JP2000037627A - Dehydrogenation catalyst - Google Patents

Dehydrogenation catalyst

Info

Publication number
JP2000037627A
JP2000037627A JP10208749A JP20874998A JP2000037627A JP 2000037627 A JP2000037627 A JP 2000037627A JP 10208749 A JP10208749 A JP 10208749A JP 20874998 A JP20874998 A JP 20874998A JP 2000037627 A JP2000037627 A JP 2000037627A
Authority
JP
Japan
Prior art keywords
catalyst
supported
tin
group
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10208749A
Other languages
Japanese (ja)
Other versions
JP4166333B2 (en
Inventor
Yoshimi Okada
佳巳 岡田
Kenichi Imagawa
健一 今川
Susumu Yamamoto
進 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP20874998A priority Critical patent/JP4166333B2/en
Publication of JP2000037627A publication Critical patent/JP2000037627A/en
Application granted granted Critical
Publication of JP4166333B2 publication Critical patent/JP4166333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehydrogenation catalyst applicable to the production of alkenes by dehydrogenating alkanes which maintains high catalytic activity and selectivity over a long period even under high temperature reaction conditions. SOLUTION: A catalyst is prepared by a method in which at least one alkaline metal selected from the group consisting of platinum, tin, the group IA elements, and the group IIA elements of the periodic table is supported on a composite carrier in which zinc oxide is supported on γ-alumina carrier at least 150 m2/g in surface area, at least 0.55 cm3/g in pore volume, and 90-200 angstrom in average pore diameter in which the volume of pores 90-200 angstrom in pore diameter occupies at least 60% of the total pore volume, and the support of the alkaline metal is performed prior to that of tin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は脱水素触媒に関し、
より具体的にはアルカンの脱水素反応によりアルケンを
製造するのに用いる脱水素触媒に関する。
The present invention relates to a dehydrogenation catalyst,
More specifically, it relates to a dehydrogenation catalyst used for producing an alkene by a dehydrogenation reaction of an alkane.

【0002】[0002]

【従来の技術】近年、プロピレンやイソブチレンに代表
されるアルケンの需要が増えている。これは、プロピレ
ンを原料とするポリプロピレンの需要が包装材料や自動
車部品用樹脂として増大しており、また、イソブチレン
を原料として製造するガソリンの高オクタン価燃料用添
加剤メチル−t−ブチルエーテル(MTBE)の需要が
増大していること等によるものである。これらプロピレ
ンやイソブチレンは、ガソリン製造のための流動床式接
触分解(FCC)により得られ、あるいはエチレン製造
のための熱分解の副生物として得られるが、そのような
方法により得られる量には限度があり、他の製造方法の
確立が望まれている。このような状況下において、燃料
としての利用にとどまっているC3、C4類等のアルカン
を原料としてプロピレンやイソブチレン、あるいはn−
ブテン等のアルケンを製造することが各種試みられてい
る。このようにアルカンを原料としてアルケンを製造す
る方法としては、触媒存在下での接触脱水素反応による
方法が従来から有効な方法として知られている(例えば
特開平3−288548号公報参照)。そして、そのた
めの脱水素触媒としては、シリカ、アルミナ、ゼオライ
ト、活性炭などの担体上に金属や金属酸化物などの活性
物質を担持させたものが従来から用いられ、特に酸化ク
ロム/アルミナ触媒(例えば米国特許第4581339
号参照)、酸化亜鉛−白金−クロムをアルミナとともに
用いる触媒(例えば特開平7−206718号公報参
照)、白金/アルミナ触媒(例えば特公平7−4223
7号公報参照)などが古くから用いられている。
2. Description of the Related Art In recent years, demand for alkenes represented by propylene and isobutylene has been increasing. This is because the demand for polypropylene using propylene as a raw material is increasing as a resin for packaging materials and automobile parts, and the addition of methyl-t-butyl ether (MTBE), a high octane fuel additive for gasoline produced from isobutylene as a raw material. This is because demand is increasing. These propylene and isobutylene are obtained by fluidized bed catalytic cracking (FCC) for gasoline production or as a by-product of pyrolysis for ethylene production, but the amount obtained by such a method is limited. Therefore, establishment of another manufacturing method is desired. Under these circumstances, alkane such as C 3 and C 4 , which is used only as a fuel, is used as a raw material to produce propylene, isobutylene, or n-
Various attempts have been made to produce alkenes such as butenes. As a method for producing an alkene using an alkane as a raw material, a method based on a catalytic dehydrogenation reaction in the presence of a catalyst has been conventionally known as an effective method (see, for example, JP-A-3-288548). As a dehydrogenation catalyst therefor, a catalyst in which an active substance such as a metal or a metal oxide is supported on a carrier such as silica, alumina, zeolite, or activated carbon is conventionally used. In particular, a chromium oxide / alumina catalyst (for example, U.S. Pat. No. 4,581,339
), A catalyst using zinc oxide-platinum-chromium together with alumina (for example, see JP-A-7-206718), a platinum / alumina catalyst (for example, Japanese Patent Publication No. 7-4223).
No. 7) has been used for a long time.

