. A more preferable zeolite carrier is a silicate obtained by removing at least a part of boron atoms from MFI-type borosilicate, and the boron atom remaining rate in the silicate is 80% or less of the total amount of boron atoms in MFI-type borosilicate. Some are particularly preferred.
本発明によれば、脱水素触媒上からの亜鉛の揮散を非常に簡便な方法で効果的に抑制でき、その結果として長期に亘って該脱水素触媒の高い活性が得られるため、経済上著しく優位に不飽和炭化水素、すなわちオレフィンまたはジエンを製造することが可能となる。
According to the present invention, the volatilization of zinc from the dehydrogenation catalyst can be effectively suppressed by a very simple method, and as a result, the high activity of the dehydrogenation catalyst can be obtained over a long period of time. It is possible to produce predominantly unsaturated hydrocarbons, ie olefins or dienes.
以下、本発明の詳細を説明する。
本発明に係る不飽和炭化水素の製造方法(製造方法(1))は、炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させ、次いで活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含んでいる。 Details of the present invention will be described below.
In the method for producing unsaturated hydrocarbons according to the present invention (production method (1)), a raw material-containing gas (1) containing hydrocarbons is brought into contact with metal zinc and / or a zinc compound, and then one of the active ingredients. And a step of producing an unsaturated hydrocarbon by bringing the hydrocarbon into contact with a dehydrogenation catalyst containing zinc.
本発明に係る不飽和炭化水素の製造方法(製造方法(1))は、炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させ、次いで活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含んでいる。 Details of the present invention will be described below.
In the method for producing unsaturated hydrocarbons according to the present invention (production method (1)), a raw material-containing gas (1) containing hydrocarbons is brought into contact with metal zinc and / or a zinc compound, and then one of the active ingredients. And a step of producing an unsaturated hydrocarbon by bringing the hydrocarbon into contact with a dehydrogenation catalyst containing zinc.
本発明の他の態様においては、本発明に係る不飽和炭化水素の製造方法(製造方法(2))は、炭化水素および亜鉛蒸気を含む原料含有ガス(2)を、活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含んでいる。
なお以下の記載内容は、特に断りのない限り、前記製造方法(1)および前記製造方法(2)の両方に適用される。 In another aspect of the present invention, an unsaturated hydrocarbon production method (production method (2)) according to the present invention uses a raw material-containing gas (2) containing hydrocarbon and zinc vapor as one of the active components. It includes a step of producing an unsaturated hydrocarbon by contacting with a dehydrogenation catalyst containing zinc to perform a dehydrogenation reaction of the hydrocarbon.
The following description applies to both the manufacturing method (1) and the manufacturing method (2) unless otherwise specified.
なお以下の記載内容は、特に断りのない限り、前記製造方法(1)および前記製造方法(2)の両方に適用される。 In another aspect of the present invention, an unsaturated hydrocarbon production method (production method (2)) according to the present invention uses a raw material-containing gas (2) containing hydrocarbon and zinc vapor as one of the active components. It includes a step of producing an unsaturated hydrocarbon by contacting with a dehydrogenation catalyst containing zinc to perform a dehydrogenation reaction of the hydrocarbon.
The following description applies to both the manufacturing method (1) and the manufacturing method (2) unless otherwise specified.
前記脱水素反応の際の反応温度の範囲は、好ましくは300~800℃であり、さらに好ましくは400~700℃であり、特に好ましくは450~650℃である。反応温度が前記の下限値以上であると、原料である炭化水素が高い平衡転化率で不飽和炭化水素に転化するため、ワンパスで高い収率で不飽和炭化水素が製造される。また、反応温度が前記の上限値以下であると、コーキング速度が大きくならず、触媒の活性劣化が抑えられる。
The reaction temperature range during the dehydrogenation reaction is preferably 300 to 800 ° C., more preferably 400 to 700 ° C., and particularly preferably 450 to 650 ° C. When the reaction temperature is equal to or higher than the lower limit, the hydrocarbon as a raw material is converted to an unsaturated hydrocarbon at a high equilibrium conversion rate, so that the unsaturated hydrocarbon is produced in a high yield with a single pass. Further, when the reaction temperature is not more than the above upper limit value, the coking speed is not increased, and the activity deterioration of the catalyst can be suppressed.
反応圧力の範囲は、好ましくは0.01~1MPaであり、さらに好ましくは0.01~0.5MPaである。反応圧力が低いほど原料である炭化水素の平衡転化率は高くなり、ワンパスでの不飽和炭化水素の収率は大きくなる。
The range of the reaction pressure is preferably 0.01 to 1 MPa, more preferably 0.01 to 0.5 MPa. The lower the reaction pressure, the higher the equilibrium conversion rate of the raw material hydrocarbon, and the higher the yield of unsaturated hydrocarbon in one pass.
本発明の製造方法は気相で実施されるため、連続式の反応装置にて反応を実施することが好ましい。このとき、触媒の使用量は重量空間速度WHSV(単位重量の触媒および単位時間当たりの、原料である炭化水素の供給重量)で表すのが簡便であり、また適切である。本発明においてWHSVの範囲は、特に限定されないが、好ましくは0.01~50h-1であり、さらに好ましくは0.1~20h-1である。
Since the production method of the present invention is carried out in the gas phase, the reaction is preferably carried out in a continuous reaction apparatus. At this time, the amount of catalyst used is simply and appropriately expressed by the weight hourly space velocity WHSV (the weight of the feedstock hydrocarbon per unit weight of catalyst and unit time). Range of WHSV in the present invention is not particularly limited, preferably 0.01 ~ 50h -1, more preferably from 0.1 ~ 20h -1.
本発明は、前記製造方法(2)においては、亜鉛蒸気を含む原料含有ガスを、活性成分の1つとして亜鉛を含む触媒と接触させることを特徴とする。触媒に亜鉛蒸気を接触させることにより、触媒上からの亜鉛の揮散が抑制される結果、触媒は長期に亘って安定した性能を示すことが可能になる。触媒と接触する原料含有ガス中に含まれる亜鉛蒸気の分圧は、反応温度における亜鉛の蒸気圧以下であり、原料含有ガス中に含まれる亜鉛蒸気の濃度(体積基準)は0%を超える濃度であり、好ましくは0.01%以上であり、さらに好ましくは0.05%以上である。
In the production method (2), the present invention is characterized in that a raw material-containing gas containing zinc vapor is brought into contact with a catalyst containing zinc as one of active components. By bringing zinc vapor into contact with the catalyst, the volatilization of zinc from the catalyst is suppressed, so that the catalyst can exhibit stable performance over a long period of time. The partial pressure of the zinc vapor contained in the raw material-containing gas in contact with the catalyst is equal to or lower than the vapor pressure of zinc at the reaction temperature, and the concentration (based on volume) of the zinc vapor contained in the raw material-containing gas exceeds 0%. Preferably, it is 0.01% or more, More preferably, it is 0.05% or more.
亜鉛蒸気の供給源としては、例えば金属亜鉛、酸化亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛、アルミン酸亜鉛などが挙げられ、亜鉛蒸気を容易に発生させることから金属亜鉛もしくは酸化亜鉛またはその両方が好ましい。
Examples of the source of zinc vapor include metal zinc, zinc oxide, zinc nitrate, zinc chloride, zinc acetate, zinc aluminate and the like, and since zinc vapor is easily generated, metal zinc and / or zinc oxide is used. preferable.
亜鉛蒸気の供給源は所定の分圧の亜鉛蒸気を発生させるために加熱されるが、その温度範囲は好ましくは300℃以上かつ反応温度以下であり、さらに好ましくは400℃以上反応温度以下であり、特に好ましくは450℃以上かつ反応温度以下である。
The source of zinc vapor is heated to generate zinc vapor having a predetermined partial pressure, but the temperature range is preferably 300 ° C. or higher and the reaction temperature or lower, more preferably 400 ° C. or higher and the reaction temperature or lower. Particularly preferably, it is 450 ° C. or higher and the reaction temperature or lower.
原料含有ガスへの亜鉛蒸気の供給方法に特に制限はなく、例えば反応器(すなわち、炭化水素の脱水素反応を行う容器)とは別の室で金属亜鉛および/または亜鉛化合物を所定温度まで加熱し、そこに原料である炭化水素のガスと任意に使用される不活性ガスからなる混合ガスを通過させることによって、最大で蒸気圧分の亜鉛蒸気を原料である炭化水素のガスと不活性ガスからなる混合ガスに含ませてもよい。また、反応管内に、前記触媒を含む触媒層を形成し、この触媒層に対する、反応管内のガスの流れの上流側に酸化亜鉛またはアルミン酸亜鉛の層を設け、この層を還元性ガス(たとえば、水素ガス)の存在下で加熱することによりこの層から亜鉛蒸気を発生させ、原料である炭化水素のガス、任意に使用される不活性ガス、および任意に未反応の前記還元性ガスを含む混合ガスが触媒層と接触する直前に、最大で蒸気圧分の亜鉛蒸気をこの混合ガスに含有させてもよい。
There is no particular limitation on the method for supplying zinc vapor to the raw material-containing gas. For example, the metallic zinc and / or zinc compound is heated to a predetermined temperature in a chamber separate from the reactor (that is, the vessel for performing the hydrocarbon dehydrogenation reaction). Then, by passing a mixed gas consisting of a hydrocarbon gas as a raw material and an inert gas optionally used, zinc vapor corresponding to the maximum vapor pressure and a hydrocarbon gas as a raw material and an inert gas You may include in the mixed gas which consists of. Further, a catalyst layer containing the catalyst is formed in the reaction tube, and a layer of zinc oxide or zinc aluminate is provided on the upstream side of the gas flow in the reaction tube with respect to the catalyst layer, and this layer is formed as a reducing gas (for example, , Hydrogen gas) is heated in the presence of this gas to generate zinc vapor from this layer, including the raw material hydrocarbon gas, optionally used inert gas, and optionally unreacted reducing gas. Immediately before the mixed gas comes into contact with the catalyst layer, zinc gas corresponding to a maximum vapor pressure may be contained in the mixed gas.
亜鉛蒸気の供給は連続的でも断続的でもよいが、断続的に供給する場合は、反応器とは別の室を設ける必要がある。
本発明では、脱水素反応により不飽和炭化水素へと変換される炭化水素が反応器に供給される。本発明で製造される不飽和炭化水素は、工業的な有用性の観点から好ましくはオレフィン(二重結合が1分子内に1つ存在する不飽和炭化水素)およびジエン(二重結合が1分子内に2つ存在する不飽和炭化水素)である。すなわち本発明の不飽和炭化水素の製造方法は、好ましくはオレフィンまたはジエンの製造方法である。 The supply of zinc vapor may be continuous or intermittent, but in the case of intermittent supply, it is necessary to provide a chamber separate from the reactor.
In the present invention, hydrocarbons that are converted to unsaturated hydrocarbons by dehydrogenation are fed to the reactor. The unsaturated hydrocarbon produced in the present invention is preferably an olefin (unsaturated hydrocarbon in which one double bond exists in one molecule) and a diene (one double bond in one molecule) from the viewpoint of industrial usefulness. Unsaturated hydrocarbons present in the two). That is, the method for producing unsaturated hydrocarbons of the present invention is preferably a method for producing olefins or dienes.
本発明では、脱水素反応により不飽和炭化水素へと変換される炭化水素が反応器に供給される。本発明で製造される不飽和炭化水素は、工業的な有用性の観点から好ましくはオレフィン(二重結合が1分子内に1つ存在する不飽和炭化水素)およびジエン(二重結合が1分子内に2つ存在する不飽和炭化水素)である。すなわち本発明の不飽和炭化水素の製造方法は、好ましくはオレフィンまたはジエンの製造方法である。 The supply of zinc vapor may be continuous or intermittent, but in the case of intermittent supply, it is necessary to provide a chamber separate from the reactor.
In the present invention, hydrocarbons that are converted to unsaturated hydrocarbons by dehydrogenation are fed to the reactor. The unsaturated hydrocarbon produced in the present invention is preferably an olefin (unsaturated hydrocarbon in which one double bond exists in one molecule) and a diene (one double bond in one molecule) from the viewpoint of industrial usefulness. Unsaturated hydrocarbons present in the two). That is, the method for producing unsaturated hydrocarbons of the present invention is preferably a method for producing olefins or dienes.
原料である炭化水素として特に好ましい化合物はプロパン、n-ブタン、イソブタン、1-ブテン、2-ブテンおよびこれらの混合物であり、上記不飽和炭化水素として特に好ましい化合物は、プロピレン、1-ブテン、2-ブテン、イソブテン、1,3-ブタジエンおよびこれらの混合物である。1-ブテンと2-ブテンとの混合物は通常、n-ブテンと呼ばれる。
Particularly preferred compounds as the hydrocarbon as the raw material are propane, n-butane, isobutane, 1-butene, 2-butene and mixtures thereof, and particularly preferred compounds as the unsaturated hydrocarbon are propylene, 1-butene, 2 -Butene, isobutene, 1,3-butadiene and mixtures thereof. A mixture of 1-butene and 2-butene is usually referred to as n-butene.
原料である炭化水素のガスは、本発明の効果を阻害しない他のガスとともに反応器に供給されても良く、前記他のガスの例として水蒸気、窒素ガス、二酸化炭素ガス、水素ガス、メタンガスなどを挙げることができる。このうち特に、脱水素触媒の寿命を長くできる点で水蒸気が好ましい。また、他のガスとして、酸化亜鉛から亜鉛蒸気を発生させるために用いられた水素ガスの残分が供給されてもよい。炭化水素ガスと前記他のガスとの混合方法および混合比率については特に制限されない。
The raw material hydrocarbon gas may be supplied to the reactor together with other gases that do not impair the effects of the present invention. Examples of the other gases include water vapor, nitrogen gas, carbon dioxide gas, hydrogen gas, and methane gas. Can be mentioned. Among these, water vapor is particularly preferable from the viewpoint of extending the life of the dehydrogenation catalyst. Moreover, the remainder of the hydrogen gas used in order to generate zinc vapor | steam from zinc oxide may be supplied as other gas. The mixing method and mixing ratio of the hydrocarbon gas and the other gas are not particularly limited.
