JPH10182505A - Dehydrogenation - Google Patents

Dehydrogenation

Info

Publication number
JPH10182505A
JPH10182505A JP8343155A JP34315596A JPH10182505A JP H10182505 A JPH10182505 A JP H10182505A JP 8343155 A JP8343155 A JP 8343155A JP 34315596 A JP34315596 A JP 34315596A JP H10182505 A JPH10182505 A JP H10182505A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
amount
alkane
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8343155A
Other languages
Japanese (ja)
Inventor
Yoshimi Okada
佳巳 岡田
Kenichi Imagawa
健一 今川
Susumu Yamamoto
進 山本
Sachio Asaoka
佐知夫 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP8343155A priority Critical patent/JPH10182505A/en
Publication of JPH10182505A publication Critical patent/JPH10182505A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group

Abstract

PROBLEM TO BE SOLVED: To provide a method for suppressing the precipitation of carbon on a catalyst and alleviating the deterioration of the catalyst in producing an alkene by dehydrogenation of an alkane in the presence of a dehydrogenation catalyst. SOLUTION: A raw material alkane and hydrogen are supplied by using a catalyst obtained by supporting platinum and tin on a complex carrier which is prepared by supporting zinc oxide on γ-alumina carrier having >=150m<2> /g surface area, >=0.55cm<3> /g pore volume, 90-200 angstrom pore diameter and comprising >=60% based on the total pore volume of pore volume having 90-200 angstrom pore diameter as a dehydrogenation catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は脱水素方法に関し、
より具体的には脱水素触媒の存在下にアルカンの脱水素
反応によりアルケンを製造する方法に関する。
The present invention relates to a method for dehydrogenation,
More specifically, the present invention relates to a method for producing an alkene by a dehydrogenation reaction of an alkane in the presence of a dehydrogenation catalyst.

【0002】[0002]

【従来の技術】近年、プロピレンやイソブチレンに代表
されるアルケンの需要が増えている。これは、プロピレ
ンを原料とするポリプロピレンの需要が包装材料や自動
車部品用樹脂として増大しており、また、イソブチレン
を原料として製造するガソリンの高オクタン価燃料用添
加剤メチル−t−ブチルエーテル(MTBE)の需要が
増大していること等によるものである。これらプロピレ
ンやイソブチレンは、ガソリン製造のための流動床式接
触分解(FCC)により得られ、あるいはエチレン製造
のための熱分解の副生物として得られるが、そのような
方法により得られる量には限度があり、他の製造方法の
確立が望まれている。このような状況下において、燃料
としての利用にとどまっているC3、C4類等のアルカン
を原料としてプロピレンやイソブチレン、あるいはn−
ブテン等のアルケンを製造することが各種試みられてい
る。このようにアルカンを原料としてアルケンを製造す
る方法としては、触媒存在下での接触脱水素反応による
方法が従来から有効な方法として知られている(例えば
特開平3−288548号公報参照)。そして、そのた
めの脱水素触媒としては、シリカ、アルミナ、ゼオライ
ト、活性炭などの担体上に金属や金属酸化物などの活性
物質を担持させたものが従来から用いられ、特に酸化ク
ロム/アルミナ触媒がよく用いられている(例えば米国
特許第4581339号参照)。
2. Description of the Related Art In recent years, demand for alkenes represented by propylene and isobutylene has been increasing. This is because the demand for polypropylene using propylene as a raw material is increasing as a resin for packaging materials and automobile parts, and the addition of methyl-t-butyl ether (MTBE), a high octane fuel additive for gasoline produced from isobutylene as a raw material. This is because demand is increasing. These propylene and isobutylene are obtained by fluidized bed catalytic cracking (FCC) for gasoline production or as a by-product of pyrolysis for ethylene production, but the amount obtained by such a method is limited. Therefore, establishment of another manufacturing method is desired. Under these circumstances, alkane such as C 3 and C 4 , which is used only as a fuel, is used as a raw material to produce propylene, isobutylene, or n-
Various attempts have been made to produce alkenes such as butenes. As a method for producing an alkene using an alkane as a raw material, a method based on a catalytic dehydrogenation reaction in the presence of a catalyst has been conventionally known as an effective method (see, for example, JP-A-3-288548). As a dehydrogenation catalyst for this purpose, a catalyst in which an active substance such as a metal or a metal oxide is supported on a carrier such as silica, alumina, zeolite, or activated carbon is conventionally used. In particular, a chromium oxide / alumina catalyst is often used. (See, for example, US Pat. No. 4,581,339).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、脱水素
反応は吸熱反応であることから一般に反応は高温で行わ
れ、このためコーク生成(触媒上への炭素析出)による
触媒劣化がしばしば見られる。そのような場合は触媒の
活性を維持するために頻繁に再生を行う必要があり、プ
ロセス効率の低下を招くことになる。このため、コーク
生成による触媒劣化の防止が強く望まれている。すなわ
ち本発明は、脱水素触媒の存在下にアルカンの脱水素に
よりアルケンを製造する方法であって、触媒上への炭素
析出が抑制され触媒の劣化が緩和される方法を提供する
ものである。
However, since the dehydrogenation reaction is an endothermic reaction, the reaction is generally carried out at a high temperature, and therefore, catalyst deterioration due to coke formation (carbon deposition on the catalyst) is often observed. In such a case, it is necessary to frequently perform regeneration in order to maintain the activity of the catalyst, resulting in a decrease in process efficiency. Therefore, prevention of catalyst deterioration due to coke generation is strongly desired. That is, the present invention provides a method for producing an alkene by dehydrogenation of an alkane in the presence of a dehydrogenation catalyst, wherein carbon deposition on the catalyst is suppressed and deterioration of the catalyst is alleviated.

【0004】[0004]

【課題を解決するための手段】本発明は、脱水素触媒の
存在下、1分子当たり2〜5個の炭素原子を含有する少
なくとも1種のアルカンを脱水素して少なくとも1種の
アルケンを製造する方法において、前記脱水素触媒とし
て、表面積150m2/g以上、細孔容積0.55cm3/
g以上、平均細孔径90〜200オングストロームであ
り、かつ細孔径90〜200オングストロームの細孔が
全細孔容積の60%以上を占めるγ−アルミナ担体に酸
化亜鉛を担持してなる複合担体に、白金及びスズが担持
されている触媒を用い、かつ原料アルカンとともに水素
を供給することを特徴とする方法を提供することによ
り、上記課題を解決する。
SUMMARY OF THE INVENTION The present invention provides a method for producing at least one alkene by dehydrogenating at least one alkane containing from 2 to 5 carbon atoms per molecule in the presence of a dehydrogenation catalyst. In the method, the surface area of the dehydrogenation catalyst is 150 m 2 / g or more, and the pore volume is 0.55 cm 3 / g.
g or more, a composite carrier comprising zinc oxide on a γ-alumina carrier having an average pore diameter of 90 to 200 angstroms and pores having a pore diameter of 90 to 200 angstroms occupying 60% or more of the total pore volume, The object is achieved by providing a method characterized by using a catalyst carrying platinum and tin and supplying hydrogen together with a raw alkane.

【0005】[0005]

【発明の実施の形態】固体触媒を用いたアルカンの脱水
素反応は本質的に気固系接触操作であるため、活性を高
めるためには活性金属の選択とともに触媒表面積を大き
くすることが重要である。また、選択性を高め、かつ活
性劣化を抑制するためには、異性化反応あるいは分解反
応を抑制して目的化合物を優先的に形成し、かつコーク
スの沈着を抑制するような表面特性を与えることが重要
である。したがって、活性や選択性の低下を防止するた
めには、上記表面積や表面特性の変化が小さいことが重
要となる。本発明では、特定のγ−アルミナ担体に特定
量の酸化亜鉛を担持してなる複合担体上に白金およびス
ズを担持させることによって大きな表面積及び好ましい
表面特性を有する触媒を得、またそのような触媒を含む
反応領域に原料アルカンとともに水素を供給することに
より当該大きな表面積及び好ましい表面特性を長期に渡
って維持するものである。
DETAILED DESCRIPTION OF THE INVENTION Since the dehydrogenation of alkanes using a solid catalyst is essentially a gas-solid contact operation, it is important to increase the surface area of the catalyst together with the selection of the active metal in order to increase the activity. is there. In order to increase selectivity and suppress activity deterioration, it is necessary to suppress the isomerization reaction or decomposition reaction and to form the target compound preferentially, and to provide surface characteristics that suppress coke deposition. is important. Therefore, in order to prevent a decrease in activity and selectivity, it is important that changes in the surface area and surface characteristics are small. In the present invention, a catalyst having a large surface area and favorable surface properties is obtained by supporting platinum and tin on a composite carrier comprising a specific amount of zinc oxide supported on a specific γ-alumina carrier, and such a catalyst is obtained. By supplying hydrogen together with the raw material alkane to the reaction region containing, the large surface area and the preferable surface characteristics are maintained for a long period of time.

【0006】上記特定の多孔性γ−アルミナ担体は、表
面積が150m2/g以上、細孔容積が0.55cm3/g
以上、平均細孔径が90〜200オングストロームであ
り、かつ細孔径90〜200オングストロームの細孔が
全細孔容積の60%以上を占めるものである。平均細孔
径が90オングストロームより小さいとアルカン分子や
アルケン分子の細孔内拡散が律速になり、全触媒表面積
を有効に利用することができない。一方、平均細孔径が
200オングストロームより大きいと表面積が大きくと
れなくなる。上記条件を満足するγ−アルミナ担体は、
アルミニウム塩の中和により生成した水酸化アルミニウ
ムのスラリーを濾過洗浄し、これを脱水乾燥した後、4
00〜800℃で1〜6時間程度焼成することにより得
られる。
The specific porous γ-alumina support has a surface area of 150 m 2 / g or more and a pore volume of 0.55 cm 3 / g.
As described above, the average pore diameter is 90 to 200 angstroms, and the pores having a pore diameter of 90 to 200 angstroms occupy 60% or more of the total pore volume. If the average pore diameter is smaller than 90 angstroms, diffusion of alkane molecules and alkene molecules in the pores is rate-determining, and the entire catalyst surface area cannot be used effectively. On the other hand, if the average pore diameter is larger than 200 angstroms, the surface area cannot be increased. A γ-alumina support satisfying the above conditions is:
The slurry of aluminum hydroxide produced by the neutralization of the aluminum salt was filtered and washed, and dehydrated and dried.
It is obtained by baking at 00 to 800 ° C. for about 1 to 6 hours.