【0003】脱水素反応は吸熱反応であることから一般
に反応は高温で行われ、このためコーク生成(触媒上へ
の炭素析出)による触媒劣化がしばしば見られる。その
ような場合は触媒の活性を維持するために頻繁に再生を
行う必要があり、プロセス効率の低下を招くことにな
る。こうした点に鑑み、特開平9−70535号公報お
よび特開平9−70544号公報は、特定のγ−アルミ
ナ担体に特定量の酸化亜鉛を担持してなる複合担体に白
金およびスズを担持することによって得られる、高活性
および高選択性であって従来の触媒よりも劣化速度が小
さい触媒を開示している。さらに、特願平8−3431
54号は、特定のγ−アルミナ担体に特定量の酸化亜鉛
を担持してなる複合担体に、白金およびスズとともに、
周期律表の第1A族および第2A族からなる群より選ば
れる少なくとも1つのアルカリ性金属を担持させること
によって得られる、炭素析出が抑制され劣化速度がさら
に改善された触媒を開示している。
[0003] Since the dehydrogenation reaction is an endothermic reaction, the reaction is generally carried out at a high temperature, so that catalyst deterioration due to coke formation (carbon deposition on the catalyst) is often observed. In such a case, it is necessary to frequently perform regeneration in order to maintain the activity of the catalyst, resulting in a decrease in process efficiency. In view of these points, JP-A-9-70535 and JP-A-9-70544 disclose a method in which platinum and tin are supported on a composite carrier in which a specific amount of zinc oxide is supported on a specific γ-alumina carrier. The resulting catalyst is disclosed as having high activity, high selectivity and a lower rate of degradation than conventional catalysts. Furthermore, Japanese Patent Application No. 8-34331
No. 54 is a composite carrier obtained by supporting a specific amount of zinc oxide on a specific γ-alumina carrier, together with platinum and tin,
Disclosed is a catalyst obtained by supporting at least one alkaline metal selected from the group consisting of Group 1A and Group 2A of the periodic table, in which carbon deposition is suppressed and the deterioration rate is further improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、触媒活
性および選択性、並びに高温の反応条件下における触媒
活性の劣化の抑制は未だ十分とはいえず、より触媒寿命
が長く安定性に優れた脱水素触媒が望まれている。すな
わち本発明は、アルカンの脱水素によるアルケンの製造
に用いられる脱水素触媒であって、高温の反応条件下に
おいても高い触媒活性と選択性が長期にわたって維持さ
れる脱水素触媒を提供するものである。
However, the suppression of catalyst activity and selectivity and deterioration of catalyst activity under high temperature reaction conditions cannot be said to be sufficient, and dehydrogenation having a longer catalyst life and excellent stability. A catalyst is desired. That is, the present invention provides a dehydrogenation catalyst used for production of an alkene by dehydrogenation of an alkane, wherein the dehydrogenation catalyst maintains high catalytic activity and selectivity for a long time even under high-temperature reaction conditions. is there.

【0005】[0005]

【課題を解決するための手段】本発明は、表面積150
2/g以上、細孔容積0.55cm3/g以上、平均細孔
径90〜200オングストロームであり、かつ細孔径9
0〜200オングストロームの細孔が全細孔容積の60
%以上を占めるγ−アルミナ担体に酸化亜鉛を担持して
なる複合担体に、白金、スズおよび周期律表の第1A族
および第2A族からなる群から選ばれる少なくとも1つ
のアルカリ性金属が担持され、該アルカリ性金属の担持
が該スズの担持よりも先に行われていることを特徴とす
る脱水素触媒を提供することにより、上記課題を解決す
る。
SUMMARY OF THE INVENTION The present invention is directed to a method for fabricating a surface having a surface area of 150.
m 2 / g or more, pore volume 0.55 cm 3 / g or more, average pore diameter 90 to 200 Å, and pore diameter 9
The pores of 0 to 200 angstroms have a total pore volume of 60
%, At least one alkaline metal selected from the group consisting of platinum, tin and Group 1A and Group 2A of the periodic table is supported on a composite carrier comprising zinc oxide supported on a γ-alumina carrier occupying at least The above object is achieved by providing a dehydrogenation catalyst characterized in that the loading of the alkaline metal is performed before the loading of the tin.

【0006】[0006]