本発明で用いられる反応形式は特に限定されず、公知の方法を採用することができ、例えば固定床、移動床、流動床などが挙げられる。プロセス設計の容易さの観点から、特に好ましくは固定床形式である。
The reaction format used in the present invention is not particularly limited, and a known method can be employed, and examples thereof include a fixed bed, a moving bed, and a fluidized bed. From the viewpoint of ease of process design, a fixed bed type is particularly preferable.
本発明では、活性成分の1つとして亜鉛を含む脱水素触媒が用いられ、好ましくはゼオライトを担体とし、活性成分として亜鉛および第VIIIA族金属を担持した触媒が用いられる。
In the present invention, a dehydrogenation catalyst containing zinc is used as one of the active components, preferably a catalyst using zeolite as a carrier and carrying zinc and a Group VIIIA metal as the active components.
亜鉛および第VIIIA族金属は、例えば対応する金属硝酸塩、金属塩化物または金属錯体などの金属化合物を使用して、ゼオライトに担持することが可能である。ゼオライトへの担持は、イオン交換法あるいは含浸法など公知の方法により実施することができ、担持の序列についても特に制限されない。
Zinc and Group VIIIA metals can be supported on the zeolite using, for example, metal compounds such as the corresponding metal nitrates, metal chlorides or metal complexes. The loading on zeolite can be carried out by a known method such as an ion exchange method or an impregnation method, and the order of loading is not particularly limited.
前記の亜鉛化合物としては、例えば硝酸亜鉛、塩化亜鉛、酢酸亜鉛などが挙げられる。前記の第VIIIA族金属化合物としては、例えば塩化白金酸、塩化テトラアンミン白金、水酸化テトラアンミン白金、硝酸テトラアンミン白金などが挙げられる。
Examples of the zinc compound include zinc nitrate, zinc chloride, and zinc acetate. Examples of the Group VIIIA metal compound include chloroplatinic acid, tetraammineplatinum chloride, tetraammineplatinum hydroxide, and tetraammineplatinum nitrate.
前記脱水素触媒に含まれる亜鉛の量の範囲は、触媒全体の重量(100重量%)に対する亜鉛金属原子の重量の割合として、好ましくは0.01~15重量%、さらに好ましくは0.05~5重量%、特に好ましくは0.1~3重量%である。
The range of the amount of zinc contained in the dehydrogenation catalyst is preferably from 0.01 to 15% by weight, more preferably from 0.05 to 15% by weight as the ratio of the weight of zinc metal atoms to the weight of the whole catalyst (100% by weight). 5% by weight, particularly preferably 0.1 to 3% by weight.
前記脱水素触媒に含まれる第VIIIA族金属の量の範囲は、触媒全体の重量(100重量%)に対する第VIIIA族金属原子の重量の割合として、好ましくは0.01~5重量%、さらに好ましくは0.05~3重量%、特に好ましくは0.1~1.5重量%である。
The range of the amount of the Group VIIIA metal contained in the dehydrogenation catalyst is preferably 0.01 to 5% by weight, more preferably as a ratio of the weight of the Group VIIIA metal atom to the total weight (100% by weight) of the catalyst. Is 0.05 to 3% by weight, particularly preferably 0.1 to 1.5% by weight.
亜鉛と第VIIIA族金属との割合は、モル比(Znのモル数/第VIIIA族金属のモル数)として通常0.5以上、好ましくは0.5~50、より好ましくは1~30、さらに好ましくは1~20である。
The ratio of zinc to the Group VIIIA metal is usually 0.5 or more, preferably 0.5 to 50, more preferably 1 to 30, in terms of molar ratio (number of moles of Zn / number of moles of Group VIIIA metal). Preferably it is 1-20.
前記第VIIIA族金属とは、旧IUPAC方式の表記であり、IUPAC方式で言えば、第8~10族の金属である。第VIIIA族の金属として、例えば白金、パラジウム、ルテニウム、イリジウム、ロジウム、ニッケルなどが挙げられる。これらの中でも、触媒活性の観点から白金が好ましい。
The Group VIIIA metal is an old IUPAC system notation, which is a Group 8-10 metal in the IUPAC system. Examples of the Group VIIIA metal include platinum, palladium, ruthenium, iridium, rhodium, and nickel. Among these, platinum is preferable from the viewpoint of catalytic activity.
前記脱水素触媒の製造方法の一例では、前記亜鉛化合物および任意に第VIIIA族金属化合物をゼオライトに担持した後、乾燥および焼成を行う。乾燥条件は特に制限されないが、乾燥は、通常は80~150℃で所定の時間実施される。焼成条件も特に制限されないが、焼成は、通常は400~600℃で所定の時間実施される。焼成時の雰囲気も特に制限されないが、通常は空気流通下で乾燥および焼成が実施される。
In an example of the method for producing the dehydrogenation catalyst, the zinc compound and optionally the Group VIIIA metal compound are supported on zeolite, followed by drying and calcination. The drying conditions are not particularly limited, but the drying is usually performed at 80 to 150 ° C. for a predetermined time. The firing conditions are not particularly limited, but the firing is usually performed at 400 to 600 ° C. for a predetermined time. The atmosphere during firing is not particularly limited, but usually drying and firing are carried out under air circulation.
前記ゼオライトとは、結晶性の多孔質アルミノケイ酸塩の総称として用いられる名前であり、トポロジーに従った構造コードにより分類される。各構造コードに対しては構造、組成、結晶学的データに関する情報が知られている(例えばAtlas of Zeolite Structure Types、4th Ed.、Elsevier 1996、他にCollection of Simulated XRD Powder Patterns for Zeolites、Elsevier 1996)。また、同様の結晶構造を有するアルミノケイ酸塩以外の化合物として、アルミニウムを含まないシリカライトや、アルミニウムの代わりに鉄、ガリウム、チタンなどを含むメタロケイ酸塩などもゼオライトに含まれる(例えばゼオライトの科学と工学、講談社サイエンティフィク)。
The above-mentioned zeolite is a name used as a general term for crystalline porous aluminosilicate, and is classified by a structure code according to the topology. For each structure code, information about structure, composition, crystallographic data is known (for example, Atlas of Zeolite Structure Types, 4th Ed., Elsevier 1996, and Collection of Simulated XRD Powder Pattern 19). ). In addition, as a compound other than aluminosilicate having the same crystal structure, silicalite not containing aluminum, metallosilicate containing iron, gallium, titanium, etc. instead of aluminum are also included in zeolite (for example, the science of zeolite And engineering, Kodansha Scientific).
本発明においては、アルミニウムを含まないシリカライトもしくはアルミニウムの代わりにホウ素を含むメタロケイ酸塩であるボロシリケートを、触媒担体として用いることが好ましい。
In the present invention, silicalite containing no aluminum or borosilicate which is a metallosilicate containing boron instead of aluminum is preferably used as a catalyst carrier.
本発明で用いられるシリカライトもしくはボロシリケート中のアルミニウム含有量は特に限定されないが、これらゼオライト中のシリカ/アルミナモル比(SiO2のモル数/Al2O3のモル数)は100以上であることが好ましく、500以上であることがより好ましく、1000以上であることが特に好ましく、2000以上であることが最も好ましい。シリカ/アルミナモル比が100以上であると、アルミニウムに起因する酸点上で進行するオリゴマー化などの副反応が抑制される。シリカ/アルミナモル比が2000以上であれば、こうした副反応をさらに効果的に抑制できる。
The aluminum content in the silicalite or borosilicate used in the present invention is not particularly limited, but the silica / alumina molar ratio (number of moles of SiO 2 / number of moles of Al 2 O 3 ) in these zeolites is 100 or more. Is more preferably 500 or more, particularly preferably 1000 or more, and most preferably 2000 or more. When the silica / alumina molar ratio is 100 or more, side reactions such as oligomerization that proceeds on acid sites caused by aluminum are suppressed. If the silica / alumina molar ratio is 2000 or more, such side reactions can be more effectively suppressed.
ボロシリケート中のホウ素含有量は特に限定されないが、100~30000ppmが好ましく、500~10000ppmがより好ましく、1000~80000ppmが特に好ましい。
The boron content in the borosilicate is not particularly limited, but is preferably 100 to 30000 ppm, more preferably 500 to 10000 ppm, and particularly preferably 1000 to 80000 ppm.
シリカライトもしくはボロシリケート中のアルカリ金属およびアルカリ土類金属の含有量は特に限定されないが、これらの金属が実質的に存在しないことが好ましい。「実質的に存在しない」とは、シリカライトもしくはボロシリケート中のアルカリ金属およびアルカリ土類金属の含有量が各々300ppm以下であることを指す。
The content of alkali metal and alkaline earth metal in silicalite or borosilicate is not particularly limited, but it is preferable that these metals are not substantially present. “Substantially absent” means that the content of alkali metal and alkaline earth metal in silicalite or borosilicate is 300 ppm or less, respectively.
さらには、前記シリカライトおよび前記ボロシリケートがMFI構造を有していることが好ましい。
MFI構造を有するボロシリケート(以下「MFI型ボロシリケート」ともいう。)をそのまま担体として用いてもよいが、前記MFI型ボロシリケートからホウ素原子の少なくとも一部を除去して得られるシリケートを担体として用いることが好ましい。 Furthermore, it is preferable that the silicalite and the borosilicate have an MFI structure.
A borosilicate having an MFI structure (hereinafter also referred to as “MFI-type borosilicate”) may be used as a carrier as it is, but a silicate obtained by removing at least a part of boron atoms from the MFI-type borosilicate is used as a carrier. It is preferable to use it.
MFI構造を有するボロシリケート(以下「MFI型ボロシリケート」ともいう。)をそのまま担体として用いてもよいが、前記MFI型ボロシリケートからホウ素原子の少なくとも一部を除去して得られるシリケートを担体として用いることが好ましい。 Furthermore, it is preferable that the silicalite and the borosilicate have an MFI structure.
A borosilicate having an MFI structure (hereinafter also referred to as “MFI-type borosilicate”) may be used as a carrier as it is, but a silicate obtained by removing at least a part of boron atoms from the MFI-type borosilicate is used as a carrier. It is preferable to use it.
前記MFI型ボロシリケートからホウ素原子の少なくとも一部を除去した後のシリケート中のホウ素原子残存率は、前記ボロシリケート中のホウ素原子全量の80%以下であることが好ましく、50%以下であることがより好ましく、30%以下であることが特に好ましく、20%以下であることが最も好ましい。
The boron atom remaining rate in the silicate after removing at least a part of boron atoms from the MFI-type borosilicate is preferably 80% or less of the total amount of boron atoms in the borosilicate, and is 50% or less. Is more preferably 30% or less, and most preferably 20% or less.
ホウ素原子残存率は、ホウ素原子を除去する前のボロシリケートにおけるホウ素原子の含有量と、ホウ素原子を除去した後のシリケートにおけるホウ素原子の含有量との比較により算出される。前記ボロシリケートからホウ素原子の少なくとも一部を除去する方法に制限はなく、公知の方法、例えば無機酸もしくは有機酸の水溶液で処理する方法などが採用される。
The boron atom residual ratio is calculated by comparing the boron atom content in the borosilicate before removing the boron atom and the boron atom content in the silicate after removing the boron atom. The method for removing at least a part of boron atoms from the borosilicate is not limited, and a known method such as a method of treating with an aqueous solution of an inorganic acid or an organic acid is employed.
反応器に充填する触媒は、粉末状であってもよく、成型体であってもよい。成型方法について制限はなく、押し出し成型、打錠成型、コーティング成型など公知の方法が採用される。
The catalyst charged in the reactor may be in the form of a powder or a molded body. There is no restriction | limiting about a shaping | molding method, Well-known methods, such as extrusion molding, tableting shaping | molding, and coating shaping | molding, are employ | adopted.
触媒を反応器に充填した後および反応開始前に、触媒を活性化するための前処理を実施しても良く、前処理では、通常は、前記触媒に水素あるいは一酸化炭素などの還元性ガスを接触させる。これらの還元性ガスは希釈せずに用いても良いし、上述の不活性ガスで適宜希釈して用いても良い。
A pretreatment for activating the catalyst may be performed after the catalyst is charged into the reactor and before the start of the reaction. In the pretreatment, the catalyst is usually a reducing gas such as hydrogen or carbon monoxide. Contact. These reducing gases may be used without being diluted, or may be appropriately diluted with the above-described inert gas.
反応開始より一定時間が経過し、触媒活性の低下が確認された場合には反応を中止し、再生処理と呼ばれる方法によって触媒を再活性化してもよい。その方法は特に制限されないが、通常は所定の温度で酸素を含むガスを触媒と接触させることにより、触媒表面上に付着したコークとよばれる炭化水素の重質物を燃焼除去する方法がとられる。
When a certain time has elapsed from the start of the reaction and a decrease in the catalyst activity is confirmed, the reaction may be stopped and the catalyst may be reactivated by a method called regeneration treatment. The method is not particularly limited, but usually a method of burning and removing heavy hydrocarbons called coke deposited on the catalyst surface by bringing a gas containing oxygen into contact with the catalyst at a predetermined temperature.
以下に実施例を示して本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(触媒調製1)
ホウ素原子を3200ppm含有するMFI型ボロシリケート10gを、1N硝酸水溶液200ml中で80℃、2時間攪拌した後、ろ過してケーキとろ液に分別した。さらに、ろ別されたケーキを、1N硝酸水溶液200ml中で80℃、2時間攪拌した後、ろ過してケーキとろ液に分別する、という操作を2回繰り返し、次いでろ別されたケーキを、使用された洗浄液が中性になるまで蒸留水で洗浄した。洗浄されたケーキを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃で4時間焼成し、MFI型ボロシリケートからホウ素原子の少なくとも一部を除去したシリケートを得た。得られたシリケート中のホウ素原子量は260ppmであり、このときのホウ素原子残存率は8%であった。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Catalyst preparation 1)
10 g of MFI-type borosilicate containing 3200 ppm of boron atom was stirred in 200 ml of 1N nitric acid aqueous solution at 80 ° C. for 2 hours, and then filtered to separate into a cake and a filtrate. Furthermore, the operation of stirring the filtered cake in 200 ml of 1N nitric acid aqueous solution at 80 ° C. for 2 hours and then filtering to separate the cake and the filtrate was repeated twice, and then the filtered cake was used. Washed with distilled water until the washed solution was neutral. The washed cake was dried for 3 hours in a static electric furnace in which air was circulated and maintained at 120 ° C., and then calcined at 500 ° C. for 4 hours. A silicate from which part was removed was obtained. The amount of boron atoms in the obtained silicate was 260 ppm, and the residual ratio of boron atoms at this time was 8%.
(触媒調製1)
ホウ素原子を3200ppm含有するMFI型ボロシリケート10gを、1N硝酸水溶液200ml中で80℃、2時間攪拌した後、ろ過してケーキとろ液に分別した。さらに、ろ別されたケーキを、1N硝酸水溶液200ml中で80℃、2時間攪拌した後、ろ過してケーキとろ液に分別する、という操作を2回繰り返し、次いでろ別されたケーキを、使用された洗浄液が中性になるまで蒸留水で洗浄した。洗浄されたケーキを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃で4時間焼成し、MFI型ボロシリケートからホウ素原子の少なくとも一部を除去したシリケートを得た。得られたシリケート中のホウ素原子量は260ppmであり、このときのホウ素原子残存率は8%であった。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Catalyst preparation 1)
10 g of MFI-type borosilicate containing 3200 ppm of boron atom was stirred in 200 ml of 1N nitric acid aqueous solution at 80 ° C. for 2 hours, and then filtered to separate into a cake and a filtrate. Furthermore, the operation of stirring the filtered cake in 200 ml of 1N nitric acid aqueous solution at 80 ° C. for 2 hours and then filtering to separate the cake and the filtrate was repeated twice, and then the filtered cake was used. Washed with distilled water until the washed solution was neutral. The washed cake was dried for 3 hours in a static electric furnace in which air was circulated and maintained at 120 ° C., and then calcined at 500 ° C. for 4 hours. A silicate from which part was removed was obtained. The amount of boron atoms in the obtained silicate was 260 ppm, and the residual ratio of boron atoms at this time was 8%.
(触媒調製2)
触媒調製1で得たシリケート2gに、硝酸亜鉛六水和物0.058gを含む水溶液0.66gを添加して、incipient-wetness法にて亜鉛イオンを含浸させた。亜鉛イオンが含浸されたシリケートを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃、4時間焼成して亜鉛が担持されたシリケートを調製した。 (Catalyst preparation 2)
To 2 g of the silicate obtained in Catalyst Preparation 1, 0.66 g of an aqueous solution containing 0.058 g of zinc nitrate hexahydrate was added and impregnated with zinc ions by the incipient-wetness method. The silicate impregnated with zinc ions was dried for 3 hours in a static electric furnace maintained at 120 ° C. through which air was circulated, and then baked at 500 ° C. for 4 hours to form a silicate on which zinc was supported. Prepared.
触媒調製1で得たシリケート2gに、硝酸亜鉛六水和物0.058gを含む水溶液0.66gを添加して、incipient-wetness法にて亜鉛イオンを含浸させた。亜鉛イオンが含浸されたシリケートを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃、4時間焼成して亜鉛が担持されたシリケートを調製した。 (Catalyst preparation 2)
To 2 g of the silicate obtained in Catalyst Preparation 1, 0.66 g of an aqueous solution containing 0.058 g of zinc nitrate hexahydrate was added and impregnated with zinc ions by the incipient-wetness method. The silicate impregnated with zinc ions was dried for 3 hours in a static electric furnace maintained at 120 ° C. through which air was circulated, and then baked at 500 ° C. for 4 hours to form a silicate on which zinc was supported. Prepared.
(触媒調製3)
触媒調製2で得た亜鉛が担持されたシリケート1.5gに、塩化白金酸六水和物0.0127gを含有する水溶液0.375gを添加して、incipient-wetness法にて白金イオンを含浸させた。白金イオンが含浸されたシリケートを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃、4時間焼成して白金および亜鉛が担持されたシリケート触媒の粉末を得た。このシリケート触媒の白金担持量は0.32重量%、亜鉛担持量は0.64重量%であった。 (Catalyst preparation 3)
Add 0.375 g of an aqueous solution containing 0.0127 g of chloroplatinic acid hexahydrate to 1.5 g of the zinc-supported silicate obtained in Catalyst Preparation 2, and impregnate it with platinum ions by the incipient-wetness method. It was. The silicate impregnated with platinum ions was dried for 3 hours in a static electric furnace in which air was circulated and maintained at 120 ° C., followed by firing at 500 ° C. for 4 hours to support platinum and zinc. Silicate catalyst powder was obtained. This silicate catalyst had a platinum loading of 0.32 wt% and a zinc loading of 0.64 wt%.
触媒調製2で得た亜鉛が担持されたシリケート1.5gに、塩化白金酸六水和物0.0127gを含有する水溶液0.375gを添加して、incipient-wetness法にて白金イオンを含浸させた。白金イオンが含浸されたシリケートを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃、4時間焼成して白金および亜鉛が担持されたシリケート触媒の粉末を得た。このシリケート触媒の白金担持量は0.32重量%、亜鉛担持量は0.64重量%であった。 (Catalyst preparation 3)
Add 0.375 g of an aqueous solution containing 0.0127 g of chloroplatinic acid hexahydrate to 1.5 g of the zinc-supported silicate obtained in Catalyst Preparation 2, and impregnate it with platinum ions by the incipient-wetness method. It was. The silicate impregnated with platinum ions was dried for 3 hours in a static electric furnace in which air was circulated and maintained at 120 ° C., followed by firing at 500 ° C. for 4 hours to support platinum and zinc. Silicate catalyst powder was obtained. This silicate catalyst had a platinum loading of 0.32 wt% and a zinc loading of 0.64 wt%.
[実施例1]
内径6mmのアルミナの内挿管が装着されたSUS製チューブに、触媒調製3で得た白金および亜鉛が担持されたシリケート触媒0.2gを充填し、次いでシリカウールを挟んで触媒の上流側に酸化亜鉛(シグマアルドリッチ製)0.1gを充填し、それらの前後にアルミナボールを充填して触媒および酸化亜鉛を固定することにより反応管を製作した。反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流して触媒を前処理した後、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給してプロパンの脱水素反応を開始した。また、反応開始とともに反応温度を650℃まで上げた。
触媒は長期に亘って安定した活性を示し、約120時間に亘ってプロピレン収率60%を示した。 [Example 1]
An SUS tube equipped with an inner tube of alumina with an inner diameter of 6 mm was filled with 0.2 g of the silicate catalyst carrying platinum and zinc obtained in Catalyst Preparation 3, and then oxidized upstream of the catalyst with silica wool in between. A reaction tube was manufactured by charging 0.1 g of zinc (manufactured by Sigma-Aldrich), filling alumina balls before and after them, and fixing the catalyst and zinc oxide. The catalyst was pretreated by flowing a mixed gas consisting of 20 sccm of hydrogen and 0.064 g / min of water vapor at 600 ° C. and atmospheric pressure for 2 hours, and then the reaction tube was pretreated with 2.1 sccm of hydrogen, 13.55 sccm of propane, and 0. The propane dehydrogenation reaction was started by feeding 022 g / min. Moreover, the reaction temperature was raised to 650 degreeC with the start of reaction.
The catalyst showed stable activity over a long period of time, with a propylene yield of 60% over about 120 hours.
内径6mmのアルミナの内挿管が装着されたSUS製チューブに、触媒調製3で得た白金および亜鉛が担持されたシリケート触媒0.2gを充填し、次いでシリカウールを挟んで触媒の上流側に酸化亜鉛(シグマアルドリッチ製)0.1gを充填し、それらの前後にアルミナボールを充填して触媒および酸化亜鉛を固定することにより反応管を製作した。反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流して触媒を前処理した後、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給してプロパンの脱水素反応を開始した。また、反応開始とともに反応温度を650℃まで上げた。
触媒は長期に亘って安定した活性を示し、約120時間に亘ってプロピレン収率60%を示した。 [Example 1]
An SUS tube equipped with an inner tube of alumina with an inner diameter of 6 mm was filled with 0.2 g of the silicate catalyst carrying platinum and zinc obtained in Catalyst Preparation 3, and then oxidized upstream of the catalyst with silica wool in between. A reaction tube was manufactured by charging 0.1 g of zinc (manufactured by Sigma-Aldrich), filling alumina balls before and after them, and fixing the catalyst and zinc oxide. The catalyst was pretreated by flowing a mixed gas consisting of 20 sccm of hydrogen and 0.064 g / min of water vapor at 600 ° C. and atmospheric pressure for 2 hours, and then the reaction tube was pretreated with 2.1 sccm of hydrogen, 13.55 sccm of propane, and 0. The propane dehydrogenation reaction was started by feeding 022 g / min. Moreover, the reaction temperature was raised to 650 degreeC with the start of reaction.
The catalyst showed stable activity over a long period of time, with a propylene yield of 60% over about 120 hours.
[比較例1]
酸化亜鉛を充填しなかった以外は実施例1と同じ方法で反応管を製作し、実施例1と同じ前処理条件および反応条件でプロパンの脱水素反応を開始した。触媒は約60時間に亘ってプロピレン収率60%を示した。 [Comparative Example 1]
A reaction tube was produced in the same manner as in Example 1 except that zinc oxide was not charged, and propane dehydrogenation reaction was started under the same pretreatment conditions and reaction conditions as in Example 1. The catalyst showed a propylene yield of 60% over about 60 hours.
酸化亜鉛を充填しなかった以外は実施例1と同じ方法で反応管を製作し、実施例1と同じ前処理条件および反応条件でプロパンの脱水素反応を開始した。触媒は約60時間に亘ってプロピレン収率60%を示した。 [Comparative Example 1]
A reaction tube was produced in the same manner as in Example 1 except that zinc oxide was not charged, and propane dehydrogenation reaction was started under the same pretreatment conditions and reaction conditions as in Example 1. The catalyst showed a propylene yield of 60% over about 60 hours.
[比較例2]
シリケート触媒を充填しなかった以外は実施例1と同じ方法で反応管を製作し、実施例1と同様に、反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流した後、650℃で、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給した。酸化亜鉛は、プロパンの脱水素反応における触媒活性を全く示さなかった。
以上の結果から、触媒の上流に充填された酸化亜鉛自体に触媒活性はない一方、酸化亜鉛の存在によって触媒が長期に亘って高い活性を示すことは明らかである。 [Comparative Example 2]
A reaction tube was manufactured in the same manner as in Example 1 except that the silicate catalyst was not charged. As in Example 1, the reaction tube was charged with 20 sccm of hydrogen and 0.064 g / min of water vapor at 600 ° C. and normal pressure. After flowing the mixed gas for 2 hours, 2.1 sccm of hydrogen, 13.55 sccm of propane, and 0.022 g / min of water vapor were supplied at 650 ° C. Zinc oxide did not show any catalytic activity in the propane dehydrogenation reaction.
From the above results, it is clear that the zinc oxide itself charged upstream of the catalyst has no catalytic activity, while the presence of zinc oxide exhibits a high activity over a long period of time.
シリケート触媒を充填しなかった以外は実施例1と同じ方法で反応管を製作し、実施例1と同様に、反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流した後、650℃で、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給した。酸化亜鉛は、プロパンの脱水素反応における触媒活性を全く示さなかった。
以上の結果から、触媒の上流に充填された酸化亜鉛自体に触媒活性はない一方、酸化亜鉛の存在によって触媒が長期に亘って高い活性を示すことは明らかである。 [Comparative Example 2]
A reaction tube was manufactured in the same manner as in Example 1 except that the silicate catalyst was not charged. As in Example 1, the reaction tube was charged with 20 sccm of hydrogen and 0.064 g / min of water vapor at 600 ° C. and normal pressure. After flowing the mixed gas for 2 hours, 2.1 sccm of hydrogen, 13.55 sccm of propane, and 0.022 g / min of water vapor were supplied at 650 ° C. Zinc oxide did not show any catalytic activity in the propane dehydrogenation reaction.
From the above results, it is clear that the zinc oxide itself charged upstream of the catalyst has no catalytic activity, while the presence of zinc oxide exhibits a high activity over a long period of time.
[参考例]
アルミナ内挿管が装着されたSUS製チューブの代わりに、触媒を固定するための加工を施した石英製チューブを用い、アルミナボールを充填しなかった以外は比較例2と同じ方法で反応管を製作し、比較例2と同様に、反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流した後、650℃で、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給した。比較例2と同様、酸化亜鉛はプロパンの脱水素反応における触媒活性を全く示さなかったが、反応後の石英チューブ下部には銀色かつ帯状の膜が形成されていた。この膜を希硝酸で溶かした後の溶液をICP(誘導結合プラズマ)で分析した結果、銀色かつ帯状の膜は亜鉛であることが確認された。 [Reference example]
A reaction tube was manufactured in the same manner as in Comparative Example 2 except that a quartz tube that had been processed to fix the catalyst was used instead of the SUS tube that was fitted with an alumina intubation tube, and the alumina balls were not filled. In the same manner as in Comparative Example 2, after flowing a mixed gas composed of hydrogen at 20 ° C. and water vapor at 0.064 g / min at 600 ° C. and normal pressure for 2 hours, 650 ° C. at 2.1 sccm of hydrogen and propane 13.55 sccm and water vapor 0.022 g / min were fed. As in Comparative Example 2, zinc oxide did not show any catalytic activity in the propane dehydrogenation reaction, but a silvery and band-like film was formed at the bottom of the quartz tube after the reaction. As a result of analyzing the solution after dissolving this film with dilute nitric acid by ICP (inductively coupled plasma), it was confirmed that the silver-colored and band-shaped film was zinc.
アルミナ内挿管が装着されたSUS製チューブの代わりに、触媒を固定するための加工を施した石英製チューブを用い、アルミナボールを充填しなかった以外は比較例2と同じ方法で反応管を製作し、比較例2と同様に、反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流した後、650℃で、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給した。比較例2と同様、酸化亜鉛はプロパンの脱水素反応における触媒活性を全く示さなかったが、反応後の石英チューブ下部には銀色かつ帯状の膜が形成されていた。この膜を希硝酸で溶かした後の溶液をICP(誘導結合プラズマ)で分析した結果、銀色かつ帯状の膜は亜鉛であることが確認された。 [Reference example]
A reaction tube was manufactured in the same manner as in Comparative Example 2 except that a quartz tube that had been processed to fix the catalyst was used instead of the SUS tube that was fitted with an alumina intubation tube, and the alumina balls were not filled. In the same manner as in Comparative Example 2, after flowing a mixed gas composed of hydrogen at 20 ° C. and water vapor at 0.064 g / min at 600 ° C. and normal pressure for 2 hours, 650 ° C. at 2.1 sccm of hydrogen and propane 13.55 sccm and water vapor 0.022 g / min were fed. As in Comparative Example 2, zinc oxide did not show any catalytic activity in the propane dehydrogenation reaction, but a silvery and band-like film was formed at the bottom of the quartz tube after the reaction. As a result of analyzing the solution after dissolving this film with dilute nitric acid by ICP (inductively coupled plasma), it was confirmed that the silver-colored and band-shaped film was zinc.
以上の結果から、酸化亜鉛の少なくとも一部が前処理中および反応中に還元されて金属亜鉛となり、さらにそこから亜鉛蒸気が発生して気相中を移動したことが明らかである。またこのときの亜鉛蒸気の分圧は、反応温度である650℃における亜鉛の蒸気圧以下であることも明らかである。
From the above results, it is clear that at least a part of the zinc oxide was reduced during the pretreatment and during the reaction to become metallic zinc, from which zinc vapor was generated and moved in the gas phase. It is also clear that the partial pressure of zinc vapor at this time is equal to or lower than the vapor pressure of zinc at 650 ° C., which is the reaction temperature.
Claims (19)
- 炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させ、次いで活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含む、不飽和炭化水素の製造方法。 A hydrocarbon-containing feed gas (1) is contacted with zinc metal or a zinc compound or both and then contacted with a dehydrogenation catalyst containing zinc as one of the active components to effect dehydrogenation of the hydrocarbon. A method for producing unsaturated hydrocarbon, comprising a step of producing unsaturated hydrocarbon.
- 前記原料含有ガス(1)が水蒸気をさらに含む請求項1に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 1, wherein the raw material-containing gas (1) further contains water vapor.
- 前記原料含有ガス(1)が水素をさらに含む請求項1または2に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 1 or 2, wherein the raw material-containing gas (1) further contains hydrogen.
- 炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させて炭化水素および亜鉛蒸気を含む原料含有ガス(2)を得て、該原料含有ガス(2)を、活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含む、請求項1に記載の不飽和炭化水素の製造方法。 A raw material-containing gas (1) containing hydrocarbons is brought into contact with metal zinc or a zinc compound or both to obtain a raw material-containing gas (2) containing hydrocarbons and zinc vapor, and the raw material-containing gas (2) is The method for producing an unsaturated hydrocarbon according to claim 1, comprising a step of producing an unsaturated hydrocarbon by contacting with a dehydrogenation catalyst containing zinc as one of active components to perform a dehydrogenation reaction of the hydrocarbon. .
- 前記原料含有ガス(2)に含まれる亜鉛蒸気の分圧が、前記脱水素反応の反応温度における亜鉛の蒸気圧以下である請求項4に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 4, wherein a partial pressure of zinc vapor contained in the raw material-containing gas (2) is equal to or lower than a vapor pressure of zinc at a reaction temperature of the dehydrogenation reaction.
- 前記原料含有ガス(2)が水蒸気をさらに含む請求項4または5に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 4 or 5, wherein the raw material-containing gas (2) further contains water vapor.
- 前記原料含有ガス(2)が水素をさらに含む請求項4~6のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 4 to 6, wherein the raw material-containing gas (2) further contains hydrogen.
- 前記脱水素反応の際の反応温度が300~800℃、かつ反応圧力が0.01~1MPaの範囲にある請求項1~7のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 7, wherein a reaction temperature in the dehydrogenation reaction is in a range of 300 to 800 ° C and a reaction pressure is in a range of 0.01 to 1 MPa.
- 前記亜鉛化合物が酸化亜鉛である請求項1~8のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 8, wherein the zinc compound is zinc oxide.
- 前記炭化水素が、プロパン、n-ブタンおよびイソブタンから選ばれる少なくとも1種の炭化水素である請求項1~9のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 9, wherein the hydrocarbon is at least one hydrocarbon selected from propane, n-butane and isobutane.
- 前記炭化水素が、n-ブテンである請求項1~9のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 9, wherein the hydrocarbon is n-butene.
- 前記脱水素触媒が、ゼオライトを担体とし、活性成分として亜鉛および第VIIIA族金属を担持した触媒である請求項1~11のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 11, wherein the dehydrogenation catalyst is a catalyst using zeolite as a carrier and carrying zinc and a Group VIIIA metal as active components.
- 前記脱水素触媒に含まれる亜鉛の量が、該触媒全体の重量を100重量%とすると、0.01~15重量%である請求項12に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 12, wherein the amount of zinc contained in the dehydrogenation catalyst is 0.01 to 15% by weight when the weight of the whole catalyst is 100% by weight.
- 前記脱水素触媒に含まれる第VIIIA族金属の量が、該触媒全体の重量を100重量%とすると、0.01~5重量%である請求項12または13に記載の不飽和炭化水素の製造方法。 The production of an unsaturated hydrocarbon according to claim 12 or 13, wherein the amount of the Group VIIIA metal contained in the dehydrogenation catalyst is 0.01 to 5% by weight, where the total weight of the catalyst is 100% by weight. Method.
- 前記第VIIIA族金属が白金である請求項12~14のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 12 to 14, wherein the Group VIIIA metal is platinum.
- 前記ゼオライトがシリカライトまたはボロシリケートである請求項12~15のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 12 to 15, wherein the zeolite is silicalite or borosilicate.
- 前記シリカライトまたはおよび前記ボロシリケートがMFI構造を有する請求項16に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 16, wherein the silicalite or the borosilicate has an MFI structure.
- 前記ゼオライトがMFI型ボロシリケートからホウ素原子の少なくとも一部を除去して得られるシリケートである請求項12~15のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 12 to 15, wherein the zeolite is a silicate obtained by removing at least a part of boron atoms from an MFI-type borosilicate.
- 前記シリケート中のホウ素原子残存率が、前記MFI型ボロシリケート中のホウ素原子全量の80%以下である請求項18に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 18, wherein a residual ratio of boron atoms in the silicate is 80% or less of a total amount of boron atoms in the MFI-type borosilicate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016511886A JP6426711B2 (en) | 2014-03-31 | 2015-03-30 | Method for producing unsaturated hydrocarbon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-073071 | 2014-03-31 | ||
JP2014073071 | 2014-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015152160A1 true WO2015152160A1 (en) | 2015-10-08 |
Family
ID=54240483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/059947 WO2015152160A1 (en) | 2014-03-31 | 2015-03-30 | Method for producing unsaturated hydrocarbon |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6426711B2 (en) |
TW (1) | TW201542512A (en) |
WO (1) | WO2015152160A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017177056A (en) * | 2016-03-31 | 2017-10-05 | 三菱ケミカル株式会社 | Catalyst for alkane dehydrogenation and method for producing alkane using the same |
EP4036073A4 (en) * | 2019-12-18 | 2022-11-09 | Rezel Catalysts Corporation | Low-carbon alkane dehydrogenation process method, device, and reaction system |
WO2023218140A1 (en) * | 2022-05-10 | 2023-11-16 | Arkema France | Improved method for dehydrogenating hydrocarbons |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0649460A (en) * | 1991-06-12 | 1994-02-22 | Sekiyu Shigen Kaihatsu Kk | Production of liquid hydrocarbon mixture from ethane |
JPH0975732A (en) * | 1995-09-08 | 1997-03-25 | Chiyoda Corp | Dehydrogenation catalyst |
JP2000037629A (en) * | 1998-07-24 | 2000-02-08 | Chiyoda Corp | Dehydrogenation catalyst |
JP2005008575A (en) * | 2003-06-19 | 2005-01-13 | Japan Science & Technology Agency | Method for producing alkene, method for producing hydrogen sulfide, method for dehydrogenating alkane, and catalyst |
JP2011529781A (en) * | 2008-08-07 | 2011-12-15 | ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング | High porosity ceramic foam as a catalyst support for alkane dehydrogenation |
-
2015
- 2015-03-30 JP JP2016511886A patent/JP6426711B2/en not_active Expired - Fee Related
- 2015-03-30 WO PCT/JP2015/059947 patent/WO2015152160A1/en active Application Filing
- 2015-03-31 TW TW104110419A patent/TW201542512A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0649460A (en) * | 1991-06-12 | 1994-02-22 | Sekiyu Shigen Kaihatsu Kk | Production of liquid hydrocarbon mixture from ethane |
JPH0975732A (en) * | 1995-09-08 | 1997-03-25 | Chiyoda Corp | Dehydrogenation catalyst |
JP2000037629A (en) * | 1998-07-24 | 2000-02-08 | Chiyoda Corp | Dehydrogenation catalyst |
JP2005008575A (en) * | 2003-06-19 | 2005-01-13 | Japan Science & Technology Agency | Method for producing alkene, method for producing hydrogen sulfide, method for dehydrogenating alkane, and catalyst |
JP2011529781A (en) * | 2008-08-07 | 2011-12-15 | ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング | High porosity ceramic foam as a catalyst support for alkane dehydrogenation |
Non-Patent Citations (1)
Title |
---|
ALMUTAIRI, SAMI M. T. ET AL.: "Structure and Reactivity of Zn-Modified ZSM-5 Zeolites: The Importance of Clustered Cationic Zn Complexes", ACS CATALYSIS, vol. 2, no. 1, 2012, pages 71 - 83 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017177056A (en) * | 2016-03-31 | 2017-10-05 | 三菱ケミカル株式会社 | Catalyst for alkane dehydrogenation and method for producing alkane using the same |
EP4036073A4 (en) * | 2019-12-18 | 2022-11-09 | Rezel Catalysts Corporation | Low-carbon alkane dehydrogenation process method, device, and reaction system |
WO2023218140A1 (en) * | 2022-05-10 | 2023-11-16 | Arkema France | Improved method for dehydrogenating hydrocarbons |
FR3135458A1 (en) * | 2022-05-10 | 2023-11-17 | Arkema France | IMPROVED PROCESS FOR DEHYDROGENATION OF HYDROCARBONS |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015152160A1 (en) | 2017-04-13 |
TW201542512A (en) | 2015-11-16 |
JP6426711B2 (en) | 2018-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5231991B2 (en) | A selective hydrogenation process of acetylene to ethylene. | |
RU2614977C2 (en) | Catalytic composition and process for dehydrogenation of butenes or mixtures of butanes and butenes to give 1,3-butadiene | |
JP6595606B2 (en) | Catalyst and process for producing olefins | |
JPH0729058B2 (en) | Chemical methods and catalysts | |
WO2012020743A1 (en) | Method for manufacturing unsaturated hydrocarbon, and dehydrogenation catalyst used in said method | |
WO2018193668A1 (en) | Unsaturated hydrocarbon production method and dehydrogenation catalyst regeneration method | |
TW201821159A (en) | Hydrocarbon conversion process | |
JP5345058B2 (en) | Method for reactivating metathesis catalyst and method for producing olefins including reactivation step thereof | |
JP4706945B2 (en) | Catalyst comprising a Group 8, 9 or 10 element with excellent accessibility and its use in a paraffin dehydrogenation process | |
US4310717A (en) | Oxidative dehydrogenation and catalyst | |
JP6426711B2 (en) | Method for producing unsaturated hydrocarbon | |
CA2747085A1 (en) | Variation of tin impregnation of a catalyst for alkane dehydrogenation | |
JP2008266286A (en) | Method for producing alkene | |
JP6446033B2 (en) | Process for producing unsaturated hydrocarbons | |
TW201822880A (en) | Catalyst system and process for conversion of a hydrocarbon feed utilizing the catalyst system | |
TW201822879A (en) | Hydrocarbon conversion catalyst system | |
TW201822884A (en) | Catalyst system and process utilizing the catalyst system | |
KR101485697B1 (en) | An alkali-modified catalyst for dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butene, 1,3-butadiene and iso-butene with controlled ratio of isobutene to n-butene using the same | |
CN111683917B (en) | Aromatization process using both fresh catalyst and regenerated catalyst and related multi-reactor systems | |
RU2627667C1 (en) | Catalyst with low content of chrome oxide for isobutane dehydrogenation and method for dehydrogenating isobutane using it | |
WO2017138667A1 (en) | Method for producing unsaturated hydrocarbon, and method for producing conjugated diene | |
JP7064897B2 (en) | Method for producing unsaturated hydrocarbons | |
JP6037849B2 (en) | Method for producing oxidative dehydrogenation catalyst and method for producing alkene | |
US11352307B2 (en) | Catalyst, device for manufacturing conjugated diene, and method for manufacturing conjugated diene | |
RU2127242C1 (en) | Process for preparing olefinic hydrocarbons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15772555 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016511886 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 15772555 Country of ref document: EP Kind code of ref document: A1 |