【0007】上記特定の多孔性γ−アルミナ担体には、
酸化亜鉛[ZnO]を好ましくは5〜50重量%担持さ
せる。この酸化亜鉛はアルミナ表面にアルミナとの複合
体を形成し、好ましい表面特性を与える役割を果たすと
思われる。担持量が5重量%以下ではγ−アルミナ担体
表面をアルミナと酸化亜鉛の複合体が均一に覆うことが
できないため十分な効果が得られず、一方、担持量が5
0重量%を超えるとアルミナと酸化亜鉛との複合体の表
面特性が変化するとともに表面積の減少が著しいものと
なる。γ−アルミナ担体上に酸化亜鉛を担持させるに
は、硝酸亜鉛などの亜鉛化合物の水溶液を担体に含浸さ
せた後、乾燥して焼成すればよい。
The above specific porous γ-alumina carrier includes:
Zinc oxide [ZnO] is preferably supported at 5 to 50% by weight. It is believed that this zinc oxide forms a complex with alumina on the alumina surface and plays a role in providing favorable surface properties. If the loading amount is less than 5% by weight, the surface of the γ-alumina carrier cannot be uniformly covered with the composite of alumina and zinc oxide, so that a sufficient effect cannot be obtained.
If the content exceeds 0% by weight, the surface characteristics of the composite of alumina and zinc oxide will change, and the surface area will decrease significantly. In order to carry zinc oxide on the γ-alumina carrier, the carrier may be impregnated with an aqueous solution of a zinc compound such as zinc nitrate, dried and fired.

【0008】上記複合体上には白金を好ましくは0.0
5〜1.5重量%担持させる。ここで用いる白金化合物
としては、塩化白金酸、白金酸アンモニウム塩、臭化白
金酸、二塩化白金、四塩化白金水和物、二塩化カルボニ
ル白金二塩化物、ジニトロジアミン白金酸塩等が挙げら
れる。白金の担持は、当該複合担体に塩化白金酸等の白
金化合物の水溶液を含浸させ、次いでこれを焼成した
後、水素ガス中にて高温で還元する工程が通常用いられ
るが、本発明では必ずしも水素還元ではなく他の還元方
法を用いても良い。
[0008] Platinum, preferably 0.0
5 to 1.5% by weight is supported. Examples of the platinum compound used herein include chloroplatinic acid, ammonium platinate, platinum bromide, platinum dichloride, platinum tetrachloride hydrate, carbonyl platinum dichloride dichloride, dinitrodiamine platinum salt, and the like. . For supporting platinum, a step of impregnating the composite carrier with an aqueous solution of a platinum compound such as chloroplatinic acid, followed by calcining and then reducing at a high temperature in hydrogen gas is usually used. Other reduction methods may be used instead of reduction.

【0009】上記複合担体上には白金とともにスズを担
持させる。スズの担持量は0.5〜10重量%が好まし
い。ここで用いるスズ化合物としては、水溶性のもの及
び/又はアセトン等の有機溶媒に可溶のものが好まし
い。このようなスズ化合物としては、臭化第一スズ、酢
酸スズ、塩化第一スズ、塩化第二スズ、及びそれらの水
和物や、塩化第二スズアセチルアセトナート錯体、テト
ラメチルスズ、テトラエチルスズ、テトラブチルスズ、
テトラフェニルスズ等が挙げられる。スズの担持は、上
記還元工程後の当該担体にスズ化合物の水溶液及び/又
は有機溶媒溶液等を含浸させて水又は有機溶媒を乾燥除
去した後、水素ガス中にて高温で還元する方法が通常用
いられるが、本発明では必ずしも水素還元でなく他の還
元方法を用いてもよい。
[0009] Tin is supported together with platinum on the composite carrier. The supported amount of tin is preferably 0.5 to 10% by weight. The tin compound used here is preferably a water-soluble compound and / or a compound soluble in an organic solvent such as acetone. Examples of such tin compounds include stannous bromide, tin acetate, stannous chloride, stannic chloride, and hydrates thereof, stannic chloride acetylacetonate complex, tetramethyltin, tetraethyltin , Tetrabutyltin,
And tetraphenyltin. The supporting of tin is usually carried out by impregnating the carrier after the above-mentioned reduction step with an aqueous solution of a tin compound and / or an organic solvent solution to dry and remove water or an organic solvent, and then reducing at high temperature in hydrogen gas. However, in the present invention, other reduction methods may be used instead of hydrogen reduction.

【0010】上記複合担体上には白金及びスズとともに
周期律表の第1A族及び第2A族からなる群から選ばれ
る少なくとも1つのアルカリ性金属を担持させることも
できる。このようにすると触媒の劣化防止にさらに有効
である。アルカリ性金属の担持量は0.01〜10重量
%が好ましい。「アルカリ性金属」とは、リチウム、ナ
トリウム、カリウム、ルビジウム、セシウム、ベリリウ
ム、マグネシウム、カルシウム、ストロンチウム及びバ
リウムを包含する周期律表の第1A族及び第2A族の金
属元素をいう。これを触媒に担持させるのに用いるアル
カリ性金属の化合物としては、水溶性のものあるいはア
セトン等の有機溶媒に可溶のものが好ましい。そのよう
な化合物としては、上記アルカリ性金属の塩化物、臭化
物、ヨウ化物、硝酸塩、硫酸塩、酢酸塩、プロピオン酸
塩などが好適に使用できる。アルカリ性金属の担持は、
上記還元工程後の当該担体にアルカリ性金属化合物の水
溶液あるいは有機溶媒溶液を含浸させて水または有機溶
媒を乾燥除去した後、高温処理する方法が通常用いられ
る。
[0010] On the composite carrier, at least one alkaline metal selected from the group consisting of Group 1A and Group 2A of the periodic table can be supported together with platinum and tin. This is more effective for preventing the deterioration of the catalyst. The loading amount of the alkaline metal is preferably from 0.01 to 10% by weight. "Alkaline metal" refers to a metal element of Groups 1A and 2A of the periodic table, including lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium and barium. As the alkaline metal compound used for supporting the catalyst on a catalyst, a water-soluble compound or a compound soluble in an organic solvent such as acetone is preferable. As such compounds, chlorides, bromides, iodides, nitrates, sulfates, acetates, propionates and the like of the above-mentioned alkaline metals can be suitably used. The loading of the alkaline metal is
After the reduction step, a method of impregnating the carrier with an aqueous solution of an alkaline metal compound or an organic solvent solution to dry and remove the water or the organic solvent, and then subjecting the carrier to a high temperature treatment is usually used.

【0011】上記のようにして得られた触媒組成物は、
最終的に還元性ガスの存在下で高温還元処理すると高温
での劣化がより緩和される。ここで用いる還元性ガスと
しては水素または水素を含む混合ガスが好ましく、水素
ガスを単独で用いるのがより好ましい。通常、高温還元
処理は500〜700℃、好ましくは550〜650℃
の温度で、1〜20時間程度行う。なお、この高温還元
処理は、必ずしも触媒を反応管に充填する前に予め行う
必要はなく、触媒を反応管に充填した後、原料アルカン
を導入して脱水素反応を行う前に、水素ガスを反応管に
流通させればよい。
[0011] The catalyst composition obtained as described above,
Finally, when high-temperature reduction treatment is performed in the presence of a reducing gas, deterioration at high temperatures is further alleviated. As the reducing gas used here, hydrogen or a mixed gas containing hydrogen is preferable, and it is more preferable to use hydrogen gas alone. Usually, the high-temperature reduction treatment is 500 to 700 ° C, preferably 550 to 650 ° C.
At a temperature of about 1 to 20 hours. The high-temperature reduction treatment does not necessarily need to be performed before the catalyst is charged into the reaction tube, and after the catalyst is charged into the reaction tube, hydrogen gas is introduced before the raw material alkane is introduced and the dehydrogenation reaction is performed. What is necessary is just to circulate through a reaction tube.

【0012】アルカンの脱水素によるアルケンの製造
は、通常、脱水素触媒を充填した管型反応器中に原料ア
ルカンを供給し、450℃〜650℃に加熱した条件下
で反応させることにより行う。原料アルカンの空間速度
は100〜10000hr-1の範囲であり、好ましくは
100〜2000hrー1とするのが好ましい。このとき
本発明では、原料アルカンとともに水素を反応器入口に
供給する。水素の供給量は原料アルカンに対して約1:
1〜約1:20の範囲が好ましい。水素の供給量が1:
1を超えると平衡論的に反応の進行を妨げる効果が強く
なり、また水素の供給量が1:20に満たないと炭素の
析出を抑制する効果が不十分となる。なお、管型反応器
の場合、従来から炭素の析出による触媒の劣化が問題と
なっていたのは反応器の入口付近である。これは、脱水
素反応が進むにつれて水素が遊離してくるため、反応器
入口側から離れるにつれて雰囲気中に水素が多くなり、
これが炭素の析出を抑制するからであると思われる。本
発明では原料アルカンとともに水素を供給するため、反
応器内全域において雰囲気中に水素が存在し、炭素の析
出が防止されるのである。なお、本発明の方法は特に管
型反応器のようなピストン流型の反応器を用いた場合に
著しい効果があるが、流動層型のような準完全混合型の
反応器を用いた場合でも有効に炭素の析出を防止する。
The production of an alkene by dehydrogenation of an alkane is usually carried out by feeding a raw alkane into a tubular reactor filled with a dehydrogenation catalyst and reacting the alkane under a condition heated to 450 to 650 ° C. The space velocity of the raw material alkane is in the range of 100~10000hr -1, preferably preferably in the 100~2000hr -1. At this time, in the present invention, hydrogen is supplied to the reactor inlet together with the raw alkane. The supply amount of hydrogen is about 1:
A range from 1 to about 1:20 is preferred. Hydrogen supply is 1:
If it exceeds 1, the effect of equilibrium hindering the progress of the reaction becomes strong, and if the supply amount of hydrogen is less than 1:20, the effect of suppressing the precipitation of carbon becomes insufficient. In the case of a tubular reactor, the problem of catalyst deterioration due to the deposition of carbon has been a problem near the inlet of the reactor. This is because hydrogen is released as the dehydrogenation reaction proceeds, so the hydrogen increases in the atmosphere as the distance from the reactor inlet side increases,
This is thought to be because carbon deposition is suppressed. In the present invention, since hydrogen is supplied together with the raw material alkane, hydrogen is present in the atmosphere throughout the reactor, and carbon deposition is prevented. The method of the present invention has a remarkable effect particularly when a piston flow type reactor such as a tubular reactor is used, but also when a quasi-perfect mixing type reactor such as a fluidized bed type is used. Effectively prevents carbon deposition.

【0013】原料アルカンとしては一般に炭素数2〜5
個のものを用いる。好ましい例としてはプロパン、n−
ブタン、イソブタン、n−ペンタン、2−メチルブタン
(イソペンタン)などが挙げられる。そして、これらを
本発明の方法で脱水素することにより、プロペン(プロ
ピレン)、ブテン−1、ブテン−2、イソブテン(イソ
ブチレン)、ペンテン−1、ペンテン−2、2−メチル
ブテン−1、2−メチルブテン−2などが得られる。
The raw material alkane is generally a compound having 2 to 5 carbon atoms.
Use one. Preferred examples are propane, n-
Butane, isobutane, n-pentane, 2-methylbutane (isopentane) and the like. Then, these are dehydrogenated by the method of the present invention to obtain propene (propylene), butene-1, butene-2, isobutene (isobutylene), pentene-1, pentene-2, 2-methylbutene-1, 2-methylbutene. -2 and the like are obtained.

【0014】[0014]

【実施例】以下において、本発明の脱水素方法と水素を
添加しない従来の方法を用いて脱水素反応試験を行った
例を示す。なお以下において、%の値はすべて重量%で
ある。 (1)γ−アルミナ担体の製造 特公平6−72005号公報中の実施例1に記載される
ようにして、γ−アルミナ担体を製造した。この方法の
あらましを述べると、熱希硫酸中に激しく攪拌しながら
瞬時にアルミン酸ソーダ水溶液を加えることにより水酸
化アルミニウムスラリーの懸濁液(pH10)を得、こ
れを種子水酸化アルミニウムとして、攪拌を続けながら
熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間お
いて加える操作を繰り返して濾過洗浄ケーキを得、これ
を押し出し成形して乾燥した後、500℃で3時間焼成
するというものである。こうして得られるγ−アルミナ
の性状は典型的には下記の表1の通りである。
In the following, examples are shown in which a dehydrogenation reaction test was carried out using the dehydrogenation method of the present invention and a conventional method without adding hydrogen. In the following, all values of% are% by weight. (1) Production of γ-alumina support A γ-alumina support was produced as described in Example 1 in JP-B-6-72005. In brief, this method was used to obtain a suspension of an aluminum hydroxide slurry (pH 10) by instantly adding an aqueous sodium aluminate solution while stirring vigorously in hot dilute sulfuric acid. Is repeated by alternately adding hot dilute sulfuric acid and aqueous sodium aluminate solution for a certain period of time to obtain a filter washing cake, extruding and drying it, and then baking it at 500 ° C. for 3 hours. . The properties of γ-alumina thus obtained are typically as shown in Table 1 below.

【表1】 [Table 1]

【0015】(2)白金/スズ(/アルカリ)担持触媒
の製造 上記γ−アルミナ担体27.5gをとり、これにZnO
/Al23比が30/70になるように30%硝酸亜鉛
[Zn(NO32]水溶液を含浸させ、水分除去後、4
00℃で3時間焼成して複合担体を調製した。この複合
担体にPt担持量が0.3%になるように2.0%塩化
白金酸[H2PtCl6]水溶液を含浸させ、乾燥後40
0℃で3時間焼成し、さらに水素気流中400℃で3時
間還元した。次いで、この還元後の白金担持複合担体に
Sn担持量が3.5%になるように3%塩化第一スズ
[SnCl2 ]水溶液を含浸させ、乾燥後に400℃で
30分間水素還元を行って白金/スズ担持触媒を得た。
さらに、上記白金/スズ担持触媒に、K担持量が0.5
%になるように硝酸カリウム[KNO3 ]水溶液を含浸
させ、これを風乾して白金/スズ/カリウム担持触媒を
調製した。
(2) Production of a catalyst carrying platinum / tin (/ alkali) 27.5 g of the above-mentioned γ-alumina carrier was taken, and ZnO was added thereto.
30% zinc nitrate [Zn (NO 3 ) 2 ] aqueous solution so that the / Al 2 O 3 ratio becomes 30/70.
The composite support was prepared by firing at 00 ° C. for 3 hours. The composite carrier is impregnated with 2.0% aqueous solution of chloroplatinic acid [H 2 PtCl 6 ] so that the amount of Pt carried is 0.3%, and after impregnation, the carrier is dried.
It was calcined at 0 ° C. for 3 hours, and further reduced at 400 ° C. for 3 hours in a hydrogen stream. Next, the platinum-supported composite carrier after the reduction was impregnated with a 3% aqueous solution of stannous chloride [SnCl 2 ] so that the amount of supported Sn became 3.5%. After drying, hydrogen reduction was performed at 400 ° C. for 30 minutes. A platinum / tin supported catalyst was obtained.
Further, the amount of K supported on the platinum / tin supported catalyst is 0.5
%, And impregnated with an aqueous solution of potassium nitrate [KNO 3 ], and air-dried to prepare a platinum / tin / potassium supported catalyst.

【0016】(3)脱水素反応試験 上記で得られた白金/スズ担持触媒を直径18mmの石
英製反応管に充填し、イソブタンを原料として、温度5
60℃、空間速度GHSV500hr-1で脱水素反応試
験を20時間行い、反応器出口ガスをガスクロマトグラ
フにより分析した。また、反応終了後の触媒を抜き出し
炭素析出量を測定した。次いで、イソブタンに対して
0.05〜0.40(1:20〜1:2.5)のモル比
で水素を添加して(GHSV25〜200hr-1)、同
様に脱水素反応試験を行った。結果を下記の表2に示
す。
(3) Dehydrogenation reaction test The platinum / tin supported catalyst obtained above was filled in a quartz reaction tube having a diameter of 18 mm, and isobutane was used as a raw material at a temperature of 5%.
A dehydrogenation reaction test was performed at 60 ° C. and a space velocity of GHSV of 500 hr −1 for 20 hours, and the gas at the outlet of the reactor was analyzed by gas chromatography. Further, the catalyst after the completion of the reaction was extracted, and the carbon deposition amount was measured. Next, hydrogen was added at a molar ratio of 0.05 to 0.40 (1:20 to 1: 2.5) with respect to isobutane (GHSV: 25 to 200 hr -1 ), and a dehydrogenation reaction test was performed in the same manner. . The results are shown in Table 2 below.

【表2】 [Table 2]

【0017】次に、上記で得られた白金/スズ担持触媒
を直径18mmの石英製反応管に充填し、水素流通下に
600℃で3時間の処理を行った後、窒素で十分なパー
ジを行った。この後、イソブタンを原料として、温度5
60℃、空間速度GHSV500hr-1で脱水素反応試
験を20時間行い、反応器出口ガスをガスクロマトグラ
フにより分析した。また、反応終了後の触媒を抜き出し
炭素析出量を測定した。次いで、イソブタンに対して
0.05〜0.20(1:20〜1:5)のモル比で水
素を添加して(GHSV25〜100hr-1)、同様に
脱水素反応試験を行った。結果を下記の表3に示す。
Next, the platinum / tin-supported catalyst obtained above was filled in a quartz reaction tube having a diameter of 18 mm, treated at 600 ° C. for 3 hours under a hydrogen flow, and then purged sufficiently with nitrogen. went. Thereafter, isobutane is used as a raw material at a temperature of 5 ° C.
A dehydrogenation reaction test was performed at 60 ° C. and a space velocity of GHSV of 500 hr −1 for 20 hours, and the gas at the outlet of the reactor was analyzed by gas chromatography. Further, the catalyst after the completion of the reaction was extracted, and the carbon deposition amount was measured. Next, hydrogen was added at a molar ratio of 0.05 to 0.20 (1:20 to 1: 5) with respect to isobutane (GHSV: 25 to 100 hr -1 ), and a dehydrogenation reaction test was performed in the same manner. The results are shown in Table 3 below.

【表3】 [Table 3]

【0018】次に、上記で得られた白金/スズ/カリウ
ム担持触媒を直径18mmの石英製反応管に充填し、イ
ソブタンを原料として、温度560℃、空間速度GHS
V500hr-1で脱水素反応試験を20時間行い、反応
器出口ガスをガスクロマトグラフにより分析した。ま
た、反応終了後の触媒を抜き出し炭素析出量を測定し
た。次いで、イソブタンに対して0.05〜0.20
(1:20〜1:5)のモル比で水素を添加して(GH
SV25〜100hr-1)、同様に脱水素反応試験を行
った。結果を下記の表4に示す。
Next, the platinum / tin / potassium supported catalyst obtained above was filled in a quartz reaction tube having a diameter of 18 mm, and isobutane was used as a raw material at a temperature of 560 ° C. and a space velocity of GHS.
A dehydrogenation reaction test was performed at V500 hr -1 for 20 hours, and the gas at the reactor outlet was analyzed by gas chromatography. Further, the catalyst after the completion of the reaction was extracted, and the carbon deposition amount was measured. Then, 0.05 to 0.20 relative to isobutane
Hydrogen was added at a molar ratio of (1:20 to 1: 5) (GH
SV 25 to 100 hr -1 ), and a dehydrogenation reaction test was performed in the same manner. The results are shown in Table 4 below.

【表4】 [Table 4]

【0019】表2〜表4から明らかなように、原料イソ
ブタンとともに水素を供給して脱水素反応を行ったとこ
ろ、触媒上への炭素析出量は顕著に減少し、また触媒活
性の低下も顕著に緩和された。
As is clear from Tables 2 to 4, when hydrogen was supplied together with the raw material isobutane to carry out the dehydrogenation reaction, the amount of carbon deposited on the catalyst was significantly reduced, and the catalyst activity was also significantly lowered. Was relaxed.

【0020】[0020]

【発明の効果】以上のように、本発明の方法により、表
面積150m2/g以上、細孔容積0.55cm3/g以
上、平均細孔径90〜200オングストロームであり、
かつ細孔径90〜200オングストロームの細孔が全細
孔容積の60%以上を占めるγ−アルミナ担体に酸化亜
鉛を担持してなる複合担体に、白金及びスズが担持され
ている触媒を用い、かつ原料アルカンとともに水素を供
給すれば、触媒上の炭素析出が抑制され、触媒劣化が著
しく緩和される。
As described above, according to the method of the present invention, the surface area is 150 m 2 / g or more, the pore volume is 0.55 cm 3 / g or more, the average pore diameter is 90 to 200 Å,
And a catalyst in which platinum and tin are supported on a composite carrier in which zinc oxide is supported on a γ-alumina carrier in which pores having a pore size of 90 to 200 angstroms occupy 60% or more of the total pore volume, and If hydrogen is supplied together with the raw material alkane, carbon deposition on the catalyst is suppressed, and catalyst deterioration is remarkably reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07B 61/00 300 C07B 61/00 300 C07C 5/333 C07C 5/333 (72)発明者 山本 進 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 浅岡 佐知夫 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07B 61/00 300 C07B 61/00 300 C07C 5/333 C07C 5/333 (72) Inventor Susumu Yamamoto Tsurumi, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Chuo 2-chome No. 1 Chiyoda Kako Construction Co., Ltd. (72) Inventor Sachio Asaoka 2-1-1 Tsurumi Chuo 2-chome, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Chichida Kako Construction Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 脱水素触媒の存在下、1分子当たり2〜
5個の炭素原子を含有する少なくとも1種のアルカンを
脱水素して少なくとも1種のアルケンを製造する方法に
おいて、前記脱水素触媒として、表面積150m2/g以
上、細孔容積0.55cm3/g以上、平均細孔径90〜
200オングストロームであり、かつ細孔径90〜20
0オングストロームの細孔が全細孔容積の60%以上を
占めるγ−アルミナ担体に酸化亜鉛を担持してなる複合
担体に、白金及びスズが担持されている触媒を用い、か
つ原料アルカンとともに水素を供給することを特徴とす
る方法。
1. The method according to claim 1, wherein the presence of a dehydrogenation catalyst is limited to 2 to 2 per molecule.
A method for producing at least one alkene by dehydrogenating at least one alkane containing 5 carbon atoms, wherein the dehydrogenation catalyst has a surface area of 150 m 2 / g or more and a pore volume of 0.55 cm 3 / g or more, average pore diameter 90 to
200 Å and a pore size of 90 to 20
Using a catalyst in which platinum and tin are supported on a composite carrier in which zinc oxide is supported on a γ-alumina carrier in which 0 angstrom pores occupy 60% or more of the total pore volume, and hydrogen together with the raw material alkane is used. A method characterized by providing.
【請求項2】 前記複合担体における酸化亜鉛の担持量
が5〜50重量%である請求項1記載の方法。
2. The method according to claim 1, wherein the loading amount of zinc oxide on the composite carrier is 5 to 50% by weight.
【請求項3】 前記複合担体上の白金の担持量が0.0
5〜1.5重量%である請求項1または2記載の方法。
3. The amount of platinum supported on the composite carrier is 0.0
3. The method according to claim 1, wherein the amount is 5 to 1.5% by weight.
【請求項4】 前記複合担体上のスズの担持量が0.5
〜10重量%である請求項1〜3のいずれか記載の方
法。
4. The amount of tin carried on the composite carrier is 0.5
The method according to claim 1, wherein the amount is from 10 to 10% by weight.
【請求項5】 前記複合担体に、更に周期律表の第1A
族および第2A族からなる群から選ばれる少なくとも1
つのアルカリ性金属が担持されている請求項1〜4のい
ずれか記載の方法。
5. The composite carrier further comprises 1A of the periodic table
At least one selected from the group consisting of group A and group 2A
5. The method according to claim 1, wherein two alkaline metals are supported.
【請求項6】 前記複合担体上のアルカリ性金属の担持
量が0.01〜10重量%である請求項5記載の方法。
6. The method according to claim 5, wherein the amount of the alkali metal carried on the composite carrier is 0.01 to 10% by weight.
【請求項7】 原料アルカンに対して水素を1:1〜
1:20のモル比で供給する請求項1〜6のいずれか記
載の方法。
7. Hydrogen is added in a ratio of 1: 1 to hydrogen to the raw alkane.
7. The method according to claim 1, wherein the molar ratio is 1:20.
【請求項8】 450℃〜650℃の反応温度で脱水素
する請求項1〜7のいずれか記載の方法。
8. The method according to claim 1, wherein the dehydrogenation is performed at a reaction temperature of 450 ° C. to 650 ° C.
【請求項9】 前記少なくとも1種のアルカンが、プロ
パン、n−ブタン、イソブタン、n−ペンタンまたは2
−メチルブタンである請求項1〜8のいずれか記載の方
法。
9. The method according to claim 9, wherein the at least one alkane is propane, n-butane, isobutane, n-pentane or 2
9. The method according to claim 1, which is -methylbutane.
【請求項10】 前記少なくとも1種のアルケンが、プ
ロピレン、ブテン−1、ブテン−2、イソブテン、ペン
テン−1、ペンテン−2、2−メチルブテン−1または
2−メチルブテン−2である請求項1〜9のいずれか記
載の方法。
10. The at least one alkene is propylene, butene-1, butene-2, isobutene, pentene-1, pentene-2, 2-methylbutene-1 or 2-methylbutene-2. 10. The method according to any one of items 9 to 9.
【請求項11】 前記脱水素触媒が還元性ガスの存在下
で高温還元処理してなる請求項1〜10のいずれか記載
の方法。
11. The method according to claim 1, wherein the dehydrogenation catalyst is subjected to a high-temperature reduction treatment in the presence of a reducing gas.
【請求項12】 前記高温還元処理が500〜700℃
の温度で行われる請求項11記載の方法。
12. The high-temperature reduction treatment is performed at 500 to 700 ° C.
The method according to claim 11, which is performed at a temperature of:
【請求項13】 前記還元性ガスが水素である請求項1
1又は12記載の方法。
13. The method according to claim 1, wherein the reducing gas is hydrogen.
13. The method according to 1 or 12.
JP8343155A 1996-12-24 1996-12-24 Dehydrogenation Pending JPH10182505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8343155A JPH10182505A (en) 1996-12-24 1996-12-24 Dehydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8343155A JPH10182505A (en) 1996-12-24 1996-12-24 Dehydrogenation

Publications (1)

Publication Number Publication Date
JPH10182505A true JPH10182505A (en) 1998-07-07

Family

ID=18359347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8343155A Pending JPH10182505A (en) 1996-12-24 1996-12-24 Dehydrogenation

Country Status (1)

Country Link
JP (1) JPH10182505A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037627A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP2000037626A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP2000044251A (en) * 1998-07-24 2000-02-15 Chiyoda Corp Spinel type multiple oxide and its production
JP2006198616A (en) * 2005-01-21 2006-08-03 Korea Research Inst Of Chemical Technology Novel platinum-based catalyst and process for producing the same
JP2008050338A (en) * 2006-08-22 2008-03-06 Hyosung Corp Method for producing dimethylnaphthalene using metal catalyst
JP2012528096A (en) * 2009-05-29 2012-11-12 エボニック オクセノ ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of 3-methylbut-1-ene by dehydration of 3-methylbutan-1-ol
JP2015027669A (en) * 2013-07-30 2015-02-12 サムスン トータル ペトロケミカルズ カンパニー リミテッド Manufacturing method of platinum-tin-metal-alumina catalyst for direct dehydrogenation reaction of normal-butane, and manufacturing method of c4 olefin using catalyst
WO2017159570A1 (en) * 2016-03-15 2017-09-21 Jxエネルギー株式会社 Unsaturated hydrocarbon production method and conjugated diene production method
US9782754B2 (en) 2012-07-26 2017-10-10 Saudi Basic Industries Corporation Alkane dehydrogenation catalyst and process for its preparation
JP2017197535A (en) * 2016-04-22 2017-11-02 Jxtgエネルギー株式会社 Method for producing conjugated diene
JP2019189585A (en) * 2018-04-27 2019-10-31 Jxtgエネルギー株式会社 Production method of unsaturated hydrocarbon
KR20200107186A (en) * 2019-03-06 2020-09-16 주식회사 엘지화학 A supported catalyst for oxidative dehydrogenation of alkane and method for preparing alkene using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037627A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP2000037626A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP2000044251A (en) * 1998-07-24 2000-02-15 Chiyoda Corp Spinel type multiple oxide and its production
JP4753724B2 (en) * 2005-01-21 2011-08-24 コリア リサーチ インスティチュート オブ ケミカル テクノロジー Novel platinum-based catalyst and method for producing the same
JP2006198616A (en) * 2005-01-21 2006-08-03 Korea Research Inst Of Chemical Technology Novel platinum-based catalyst and process for producing the same
JP2008050338A (en) * 2006-08-22 2008-03-06 Hyosung Corp Method for producing dimethylnaphthalene using metal catalyst
JP4523947B2 (en) * 2006-08-22 2010-08-11 ヒョスング コーポレーション Method for producing dimethylnaphthalene using metal catalyst
JP2012528096A (en) * 2009-05-29 2012-11-12 エボニック オクセノ ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of 3-methylbut-1-ene by dehydration of 3-methylbutan-1-ol
US9782754B2 (en) 2012-07-26 2017-10-10 Saudi Basic Industries Corporation Alkane dehydrogenation catalyst and process for its preparation
JP2015027669A (en) * 2013-07-30 2015-02-12 サムスン トータル ペトロケミカルズ カンパニー リミテッド Manufacturing method of platinum-tin-metal-alumina catalyst for direct dehydrogenation reaction of normal-butane, and manufacturing method of c4 olefin using catalyst
WO2017159570A1 (en) * 2016-03-15 2017-09-21 Jxエネルギー株式会社 Unsaturated hydrocarbon production method and conjugated diene production method
US10723674B2 (en) 2016-03-15 2020-07-28 Jxtg Nippon Oil & Energy Corporation Unsaturated hydrocarbon production method and conjugated diene production method
JP2017197535A (en) * 2016-04-22 2017-11-02 Jxtgエネルギー株式会社 Method for producing conjugated diene
JP2019189585A (en) * 2018-04-27 2019-10-31 Jxtgエネルギー株式会社 Production method of unsaturated hydrocarbon
KR20200107186A (en) * 2019-03-06 2020-09-16 주식회사 엘지화학 A supported catalyst for oxidative dehydrogenation of alkane and method for preparing alkene using the same

Similar Documents

Publication Publication Date Title
EP0557982B1 (en) Alkane dehydrogenation
US5430220A (en) Platinum and tin-containing catalyst and use thereof in alkane dehydrogenation
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
US6670303B1 (en) Catalyst having a bimodal pore radius distribution
US5219816A (en) Dehydrogenation catalysts and process for preparing the catalysts
JP2004537407A (en) catalyst
JPH10182505A (en) Dehydrogenation
JP3908313B2 (en) Dehydrogenation catalyst
AU2013311001B2 (en) A dehydrogenation catalyst for hydrocarbons and method of preparation thereof
JPH05103995A (en) Catalyst for disproportionating olefin and olefin disproportionation method using the same
JPH09173843A (en) Selective hydrogenation catalyst and method using this catalyst
US6498280B1 (en) Catalyst comprising an element from groups 8, 9 or 10 with good accessibility, and its use in a paraffin dehydrogenation process
EA032257B1 (en) Catalyst for isomerisation of paraffin hydrocarbons and method of preparation thereof
US5214227A (en) Low pressure dehydrogenation of light paraffins
JP4054116B2 (en) Dehydrogenation catalyst
EA023151B1 (en) Process for for alkane dehydrogenation and catalyst
KR102090234B1 (en) Preparation method of alumina support
JP4166333B2 (en) Dehydrogenation catalyst
JP3908314B2 (en) Dehydrogenation catalyst
JP4148775B2 (en) Catalyst with bimodal pore radius distribution
JP2000037629A (en) Dehydrogenation catalyst
WO1993012879A1 (en) Dehydrogenation catalysts and process for using same
JP2000037628A (en) Dehydrogenation catalyst
US4217205A (en) Catalysts for hydrocarbon conversion
KR101440694B1 (en) A catalyst for dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butane, 1,3-butadiene and iso-butene in high yield using the same