【発明の実施の形態】固体触媒を用いたアルカンの脱水
素反応は本質的に気固系接触操作であることから、活性
を高めるためには活性金属の選択とともに触媒表面積を
大きくすることが重要である。また、選択性を高め、か
つ活性劣化を抑制するためには、異性化反応あるいは分
解反応を抑制して目的化合物を優先的に形成し、かつコ
ークスの沈着を抑制するような表面特性を与えることが
重要である。したがって、活性や選択性の低下を防止す
るためには、上記表面積や表面特性の変化が小さいこと
が重要となる。本発明では、特定のγ−アルミナ担体に
特定量の酸化亜鉛を担持してなる複合担体を用い、これ
に白金、スズおよび周期律表の第1A族および第2A族
からなる群から選ばれる少なくとも1つのアルカリ性金
属を担持させ、そのときアルカリ性金属をスズよりも先
に担持させることによって、複合担体上の酸性質をアル
カリ性金属で中和被覆し、これにより担体上へのコーク
スの沈着が効率的に防止され、大きな表面積及び好まし
い表面特性が長期に渡って維持される脱水素触媒を提供
するものである。
DETAILED DESCRIPTION OF THE INVENTION Since the dehydrogenation of alkanes using a solid catalyst is essentially a gas-solid contact operation, it is important to increase the surface area of the catalyst together with the selection of the active metal in order to increase the activity. It is. In order to increase selectivity and suppress activity deterioration, it is necessary to suppress the isomerization reaction or decomposition reaction and to form the target compound preferentially, and to provide surface characteristics that suppress coke deposition. is important. Therefore, in order to prevent a decrease in activity and selectivity, it is important that changes in the surface area and surface characteristics are small. In the present invention, a specific support is used in which a specific amount of zinc oxide is supported on a specific γ-alumina support, and at least one selected from the group consisting of platinum, tin, and groups 1A and 2A of the periodic table. By supporting one alkaline metal and then supporting the alkaline metal before tin, the acid properties on the composite carrier are neutralized and coated with the alkaline metal, thereby effectively depositing coke on the carrier. The present invention provides a dehydrogenation catalyst which is prevented from being damaged and has a large surface area and favorable surface properties maintained over a long period of time.

【0007】上記特定の多孔性γ−アルミナ担体は、表
面積が150m2/g以上、細孔容積が0.55cm3/g
以上、平均細孔径が90〜200オングストロームであ
り、かつ細孔径90〜200オングストロームの細孔が
全細孔容積の60%以上を占めるものである。平均細孔
径が90オングストロームより小さいとアルカン分子や
アルケン分子の細孔内拡散が律速になり、全触媒表面積
を有効に利用することができない。一方、平均細孔径が
200オングストロームより大きいと表面積が大きくと
れなくなる。上記条件を満足するγ−アルミナ担体は、
例えば特公平6−72005号公報に開示されており、
アルミニウム塩の中和により生成した水酸化アルミニウ
ムのスラリーを濾過洗浄し、これを脱水乾燥した後、4
00〜800℃で1〜6時間程度焼成することにより得
られる。
The specific porous γ-alumina carrier has a surface area of 150 m 2 / g or more and a pore volume of 0.55 cm 3 / g.
As described above, the average pore diameter is 90 to 200 angstroms, and the pores having a pore diameter of 90 to 200 angstroms occupy 60% or more of the total pore volume. If the average pore diameter is smaller than 90 angstroms, diffusion of alkane molecules and alkene molecules in the pores is rate-determining, and the entire catalyst surface area cannot be used effectively. On the other hand, if the average pore diameter is larger than 200 angstroms, the surface area cannot be increased. A γ-alumina support satisfying the above conditions is:
For example, it is disclosed in Japanese Patent Publication No. 6-72005,
The slurry of aluminum hydroxide produced by the neutralization of the aluminum salt was filtered and washed, and dehydrated and dried.
It is obtained by baking at 00 to 800 ° C. for about 1 to 6 hours.

【0008】上記特定の多孔性γ−アルミナ担体には、
酸化亜鉛[ZnO]を好ましくは5〜50重量%担持さ
せる。この酸化亜鉛はアルミナ表面にアルミナとの複合
体を形成し、好ましい表面特性を与える役割を果たすと
思われる。担持量が5重量%以下ではγ−アルミナ担体
表面をアルミナと酸化亜鉛の複合体が均一に覆うことが
できないため十分な効果が得られず、一方、担持量が5
0重量%を超えるとアルミナと酸化亜鉛との複合体の表
面特性が変化するとともに表面積の減少が著しいものと
なる。γ−アルミナ担体上に酸化亜鉛を担持させるに
は、硝酸亜鉛などの水溶液を担体に含浸させた後、乾燥
して焼成すればよい。
The above specific porous γ-alumina carrier includes:
Zinc oxide [ZnO] is preferably supported at 5 to 50% by weight. It is believed that this zinc oxide forms a complex with alumina on the alumina surface and plays a role in providing favorable surface properties. If the loading amount is less than 5% by weight, the surface of the γ-alumina carrier cannot be uniformly covered with the composite of alumina and zinc oxide, so that a sufficient effect cannot be obtained.
If the content exceeds 0% by weight, the surface characteristics of the composite of alumina and zinc oxide will change, and the surface area will decrease significantly. In order to carry zinc oxide on the γ-alumina carrier, the carrier may be impregnated with an aqueous solution such as zinc nitrate, dried and fired.

【0009】上記複合体上には白金を好ましくは0.0
5〜1.5重量%担持させる。ここで用いる白金化合物
としては、塩化白金酸、白金酸アンモニウム塩、臭化白
金酸、二塩化白金、四塩化白金水和物、二塩化カルボニ
ル白金二塩化物、ジニトロジアミン白金酸塩等が挙げら
れる。白金の担持は、当該複合担体に塩化白金酸等の白
金化合物の水溶液を含浸させ、次いでこれを焼成した
後、水素ガス中にて高温で還元する方法が通常用いられ
るが、本発明では必ずしも水素還元ではなく他の還元方
法を用いても良い。
[0009] Platinum, preferably 0.0
5 to 1.5% by weight is supported. Examples of the platinum compound used herein include chloroplatinic acid, ammonium platinate, platinum bromide, platinum dichloride, platinum tetrachloride hydrate, carbonyl platinum dichloride dichloride, dinitrodiamine platinum salt, and the like. . For supporting platinum, a method in which the composite carrier is impregnated with an aqueous solution of a platinum compound such as chloroplatinic acid and then calcined, and then reduced at a high temperature in hydrogen gas is usually used. Other reduction methods may be used instead of reduction.

【0010】上記複合担体上には白金とともにスズ及び
周期律表の第1A族及び第2A族からなる群から選ばれ
る少なくとも1つのアルカリ性金属を担持させる。その
場合において、アルカリ性金属をスズより先に担持させ
る。アルカリ性金属の担持量は0.01〜10重量%が
好ましい。本明細書において「アルカリ性金属」とは、
リチウム、ナトリウム、カリウム、ルビジウム、セシウ
ム、ベリリウム、マグネシウム、カルシウム、ストロン
チウム及びバリウムを包含する周期律表の第1A族及び
第2A族の金属元素をいう。担持させるのに用いるアル
カリ性金属の化合物としては、水溶性のもの及び/又は
アセトン等の有機溶媒に可溶のものが好ましい。そのよ
うな化合物の例としては、塩化カリウム、臭化カリウ
ム、ヨウ化カリウム、硝酸カリウム、硫酸カリウム、酢
酸カリウム、プロピオン酸カリウム、塩化ルビジウム、
臭化ルビジウム、ヨウ化ルビジウム、硝酸ルビジウム、
硫酸ルビジウム、酢酸ルビジウム、プロピオン酸ルビジ
ウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、
硝酸リチウム、硫酸リチウム、酢酸リチウム、プロピオ
ン酸リチウム、塩化セシウム、臭化セシウム、ヨウ化セ
シウム、硝酸セシウム、硫酸セシウム、酢酸セシウム、
プロピオン酸セシウム、塩化マグネシウム、臭化マグネ
シウム、ヨウ化マグネシウム、硝酸マグネシウム、硫酸
マグネシウム、酢酸マグネシウム、プロピオン酸マグネ
シウム、塩化カルシウム、臭化カルシウム、ヨウ化カル
シウム、硝酸カルシウム、硫酸カルシウム、酢酸カルシ
ウム、プロピオン酸カルシウム等がある。アルカリ性金
属の担持は、上記複合担体にアルカリ性金属化合物の水
溶液及び/又は有機溶媒溶液を含浸させて水または有機
溶媒を乾燥除去した後、高温処理する方法が通常用いら
れる。
On the composite carrier, platinum and at least one alkaline metal selected from the group consisting of Group 1A and Group 2A of the periodic table are supported together with platinum. In that case, the alkaline metal is supported before tin. The loading amount of the alkaline metal is preferably from 0.01 to 10% by weight. As used herein, "alkaline metal"
A metal element of Group 1A and Group 2A of the periodic table including lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium and barium. As a compound of an alkaline metal used for carrying, a water-soluble compound and / or a compound soluble in an organic solvent such as acetone are preferable. Examples of such compounds include potassium chloride, potassium bromide, potassium iodide, potassium nitrate, potassium sulfate, potassium acetate, potassium propionate, rubidium chloride,
Rubidium bromide, rubidium iodide, rubidium nitrate,
Rubidium sulfate, rubidium acetate, rubidium propionate, lithium chloride, lithium bromide, lithium iodide,
Lithium nitrate, lithium sulfate, lithium acetate, lithium propionate, cesium chloride, cesium bromide, cesium iodide, cesium nitrate, cesium sulfate, cesium acetate,
Cesium propionate, magnesium chloride, magnesium bromide, magnesium iodide, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium propionate, calcium chloride, calcium bromide, calcium iodide, calcium nitrate, calcium sulfate, calcium acetate, propionic acid There is calcium and the like. For supporting the alkaline metal, a method of impregnating the composite carrier with an aqueous solution of an alkaline metal compound and / or an organic solvent solution to dry and remove water or an organic solvent, and then performing a high temperature treatment is usually used.

【0011】アルカリ性金属を担持させた後、上記複合
担体上にスズを担持させる。スズの担持量は0.5〜1
0重量%が好ましい。ここで用いるスズ化合物として
は、水溶性のもの及び/又はアセトン等の有機溶媒に可
溶のものが好ましい。このようなスズ化合物としては、
臭化第一スズ、酢酸スズ、塩化第一スズ、塩化第二スズ
及びそれらの水和物や、塩化第二スズアセチルアセトナ
ート錯体、テトラメチルスズ、テトラエチルスズ、テト
ラブチルスズ、テトラフェニルスズ等が挙げられる。ス
ズの担持は、上記複合担体にスズ化合物の水溶液及び/
又は有機溶媒溶液等を含浸させて水又は有機溶媒を乾燥
除去した後、水素ガス中にて高温で還元する方法が通常
用いられるが、本発明では必ずしも水素還元でなく他の
還元方法を用いてもよい。
After supporting the alkaline metal, tin is supported on the composite carrier. Tin carrying amount is 0.5-1
0% by weight is preferred. The tin compound used here is preferably a water-soluble compound and / or a compound soluble in an organic solvent such as acetone. Such tin compounds include:
Stannous bromide, tin acetate, stannous chloride, stannic chloride and their hydrates, stannic chloride acetylacetonate complex, tetramethyltin, tetraethyltin, tetrabutyltin, tetraphenyltin, etc. No. The supporting of tin is carried out by adding an aqueous solution of a tin compound and / or
Or, after drying and removing water or organic solvent by impregnating with an organic solvent solution or the like, a method of reducing at a high temperature in hydrogen gas is usually used, but in the present invention, not necessarily a method of hydrogen reduction but using another reduction method. Is also good.

【0012】上記のようにして得られた触媒組成物は、
最終的に還元性ガスの存在下で高温還元処理すると高温
での劣化がより緩和される。ここで用いる還元性ガスと
しては水素または水素を含む混合ガスが好ましく、水素
ガスを単独で用いるのがより好ましい。通常、高温還元
処理は500〜700℃、好ましくは550〜650℃
の温度で、1〜20時間程度行う。なお、この高温還元
処理は、必ずしも触媒を反応管に充填する前に予め行う
必要はなく、触媒を反応管に充填した後、原料アルカン
を導入して脱水素反応を行う前に、水素ガスを反応管に
流通させて処理すればよい。
The catalyst composition obtained as described above comprises:
Finally, when high-temperature reduction treatment is performed in the presence of a reducing gas, deterioration at high temperatures is further alleviated. As the reducing gas used here, hydrogen or a mixed gas containing hydrogen is preferable, and it is more preferable to use hydrogen gas alone. Usually, the high-temperature reduction treatment is 500 to 700 ° C, preferably 550 to 650 ° C.
At a temperature of about 1 to 20 hours. The high-temperature reduction treatment does not necessarily need to be performed before the catalyst is charged into the reaction tube, and after the catalyst is charged into the reaction tube, hydrogen gas is introduced before the raw material alkane is introduced and the dehydrogenation reaction is performed. What is necessary is just to distribute | circulate and process through a reaction tube.

【0013】[0013]

【実施例】以下において、スズの担持に先行してアルカ
リ性金属を担持させた本発明の脱水素触媒Aと、スズの
担持後にアルカリ性金属を担持させた脱水素触媒Bを用
いて脱水素反応試験を行った例を示す。なお以下におい
て、%の値はすべて重量%である。
In the following, a dehydrogenation reaction test was carried out using a dehydrogenation catalyst A of the present invention in which an alkali metal was supported prior to tin loading and a dehydrogenation catalyst B in which an alkali metal was loaded after tin loading. Here is an example of performing the above. In the following, all values of% are% by weight.

【0014】(1)γ−アルミナ担体の製造 特公平6−72005号公報中の実施例1に記載される
ようにして、γ−アルミナ担体を製造した。この方法の
あらましを述べると、熱希硫酸中に激しく攪拌しながら
瞬時にアルミン酸ソーダ水溶液を加えることにより水酸
化アルミニウムスラリーの懸濁液(pH10)を得、こ
れを種子水酸化アルミニウムとして、攪拌を続けながら
熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間お
いて加える操作を繰り返して濾過洗浄ケーキを得、これ
を押し出し成形して乾燥した後、500℃で3時間焼成
するというものである。こうして得られるγ−アルミナ
の性状は典型的には下記の表1の通りである。
(1) Production of γ-alumina carrier A γ-alumina carrier was produced as described in Example 1 in JP-B-6-72005. In brief, this method was used to obtain a suspension of an aluminum hydroxide slurry (pH 10) by instantly adding an aqueous sodium aluminate solution while stirring vigorously in hot dilute sulfuric acid. Is repeated by alternately adding hot dilute sulfuric acid and aqueous sodium aluminate solution for a certain period of time to obtain a filter washing cake, extruding and drying it, and then baking it at 500 ° C. for 3 hours. . The properties of γ-alumina thus obtained are typically as shown in Table 1 below.

【表1】 [Table 1]

【0015】(2)脱水素触媒Aの製造 上記γ−アルミナ担体27.5gをとり、これにZnO
/Al23比が35/65になるように30%硝酸亜鉛
[Zn(NO32]水溶液を含浸させ、水分除去後、6
00℃で3時間焼成して複合担体を調製した。この複合
担体にPt担持量が0.3%になるように2.0%塩化
白金酸[H2PtCl6]水溶液を含浸させ、乾燥後40
0℃で3時間焼成した。次いで、K担持量が1.0%に
なるように1.5%硝酸カリウム[KNO3 ]水溶液を
含浸させ、風乾後に水素気流中400℃で3時間還元し
た。次いで、この還元後のカリウム−白金担持複合担体
にSn担持量が0.7%になるように0.4%塩化第一
スズ[SnCl2 ]メタノール溶液を含浸させ、乾燥後
に400℃で30分間水素還元を行って白金/カリウム
/スズ担持触媒Aを得た。
(2) Production of dehydrogenation catalyst A 27.5 g of the above-mentioned γ-alumina carrier was taken, and ZnO was added thereto.
30% zinc nitrate [Zn (NO 3 ) 2 ] aqueous solution so that the / Al 2 O 3 ratio becomes 35/65.
The composite support was prepared by firing at 00 ° C. for 3 hours. The composite carrier is impregnated with 2.0% aqueous solution of chloroplatinic acid [H 2 PtCl 6 ] so that the amount of Pt carried is 0.3%, and after impregnation, the solution is dried.
Baking at 0 ° C. for 3 hours. Then, a 1.5% aqueous solution of potassium nitrate [KNO 3 ] was impregnated so that the amount of supported K became 1.0%, and the mixture was air-dried and then reduced in a hydrogen stream at 400 ° C. for 3 hours. Then, the reduced potassium-platinum-supported composite carrier is impregnated with 0.4% stannous chloride [SnCl 2 ] methanol solution so that the amount of Sn supported becomes 0.7%, and after drying, it is heated at 400 ° C. for 30 minutes. By carrying out hydrogen reduction, a platinum / potassium / tin supported catalyst A was obtained.

【0016】(3)脱水素触媒Bの製造 上記γ−アルミナ担体27.5gをとり、これにZnO
/Al23比が35/65になるように30%硝酸亜鉛
[Zn(NO32]水溶液を含浸させ、水分除去後、6
00℃で3時間焼成して複合担体を調製した。この複合
担体にPt担持量が0.3%になるように2.0%塩化
白金酸[H2PtCl6]水溶液を含浸させ、乾燥後40
0℃で3時間焼成し、さらに水素気流中400℃で3時
間還元した。次いで、この還元後の白金担持複合担体に
Sn担持量が2.0%になるように2%塩化第一スズ
[SnCl2 ]メタノール溶液を含浸させ、乾燥後に4
00℃で30分間水素還元を行った。次いで、K担持量
が0.5%になるように1%硝酸カリウム[KNO3
水溶液を含浸させ、風乾して白金/スズ/カリウム担持
触媒Bを得た。
(3) Production of dehydrogenation catalyst B 27.5 g of the above-mentioned γ-alumina carrier was taken, and ZnO was added thereto.
30% zinc nitrate [Zn (NO 3 ) 2 ] aqueous solution so that the / Al 2 O 3 ratio becomes 35/65.
The composite support was prepared by firing at 00 ° C. for 3 hours. The composite carrier is impregnated with 2.0% aqueous solution of chloroplatinic acid [H 2 PtCl 6 ] so that the amount of Pt carried is 0.3%, and after impregnation, the solution is dried.
It was calcined at 0 ° C. for 3 hours, and further reduced at 400 ° C. for 3 hours in a hydrogen stream. Then, the reduced platinum-supported composite carrier is impregnated with a 2% methanol solution of stannous chloride [SnCl 2 ] so that the amount of Sn supported is 2.0%.
Hydrogen reduction was performed at 00 ° C. for 30 minutes. Next, 1% potassium nitrate [KNO 3 ] was added so that the amount of K carried was 0.5%.
An aqueous solution was impregnated and air-dried to obtain a platinum / tin / potassium supported catalyst B.

【0017】(4)脱水素反応試験 上記で得られた触媒AおよびBを直径18mmの石英製
反応管に充填し、水素流通下に600℃で3時間の処理
を行った後、窒素で十分なパージを行った。次いで、イ
ソブタンを原料として、温度560℃、空間速度GHS
V500hr-1で脱水素反応試験を20時間行い、反応
器出口ガスをガスクロマトグラフにより分析した。結果
を下記の表2に示す。
(4) Dehydrogenation reaction test The catalysts A and B obtained above were filled in a quartz reaction tube having a diameter of 18 mm, treated at 600 ° C. for 3 hours under a hydrogen flow, and then sufficiently treated with nitrogen. Was purged. Then, using isobutane as a raw material, at a temperature of 560 ° C. and a space velocity of GHS
A dehydrogenation reaction test was carried out at V 500 hr -1 for 20 hours, and the gas at the outlet of the reactor was analyzed by gas chromatography. The results are shown in Table 2 below.

【表2】 [Table 2]

【0018】表2から明らかなように、スズの担持に先
行してアルカリ性金属であるカリウムを担持させた触媒
によって脱水素反応を行ったところ、選択性を維持させ
たまま、脱水素触媒活性を著しく向上させることができ
るとともに、スズの使用量を低減することができた。
As is clear from Table 2, when the dehydrogenation reaction was carried out using a catalyst supporting potassium as an alkaline metal prior to supporting tin, the activity of the dehydrogenation catalyst was reduced while maintaining the selectivity. It was possible to remarkably improve and to reduce the amount of tin used.

【0019】[0019]

【発明の効果】以上のように、本発明の脱水素触媒は、
アルカンの脱水素反応によってアルケンを製造する際
に、高いレベルの選択性を維持したまま、脱水素触媒活
性が著しく向上する。
As described above, the dehydrogenation catalyst of the present invention comprises:
When an alkene is produced by an alkane dehydrogenation reaction, the dehydrogenation catalytic activity is significantly improved while maintaining a high level of selectivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 5/333 C07C 5/333 11/09 11/09 // C07B 61/00 300 C07B 61/00 300 (72)発明者 山本 進 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 Fターム(参考) 4G069 AA01 AA03 AA08 AA12 BA01A BA01B BB04A BB04B BB05B BB08B BB10B BB12B BC01A BC02B BC03A BC03B BC08A BC22A BC22B BC35A BC35B BC75A BC75B BD01B BD02B BD06B BD12B BE01B BE06B CB07 DA06 EC03X EC04X EC05X EC07X EC08X EC14X EC15X EC28 FA02 FA05 FA06 FA08 FB05 FB14 FB29 FB30 FB44 FB57 FB67 FB78 FC08 4H006 AA02 AC12 BA02 BA06 BA07 BA11 BA26 BA30 BA55 BA56 BA81 BC37 4H039 CA22 CA29 CC10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 5/333 C07C 5/333 11/09 11/09 // C07B 61/00 300 C07B 61/00 300 ( 72) Inventor Susumu Yamamoto 2-1-1, Tsurumichuo, Tsurumi-ku, Yokohama-shi, Kanagawa F-term in Chiyoda Kako Construction Co., Ltd. BC22B BC35A BC35B BC75A BC75B BD01B BD02B BD06B BD12B BE01B BE06B CB07 DA06 EC03X EC04X EC05X EC07X EC08X EC14X EC15X EC28 FA02 FA05 FA06 FA08 FB05 FB14 FB29 FB30 FB44 FB57 FB67 BA12 BA12 BA12 BA12 BA06 BA07 BA06 BA06 BA06 BA07 BA06 CC10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 表面積150m2/g以上、細孔容積0.
55cm3/g以上、平均細孔径90〜200オングスト
ロームであり、かつ細孔径90〜200オングストロー
ムの細孔が全細孔容積の60%以上を占めるγ−アルミ
ナ担体に酸化亜鉛を担持してなる複合担体に、白金、ス
ズおよび周期律表の第1A族および第2A族からなる群
から選ばれる少なくとも1つのアルカリ性金属が担持さ
れており、該アルカリ性金属の担持が該スズの担持より
先に行われていることを特徴とする脱水素触媒。
1. A surface area of 150 m 2 / g or more and a pore volume of 0.1 m 2 / g.
Composite comprising zinc oxide supported on a γ-alumina carrier having a pore size of at least 55 cm 3 / g, an average pore size of 90 to 200 Å, and pores having a pore size of 90 to 200 Å occupying 60% or more of the total pore volume. At least one alkali metal selected from the group consisting of platinum, tin and Group 1A and Group 2A of the periodic table is supported on the carrier, and the supporting of the alkaline metal is performed prior to the supporting of the tin. A dehydrogenation catalyst, comprising:
【請求項2】 前記複合担体における酸化亜鉛の担持量
が5〜50重量%である請求項1記載の触媒。
2. The catalyst according to claim 1, wherein the amount of zinc oxide carried on the composite carrier is 5 to 50% by weight.
【請求項3】 前記複合担体上の白金の担持量が0.0
5〜1.5重量%である請求項1又は2記載の触媒。
3. The amount of platinum supported on the composite carrier is 0.0
3. The catalyst according to claim 1, wherein the amount of the catalyst is 5 to 1.5% by weight.
【請求項4】 前記複合担体上のスズの担持量が0.5
〜10重量%である請求項1〜3のいずれか記載の触
媒。
4. The amount of tin carried on the composite carrier is 0.5
The catalyst according to any one of claims 1 to 3, which is 10 to 10% by weight.
【請求項5】 前記複合担体上のアルカリ性金属の担持
量が0.01〜10重量%である請求項1〜4のいずれ
か記載の触媒。
5. The catalyst according to claim 1, wherein the amount of the alkaline metal supported on the composite carrier is 0.01 to 10% by weight.
【請求項6】 前記アルカリ性金属がカリウムである請
求項1〜5のいずれか記載の触媒。
6. The catalyst according to claim 1, wherein the alkaline metal is potassium.
【請求項7】 請求項1〜6のいずれか記載の触媒を還
元性ガスの存在下で高温還元処理してなる触媒。
7. A catalyst obtained by subjecting the catalyst according to claim 1 to a high-temperature reduction treatment in the presence of a reducing gas.
【請求項8】 前記高温還元処理が500〜700℃の
温度で行われる請求項7記載の触媒。
8. The catalyst according to claim 7, wherein the high-temperature reduction treatment is performed at a temperature of 500 to 700 ° C.
JP20874998A 1998-07-24 1998-07-24 Dehydrogenation catalyst Expired - Fee Related JP4166333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20874998A JP4166333B2 (en) 1998-07-24 1998-07-24 Dehydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20874998A JP4166333B2 (en) 1998-07-24 1998-07-24 Dehydrogenation catalyst

