JP4166333B2 - Dehydrogenation catalyst - Google Patents

Dehydrogenation catalyst Download PDF

Info

Publication number
JP4166333B2
JP4166333B2 JP20874998A JP20874998A JP4166333B2 JP 4166333 B2 JP4166333 B2 JP 4166333B2 JP 20874998 A JP20874998 A JP 20874998A JP 20874998 A JP20874998 A JP 20874998A JP 4166333 B2 JP4166333 B2 JP 4166333B2
Authority
JP
Japan
Prior art keywords
composite carrier
supported
tin
platinum
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20874998A
Other languages
Japanese (ja)
Other versions
JP2000037627A (en
Inventor
佳巳 岡田
健一 今川
進 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP20874998A priority Critical patent/JP4166333B2/en
Publication of JP2000037627A publication Critical patent/JP2000037627A/en
Application granted granted Critical
Publication of JP4166333B2 publication Critical patent/JP4166333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は脱水素触媒の製造方法に関し、より具体的にはアルカンの脱水素反応によりアルケンを製造するのに用いる脱水素触媒の製造方法に関する。
【0002】
【従来の技術】
近年、プロピレンやイソブチレンに代表されるアルケンの需要が増えている。これは、プロピレンを原料とするポリプロピレンの需要が包装材料や自動車部品用樹脂として増大しており、また、イソブチレンを原料として製造するガソリンの高オクタン価燃料用添加剤メチル−t−ブチルエーテル(MTBE)の需要が増大していること等によるものである。これらプロピレンやイソブチレンは、ガソリン製造のための流動床式接触分解(FCC)により得られ、あるいはエチレン製造のための熱分解の副生物として得られるが、そのような方法により得られる量には限度があり、他の製造方法の確立が望まれている。このような状況下において、燃料としての利用にとどまっているC3、C4類等のアルカンを原料としてプロピレンやイソブチレン、あるいはn−ブテン等のアルケンを製造することが各種試みられている。このようにアルカンを原料としてアルケンを製造する方法としては、触媒存在下での接触脱水素反応による方法が従来から有効な方法として知られている(例えば特開平3−288548号公報参照)。そして、そのための脱水素触媒としては、シリカ、アルミナ、ゼオライト、活性炭などの担体上に金属や金属酸化物などの活性物質を担持させたものが従来から用いられ、特に酸化クロム/アルミナ触媒(例えば米国特許第4581339号参照)、酸化亜鉛−白金−クロムをアルミナとともに用いる触媒(例えば特開平7−206718号公報参照)、白金/アルミナ触媒(例えば特公平7−42237号公報参照)などが古くから用いられている。
【0003】
脱水素反応は吸熱反応であることから一般に反応は高温で行われ、このためコーク生成(触媒上への炭素析出)による触媒劣化がしばしば見られる。そのような場合は触媒の活性を維持するために頻繁に再生を行う必要があり、プロセス効率の低下を招くことになる。こうした点に鑑み、特開平9−70535号公報および特開平9−70544号公報は、特定のγ−アルミナ担体に特定量の酸化亜鉛を担持してなる複合担体に白金およびスズを担持することによって得られる、高活性および高選択性であって従来の触媒よりも劣化速度が小さい触媒を開示している。さらに、特願平8−343154号は、特定のγ−アルミナ担体に特定量の酸化亜鉛を担持してなる複合担体に、白金およびスズとともに、周期律表の第1A族および第2A族からなる群より選ばれる少なくとも1つのアルカリ性金属を担持させることによって得られる、炭素析出が抑制され劣化速度がさらに改善された触媒を開示している。
【0004】
【発明が解決しようとする課題】
しかしながら、触媒活性および選択性、並びに高温の反応条件下における触媒活性の劣化の抑制は未だ十分とはいえず、より触媒寿命が長く安定性に優れた脱水素触媒が望まれている。すなわち本発明は、アルカンの脱水素によるアルケンの製造に用いられる脱水素触媒であって、高温の反応条件下においても高い触媒活性と選択性が長期にわたって維持される脱水素触媒を製造する方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、以下の工程(a)〜(d)からなる脱水素触媒の製造方法を提供することにより、上記課題を解決する
(a)表面積150m /g以上、細孔容積0.55cm /g以上、平均細孔径90〜200オングストロームであり、かつ細孔径90〜200オングストロームの細孔が全細孔容積の60%以上を占めるγ−アルミナ担体を用意する工程;
(b)工程(a)で用意したγ−アルミナ担体に酸化亜鉛を担持することにより、複合担体を得る工程;
(c)工程(b)で得た複合担体に、白金および周期律表の第1A族および第2A族からなる群から選ばれる少なくとも1つのアルカリ性金属を担持する工程;および
(d)工程(c)で白金およびアルカリ性金属を担持した複合担体に、スズを担持する工程
【0006】
【発明の実施の形態】
固体触媒を用いたアルカンの脱水素反応は本質的に気固系接触操作であることから、活性を高めるためには活性金属の選択とともに触媒表面積を大きくすることが重要である。また、選択性を高め、かつ活性劣化を抑制するためには、異性化反応あるいは分解反応を抑制して目的化合物を優先的に形成し、かつコークスの沈着を抑制するような表面特性を与えることが重要である。したがって、活性や選択性の低下を防止するためには、上記表面積や表面特性の変化が小さいことが重要となる。本発明では、特定のγ−アルミナ担体に特定量の酸化亜鉛を担持してなる複合担体を用い、これに白金、スズおよび周期律表の第1A族および第2A族からなる群から選ばれる少なくとも1つのアルカリ性金属を担持させ、そのときアルカリ性金属をスズよりも先に担持させることによって、複合担体上の酸性質をアルカリ性金属で中和被覆し、これにより担体上へのコークスの沈着が効率的に防止され、大きな表面積及び好ましい表面特性が長期に渡って維持される脱水素触媒を提供するものである。
【0007】
上記特定の多孔性γ−アルミナ担体は、表面積が150m2/g以上、細孔容積が0.55cm3/g以上、平均細孔径が90〜200オングストロームであり、かつ細孔径90〜200オングストロームの細孔が全細孔容積の60%以上を占めるものである。平均細孔径が90オングストロームより小さいとアルカン分子やアルケン分子の細孔内拡散が律速になり、全触媒表面積を有効に利用することができない。一方、平均細孔径が200オングストロームより大きいと表面積が大きくとれなくなる。上記条件を満足するγ−アルミナ担体は、例えば特公平6−72005号公報に開示されており、アルミニウム塩の中和により生成した水酸化アルミニウムのスラリーを濾過洗浄し、これを脱水乾燥した後、400〜800℃で1〜6時間程度焼成することにより得られる。
【0008】
上記特定の多孔性γ−アルミナ担体には、酸化亜鉛[ZnO]を好ましくは5〜50重量%担持させる。この酸化亜鉛はアルミナ表面にアルミナとの複合体を形成し、好ましい表面特性を与える役割を果たすと思われる。担持量が5重量%以下ではγ−アルミナ担体表面をアルミナと酸化亜鉛の複合体が均一に覆うことができないため十分な効果が得られず、一方、担持量が50重量%を超えるとアルミナと酸化亜鉛との複合体の表面特性が変化するとともに表面積の減少が著しいものとなる。γ−アルミナ担体上に酸化亜鉛を担持させるには、硝酸亜鉛などの水溶液を担体に含浸させた後、乾燥して焼成すればよい。
【0009】
上記複合体上には白金を好ましくは0.05〜1.5重量%担持させる。ここで用いる白金化合物としては、塩化白金酸、白金酸アンモニウム塩、臭化白金酸、二塩化白金、四塩化白金水和物、二塩化カルボニル白金二塩化物、ジニトロジアミン白金酸塩等が挙げられる。白金の担持は、当該複合担体に塩化白金酸等の白金化合物の水溶液を含浸させ、次いでこれを焼成した後、水素ガス中にて高温で還元する方法が通常用いられるが、本発明では必ずしも水素還元ではなく他の還元方法を用いても良い。
【0010】
上記複合担体上には白金とともにスズ及び周期律表の第1A族及び第2A族からなる群から選ばれる少なくとも1つのアルカリ性金属を担持させる。その場合において、アルカリ性金属をスズより先に担持させる。アルカリ性金属の担持量は0.01〜10重量%が好ましい。本明細書において「アルカリ性金属」とは、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウムを包含する周期律表の第1A族及び第2A族の金属元素をいう。担持させるのに用いるアルカリ性金属の化合物としては、水溶性のもの及び/又はアセトン等の有機溶媒に可溶のものが好ましい。そのような化合物の例としては、塩化カリウム、臭化カリウム、ヨウ化カリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、プロピオン酸カリウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、硝酸ルビジウム、硫酸ルビジウム、酢酸ルビジウム、プロピオン酸ルビジウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、プロピオン酸リチウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、硝酸セシウム、硫酸セシウム、酢酸セシウム、プロピオン酸セシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、酢酸マグネシウム、プロピオン酸マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、硝酸カルシウム、硫酸カルシウム、酢酸カルシウム、プロピオン酸カルシウム等がある。アルカリ性金属の担持は、上記複合担体にアルカリ性金属化合物の水溶液及び/又は有機溶媒溶液を含浸させて水または有機溶媒を乾燥除去した後、高温処理する方法が通常用いられる。
【0011】
アルカリ性金属を担持させた後、上記複合担体上にスズを担持させる。スズの担持量は0.5〜10重量%が好ましい。ここで用いるスズ化合物としては、水溶性のもの及び/又はアセトン等の有機溶媒に可溶のものが好ましい。このようなスズ化合物としては、臭化第一スズ、酢酸スズ、塩化第一スズ、塩化第二スズ及びそれらの水和物や、塩化第二スズアセチルアセトナート錯体、テトラメチルスズ、テトラエチルスズ、テトラブチルスズ、テトラフェニルスズ等が挙げられる。スズの担持は、上記複合担体にスズ化合物の水溶液及び/又は有機溶媒溶液等を含浸させて水又は有機溶媒を乾燥除去した後、水素ガス中にて高温で還元する方法が通常用いられるが、本発明では必ずしも水素還元でなく他の還元方法を用いてもよい。
【0012】
上記のようにして得られた触媒組成物は、最終的に還元性ガスの存在下で高温還元処理すると高温での劣化がより緩和される。ここで用いる還元性ガスとしては水素または水素を含む混合ガスが好ましく、水素ガスを単独で用いるのがより好ましい。通常、高温還元処理は500〜700℃、好ましくは550〜650℃の温度で、1〜20時間程度行う。なお、この高温還元処理は、必ずしも触媒を反応管に充填する前に予め行う必要はなく、触媒を反応管に充填した後、原料アルカンを導入して脱水素反応を行う前に、水素ガスを反応管に流通させて処理すればよい。
【0013】
【実施例】
以下において、スズの担持に先行してアルカリ性金属を担持させた本発明の脱水素触媒Aと、スズの担持後にアルカリ性金属を担持させた脱水素触媒Bを用いて脱水素反応試験を行った例を示す。なお以下において、%の値はすべて重量%である。
【0014】
(1)γ−アルミナ担体の製造
特公平6−72005号公報中の実施例1に記載されるようにして、γ−アルミナ担体を製造した。この方法のあらましを述べると、熱希硫酸中に激しく攪拌しながら瞬時にアルミン酸ソーダ水溶液を加えることにより水酸化アルミニウムスラリーの懸濁液(pH10)を得、これを種子水酸化アルミニウムとして、攪拌を続けながら熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間おいて加える操作を繰り返して濾過洗浄ケーキを得、これを押し出し成形して乾燥した後、500℃で3時間焼成するというものである。こうして得られるγ−アルミナの性状は典型的には下記の表1の通りである。
【表1】

Figure 0004166333
【0015】
(2)脱水素触媒Aの製造
上記γ−アルミナ担体27.5gをとり、これにZnO/Al23比が35/65になるように30%硝酸亜鉛[Zn(NO32]水溶液を含浸させ、水分除去後、600℃で3時間焼成して複合担体を調製した。この複合担体にPt担持量が0.3%になるように2.0%塩化白金酸[H2PtCl6]水溶液を含浸させ、乾燥後400℃で3時間焼成した。次いで、K担持量が1.0%になるように1.5%硝酸カリウム[KNO3 ]水溶液を含浸させ、風乾後に水素気流中400℃で3時間還元した。次いで、この還元後のカリウム−白金担持複合担体にSn担持量が0.7%になるように0.4%塩化第一スズ[SnCl2 ]メタノール溶液を含浸させ、乾燥後に400℃で30分間水素還元を行って白金/カリウム/スズ担持触媒Aを得た。
【0016】
(3)脱水素触媒Bの製造
上記γ−アルミナ担体27.5gをとり、これにZnO/Al23比が35/65になるように30%硝酸亜鉛[Zn(NO32]水溶液を含浸させ、水分除去後、600℃で3時間焼成して複合担体を調製した。この複合担体にPt担持量が0.3%になるように2.0%塩化白金酸[H2PtCl6]水溶液を含浸させ、乾燥後400℃で3時間焼成し、さらに水素気流中400℃で3時間還元した。次いで、この還元後の白金担持複合担体にSn担持量が2.0%になるように2%塩化第一スズ[SnCl2 ]メタノール溶液を含浸させ、乾燥後に400℃で30分間水素還元を行った。次いで、K担持量が0.5%になるように1%硝酸カリウム[KNO3 ]水溶液を含浸させ、風乾して白金/スズ/カリウム担持触媒Bを得た。
【0017】
(4)脱水素反応試験
上記で得られた触媒AおよびBを直径18mmの石英製反応管に充填し、水素流通下に600℃で3時間の処理を行った後、窒素で十分なパージを行った。次いで、イソブタンを原料として、温度560℃、空間速度GHSV500hr-1で脱水素反応試験を20時間行い、反応器出口ガスをガスクロマトグラフにより分析した。結果を下記の表2に示す。
【表2】
Figure 0004166333
【0018】
表2から明らかなように、スズの担持に先行してアルカリ性金属であるカリウムを担持させた触媒によって脱水素反応を行ったところ、選択性を維持させたまま、脱水素触媒活性を著しく向上させることができるとともに、スズの使用量を低減することができた。
【0019】
【発明の効果】
以上のように、本発明の脱水素触媒は、アルカンの脱水素反応によってアルケンを製造する際に、高いレベルの選択性を維持したまま、脱水素触媒活性が著しく向上する。[0001]
BACKGROUND OF THE INVENTION
Relates to a manufacturing method of the present invention is the dehydrogenation catalyst, more specifically a method for the preparation of dehydrogenation catalysts used to produce alkene by dehydrogenation of alkanes.
[0002]
[Prior art]
In recent years, demand for alkenes represented by propylene and isobutylene has increased. This is because demand for polypropylene using propylene as a raw material is increasing as a packaging material and resin for automobile parts, and methyl-t-butyl ether (MTBE), an additive for high octane fuel in gasoline produced using isobutylene as a raw material. This is because demand is increasing. These propylene and isobutylene can be obtained by fluidized bed catalytic cracking (FCC) for gasoline production or as a by-product of thermal cracking for ethylene production, but the amount obtained by such a method is limited. Therefore, establishment of another manufacturing method is desired. Under such circumstances, various attempts have been made to produce alkene such as propylene, isobutylene, or n-butene using as raw materials alkanes such as C 3 and C 4 which are only used as fuel. Thus, as a method for producing alkenes using alkane as a raw material, a method based on catalytic dehydrogenation reaction in the presence of a catalyst has been conventionally known as an effective method (see, for example, JP-A-3-288548). As a dehydrogenation catalyst for that purpose, a catalyst in which an active substance such as a metal or a metal oxide is supported on a carrier such as silica, alumina, zeolite, activated carbon or the like is conventionally used, and in particular, a chromium oxide / alumina catalyst (for example, U.S. Pat. No. 4,581,339), catalysts using zinc oxide-platinum-chromium together with alumina (for example, see JP-A-7-206718), platinum / alumina catalysts (for example, see JP-B-7-42237) have been used for a long time. It is used.
[0003]
Since the dehydrogenation reaction is an endothermic reaction, the reaction is generally carried out at a high temperature. For this reason, catalyst deterioration due to coke formation (carbon deposition on the catalyst) is often observed. In such a case, it is necessary to regenerate frequently in order to maintain the activity of the catalyst, leading to a decrease in process efficiency. In view of these points, Japanese Patent Application Laid-Open Nos. 9-70535 and 9-70544 propose that platinum and tin are supported on a composite carrier in which a specific amount of zinc oxide is supported on a specific γ-alumina carrier. Disclosed is a resulting catalyst having high activity and selectivity and a lower degradation rate than conventional catalysts. Further, Japanese Patent Application No. 8-343154 consists of a group 1A and a group 2A of the periodic table together with platinum and tin on a composite carrier in which a specific amount of zinc oxide is supported on a specific γ-alumina support. A catalyst obtained by supporting at least one alkaline metal selected from the group and having a further improved deterioration rate by suppressing carbon deposition is disclosed.
[0004]
[Problems to be solved by the invention]
However, catalyst activity and selectivity, and suppression of catalyst activity deterioration under high-temperature reaction conditions are still not sufficient, and a dehydrogenation catalyst having a longer catalyst life and excellent stability is desired. That is, the present invention is a dehydrogenation catalyst used in the production of alkenes by dehydrogenation of an alkane, the method for producing the dehydrogenation catalyst selectivity and high catalytic activity even at high temperature reaction conditions can be maintained for a long time It is to provide.
[0005]
[Means for Solving the Problems]
The present invention solves the above problems by providing a method for producing a dehydrogenation catalyst comprising the following steps (a) to (d) :
(A) A surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 200 angstroms, and pores having a pore diameter of 90 to 200 angstroms are 60% or more of the total pore volume Preparing a γ-alumina support occupying
(B) A step of obtaining a composite carrier by supporting zinc oxide on the γ-alumina carrier prepared in step (a);
(C) a step of supporting platinum and at least one alkaline metal selected from the group consisting of Group 1A and Group 2A of the periodic table on the composite carrier obtained in Step (b); and
(D) A step of supporting tin on the composite carrier supporting platinum and an alkaline metal in step (c) .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Since the dehydrogenation reaction of alkane using a solid catalyst is essentially a gas-solid contact operation, it is important to increase the catalyst surface area along with the selection of the active metal in order to increase the activity. In addition, in order to enhance selectivity and suppress activity degradation, surface properties should be given such that the isomerization reaction or decomposition reaction is suppressed to preferentially form the target compound and coke deposition is suppressed. is important. Therefore, in order to prevent a decrease in activity and selectivity, it is important that the change in the surface area and surface characteristics is small. In the present invention, a composite carrier obtained by supporting a specific amount of zinc oxide on a specific γ-alumina carrier is used, and at least selected from the group consisting of platinum, tin, and groups 1A and 2A of the periodic table By supporting one alkaline metal and then supporting the alkaline metal prior to tin, the acid property on the composite carrier is neutralized with an alkaline metal, thereby efficiently depositing coke on the carrier. Therefore, the present invention provides a dehydrogenation catalyst that can be prevented and maintains a large surface area and favorable surface characteristics over a long period of time.
[0007]
The specific porous γ-alumina support has a surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 200 angstroms, and a pore diameter of 90 to 200 angstroms. The pores occupy 60% or more of the total pore volume. If the average pore diameter is smaller than 90 angstroms, the diffusion of alkane molecules or alkene molecules in the pores becomes rate-determined, and the entire catalyst surface area cannot be used effectively. On the other hand, if the average pore diameter is larger than 200 Å, the surface area cannot be increased. The γ-alumina carrier satisfying the above conditions is disclosed in, for example, Japanese Patent Publication No. 6-72005, and after filtering and washing the slurry of aluminum hydroxide produced by neutralization of the aluminum salt, dehydrating and drying it, It is obtained by baking at 400 to 800 ° C. for about 1 to 6 hours.
[0008]
The specific porous γ-alumina carrier preferably carries 5 to 50% by weight of zinc oxide [ZnO]. This zinc oxide appears to play a role in forming a complex with alumina on the surface of the alumina and imparting favorable surface properties. If the supported amount is 5% by weight or less, the surface of the γ-alumina support cannot be uniformly covered with the composite of alumina and zinc oxide, so that a sufficient effect cannot be obtained. On the other hand, if the supported amount exceeds 50% by weight, alumina and The surface properties of the composite with zinc oxide change and the surface area decreases markedly. In order to support zinc oxide on the γ-alumina carrier, the carrier may be impregnated with an aqueous solution such as zinc nitrate, then dried and fired.
[0009]
Preferably, 0.05 to 1.5% by weight of platinum is supported on the composite. Examples of the platinum compound used here include chloroplatinic acid, ammonium platinate, bromoplatinic acid, platinum dichloride, platinum tetrachloride hydrate, carbonylplatinum platinum dichloride, and dinitrodiamine platinate. . For the support of platinum, a method of impregnating the composite carrier with an aqueous solution of a platinum compound such as chloroplatinic acid, and then firing it, followed by reduction in hydrogen gas at a high temperature is usually used. Other reduction methods may be used instead of reduction.
[0010]
On the composite carrier, platinum and at least one alkaline metal selected from the group consisting of Group 1A and Group 2A of the periodic table are supported together with platinum. In that case, the alkaline metal is supported before the tin. The supported amount of alkaline metal is preferably 0.01 to 10% by weight. As used herein, “alkaline metal” refers to Group 1A and Group 2A metal elements of the periodic table including lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium. As the alkali metal compound used for supporting, a water-soluble compound and / or a compound soluble in an organic solvent such as acetone is preferable. Examples of such compounds include potassium chloride, potassium bromide, potassium iodide, potassium nitrate, potassium sulfate, potassium acetate, potassium propionate, rubidium chloride, rubidium bromide, rubidium iodide, rubidium nitrate, rubidium sulfate, acetic acid. Rubidium, rubidium propionate, lithium chloride, lithium bromide, lithium iodide, lithium nitrate, lithium sulfate, lithium acetate, lithium propionate, cesium chloride, cesium bromide, cesium iodide, cesium nitrate, cesium sulfate, cesium acetate, Cesium propionate, magnesium chloride, magnesium bromide, magnesium iodide, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium propionate, calcium chloride, calcium bromide, calcium iodide, nitric acid Calcium, calcium sulfate, calcium acetate, there is calcium propionate and the like. The alkaline metal is usually supported by a method in which the above composite carrier is impregnated with an aqueous solution of an alkaline metal compound and / or an organic solvent solution, and water or an organic solvent is removed by drying, followed by high-temperature treatment.
[0011]
After supporting the alkaline metal, tin is supported on the composite carrier. The supported amount of tin is preferably 0.5 to 10% by weight. As a tin compound used here, a water-soluble thing and / or a thing soluble in organic solvents, such as acetone, are preferable. Such tin compounds include stannous bromide, tin acetate, stannous chloride, stannic chloride and their hydrates, stannic chloride acetylacetonate complex, tetramethyltin, tetraethyltin, Examples include tetrabutyltin and tetraphenyltin. For the support of tin, a method in which the above composite carrier is impregnated with an aqueous solution of a tin compound and / or an organic solvent solution and the like is dried and removed, and then reduced at high temperature in hydrogen gas. In the present invention, other reduction methods may be used instead of hydrogen reduction.
[0012]
When the catalyst composition obtained as described above is finally subjected to a high temperature reduction treatment in the presence of a reducing gas, deterioration at a high temperature is further alleviated. As the reducing gas used here, hydrogen or a mixed gas containing hydrogen is preferable, and it is more preferable to use hydrogen gas alone. Usually, the high-temperature reduction treatment is performed at a temperature of 500 to 700 ° C., preferably 550 to 650 ° C. for about 1 to 20 hours. This high temperature reduction treatment is not necessarily performed in advance before filling the reaction tube with the catalyst, and after filling the reaction tube with the hydrogen gas before introducing the raw material alkane and performing the dehydrogenation reaction. What is necessary is just to distribute | circulate and process to a reaction tube.
[0013]
【Example】
In the following, a dehydrogenation reaction test was conducted using the dehydrogenation catalyst A of the present invention in which an alkaline metal was supported prior to the support of tin and the dehydrogenation catalyst B in which an alkaline metal was supported after the support of tin. Indicates. In the following, all values of% are% by weight.
[0014]
(1) Production of γ-alumina carrier A γ-alumina carrier was produced as described in Example 1 of JP-B-6-72005. The outline of this method is as follows. A suspension of aluminum hydroxide slurry (pH 10) is obtained by instantly adding a sodium aluminate aqueous solution while stirring vigorously in hot dilute sulfuric acid, and this is used as seed aluminum hydroxide and stirred. The process of repeatedly adding hot dilute sulfuric acid and aqueous sodium aluminate solution for a fixed time is repeated to obtain a filter washed cake, which is extruded and dried, and then baked at 500 ° C. for 3 hours. . The properties of γ-alumina thus obtained are typically as shown in Table 1 below.
[Table 1]
Figure 0004166333
[0015]
(2) Production of dehydrogenation catalyst A 27.5 g of the above-mentioned γ-alumina support is taken, and 30% zinc nitrate [Zn (NO 3 ) 2 ] aqueous solution is added so that the ZnO / Al 2 O 3 ratio is 35/65. After the moisture was removed, the composite carrier was prepared by baking at 600 ° C. for 3 hours. This composite carrier was impregnated with a 2.0% chloroplatinic acid [H 2 PtCl 6 ] aqueous solution so that the amount of Pt supported was 0.3%, dried and then calcined at 400 ° C. for 3 hours. Next, an aqueous 1.5% potassium nitrate [KNO 3 ] solution was impregnated so that the K loading was 1.0%, and after air drying, it was reduced in a hydrogen stream at 400 ° C. for 3 hours. Next, the reduced potassium-platinum-supported composite carrier was impregnated with a 0.4% stannous chloride [SnCl 2 ] methanol solution so that the Sn loading was 0.7%, and after drying, at 400 ° C. for 30 minutes. Hydrogen reduction was performed to obtain a platinum / potassium / tin supported catalyst A.
[0016]
(3) Production of dehydrogenation catalyst B 27.5 g of the above-mentioned γ-alumina support is taken, and 30% zinc nitrate [Zn (NO 3 ) 2 ] aqueous solution is added so that the ZnO / Al 2 O 3 ratio is 35/65. After the moisture was removed, the composite carrier was prepared by baking at 600 ° C. for 3 hours. This composite carrier was impregnated with a 2.0% chloroplatinic acid [H 2 PtCl 6 ] aqueous solution so that the amount of Pt supported was 0.3%, dried and then calcined at 400 ° C. for 3 hours, and further in a hydrogen stream at 400 ° C. For 3 hours. Next, this reduced platinum-supported composite carrier is impregnated with a 2% stannous chloride [SnCl 2 ] methanol solution so that the Sn loading is 2.0%, and after drying, hydrogen reduction is performed at 400 ° C. for 30 minutes. It was. Next, a 1% potassium nitrate [KNO 3 ] aqueous solution was impregnated so that the amount of K supported was 0.5%, and air-dried to obtain a platinum / tin / potassium supported catalyst B.
[0017]
(4) Dehydrogenation reaction test Catalysts A and B obtained above were filled in a quartz reaction tube having a diameter of 18 mm, treated for 3 hours at 600 ° C under hydrogen flow, and then purged sufficiently with nitrogen. went. Next, using isobutane as a raw material, a dehydrogenation test was conducted for 20 hours at a temperature of 560 ° C. and a space velocity of GHSV 500 hr −1 , and the reactor outlet gas was analyzed by gas chromatography. The results are shown in Table 2 below.
[Table 2]
Figure 0004166333
[0018]
As is clear from Table 2, when the dehydrogenation reaction was carried out with a catalyst supporting potassium, an alkaline metal, prior to supporting tin, the dehydrogenation catalytic activity was significantly improved while maintaining selectivity. In addition, the amount of tin used could be reduced.
[0019]
【The invention's effect】
As described above, the dehydrogenation catalyst of the present invention has a markedly improved dehydrogenation catalyst activity while maintaining a high level of selectivity when producing alkenes by alkane dehydrogenation.

Claims (8)

以下の工程(a)〜(d)からなる脱水素触媒の製造方法:
(a)表面積150m/g以上、細孔容積0.55cm/g以上、平均細孔径90〜200オングストロームであり、かつ細孔径90〜200オングストロームの細孔が全細孔容積の60%以上を占めるγ−アルミナ担体を用意する工程;
(b)工程(a)で用意したγ−アルミナ担体に酸化亜鉛を担持することにより、複合担体を得る工程;
(c)工程(b)で得た複合担体に、白金および周期律表の第1A族および第2A族からなる群から選ばれる少なくとも1つのアルカリ性金属を担持する工程;および
(d)工程(c)で白金およびアルカリ性金属を担持した複合担体に、スズを担持する工程
A method for producing a dehydrogenation catalyst comprising the following steps (a) to (d):
(A) A surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 200 angstroms, and pores having a pore diameter of 90 to 200 angstroms are 60% or more of the total pore volume Preparing a γ-alumina support occupying
(B) A step of obtaining a composite carrier by supporting zinc oxide on the γ-alumina carrier prepared in step (a) ;
(C) a composite carrier obtained in step (b), the product of step carrying at least one alkali metal selected from Group 1A and the 2A group consisting of Group platinum contact and the periodic table; and
(D) A step of supporting tin on the composite carrier supporting platinum and an alkaline metal in step (c) .
前記複合担体における酸化亜鉛の担持量が5〜50重量%である請求項1記載の方法The method according to claim 1, wherein the amount of zinc oxide supported on the composite carrier is 5 to 50% by weight. 前記複合担体上の白金の担持量が0.05〜1.5重量%である請求項1又は2記載の方法The method according to claim 1 or 2, wherein the amount of platinum supported on the composite carrier is 0.05 to 1.5% by weight. 前記複合担体上のスズの担持量が0.5〜10重量%である請求項1〜3のいずれか記載の方法The method according to claim 1, wherein the amount of tin supported on the composite carrier is 0.5 to 10% by weight. 前記複合担体上のアルカリ性金属の担持量が0.01〜10重量%である請求項1〜4のいずれか記載の方法The method according to any one of claims 1 to 4, wherein the amount of the alkaline metal supported on the composite carrier is 0.01 to 10% by weight. 前記アルカリ性金属がカリウムである請求項1〜5のいずれか記載の方法The method according to claim 1, wherein the alkaline metal is potassium. 工程(d)でスズを担持した複合担体を、さらに還元性ガスの存在下で高温還元処理する工程を有する請求項1〜6のいずれか記載の方法 The method according to any one of claims 1 to 6 , further comprising a step of subjecting the composite carrier carrying tin in the step (d) to a high temperature reduction treatment in the presence of a reducing gas. 前記高温還元処理が500〜700℃の温度で行われる請求項7記載の方法The method according to claim 7, wherein the high-temperature reduction treatment is performed at a temperature of 500 to 700 ° C.
JP20874998A 1998-07-24 1998-07-24 Dehydrogenation catalyst Expired - Fee Related JP4166333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20874998A JP4166333B2 (en) 1998-07-24 1998-07-24 Dehydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20874998A JP4166333B2 (en) 1998-07-24 1998-07-24 Dehydrogenation catalyst

Publications (2)

Publication Number Publication Date
JP2000037627A JP2000037627A (en) 2000-02-08
JP4166333B2 true JP4166333B2 (en) 2008-10-15

Family

ID=16561453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20874998A Expired - Fee Related JP4166333B2 (en) 1998-07-24 1998-07-24 Dehydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP4166333B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104248982A (en) * 2013-06-27 2014-12-31 中国科学院大连化学物理研究所 La-modified alumina carrier preparation method and carrier thereof and long alkane dehydrogenation catalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387433B1 (en) * 2000-12-16 2003-06-18 주식회사 효성 Dehydrogenation catalyst controlled crystalline properties of ZnO and Alumina
JP4431338B2 (en) * 2003-07-28 2010-03-10 新日本石油株式会社 Method for producing hydrogen using thermally conductive catalyst body
US10723674B2 (en) 2016-03-15 2020-07-28 Jxtg Nippon Oil & Energy Corporation Unsaturated hydrocarbon production method and conjugated diene production method
JP2017165667A (en) * 2016-03-15 2017-09-21 Jxtgエネルギー株式会社 Manufacturing method of conjugated diene

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713957B1 (en) * 1993-12-16 1996-02-02 Inst Francais Du Petrole Paraffin dehydrogenation catalysts C3-C20 and its preparation.
JP3908313B2 (en) * 1996-12-24 2007-04-25 千代田化工建設株式会社 Dehydrogenation catalyst
JPH10182505A (en) * 1996-12-24 1998-07-07 Chiyoda Corp Dehydrogenation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104248982A (en) * 2013-06-27 2014-12-31 中国科学院大连化学物理研究所 La-modified alumina carrier preparation method and carrier thereof and long alkane dehydrogenation catalyst
CN104248982B (en) * 2013-06-27 2016-12-28 中国科学院大连化学物理研究所 The preparation of La modified aluminium oxide supports and carrier and dehydrogenation of long-chain alkane catalyst

Also Published As

Publication number Publication date
JP2000037627A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
JP3908313B2 (en) Dehydrogenation catalyst
UA77384C2 (en) Catalyst and process for producing vinyl acetate
JP2004537407A (en) catalyst
TW200400850A (en) Bismuth-and phosphorus-containing catalyst support, reforming catalysts made from same, method of making and naphtha reforming process
KR101095194B1 (en) Process for reactivation of metathesis cataltsts and process for production of olefins comprising the reactivation
JP4054116B2 (en) Dehydrogenation catalyst
US20150158024A1 (en) Dehydrogenation catalyst for hydrocarbons and method of preparation thereof
EA032257B1 (en) Catalyst for isomerisation of paraffin hydrocarbons and method of preparation thereof
JPH10182505A (en) Dehydrogenation
JP2000317310A (en) Catalyst containing group viii, ix or x element having excellent accessibility and use thereof in dehydrogenation of paraffin
JP2594464B2 (en) Dehydrogenation catalyst
JP4166333B2 (en) Dehydrogenation catalyst
KR102046771B1 (en) Dehydrogenation catalyst
KR102090234B1 (en) Preparation method of alumina support
JP3908314B2 (en) Dehydrogenation catalyst
TW201006549A (en) Use of sulphur-containing supports for catalytic reforming
KR102162079B1 (en) Method of preparing catalyst support and dehydrogenation catalysts
JP2000037629A (en) Dehydrogenation catalyst
WO2017159371A1 (en) Conjugated diene production method
KR102035470B1 (en) Dehydrogenation catalyst
JP2000037628A (en) Dehydrogenation catalyst
US4217205A (en) Catalysts for hydrocarbon conversion
KR101440695B1 (en) A catalyst with increased selectivity for n-butene and 1,3-butadiene in dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butane, 1,3-butadiene and iso-butene in high yield using the same
JPH0975732A (en) Dehydrogenation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees