JPH0975732A - Dehydrogenation catalyst - Google Patents

Dehydrogenation catalyst

Info

Publication number
JPH0975732A
JPH0975732A JP7230912A JP23091295A JPH0975732A JP H0975732 A JPH0975732 A JP H0975732A JP 7230912 A JP7230912 A JP 7230912A JP 23091295 A JP23091295 A JP 23091295A JP H0975732 A JPH0975732 A JP H0975732A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
supported
alumina
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7230912A
Other languages
Japanese (ja)
Inventor
Susumu Yamamoto
進 山本
Sachio Asaoka
佐知夫 浅岡
Haruto Kobayashi
治人 小林
Atsuo Nagumo
篤郎 南雲
Yoshimi Okada
佳巳 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP7230912A priority Critical patent/JPH0975732A/en
Publication of JPH0975732A publication Critical patent/JPH0975732A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehydrogenation catalyst having high activity and high selectivity and especially having a much lower deterioration speed than the conventional catalyst. SOLUTION: Nickel and tin are deposited on a composite carrier obtd. by depositing 5-50wt.% zinc oxide on a γ-alumina carrier having >=150m<2> /g surface area, >=0.55cm<3> /g pore volume and 90-200Å average pore diameter. In the alumina carrier, pores each having 90-200Å pore diameter account for >=60% of the total pore volume.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカンの脱水素
触媒に関する。
TECHNICAL FIELD The present invention relates to an alkane dehydrogenation catalyst.

【0002】[0002]

【従来の技術】アルカンの脱水素によりアルケンを製造
することはよく知られている。従来、アルカンの脱水素
触媒としては、シリカ、アルミナ、ゼオライト、活性炭
などの担体上に金属、金属酸化物などの活性物質を担持
させたものがよく用いられている。そのような触媒の具
体例としては、酸化クロム/アルミナ触媒が古くから用
いられているが、触媒活性(転化率)があまり高くない
上に触媒寿命が短く活性を維持するには頻繁に再生を行
う必要があるという問題を抱えていた。
The production of alkenes by the dehydrogenation of alkanes is well known. Conventionally, as a dehydrogenation catalyst for alkane, a catalyst in which an active substance such as metal or metal oxide is supported on a carrier such as silica, alumina, zeolite or activated carbon is often used. As a specific example of such a catalyst, a chromium oxide / alumina catalyst has been used for a long time, but the catalyst activity (conversion rate) is not so high, and the catalyst life is short, so frequent regeneration is required to maintain the activity. Had the problem of having to do.

【0003】[0003]

【発明が解決しようとする課題】上記問題を解決せんと
して、亜鉛のアルミン酸塩に白金やスズ等の金属を担持
したもの、あるいはアルミナ担体にスズ、白金及びアル
カリ金属もしくはアルカリ土類金属を担持したものが開
発されたが、触媒活性あるいは特定アルケンへの選択性
についてはかなりの改善が見られるものの、触媒寿命の
長さ(劣化速度の低減)という点では十分に満足できる
ものは得られていない。本発明は、この点に鑑み、高活
性及び高選択性であるとともに、特に劣化速度が従来の
触媒にくらべてはるかに小さい触媒を提供することを目
的としている。
In order to solve the above problems, zinc aluminate carrying a metal such as platinum or tin, or alumina carrier carrying tin, platinum and an alkali metal or alkaline earth metal is supported. However, although the catalytic activity or the selectivity to a specific alkene has been improved considerably, a sufficiently satisfactory catalyst life has been obtained (reduction of deterioration rate). Absent. In view of this point, the present invention has an object to provide a catalyst having high activity and high selectivity, and in particular, a deterioration rate which is far smaller than that of a conventional catalyst.

【0004】[0004]

【課題を解決するための手段】本発明は、表面積が15
0m2/g以上、細孔容積が0.55cm3/g以上、平
均細孔径が90〜200オングストロームであり、かつ
細孔径90〜200オングストロームの細孔が全細孔容
積の60%以上を占める、γ−アルミナ担体に酸化亜鉛
を5〜50重量%担持してなる複合担体に、ニッケル及
びスズが担持されていることを特徴とする脱水素触媒を
提供することにより、上記課題を解決する。これは以下
のような知見に基づくものである。
The present invention has a surface area of 15
0 m 2 / g or more, pore volume of 0.55 cm 3 / g or more, average pore diameter of 90 to 200 angstroms, and pores of 90 to 200 angstroms occupy 60% or more of the total pore volume. The above problem is solved by providing a dehydrogenation catalyst characterized in that nickel and tin are supported on a composite carrier in which 5 to 50% by weight of zinc oxide is supported on a γ-alumina carrier. This is based on the following findings.

【0005】[0005]

【発明の実施の形態】固体触媒を用いたアルカンの脱水
素反応は本質的に気固系接触操作であるから、活性を高
めるためには活性金属の選択とともに触媒表面積を大き
くすることが重要である。また、選択性を高め、かつ活
性劣化を抑制するためには、異性化反応あるいは分解反
応を制御して目的化合物を優先的に形成し、かつコーク
スの沈着を抑制するような表面特性を与えることが重要
である。したがって、活性や選択性の低下を防止するた
めには、上記表面積や表面特性の変化が小さいことが重
要となる。本願発明では、特定のγ−アルミナ担体に特
定量の酸化亜鉛を担持してなる複合担体を用い、これに
ニッケル及びスズを担持することによって大きな表面積
及び好ましい表面特性を長期にわたって維持するもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Since the dehydrogenation reaction of an alkane using a solid catalyst is essentially a gas-solid contact operation, it is important to increase the catalyst surface area together with the selection of the active metal in order to enhance the activity. is there. Further, in order to increase the selectivity and suppress the activity deterioration, it is necessary to control the isomerization reaction or the decomposition reaction to preferentially form the target compound, and to provide the surface property that suppresses the deposition of coke. is important. Therefore, in order to prevent a decrease in activity and selectivity, it is important that changes in the surface area and surface characteristics are small. In the present invention, a composite carrier in which a specific amount of zinc oxide is supported on a specific γ-alumina carrier is used, and nickel and tin are supported thereon to maintain a large surface area and favorable surface characteristics for a long period of time. ..

【0006】上記特定の多孔性γ−アルミナ担体は、表
面積が150m2/g以上、細孔容積が0.55cm3/g
以上、平均細孔径が90〜200オングストロームであ
り、かつ細孔径90〜200オングストロームの細孔が
全細孔容積の60%以上を占めるものである。平均細孔
径が90オングストロームより小さいと、アルカン分子
やアルケン分子の細孔内拡散が律速になり全触媒表面積
を有効に利用することができない。一方、平均細孔径が
200オングストロームより大きいと、表面積が大きく
とれなくなる。上記条件を満足するγ−アルミナ担体
は、アルミニウム塩の中和により生成した水酸化アルミ
ニウムのスラリーを濾過洗浄し、これを脱水乾燥した
後、400〜800℃で1〜6時間程度焼成すればよい
ものが得られる。
The specific porous γ-alumina support has a surface area of 150 m 2 / g or more and a pore volume of 0.55 cm 3 / g.
As described above, the average pore diameter is 90 to 200 angstroms, and the pores having a pore diameter of 90 to 200 angstroms occupy 60% or more of the total pore volume. If the average pore diameter is smaller than 90 angstrom, the diffusion of alkane molecules and alkene molecules in the pores is rate-determining, and the entire catalyst surface area cannot be effectively used. On the other hand, if the average pore size is larger than 200 Å, the surface area cannot be increased. The γ-alumina carrier satisfying the above conditions may be obtained by filtering and washing a slurry of aluminum hydroxide produced by neutralization of an aluminum salt, dehydrating and drying the slurry, and then firing at 400 to 800 ° C. for about 1 to 6 hours. Things are obtained.

【0007】上記特定の多孔性γ−アルミナ担体には、
酸化亜鉛[ZnO]を5〜50重量%担持させる。この
酸化亜鉛はアルミナ表面にアルミナとの複合体を形成
し、好ましい表面特性を与える役割を果たすと思われ
る。担持量が5重量%以下ではγ−アルミナ担体表面を
アルミナと酸化亜鉛との複合体が均一に覆うことができ
ないため十分な効果が得られず、一方、担持量が50重
量%を越えるとアルミナと酸化亜鉛との複合体の表面特
性が変化するとともに表面積自体の減少が著しいものと
なる。γ−アルミナ担体上に酸化亜鉛を担持させるに
は、硝酸亜鉛などの水溶液を担体に含浸させた後、乾燥
して焼成すればよい。
The above specific porous γ-alumina carrier includes:
Zinc oxide [ZnO] is supported in an amount of 5 to 50% by weight. It is believed that this zinc oxide forms a complex with alumina on the alumina surface and plays a role in providing favorable surface properties. When the loading amount is 5% by weight or less, the surface of the γ-alumina carrier cannot be uniformly covered with the composite of alumina and zinc oxide, so that a sufficient effect cannot be obtained. On the other hand, when the loading amount exceeds 50% by weight, the alumina is not supported. The surface properties of the composite of zinc oxide and zinc oxide change, and the surface area itself decreases significantly. In order to support zinc oxide on the γ-alumina carrier, the carrier may be impregnated with an aqueous solution of zinc nitrate or the like, then dried and calcined.

【0008】上記複合担体上にはニッケルを好ましくは
0.1〜10重量%担持させる。そのためには、当該複
合担体に硝酸ニッケルなどの水溶性ニッケル化合物の水
溶液を含浸させ、次いでこれを焼成した後、還元すると
いう工程をとる。上記ニッケルの還元には一般に水素に
よる気相還元が用いられるが、本発明では必ずしも水素
還元ではなく他の還元方法を用いてもよい。
Nickel is preferably supported on the composite carrier in an amount of 0.1 to 10% by weight. For that purpose, a step of impregnating the composite carrier with an aqueous solution of a water-soluble nickel compound such as nickel nitrate, then calcining this, and then reducing it is taken. Generally, gas phase reduction with hydrogen is used for the above-mentioned reduction of nickel, but in the present invention, other reduction methods may be used instead of hydrogen reduction.

【0009】担体上にはニッケルとともにスズを担持さ
せる。スズの担持量は0.5〜10重量%が好ましい。
ここで用いるスズ化合物は、水溶性のもの或いはアセト
ン等の有機溶媒に可溶のものが好ましい。このようなス
ズ化合物としては、臭化第一スズ、酢酸スズ、塩化第一
スズ、塩化第二スズ、及びそれらの水和物や、塩化第二
スズアセチルアセトナート錯体、テトラメチルスズ、テ
トラエチルスズ、テトラブチルスズ、テトラフェニルス
ズ等が挙げられる。スズの担持は、上記還元工程後の当
該担体にスズ化合物の水溶液及び/又は有機溶媒溶液な
どを含浸させて水または有機溶媒を乾燥除去した後、水
素ガス中にて高温で還元すればよい。
Tin is supported on the carrier together with nickel. The supported amount of tin is preferably 0.5 to 10% by weight.
The tin compound used here is preferably water-soluble or soluble in an organic solvent such as acetone. Examples of such tin compounds include stannous bromide, tin acetate, stannous chloride, stannic chloride, and hydrates thereof, stannic chloride acetylacetonate complex, tetramethyltin, tetraethyltin. , Tetrabutyltin, tetraphenyltin and the like. The tin may be supported by impregnating the carrier after the reduction step with an aqueous solution of a tin compound and / or an organic solvent solution to dry and remove water or the organic solvent, and then reducing the temperature in hydrogen gas at a high temperature.

【0010】[0010]

【実施例】実施例1 特公平6−72005号公報中の実施例1に記載される
ようにして、γ−アルミナ担体を製造した。この方法の
あらましを述べると、熱希硫酸中に激しく攪拌しながら
瞬時にアルミン酸ソーダ水溶液を加えることにより水酸
化アルミニウムスラリーの懸濁液(pH10)を得、こ
れを種子水酸化アルミニウムとして、攪拌を続けながら
熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間お
いて加える操作を繰り返し、濾過洗浄してケーキを得、
これを押し出し成形して乾燥した後、500℃で3時間
焼成するというものである。こうして得られたγ−アル
ミナの性状は典型的には次の通りである。
Example 1 A γ-alumina carrier was produced as described in Example 1 in Japanese Examined Patent Publication No. 6-72005. The outline of this method is as follows: A suspension (pH 10) of an aluminum hydroxide slurry was obtained by instantaneously adding an aqueous solution of sodium aluminate with vigorous stirring in hot dilute sulfuric acid, and stirring this suspension as seed aluminum hydroxide. Repeatedly adding hot dilute sulfuric acid and aqueous sodium aluminate solution for a certain period of time while continuing, and filtering and washing to obtain a cake,
This is extruded, dried, and then fired at 500 ° C. for 3 hours. The properties of γ-alumina thus obtained are typically as follows.

【表1】 平均細孔径 119 オングストローム 細孔容積 0.713 cm3/g 表面積 240 m2/g 全細孔容積に占める 90〜200オング ストロームの細孔の 割合 88%[Table 1] Average pore size 119 angstrom Pore volume 0.713 cm 3 / g Surface area 240 m 2 / g 90 to 200 angstrom ratio of total pore volume 88%

【0011】上記γ−アルミナ担体を500℃で3時間
焼成し、焼成後の担体50gに対しZnO/Al23
が45/55の割合になるように30%硝酸亜鉛[Zn
(NO32]水溶液を含浸させ、水分除去後、400℃
で3時間焼成して複合担体を調製した。この複合担体
に、Ni担持量が3%になるように10%硝酸ニッケル
[Ni(NO32・6H2O]水溶液を含浸させ、乾燥
後、空気下500℃で3時間焼成し、続いて水素気流中
550℃で3時間還元した。次いで、この還元後のニッ
ケル担持複合担体に対しSn担持量が3.5%になるよ
うに5%塩化第二スズアセチルアセトナート錯体のアセ
トン溶液を含浸させ、アセトン除去後に400℃で30
分間、水素還元を行って所望の触媒を得た。なお、上記
%の値はすべて重量%である。
The above γ-alumina carrier was calcined at 500 ° C. for 3 hours, and 30% zinc nitrate [Zn] was used so that the ratio of ZnO / Al 2 O 3 to 45 g of the calcined carrier was 45/55.
(NO 3 ) 2 ] Aqueous solution is impregnated to remove water, then 400 ℃
A composite carrier was prepared by baking at 3 hours. This composite carrier was impregnated with a 10% nickel nitrate [Ni (NO 3 ) 2 .6H 2 O] aqueous solution so that the amount of Ni supported was 3%, dried, and then calcined in air at 500 ° C. for 3 hours. And reduced in a hydrogen stream at 550 ° C. for 3 hours. Then, this reduced nickel-supported composite support was impregnated with an acetone solution of 5% stannic chloride acetylacetonate complex so that the amount of supported Sn was 3.5%, and after removing the acetone, the temperature was maintained at 400 ° C. for 30%.
Hydrogen reduction was performed for minutes to give the desired catalyst. All the above-mentioned% values are% by weight.

【0012】上記で得られた触媒を直径18mmのガラ
ス製反応管につめ、イソブタンを原料として温度560
℃、空間速度GHSV=350hrー1で脱水素反応試験
を行った。反応開始2時間後のイソブタン転化率は44
%であり、イソブチレン選択率は91%であった。ま
た、反応開始15時間経過後においても転化率40%、
選択率91%を維持し、活性及び選択性の低下はほとん
ど見られなかった。
The catalyst obtained above was packed in a glass reaction tube having a diameter of 18 mm, and isobutane was used as a raw material at a temperature of 560.
A dehydrogenation reaction test was carried out at a temperature of GHSV = 350 hr -1 at a temperature of 370C. 2 hours after the start of the reaction, the conversion of isobutane was 44.
%, And the isobutylene selectivity was 91%. In addition, the conversion rate is 40% even after 15 hours from the start of the reaction,
The selectivity was maintained at 91%, and there was almost no decrease in activity and selectivity.

【0013】比較例1 上記γ−アルミナ担体に代えて市販のアルミナ担体(水
沢化学製)を用いた以外、実施例1と同様にして触媒調
製及び脱水素反応試験を行った。用いたアルミナ担体の
性状は次の通りである。
Comparative Example 1 A catalyst preparation and dehydrogenation reaction test were conducted in the same manner as in Example 1 except that a commercially available alumina carrier (manufactured by Mizusawa Chemical Co., Ltd.) was used in place of the γ-alumina carrier. The properties of the alumina carrier used are as follows.

【表2】 平均細孔径 111 オングストローム 細孔容積 0.615 cm3/g 表面積 220 m2/g 全細孔容積に占める 90〜200オング ストロームの細孔の 割合 49%[Table 2] Average pore size 111 angstrom Pore volume 0.615 cm 3 / g Surface area 220 m 2 / g Ratio of pores of 90 to 200 angstrom in total pore volume 49%

【0014】反応開始1時間後の転化率は22%であ
り、選択率は77%であったが、3時間後には転化率は
9%、選択率は74%となり、初期活性及び選択率が実
施例1の触媒に比べて低いことに加え、使用による活性
の低下が著しかった。
After 1 hour from the start of the reaction, the conversion rate was 22% and the selectivity was 77%, but after 3 hours, the conversion rate was 9% and the selectivity was 74%. In addition to being lower than that of the catalyst of Example 1, the activity was significantly decreased due to use.

【0015】比較例2 実施例1で用いたγ−アルミナ担体25gを取り、Cr
23/Al23比が10/90になるように、10%の
無水クロム酸溶液を含浸させた。水分乾燥除去後に50
0℃で8時間焼成し、その後3時間水素還元してクロミ
ナ/アルミナ触媒を得た。この触媒を実施例1と同様に
して脱水素反応試験を行った。反応開始1時間後の転化
率は51%とかなり高かったが、選択率は69%であっ
た。また、反応開始7時間後には転化率21%、選択率
76%となり、特に使用による活性の低下が著しかっ
た。
Comparative Example 2 25 g of the γ-alumina carrier used in Example 1 was taken, and Cr was used.
A 10% chromic anhydride solution was impregnated so that the 2 O 3 / Al 2 O 3 ratio was 10/90. 50 after removing water
It was calcined at 0 ° C. for 8 hours and then hydrogen-reduced for 3 hours to obtain a chromina / alumina catalyst. This catalyst was subjected to the dehydrogenation reaction test in the same manner as in Example 1. The conversion rate 1 hour after the start of the reaction was as high as 51%, but the selectivity was 69%. After 7 hours from the start of the reaction, the conversion was 21% and the selectivity was 76%.

【0016】[0016]

【発明の効果】以上のように、本発明の脱水素触媒は、
アルカンの脱水素によるアルケンの製造において、高活
性かつ高選択性を示すとともに、従来の触媒にくらべて
活性の低下が著しく少ない。
As described above, the dehydrogenation catalyst of the present invention is
In the production of alkenes by dehydrogenation of alkanes, they show high activity and high selectivity, and their activity is significantly lower than that of conventional catalysts.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 11/09 6958−4H C07C 11/09 // C07B 61/00 300 C07B 61/00 300 (72)発明者 小林 治人 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 南雲 篤郎 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 岡田 佳巳 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C07C 11/09 6958-4H C07C 11/09 // C07B 61/00 300 C07B 61/00 300 (72 ) Inventor Haruhito Kobayashi 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kakoh Construction Co., Ltd. Co., Ltd. (72) Inventor, Yoshimi Okada, Chiyoda Kakoh Construction Co., Ltd., 12-12-1, Tsurumi Chuo, Tsurumi Ward, Yokohama City, Kanagawa Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面積150m2/g以上、細孔容積
0.55cm3/g以上、平均細孔径90〜200オン
グストロームであり、かつ細孔径90〜200オングス
トロームの細孔が全細孔容積の60%以上を占めるγ−
アルミナ担体に酸化亜鉛を5〜50重量%担持してなる
複合担体に、ニッケル及びスズが担持されていることを
特徴とする脱水素触媒。
1. A surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 200 angstroms, and pores of 90 to 200 angstroms have a total pore volume of 60. % Or more γ-
A dehydrogenation catalyst, characterized in that nickel and tin are supported on a composite carrier comprising 5 to 50% by weight of zinc oxide supported on an alumina carrier.
【請求項2】 該複合担体上のニッケルの担持量が0.
1〜10重量%である請求項1記載の脱水素触媒。
2. The amount of nickel supported on the composite carrier is 0.
The dehydrogenation catalyst according to claim 1, which is 1 to 10% by weight.
【請求項3】 該複合担体上のスズの担持量が0.5〜
10重量%である請求項2記載の脱水素触媒。
3. The amount of tin supported on the composite carrier is 0.5 to 0.5.
The dehydrogenation catalyst according to claim 2, which is 10% by weight.
JP7230912A 1995-09-08 1995-09-08 Dehydrogenation catalyst Withdrawn JPH0975732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7230912A JPH0975732A (en) 1995-09-08 1995-09-08 Dehydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7230912A JPH0975732A (en) 1995-09-08 1995-09-08 Dehydrogenation catalyst

Publications (1)

Publication Number Publication Date
JPH0975732A true JPH0975732A (en) 1997-03-25

Family

ID=16915238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230912A Withdrawn JPH0975732A (en) 1995-09-08 1995-09-08 Dehydrogenation catalyst

Country Status (1)

Country Link
JP (1) JPH0975732A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334302A (en) * 1999-04-26 2000-12-05 Inst Fr Petrole Preparation of catal,yst containing group viii metals and additional metal introduced in shape of hydrolysable organic metal compound and its use in hydrocarbon
WO2015152160A1 (en) * 2014-03-31 2015-10-08 三井化学株式会社 Method for producing unsaturated hydrocarbon
KR20220078697A (en) 2019-11-14 2022-06-10 미쯔비시 케미컬 주식회사 Catalyst and method for preparing same, and method for preparing unsaturated hydrocarbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334302A (en) * 1999-04-26 2000-12-05 Inst Fr Petrole Preparation of catal,yst containing group viii metals and additional metal introduced in shape of hydrolysable organic metal compound and its use in hydrocarbon
WO2015152160A1 (en) * 2014-03-31 2015-10-08 三井化学株式会社 Method for producing unsaturated hydrocarbon
JPWO2015152160A1 (en) * 2014-03-31 2017-04-13 三井化学株式会社 Process for producing unsaturated hydrocarbons
KR20220078697A (en) 2019-11-14 2022-06-10 미쯔비시 케미컬 주식회사 Catalyst and method for preparing same, and method for preparing unsaturated hydrocarbon

Similar Documents

Publication Publication Date Title
AU655903B2 (en) Process for preparing a dehydrogenation catalyst
JP4287909B2 (en) Process for producing olefins, in particular propylene, by dehydrogenation
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
EP0557982B1 (en) Alkane dehydrogenation
JP4391230B2 (en) catalyst
US2331292A (en) Catalysts and the preparation thereof
JP3939787B2 (en) Palladium-containing supported catalysts for the selective catalytic hydrogenation of acetylene in hydrocarbon streams.
US5219816A (en) Dehydrogenation catalysts and process for preparing the catalysts
JP2742091B2 (en) Catalyst compositions, methods for their preparation and methods for hydrogenating chlorofluoroalkenes with these compositions
JP3908313B2 (en) Dehydrogenation catalyst
JPH05103995A (en) Catalyst for disproportionating olefin and olefin disproportionation method using the same
US5214227A (en) Low pressure dehydrogenation of light paraffins
JPH10182505A (en) Dehydrogenation
JP4054116B2 (en) Dehydrogenation catalyst
US20050113615A1 (en) Catalyst and process for selective hydrogenation
JPH0975732A (en) Dehydrogenation catalyst
KR20000065043A (en) Catalyst for Selective Aromatization
US6130181A (en) Metathesis catalyst, and its preparation and use
JP2594463B2 (en) Catalyst for dehydrogenation reaction and method for producing the same
JP3908314B2 (en) Dehydrogenation catalyst
JP4166333B2 (en) Dehydrogenation catalyst
JP2000037629A (en) Dehydrogenation catalyst
JPH0970544A (en) Dehydrogenation catalyst
JPH0970535A (en) Dehydrogenating catalyst
JP3112821B2 (en) Catalyst containing catalytic metal and non-acidic promoter dispersed on substrate and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203