Publications (2)

Publication Number Publication Date
JP2000037627A true JP2000037627A (en) 2000-02-08
JP4166333B2 JP4166333B2 (en) 2008-10-15

Family

ID=16561453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20874998A Expired - Fee Related JP4166333B2 (en) 1998-07-24 1998-07-24 Dehydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP4166333B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387433B1 (en) * 2000-12-16 2003-06-18 주식회사 효성 Dehydrogenation catalyst controlled crystalline properties of ZnO and Alumina
JP2005047743A (en) * 2003-07-28 2005-02-24 Nippon Oil Corp Method of producing hydrogen using heat conductive catalytic body
WO2017159371A1 (en) * 2016-03-15 2017-09-21 Jxエネルギー株式会社 Conjugated diene production method
WO2017159570A1 (en) * 2016-03-15 2017-09-21 Jxエネルギー株式会社 Unsaturated hydrocarbon production method and conjugated diene production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104248982B (en) * 2013-06-27 2016-12-28 中国科学院大连化学物理研究所 The preparation of La modified aluminium oxide supports and carrier and dehydrogenation of long-chain alkane catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232065A (en) * 1993-12-16 1995-09-05 Inst Fr Petrole Dehydrogenation catalyst for paraffin of c3 - c20 and its preparation method
JPH10182505A (en) * 1996-12-24 1998-07-07 Chiyoda Corp Dehydrogenation
JPH10180101A (en) * 1996-12-24 1998-07-07 Chiyoda Corp Dehydrogenation catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232065A (en) * 1993-12-16 1995-09-05 Inst Fr Petrole Dehydrogenation catalyst for paraffin of c3 - c20 and its preparation method
JPH10182505A (en) * 1996-12-24 1998-07-07 Chiyoda Corp Dehydrogenation
JPH10180101A (en) * 1996-12-24 1998-07-07 Chiyoda Corp Dehydrogenation catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387433B1 (en) * 2000-12-16 2003-06-18 주식회사 효성 Dehydrogenation catalyst controlled crystalline properties of ZnO and Alumina
JP2005047743A (en) * 2003-07-28 2005-02-24 Nippon Oil Corp Method of producing hydrogen using heat conductive catalytic body
WO2017159371A1 (en) * 2016-03-15 2017-09-21 Jxエネルギー株式会社 Conjugated diene production method
WO2017159570A1 (en) * 2016-03-15 2017-09-21 Jxエネルギー株式会社 Unsaturated hydrocarbon production method and conjugated diene production method
US10723674B2 (en) 2016-03-15 2020-07-28 Jxtg Nippon Oil & Energy Corporation Unsaturated hydrocarbon production method and conjugated diene production method

Also Published As

Publication number Publication date
JP4166333B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
US10307737B2 (en) Transition metal-noble metal complex oxide catalyst for dehydrogenation prepared by one-pot synthesis and use thereof
EP0557982B1 (en) Alkane dehydrogenation
JP4391230B2 (en) catalyst
US5219816A (en) Dehydrogenation catalysts and process for preparing the catalysts
JP3908313B2 (en) Dehydrogenation catalyst
AU2013311001B2 (en) A dehydrogenation catalyst for hydrocarbons and method of preparation thereof
JP5345058B2 (en) Method for reactivating metathesis catalyst and method for producing olefins including reactivation step thereof
JPH10182505A (en) Dehydrogenation
JP4054116B2 (en) Dehydrogenation catalyst
JP2000317310A (en) Catalyst containing group viii, ix or x element having excellent accessibility and use thereof in dehydrogenation of paraffin
KR102162079B1 (en) Method of preparing catalyst support and dehydrogenation catalysts
US5214227A (en) Low pressure dehydrogenation of light paraffins
EP2296809B1 (en) Preparation of sulfur-based supports for catalytic reforming
JP4166333B2 (en) Dehydrogenation catalyst
JP3908314B2 (en) Dehydrogenation catalyst
JP2000037629A (en) Dehydrogenation catalyst
JP2000512539A (en) Selective aromatization catalyst
JP2000037628A (en) Dehydrogenation catalyst
JP2008526503A (en) Reforming catalyst with chelation promoter
WO1993012879A1 (en) Dehydrogenation catalysts and process for using same
US4217205A (en) Catalysts for hydrocarbon conversion
KR101440694B1 (en) A catalyst for dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butane, 1,3-butadiene and iso-butene in high yield using the same
KR20170052461A (en) Transition Metal-Noble Metal Complex Oxide Catalysts Prepared by One-Pot for Dehydrogenation and Use Thereof
KR101440695B1 (en) A catalyst with increased selectivity for n-butene and 1,3-butadiene in dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butane, 1,3-butadiene and iso-butene in high yield using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees