KR20000065043A - Catalyst for Selective Aromatization - Google Patents

Catalyst for Selective Aromatization Download PDF

Info

Publication number
KR20000065043A
KR20000065043A KR1019980708588A KR19980708588A KR20000065043A KR 20000065043 A KR20000065043 A KR 20000065043A KR 1019980708588 A KR1019980708588 A KR 1019980708588A KR 19980708588 A KR19980708588 A KR 19980708588A KR 20000065043 A KR20000065043 A KR 20000065043A
Authority
KR
South Korea
Prior art keywords
catalyst
group
zro
compounds
compound
Prior art date
Application number
KR1019980708588A
Other languages
Korean (ko)
Inventor
다니엘 하이네케
알프레트 하게마이어
요아힘 불프-뒤링
Original Assignee
스타르크, 카르크
바스프 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스타르크, 카르크, 바스프 악티엔게젤샤프트 filed Critical 스타르크, 카르크
Publication of KR20000065043A publication Critical patent/KR20000065043A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals
    • C07C5/417Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • B01J37/0223Coating of particles by rotation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/057Selenium or tellurium; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 특히 탄소 원자수 6 내지 12인 직쇄, 분지쇄 또는 시클릭 알킬 또는 알킬렌쇄가 있는 탄화수소 스트림으로부터 방향족 화합물의 선택적 제조를 위한 촉매에 관한 것이다. TiO2또는 ZrO2와 같은 주기율표의 4B 족 중의 전이 금속의 산화물 상의 이러한 촉매는 1종 이상의 ⅧB 족으로부터의 원소(예로서, 팔라듐, 백금, 로듐), 레늄 또는 주석을 포함하고, 임의로는 알칼리 금속 또는 알칼리 토금속의 화합물, 3A 족 또는 3B 족의 화합물 또는 아연, 또는 황, 텔루르, 비소, 안티몬 또는 셀레늄 군으로부터의 1종 이상의 화합물을 포함한다. 본 발명은 또한 C6내지 C12-탄화수소로부터 에틸 벤젠 또는 크실렌과 같은 방향족 화합물을 제조하는데 있어서 이러한 촉매의 용도에 관한 것이다.The present invention relates in particular to catalysts for the selective preparation of aromatic compounds from hydrocarbon streams with straight, branched or cyclic alkyl or alkylene chains having 6 to 12 carbon atoms. Such catalysts on the oxides of transition metals in Group 4B of the periodic table, such as TiO 2 or ZrO 2 , include elements from one or more Group VIIB (eg palladium, platinum, rhodium), rhenium or tin, and optionally alkali metals Or compounds of alkaline earth metals, compounds of group 3A or 3B or zinc, or one or more compounds from the group of sulfur, tellurium, arsenic, antimony or selenium. The invention also relates to the use of such catalysts in the preparation of aromatic compounds such as ethyl benzene or xylenes from C 6 to C 12 -hydrocarbons.

Description

선택적 방향족화를 위한 촉매Catalyst for Selective Aromatization

본 발명은 탄소 원자수 6 내지 12인 직쇄, 분지쇄 및(또는) 시클릭 알킬 또는 알킬렌쇄가 있는 파라핀계/나프텐계 탄화수소 스트림으로부터 방향족 화합물을 선택적으로 제조하기 위한 세라믹 지지체상의 귀금속 함유 촉매에 관한 것이다. 구체적으로, 본 발명은 C8-방향족 화합물의 제조 방법에 관한 것이다.The present invention relates to a noble metal containing catalyst on a ceramic support for the selective preparation of aromatic compounds from paraffinic / naphthenic hydrocarbon streams having straight, branched and / or cyclic alkyl or alkylene chains having 6 to 12 carbon atoms. will be. Specifically, the present invention relates to a method for preparing a C 8 -aromatic compound.

벤젠, 크실렌 또는 에틸벤젠과 같은 산업상 중요한 C6-C8-방향족 화합물의 가장 중요한 공급원은 촉매 접촉 개질이다. 개질 과정에서, 직쇄 파라핀계 탄화수소가 분지쇄 파라핀계 탄화수소와, 지방족계 방향족 및 방향족 탄화수소로 전환된다. 한편 이 공정은 4 행정 기관 연료의 노킹방지 능력을 증가시키는데 사용된다. 즉, 수득된 반응 혼합물이 일반적으로 이와 같이 사용된다. 다른 한편으로, 형성된 방향족 화합물은 예를 들어, 증류에 의해 분리되어, 예를 들어 합성 고무 및 합성 섬유를 제조하는데 중간체 및 합성 빌딩 블록으로서 사용된다. C8부분의 성분으로부터 형성된 에틸벤젠은 예를 들어, 스티렌 및 폴리스티렌을 제조하는데 요구된다.The most important source of industrially important C 6 -C 8 -aromatic compounds such as benzene, xylene or ethylbenzene is catalytic catalytic reforming. In the reforming process, straight chain paraffinic hydrocarbons are converted into branched chain paraffinic hydrocarbons and aliphatic aromatic and aromatic hydrocarbons. This process, on the other hand, is used to increase the anti-knock capability of four-stroke engine fuels. That is, the reaction mixture obtained is generally used as such. On the other hand, the aromatic compounds formed are separated, for example, by distillation, and are used as intermediates and synthetic building blocks, for example, for producing synthetic rubbers and synthetic fibers. Ethylbenzene formed from components of the C 8 moiety is required, for example, to produce styrene and polystyrene.

개질 과정은 이성질체화, 방향족화(탈수소화) 및 고리화와 같은 다양한 반응을 포함한다. 450 내지 550 ℃에서와, 15 내지 70 바의 압력에서 일어나는 이 과정은 통상적으로 지지체상의 백금 촉매에 의해 조절된다.The modification process involves various reactions such as isomerization, aromatization (dehydrogenation) and cyclization. This process taking place at 450 to 550 ° C. and at a pressure of 15 to 70 bar is usually controlled by a platinum catalyst on a support.

백금 외에 다른 물질, 예를 들어 Pt-Re/Al2O3·SiO2또는 Pt/Sn/Al2O3·SiO2(2원금속 촉매로 알려짐)을 포함하는 촉매도 마찬가지로 공지되어 있다. 이것의 예로서, Pt/Sn/Al2O3기재 촉매는 문헌[J. Mol. Catal. 88 (1994) 359-376]에 기재되어 있다. 지지체 물질은 통상적으로 알루미노실리케이트 또는 제올라이트이다. L 제올라이트 상의 Pt-촉매(참조 문헌[Energy Progress 7, (1987), 215-222])는 지지체의 형태 선택성으로 인해 방향족 선택성은 높으나, 공시 수율은 낮게 달성된다. 이와 반대로, (비제올라이트계) 염소화된 Al2O3지지체 상의 Pt/Co/Nd(미국 툭허 공개 제 4 136 130호) 또는 Pt/Co/Re/Ge(미국 특허 공개 제 4 136 017호)와 같은 다성분 촉매는 보다 높은 활성을 나타내지만, 특히 C8-방향족 화합물(에틸벤젠, 스티렌, 크실렌)의 형성과 비교해 볼 때 균열된 생성물을 형성하는 경향이 있으므로, 보다 낮은 방향족 선택성을 나타내는 경향이 있다.Catalysts comprising other materials besides platinum, such as Pt-Re / Al 2 O 3 .SiO 2 or Pt / Sn / Al 2 O 3 .SiO 2 (known as binary metal catalysts), are likewise known. As an example of this, Pt / Sn / Al 2 O 3 based catalysts are described in J. Chem. Mol. Catal. 88 (1994) 359-376. The support material is typically aluminosilicate or zeolite. Pt-catalysts on L zeolites (Energy Progress 7, (1987), 215-222) have high aromatic selectivity due to the morphological selectivity of the support, but low disclosure yields. In contrast, Pt / Co / Nd (US Tuk He Pub No. 4 136 130) or Pt / Co / Re / Ge (US Pub No. 4 136 017) on a (non-zeolitic) chlorinated Al 2 O 3 support The same multicomponent catalyst shows higher activity, but tends to form cracked products, especially when compared to the formation of C 8 -aromatic compounds (ethylbenzene, styrene, xylene), and therefore tends to exhibit lower aromatic selectivity. have.

본 발명의 목적은 상기 단점이 없거나, 또는 상당히 낮은 정도이고, C6-C8-탄화수소 스트림을 고 수율의 방향족 화합물로 전환시키는 촉매를 제공하는 것이다. 구체적인 목적은 첨가 값이 가장 높은 C8-방향족 화합물 중 에틸벤젠에 대해 특정 선택성을 갖는 촉매를 밝혀내는 것이다.It is an object of the present invention to provide a catalyst which is free from the above disadvantages or is of a relatively low degree and which converts a C 6 -C 8 -hydrocarbon stream into a high yield of aromatics. The specific purpose is to find a catalyst with specific selectivity to ethylbenzene among the C 8 -aromatic compounds with the highest added values.

본 발명자들은 이 목적이 1종 이상의 제4 전이족(4B족) 원소 중 금속의 세라믹 산화물, 구체적으로 ZrO2및 TiO2상의 원소 주기율표의 8족 원소 중에서 선택된 귀금속, 구체적으로 팔라듐, 백금 또는 로듐 및(또는) 레늄 및(또는) 주석을 포함하는 촉매에 의해 달성되는 것을 밝혀 내었다.The inventors have found that the object is ceramic oxides of metals in one or more fourth transition group (Group 4B) elements, specifically precious metals selected from the Group 8 elements of the Periodic Table of the Elements on ZrO 2 and TiO 2 , specifically palladium, platinum or rhodium and It has been found to be achieved by a catalyst comprising (or) rhenium and / or tin.

상기 원소 외에, 추가의 원소, 구체적으로 8족 원소에 첨가된 것으로서 레늄 및(또는) 주석을 추가로 사용할 수 있다. 또한, 본 발명의 중요한 구성 요소는 제3 주족 또는 전이족(3A 또는 3B족)의 화합물, 또는 알칼리 금속 산화물, 알칼리 토금속 산화물 또는 희토류 산화물과 같은 염기성 화합물, 또는 400 ℃ 이상에서 상응하는 산화물로 전환될 수 있는 이들 원소의 화합물 중 어느 하나를 첨가시키거나 또는 그로 도핑시키는 것이다. 다수의 상기 원소 또는 그의 화합물에 의한 동시 도핑이 가능하다. 예를 들어, 칼륨 및 란탄 화합물이 매우 적합하다. 또한, 촉매를 아마도 부분적 포이즌화(감속제)에 의해 선택성의 증가를 빈번히 초래하는 황, 텔루르, 비소, 안티몬, 또는 셀레늄 함유 화합물과 혼합시킬 수 있다.In addition to the above elements, rhenium and / or tin may additionally be used as added to further elements, specifically Group 8 elements. In addition, an important component of the present invention is a compound of the third main group or transition group (Group 3A or 3B), or a basic compound such as an alkali metal oxide, alkaline earth metal oxide or rare earth oxide, or a corresponding oxide at 400 ° C. or higher. It may be added or doped with any of the compounds of these elements which may be. Simultaneous doping by a plurality of these elements or compounds thereof is possible. For example, potassium and lanthanum compounds are very suitable. In addition, the catalyst can be mixed with sulfur, tellurium, arsenic, antimony, or selenium containing compounds, which frequently result in increased selectivity, perhaps by partial poisoning (reducing agents).

선행 기술에 공지된 촉매와 비교해 볼 때, 본 발명의 촉매의 장점은 방향족 화합물, 특히 C8-방향족 화합물에 대해 전체 선택성이 보다 높은 점이다. 또한, 본 발명의 촉매는 선행 기술의 촉매 보다 방향족 화합물의 더욱 높은 전환과, 이와 관련하여 보다 높은 수율을 가능케 한다.Compared with the catalysts known in the prior art, the advantage of the catalyst of the invention is that the overall selectivity is higher for aromatic compounds, in particular for C 8 -aromatic compounds. In addition, the catalysts of the present invention allow for higher conversion of aromatic compounds and higher yields in this regard than prior art catalysts.

본 발명의 촉매는 양쪽성 세라믹 산화물, 즉 구체적으로 지르코늄 및 티탄의 산화물 또는 그의 혼합물을 사용하여 제조될 수 있다. 또한 소성에 의해 이들 산화물로 전환될 수 있는 상응하는 화합물도 적합하다. 이들은 공지된 방법, 예를 들어 졸-겔 과정, 염의 침전, 상응하는 산의 탈수, 건조 혼합, 슬러리화 또는 분무 건조에 의해 제조될 수 있다.The catalyst of the present invention can be prepared using amphoteric ceramic oxides, in particular oxides of zirconium and titanium or mixtures thereof. Also suitable are those compounds which can be converted to these oxides by firing. They can be prepared by known methods, for example by sol-gel processes, precipitation of salts, dehydration of the corresponding acid, dry mixing, slurrying or spray drying.

적합한 지지체는 지르코늄 및 티탄 산화물의 모든 변체이다. 그러나, ZrO2기재 촉매를 제조하는데 있어서, X선 회절로 측정했을 때 단사정계 ZrO2의 비율이 90% 이상인 것이 유리함이 밝혀졌다. X선 회절 패턴에서, 단사정계 ZrO2는 2θ 값 약 28.2 와 31.5에서 2개의 강한 시그널을 특징으로 한다.Suitable supports are all variants of zirconium and titanium oxides. However, in preparing a ZrO 2 based catalyst, it has been found that the ratio of monoclinic ZrO 2 is 90% or more as measured by X-ray diffraction. In the X-ray diffraction pattern, monoclinic ZrO 2 is characterized by two strong signals at 2θ values of about 28.2 and 31.5.

염기성 화합물에 의한 도핑은 제조 중에, 예를 들어 동시 침전시키거나, 또는 예를 들어 세라믹 산화물을 알칼리 금속 또는 알칼리 토금속 화합물, 또는 제3 전이족 원소의 화합물 또는 희토류 금속 화합물로 함침시킨 후에 수행될 수 있다.Doping with a basic compound may be carried out during preparation, for example by co-precipitation, or after, for example, impregnating the ceramic oxide with an alkali metal or alkaline earth metal compound, or a compound of a third transition group element or a rare earth metal compound. have.

알칼리 금속 또는 알칼리 토금속, 3A 또는 제3 전이족 중의 금속, 희토류 금속 또는 아연의 함량은 일반적으로 20 중량% 이하, 바람직하게는 0.1 내지 15 중량%, 특히 바람직하게는 0.5 내지 10 중량%이다. 알칼리 금속 및 알칼리 토금속을 공급하는 화합물로서 사용되는 것은 일반적으로 소성에 의해 상응하는 산화물로 전환될 수 있는 화합물로 이루어져 있다. 적합한 화합물은 예를 들어, 알칼리 금속 및 알칼리 토금속의 수산화물, 탄산염, 옥살산염, 아세트산염, 질산염, 또는 혼합된 히드록시카르보네이트이다.The content of the metal, rare earth metal or zinc in the alkali metal or alkaline earth metal, 3A or third transition group is generally at most 20% by weight, preferably 0.1 to 15% by weight, particularly preferably 0.5 to 10% by weight. Use as compounds for feeding alkali and alkaline earth metals generally consists of compounds which can be converted to the corresponding oxides by firing. Suitable compounds are, for example, hydroxides, carbonates, oxalates, acetates, nitrates, or mixed hydroxycarbonates of alkali and alkaline earth metals.

세라믹 지지체를 3A 또는 제3 전이족 중의 금속으로 추가로 또는 이것으로만 도핑시키는 경우, 출발 물질로 사용되는 화합물은 또한 소성에 의해 상응하는 산화물로 전환될 수 있는 화합물이어야 한다. 란탄이 사용되는 경우, 적합한 화합물의 예는 란탄 옥시드 카르보네이트, La(OH)3, La2(CO3)3, La(NO3)3, 또는 유기 음이온을 포함하는 란탄 화합물(예로서, 아세트산란탄, 포름산란탄 또는 옥살산란탄)이다.If the ceramic support is additionally or only doped with metals in the 3A or third transition group, the compounds used as starting materials should also be compounds which can be converted to the corresponding oxides by firing. If lanthanum is used, examples of suitable compounds include lanthanum compounds comprising lanthanum oxide carbonate, La (OH) 3 , La 2 (CO 3 ) 3 , La (NO 3 ) 3 , or organic anions (eg Lanthanum acetate, lanthanum formate or lanthanum oxalate).

귀금속 성분은 다양한 방식으로 도포될 수 있다. 즉, 예를 들어 지지체를 귀금속 또는 레늄 또는 주석의 적합한 화합물의 용액으로 함침시키거나 또는 분무시킬 수 있다. 이러한 용액을 제조하는데 적합한 금속 염은 예를 들어, 귀금속의 질산염, 할로겐화물, 포름산염, 옥살산염 또는 아세트산염이다. 착음이온, 또는 이들 착음이온의 산(예로서, H2PtCl6)도 또한 사용될 수 있다. 본 발명의 촉매를 제조하는데 특히 적합한 것으로 밝혀진 화합물은 PdCl2, Pd(OAc)2, Pd(NO3)2및 Pt(NO3)2이다.The precious metal component can be applied in a variety of ways. That is, for example, the support may be impregnated or sprayed with a solution of a noble metal or a suitable compound of rhenium or tin. Suitable metal salts for preparing such solutions are, for example, nitrates, halides, formates, oxalates or acetates of precious metals. Complex ions or acids of these complex ions (eg H 2 PtCl 6 ) may also be used. Compounds found to be particularly suitable for preparing the catalysts of the present invention are PdCl 2 , Pd (OAc) 2 , Pd (NO 3 ) 2 and Pt (NO 3 ) 2 .

본 발명에 따른 촉매는 또한 활성 성분이 완전히 또는 부분적으로 환원된 상태로 존재하는 1종 이상의 성분을 포함하는 귀금속 졸을 사용하여 수득할 수 있다.The catalyst according to the invention can also be obtained using a noble metal sol comprising at least one component in which the active component is present in a fully or partially reduced state.

귀금속 졸을 사용하는 경우, 이들을 통상적인 방법, 예를 들어 폴리비닐피롤리돈과 같은 안정화제 존재하에서 금속 염 또는 다수의 금속 염의 혼합물을 환원시킨 후 이어서 지지체의 함침 또는 지지체의 분무 중 어느 하나로 지지체에 도포시켜 미리 제조한다. 제조 방법은 본 발명의 출원 전에 공개되지 않은 독일 특허 출원 제 1 95 00 366.7호에 폭 넓게 기재되어 있다.When using noble metal sol, they are reduced in a conventional manner, for example by reducing the metal salt or a mixture of a plurality of metal salts in the presence of a stabilizer such as polyvinylpyrrolidone, followed by impregnation of the support or spraying of the support. It is prepared in advance by applying to. The method of preparation is described broadly in German patent application no. 1 95 00 366.7, which was not published before the present application.

촉매 중 8족 원소 또는 레늄 또는 주석의 함량은 예를 들어, 0.005 내지 5 중량%, 바람직하게는 0.01 내지 2 중량%, 특히 바람직하게는 0.1 내지 1.5 중량%일 수 있다. 레늄 또는 주석이 추가로 사용되는 경우, 귀금속 성분에 대한 이들의 비율은 예를 들어, 0.1:1 내지 20:1, 바람직하게는 1:1 내지 10:1일 수 있다.The content of group 8 elements or rhenium or tin in the catalyst may be, for example, 0.005 to 5% by weight, preferably 0.01 to 2% by weight, particularly preferably 0.1 to 1.5% by weight. If rhenium or tin are further used, their ratio to the precious metal component may be, for example, 0.1: 1 to 20: 1, preferably 1: 1 to 10: 1.

감속용 첨가제(본 발명의 개념에 따르면, 촉매의 부분적 포이즌화)로서, 필요하다면 황, 텔루르, 비소, 셀레늄의 화합물을 사용할 수 있다. 촉매를 사용하는 동안 일산화탄소를 첨가하는 것도 또한 가능하다. 황을 사용하는 것이 특히 적합한 것으로 밝혀졌고, 이것은 황화암모늄, 즉 (NH4)2S의 형태로 도포하는 것이 유리하다. 촉매 포이즌에 대한 귀금속 성분의 몰비는 1:0 내지 1:10, 바람직하게는 1:1 내지 1:0.05로 다양할 수 있다.As a slowing additive (partially poisoning of the catalyst according to the concept of the invention), compounds of sulfur, tellurium, arsenic, selenium can be used if necessary. It is also possible to add carbon monoxide while using the catalyst. It has been found to be particularly suitable to use sulfur, which is advantageously applied in the form of ammonium sulfide, ie (NH 4 ) 2 S. The molar ratio of the noble metal component to the catalyst poison can vary from 1: 0 to 1:10, preferably 1: 1 to 1: 0.05.

촉매는 반응기에서 고정층으로서, 또는 예를 들어 유동층형으로 사용될 수 있고, 적합한 물리적 외형을 지닐 수 있다. 적합한 형태는 예를 들어, 과립, 펠릿, 모노리스, 구형 또는 압출물(압출된 로드 또는 펠릿, 차 바퀴, 별, 고리)이다.The catalyst may be used as a fixed bed in the reactor, or for example in a fluidized bed, and may have a suitable physical appearance. Suitable forms are, for example, granules, pellets, monoliths, spheres or extrudates (extruded rods or pellets, car wheels, stars, rings).

촉매 제제는 BET 표면적이 500 m2/g 이하, 일반적으로는 10 내지 300 m2/g, 특히 바람직하게는 20 내지 300 m2/g이다. 포어 체적은 일반적으로 0.1 내지 1 ㎖/g, 바람직하게는 0.15 내지 0.6 ㎖/g, 특히 바람직하게는 0.2 내지 0.4 ㎖/g이다. Hg 침투 분석에 의해 측정될 수 있는 메소포어의 평균 포어 직경은 일반적으로 8 내지 60 nm, 바람직하게는 10 내지 40 nm이다. 직경이 20 nm 이상인 포어의 비율은 일반적으로 0 내지 60%로 다양하다. 마크로포어(즉, 직경이 20 nm 이상인 포어)의 비율이 10% 이상인 지지체를 사용하는 것이 유리함이 밝혀졌다.The catalyst formulation has a BET surface area of 500 m 2 / g or less, generally 10 to 300 m 2 / g, particularly preferably 20 to 300 m 2 / g. The pore volume is generally 0.1 to 1 ml / g, preferably 0.15 to 0.6 ml / g, particularly preferably 0.2 to 0.4 ml / g. The average pore diameter of mesopores that can be measured by Hg penetration analysis is generally 8 to 60 nm, preferably 10 to 40 nm. The proportion of pores having a diameter of 20 nm or more generally varies from 0 to 60%. It has been found advantageous to use a support having a proportion of macropores (ie, pores having a diameter of 20 nm or more) of 10% or more.

특정 반응은 300 내지 800 ℃, 바람직하게는 400 내지 600 ℃, 구체적으로는 400 내지 550 ℃에서, 100 밀리바 내지 100 바, 바람직하게는 1 내지 40 바의 압력에서, 0.01 내지 100 h-1, 바람직하게는 0.1 내지 20 h-1의 LHSV에서 수행된다. 탄화수소 혼합물이 탈수소되는 것을 별도로 하더라도, CO2, N2, 영족 기체 또는 스트림과 같은 희석제가 존재하는 것이 가능하다. 이와 마찬가지로, 필요하다면 0.1 내지 100, 바람직하게는 1 내지 20일 수 있는 탄화수소(기체)에 대한 수소의 부피비로 수소를 첨가할 수 있다. 첨가된 수소는 반응 시간이 늘어남에 따라 촉매의 표면에 축적되는 탄소를 제거하기 위해 사용될 수 있다.The specific reaction is from 0.01 to 100 h −1 , preferably from 300 to 800 ° C., preferably from 400 to 600 ° C., specifically from 400 to 550 ° C., at a pressure of 100 millibar to 100 bar, preferably 1 to 40 bar. Preferably at an LHSV of 0.1 to 20 h −1 . Apart from the hydrocarbon mixture being dehydrogenated, it is possible to have diluents such as CO 2 , N 2 , noble gases or streams. Similarly, hydrogen can be added if necessary in a volume ratio of hydrogen to hydrocarbon (gas), which can be from 0.1 to 100, preferably from 1 to 20. The added hydrogen can be used to remove the carbon that accumulates on the surface of the catalyst as the reaction time increases.

반응 중에 탄소의 침착을 방지하는 기체를 연속적으로 첨가하는 것 외에, 때때로 수소 또는 공기를 그 위로 통과시켜 촉매를 재생시킬 수 있다. 재생은 300 내지 900 ℃, 바람직하게는 400 내지 800 ℃에서, 유리 산화제, 바람직하게는 공기를 사용하거나, 또는 환원 분위기 하에서, 바람직하게는 수소를 사용하여 수행한다. 재생은 대기압, 부압 또는 과압에서 수행할 수 있다. 적합한 압력은 예를 들어, 500 밀리바 내지 100 바의 범위이다.In addition to continuously adding gases which prevent the deposition of carbon during the reaction, hydrogen or air can sometimes be passed over them to regenerate the catalyst. Regeneration is carried out at 300 to 900 ° C., preferably at 400 to 800 ° C., using a free oxidant, preferably air, or under reducing atmosphere, preferably with hydrogen. Regeneration can be performed at atmospheric, negative or overpressure. Suitable pressures are, for example, in the range of 500 millibars to 100 bar.

촉매 제조Catalyst manufacturing

실시예 1, 2Examples 1 and 2

폴리비닐피롤리돈 5 g을 첨가하면서 Pd(OAc)26.38 g을 물 500 ㎖에 용해시켰다. 이 용액에 0.34 M 시트르산나트륨 용액 500 ㎖을 첨가하고, 혼합물을 4 시간 동안 환류시켰다. 이로 인해 투명한 Pd 졸을 생성시켰다.6.38 g of Pd (OAc) 2 was dissolved in 500 mL of water while 5 g of polyvinylpyrrolidone was added. 500 ml of 0.34 M sodium citrate solution was added to the solution, and the mixture was refluxed for 4 hours. This resulted in a transparent Pd sol.

분석 : Pd 0.3%Analysis: Pd 0.3%

팔라듐 졸을 2유체 노즐을 이용하여 가열된 회전 금속판 위의 200 g의 ZrO2펠릿(5 x 3 mm 펠릿) 위에 분무시켰다. 이어서 펠릿을 120 ℃에서 72 시간 동안 건조시킨 후 이들의 물 흡수(23.5 g/100 g)에 따라 물 47 ㎖ 중 K2CO32.96 g의 용액으로 1 시간 동안 함침시켰다. 이들을 함침 중에 여러 번 진탕시킨 후 이어서 120 ℃에서 18 시간 동안 건조시켰다.Palladium sol was sprayed onto 200 g of ZrO 2 pellets (5 × 3 mm pellets) on heated rotating metal plates using a two-fluid nozzle. The pellets were then dried at 120 ° C. for 72 hours and then impregnated with a solution of 2.96 g of K 2 CO 3 in 47 ml of water for 1 hour according to their water absorption (23.5 g / 100 g). They were shaken several times during impregnation and then dried at 120 ° C. for 18 hours.

황화암모늄((NH4)2S) 40 중량% 농도의 용액 1.1 g을 물로 희석하여 47 ㎖의 용액으로 만들고, 예비처리된 펠릿을 이것으로 함침시키고, 120 ℃에서 16 시간 동안 건조시켰다.1.1 g of a 40 wt% solution of ammonium sulfide ((NH 4 ) 2 S) was diluted with water to a 47 mL solution, the pretreated pellet was impregnated with it and dried at 120 ° C. for 16 h.

분석 : Pd 1.3%, K 0.96%, S 0.17%Analysis: Pd 1.3%, K 0.96%, S 0.17%

실시예 3, 4, 5Examples 3, 4, 5

옥살산 5.6 g을 물 55 ㎖에 용해시켰다. 이 용액에 Pd(OAc)24.27 g을 첨가하고 50 ℃까지 서서히 가열하여 용해시키고, 세게 교반시켰다.5.6 g of oxalic acid were dissolved in 55 mL of water. 4.27 g of Pd (OAc) 2 was added to this solution, and the mixture was slowly heated to 50 ° C to dissolve and stirred vigorously.

사용된 이산화지르코늄은 압출물형이고, BET 표면적이 92 m2/g이고, 포어 체적이 0.25 ㎖/g(Hg 세공측정법)이고, 0.02 μm 이상인 포어의 비율이 약 30%이었다. 각 경우 ZrO2200 g을 이들의 물 흡수(물 27.2 g/100 g)에 따라 진한 팔라듐 용액으로 액체가 흡수될 때까지(약 30분) 함침시켰다. 이어서 압출물을 회전 증발기에서 80 ℃에서 건조시켰다. 이어서 이들을 120 ℃에서 16 시간 동안 건조시켰다.The zirconium dioxide used was extrudate, had a BET surface area of 92 m 2 / g, a pore volume of 0.25 ml / g (Hg porosimetry), and a proportion of pores having a diameter of at least 0.02 μm. In each case 200 g of ZrO 2 were impregnated (approximately 30 minutes) with a liquid of concentrated palladium according to their water absorption (27.2 g / 100 g). The extrudate was then dried at 80 ° C. in a rotary evaporator. They were then dried at 120 ° C. for 16 hours.

팔라듐을 도포시킨 후, 압출물을 물 55 ㎖ 중 K2CO33.61 g의 용액에 슬러리화시키고 약 30분 후 회전 증발기에서 80 ℃에서 다시 건조시켰다. 이어서 압출물을 120 ℃에서 28 시간 동안 건조시켰다.After applying palladium, the extrudate was slurried in a solution of 3.61 g of K 2 CO 3 in 55 mL of water and dried again at 80 ° C. on a rotary evaporator after about 30 minutes. The extrudate was then dried at 120 ° C. for 28 hours.

황화암모늄 40 중량% 농도의 용액 1.1 g을 물 55 ㎖로 희석하고, 예비처리된 압출물을 함침시키고 회전 증발기에서 80 ℃에서 건조시키고, 이어서 120 ℃에서 65 시간 동안 건조시켰다.1.1 g of a 40% by weight solution of ammonium sulfide were diluted with 55 mL of water, the pretreated extrudate was impregnated and dried at 80 ° C. in a rotary evaporator and then at 120 ° C. for 65 hours.

분석 : Pd 0.97%, K 0.98%, S 0.13%, 나머지 ZrO2 Analysis: Pd 0.97%, K 0.98%, S 0.13%, Remaining ZrO 2

실시예 6, 7, 8Examples 6, 7, 8

옥살산 5.6 g을 물 60 ㎖에 용해시켰다. 이 용액에 Pd(OAc)24.27 g을 첨가하고 세게 교반시키면서 용해시키고, 50 ℃까지 서서히 가열하였다. BET 표면적이 70 m2/g이고, 포어 체적이 0.28 ㎖/g이고, 20 nm 이상인 포어의 비율이 약 30%인 ZrO2압출물 200 g을 이들의 물 흡수(물 30.6 g/100 g)에 따라 팔라듐 용액으로 함침시켰다. 약 30분 후, 압출물을 회전 증발기에서 80 ℃에서 건조시켰다. 이어서 이들을 120 ℃에서 24 시간 동안 건조시켰다.5.6 g of oxalic acid were dissolved in 60 mL of water. 4.27 g of Pd (OAc) 2 was added to the solution, dissolved with vigorous stirring, and slowly heated to 50 ° C. 200 g of ZrO 2 extrudates having a BET surface area of 70 m 2 / g, a pore volume of 0.28 ml / g, and a proportion of pores having a pore of at least 20 nm of about 30% were added to their water absorption (30.6 g / 100 g of water). Thus impregnated with a palladium solution. After about 30 minutes, the extrudate was dried at 80 ° C. in a rotary evaporator. They were then dried at 120 ° C. for 24 hours.

팔라듐을 도포시킨 후, 압출물을 물 60 ㎖ 중 K2CO33.61 g의 용액에 슬러리화시키고 약 30분 후 회전 증발기에서 80 ℃에서 다시 건조시켰다. 이어서 압출물을 120 ℃에서 28 시간 동안 건조시켰다.After applying palladium, the extrudate was slurried in a solution of 3.61 g of K 2 CO 3 in 60 mL of water and dried again at 80 ° C. on a rotary evaporator after about 30 minutes. The extrudate was then dried at 120 ° C. for 28 hours.

황화암모늄 40 중량% 농도의 용액 1.1 g을 물 55 ㎖로 희석하였다. 예비처리된 압출물을 묽은 용액으로 함침시키고 회전 증발기에서 80 ℃에서 건조시켰다. 이어서 압출물을 120 ℃에서 70 시간 동안 건조시켰다.1.1 g of a 40% by weight solution of ammonium sulfide were diluted with 55 mL of water. The pretreated extrudate was impregnated with dilute solution and dried at 80 ° C. on a rotary evaporator. The extrudate was then dried at 120 ° C. for 70 hours.

분석 : Pd 0.98%, K 0.94%, S 0.11%Analysis: Pd 0.98%, K 0.94%, S 0.11%

실시예 9, 10Examples 9 and 10

옥살산 5.6 g을 물 52 ㎖에 용해시켰다. 이 용액에 Pd(OAc)24.27 g을 첨가하고, 세게 교반시키면서 용해시키고, 50 ℃까지 서서히 가열하였다.5.6 g of oxalic acid were dissolved in 52 mL of water. 4.27 g of Pd (OAc) 2 was added to this solution, dissolved with vigorous stirring, and slowly heated to 50 ° C.

사용된 이산화지르코늄은 압출물형이고, BET 표면적이 46 m2/g이고, 포어 체적이 0.23 ㎖/g(Hg 세공측정법)이고, 0.02 μm 이상인 포어의 비율이 약 15%이었다. 압출물 200 g을 이들의 물 흡수(물 26 g/100 g)에 따라 팔라듐 용액으로 함침시켰다. 약 30분 후, 압출물을 회전 증발기에서 80 ℃에서 건조시켰다. 이어서 압출물을 120 ℃에서 14 시간 동안 건조시켰다.The zirconium dioxide used was extrudate, had a BET surface area of 46 m 2 / g, a pore volume of 0.23 ml / g (Hg porosimetry), and a proportion of pores having a pore size of at least 0.02 μm. 200 g of extrudate were impregnated with a palladium solution according to their water uptake (26 g / 100 g of water). After about 30 minutes, the extrudate was dried at 80 ° C. in a rotary evaporator. The extrudate was then dried at 120 ° C. for 14 hours.

팔라듐을 도포시킨 후, 압출물을 물 52 ㎖ 중 K2CO33.61 g의 용액에 슬러리화시키고 약 30분 후 회전 증발기에서 80 ℃에서 다시 건조시켰다. 이어서 압출물을 120 ℃에서 20 시간 동안 건조시켰다.After applying palladium, the extrudate was slurried in a solution of 3.61 g of K 2 CO 3 in 52 ml of water and dried again at 80 ° C. on a rotary evaporator after about 30 minutes. The extrudate was then dried at 120 ° C. for 20 hours.

황화암모늄 40 중량% 농도의 용액 1.1 g을 물 52 ㎖로 희석하고, 예비처리된 압출물을 이것으로 함침시키고 회전 증발기에서 건조시키고, 처음에는 80 ℃에서, 이어서 120 ℃에서 65 시간 동안 건조시켰다.1.1 g of a 40% by weight solution of ammonium sulfide were diluted with 52 mL of water, the pretreated extrudate was impregnated with it and dried on a rotary evaporator and initially dried at 80 ° C. for 65 hours.

분석 : Pd 0.92%, K 0.89%, S 0.11%Analysis: Pd 0.92%, K 0.89%, S 0.11%

실시예 11Example 11

물 2.7 ㎖에 용해된 Pt(NO3)2(Heraeus사의 상업 제품 #006438) 0.181 g, 및 물 2.6 ㎖에 용해된 Sn(OAc)20.100 g을 압출물형의 이산화지르코늄(Norton사의 상업 제품 #93163335, BET 표면적 40 m2/g, 물 흡수 26 g/100 g) 10 g에 1 시간 간격으로 연속으로 도포하고, 추가의 1 시간 후에 압출물을 120 ℃에서 16 시간 동안 건조시키고, 650 ℃에서 소성시켰다. 이렇게 수득된 촉매는 1%의 백금 및 0.5%의 주석을 포함한다.0.181 g of Pt (NO 3 ) 2 (commercial product # 006438) dissolved in 2.7 ml of water, and 0.100 g of Sn (OAc) 2 dissolved in 2.6 ml of water were added as an extrudable zirconium dioxide (commercial product of Nortonton # 93163335). , BET surface area 40 m 2 / g, water absorption 26 g / 100 g) 10 g continuously applied at 1 hour intervals, after an additional 1 hour the extrudate is dried at 120 ℃ for 16 hours, calcined at 650 ℃ I was. The catalyst thus obtained comprises 1% platinum and 0.5% tin.

실시예 12Example 12

물 3.06 ㎖에 용해된 Pt(NO3)2(실시예 11에서와 같은 상업 제품) 0.181 g, 및 물 3.06 ㎖에 용해된 Sn(OAc)20.100 g을 압출물형의 이산화지르코늄(Norton사의 상업 제품 #93163321, BET 표면적 49 m2/g, 물 흡수 30.6 g/100 g) 10 g에 1 시간 간격으로 연속으로 도포하고, 추가의 1 시간 후에 압출물을 120 ℃에서 16 시간 동안 건조시키고, 650 ℃에서 소성시켰다. 이렇게 수득된 촉매는 1%의 백금 및 0.5%의 주석을 포함한다.0.181 g of Pt (NO 3 ) 2 (commercial product as in Example 11) dissolved in 3.06 ml of water, and 0.100 g of Sn (OAc) 2 dissolved in 3.06 ml of water were added to zirconium dioxide (Norton's commercial product). # 93163321, BET surface area 49 m 2 / g, water absorption 30.6 g / 100 g) 10 g continuously applied at 1 hour intervals, after an additional 1 hour the extrudate is dried at 120 ℃ for 16 hours, 650 ℃ Calcined at. The catalyst thus obtained comprises 1% platinum and 0.5% tin.

실시예 13Example 13

물 21.4 ㎖에 용해된 Pt(NO3)2(실시예 11에서와 같은 상업 제품) 0.65 g, 질산팔라듐(Ⅱ) 용액 (물 중 11 중량%의 농도) 3.27 g, 및 물 21.4 ㎖에 용해된 Sn(OAc)21.42 g을 압출물형의 이산화지르코늄(상기와 같은 Norton사의 상업 제품 #93163321) 70 g에 1 시간 간격으로 연속으로 도포하고, 추가의 1 시간 후에 압출물을 120 ℃에서 16 시간 동안 건조시키고, 650 ℃에서 소성시켰다. 이렇게 수득된 촉매는 1%의 백금 및 0.5%의 주석을 포함한다.0.65 g of Pt (NO 3 ) 2 (commercial product as in Example 11) dissolved in 21.4 mL of water, 3.27 g of palladium (II) nitrate solution (concentration of 11% by weight in water), and 21.4 mL of water. 1.42 g of Sn (OAc) 2 is applied continuously to 70 g of extrudates of zirconium dioxide (commercial product # 93163321 as described above) at 1 hour intervals, and after an additional 1 hour the extrudate is applied at 120 ° C. for 16 hours. Dried and calcined at 650 ° C. The catalyst thus obtained comprises 1% platinum and 0.5% tin.

실시예 14Example 14

물 21.4 ㎖에 용해된 Pt(NO3)2(실시예 11에서와 같은 상업 제품) 0.65 g, 질산팔라듐(Ⅱ) 용액 (물 중 11 중량%의 농도) 3.27 g, 및 물 21.4 ㎖에 용해된 Sn(OAc)21.42 g을 압출물형의 이산화지르코늄(상기와 같은 Norton 사의 상업 제품 #93163321) 10 g에 1 시간 간격으로 연속으로 도포하고, 추가의 1 시간 후에 압출물을 120 ℃에서 16 시간 동안 건조시키고, 650 ℃에서 소성시켰다. 이렇게 수득된 촉매는 1%의 백금 및 0.5%의 주석을 포함한다.0.65 g of Pt (NO 3 ) 2 (commercial product as in Example 11) dissolved in 21.4 mL of water, 3.27 g of palladium (II) nitrate solution (concentration of 11% by weight in water), and 21.4 mL of water. 1.42 g of Sn (OAc) 2 was continuously applied to 10 g of extrudable zirconium dioxide (commercial product # 93163321, such as Norton Inc.) at an hourly interval, and after an additional hour, the extrudate was applied at 120 ° C. for 16 hours. Dried and calcined at 650 ° C. The catalyst thus obtained comprises 1% platinum and 0.5% tin.

실시예 15Example 15

물 12 ㎖에 용해된 Pt(NO3)2(상기와 같은 상업 제품) 0.182 g을 분말형의 이산화티탄(Kemira사의 상업 제품 핀티 에스(Finnti S) 140 #71077, BET 표면적 277 m2/g, 물 흡수 120 g/100 g) 10 g에 도포하고, 물질을 120 ℃에서 건조시키고, 500 ℃에서 소성시켰다. 이렇게 수득된 촉매는 1.15%의 백금을 포함한다.0.182 g of Pt (NO 3 ) 2 (commercial product as above) dissolved in 12 ml of water was added to powdered titanium dioxide (Finnti S 140 # 71077 from Kemira, B77 surface area 277 m 2 / g, Water absorption 120 g / 100 g) was applied to 10 g and the material was dried at 120 ° C. and calcined at 500 ° C. The catalyst thus obtained comprises 1.15% platinum.

실시예 16Example 16

물 12 ㎖에 용해된 Pt(NO3)2(상기와 같은 상업 제품) 0.182 g을 분말형의 이산화티탄(BET 표면적 90 m2/g, 물 흡수 94 g/100 g) 10 g에 도포하고, 물질을 120 ℃에서 건조시키고, 500 ℃에서 소성시켰다. 이렇게 수득된 촉매는 1.1%의 백금을 포함한다.0.182 g of Pt (NO 3 ) 2 (commercial product as such) dissolved in 12 ml of water was applied to 10 g of powdered titanium dioxide (BET surface area 90 m 2 / g, water absorption 94 g / 100 g), The material was dried at 120 ° C and calcined at 500 ° C. The catalyst thus obtained contained 1.1% platinum.

실시예 17Example 17

물 3.06 ㎖에 용해된 Pd(NO3)20.087 g, 및 Pt(NO3)20.066 g(상기와 같은 상업 제품)을 압출물형의 이산화지르코늄(BET 표면적 70 m2/g, 포어 체적 0.28 ㎖/g, 직경 20 nm 이하인 포어의 비율 30%, 결정상 단사정계, 물 흡수 30.6 g/100 g) 10 g에 도포하고, 압출물을 120 ℃에서 건조시키고, 500 ℃에서 소성시켰다. 이렇게 수득된 촉매는 각각의 0.5%의 백금 및 팔라듐을 포함한다.0.087 g of Pd (NO 3 ) 2 and 0.066 g of Pt (NO 3 ) 2 (commercial product as described above) dissolved in 3.06 mL of water were added to an extruded zirconium dioxide (BET surface area of 70 m 2 / g, pore volume of 0.28 mL). / g, a proportion of pore having a diameter of 20 nm or less, 30%, crystalline monoclinic system, water absorption 30.6 g / 100 g) 10 g), the extrudate was dried at 120 ℃ and calcined at 500 ℃. The catalyst thus obtained comprises each 0.5% platinum and palladium.

펄스 반응기에서의 실험Experiment in pulse reactor

C8-탄화수소(실시예 1-16) 내지 C9-탄화수소(실시예 17) 스트림의 방향족화를 마이크로 고정층 펄스 반응기에서 수행하였다. 촉매 약 0.6 g을 반응기에서 중량을 달고, 순수한 n-옥탄으로 펄스(수소의 첨가가 없는 대기압) 처리하였다. 2회의 연속적인 n-옥탄 펄스 사이에(약 1.5분), 헬륨 기체를 반응기로 흘려 보냈다. 담체 가스의 유속은 약 21.5 ㎖/분이다. 단일 펄스는 약 100 ㎍의 n-옥탄을 포함한다. 반응 생성물을 온라인(on-line) GC-MS를 이용하여 각각의 펄스에 대해 정량 측정하였다.Aromatization of the C 8 -hydrocarbons (Examples 1-16) to C 9 -hydrocarbons (Example 17) was carried out in a micro fixed bed pulse reactor. About 0.6 g of catalyst were weighed in the reactor and treated with pure n-octane (pulse (atmospheric pressure without hydrogen addition)). Between two successive n-octane pulses (about 1.5 minutes), helium gas was flowed into the reactor. The flow rate of the carrier gas is about 21.5 ml / min. A single pulse contains about 100 μg n-octane. The reaction product was quantitatively determined for each pulse using on-line GC-MS.

수득된 결과를 표 1 및 표 2에 나타냈다. 나타낸 선택성은 각 경우에서 최대 전환 기간을 기준으로 한다. 공지된 조성의 상업적 개질 촉매는 비교를 위해 사용하였다.The results obtained are shown in Table 1 and Table 2. The selectivity shown is based on the maximum conversion period in each case. Commercial reforming catalysts of known composition were used for comparison.

실시예Example 타입type TT Ua) U a) 선택성 [%]Selectivity [%] 번호number [℃][℃] [%][%] EBEB o-?o-? ?b) ? b) ∑Arc) ∑Ar c) ∑C8 d) ∑C 8 d) 1One Pd/K/ZrO2 Pd / K / ZrO 2 450450 62.2762.27 11.111.1 6.76.7 5.45.4 86.686.6 23.223.2 22 Pd/K/ZrO2 Pd / K / ZrO 2 500500 62.2562.25 3.283.28 9.49.4 12.312.3 89.389.3 24.924.9 33 Pd/K/ZrO2 Pd / K / ZrO 2 450450 75.175.1 21.821.8 32.132.1 -- 74.674.6 53.953.9 44 Pd/K/ZrO2 Pd / K / ZrO 2 500500 67.367.3 5.05.0 24.324.3 1.231.23 91.191.1 30.530.5 55 Pd/K/ZrO2 Pd / K / ZrO 2 450450 66.066.0 16.516.5 37.137.1 2.12.1 90.890.8 55.755.7 66 Pd/K/ZrO2 Pd / K / ZrO 2 450450 82.382.3 20.420.4 21.221.2 3.733.73 88.088.0 45.345.3 77 Pd/K/ZrO2 Pd / K / ZrO 2 450450 76.376.3 14.414.4 14.014.0 6.26.2 86.186.1 34.634.6 88 Pd/K/ZrO2 Pd / K / ZrO 2 500500 97.597.5 4.04.0 11.211.2 5.05.0 97.597.5 20.220.2 99 Pd/K/ZrO2 Pd / K / ZrO 2 450450 51.451.4 8.38.3 11.711.7 13.613.6 80.680.6 33.633.6 1010 Pd/K/ZrO2 Pd / K / ZrO 2 500500 32.332.3 4.74.7 8.88.8 7.47.4 85.885.8 20.920.9 1111 Pt/Sn/ZrO2 Pt / Sn / ZrO 2 500500 97.897.8 33.433.4 52.952.9 2.82.8 96.996.9 89.189.1 1212 Pt/Sn/ZrO2 Pt / Sn / ZrO 2 500500 99.799.7 29.429.4 51.351.3 4.04.0 85.485.4 85.485.4 1313 Pt/Pd/Sn/ZrO2 Pt / Pd / Sn / ZrO 2 500500 100100 28.528.5 50.550.5 5.65.6 94.494.4 86.486.4 1414 Pt/Sn/ZrO2 Pt / Sn / ZrO 2 500500 99.699.6 32.132.1 59.459.4 1.61.6 98.498.4 94.894.8 1515 Pt/TiO2 Pt / TiO 2 500500 100100 37.137.1 48.748.7 5.45.4 96.396.3 91.391.3 1616 Pt/TiO2 Pt / TiO 2 500500 100100 37.837.8 50.050.0 2.32.3 97.597.5 90.990.9 공지 조성Notice composition Pt/Sn/Al2O3 Pt / Sn / Al 2 O 3 500500 75.175.1 3.03.0 37.637.6 10.910.9 72.072.0 51.551.5 a) n-옥탄을 기준으로 한 전환 (면적 당 GC 백분율)b) m- 및 p-크실렌의 합계c) 측정된 모든 방향족 화합물의 합계d) 모든 C8-방향족 화합물의 합계(EB + 크실렌)a) conversion based on n-octane (percent of GC per area) b) sum of m- and p-xylene c) sum of all aromatic compounds measured d) sum of all C 8 -aromatic compounds (EB + xylene)

동일 온도에서, 본 발명의 촉매는 비교용 촉매 보다 방향족 화합물의 전체 수율에 대하여 보다 높은 선택성을 나타낸다. 두드러진 결과는 첨가 값이 가장 높은 생성물인 에틸벤젠의 높은 비율이다.At the same temperature, the catalyst of the present invention exhibits higher selectivity relative to the overall yield of aromatic compounds than the comparative catalyst. A striking result is the high proportion of ethylbenzene, the product with the highest added value.

실시예Example 타입type TT Ua) U a) 선택성 [%]Selectivity [%] [℃][℃] [%][%] EBEB ∑크실렌Xylene 톨루엔toluene ∑C8 b) ∑C 8 b) ∑C8 c) ∑C 8 c) 1717 Pt/Pd/ZrO2 Pt / Pd / ZrO 2 500500 9595 9.69.6 6.26.2 21.721.7 15.815.8 3131 a) n-옥탄을 기준으로 한 전환 (면적 당 GC 백분율)b) 측정된 모든 방향족 화합물의 합계c) 모든 C9-방향족 화합물의 합계 (1,2,4-트리메틸벤젠, 인단, n-프로필벤젠+인덴)a) Conversion based on n-octane (GC percentage per area) b) Sum of all aromatic compounds measured c) Sum of all C 9 -aromatic compounds (1,2,4-trimethylbenzene, indane, n-propyl Benzene + indene)

Claims (15)

4B 족 전이 금속의 산화물 상의 원소 주기율표의 8족 원소 중에서 선택된 1종 이상의 원소 및(또는) 레늄 및(또는) 주석을 포함하는, 특히 탄소 원자수 6 내지 12인 직쇄, 분지쇄 및(또는) 시클릭 알킬 또는 알킬렌쇄가 있는 탄화수소 스트림으로부터 방향족 화합물의 선택적 제조를 위한 촉매.Straight, branched and / or bonded carbon, especially having from 6 to 12 carbon atoms, comprising at least one element selected from Group 8 elements of the Periodic Table of the Elements on the oxide of the Group 4B transition metal and / or rhenium and / or tin Catalyst for the selective preparation of aromatic compounds from hydrocarbon streams with click alkyl or alkylene chains. 제1항에 있어서, TiO2및(또는) ZrO2를 전이 금속 산화물로서 포함하는 촉매.The catalyst of claim 1 comprising TiO 2 and / or ZrO 2 as transition metal oxides. 제2항에 있어서, TiO2를 아나타제로서 주로 포함하는 촉매.The catalyst of claim 2 comprising mainly TiO 2 as anatase. 제2항에 있어서, 단사정계 변체 중에 주로 ZrO2를 포함하는 촉매.The catalyst of claim 2 comprising mainly ZrO 2 in monoclinic variant. 제1항에 있어서, 0.005 내지 5 중량%의 팔라듐, 백금, 로듐 및(또는) 레늄을 포함하는 촉매.The catalyst of claim 1 comprising from 0.005 to 5% by weight of palladium, platinum, rhodium and / or rhenium. 제1항에 있어서, 알칼리 금속 또는 알칼리 토금속의 화합물, 3A 족 또는 제3 전이족의 화합물 및(또는) 아연을 추가로 포함하는 촉매.The catalyst of claim 1 further comprising a compound of an alkali or alkaline earth metal, a compound of group 3A or a third transition group and / or zinc. 제6항에 있어서, 나트륨 또는 칼륨을 알칼리 금속으로서 포함하는 촉매.The catalyst of claim 6 comprising sodium or potassium as alkali metal. 제6항에 있어서, 란탄, 이트륨, 갈륨, 인듐 또는 탈륨 화합물을 3A 또는 제3 전이족의 화합물로서 포함하는 촉매.The catalyst of claim 6 comprising a lanthanum, yttrium, gallium, indium or thallium compound as the compound of 3A or third transition group. 제1항에 있어서, 황, 텔루르, 비소, 안티몬 및(또는) 셀레늄으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함하는 촉매.The catalyst of claim 1 comprising at least one compound selected from the group consisting of sulfur, tellurium, arsenic, antimony and / or selenium. 제1항에 있어서, BET 표면적이 10 내지 500 m2/g 인 촉매.The catalyst of claim 1 wherein the BET surface area is from 10 to 500 m 2 / g. 제1항에 있어서, 포어의 직경이 8 내지 60 nm이되, 직경이 20 nm 이상인 포어가 10% 이상이고, 특정 포어의 체적이 0.1 내지 1 ㎖/g인 촉매The catalyst of claim 1 wherein the pore has a diameter of from 8 to 60 nm, at least 10% of the pore having a diameter of at least 20 nm, and the volume of the particular pore is from 0.1 to 1 ml / g. 제1항에 있어서, 팔라듐, 백금, 로듐 및(또는) 레늄을 졸로서 지지체에 도포하는 것을 포함하는, 제1항에 따른 촉매의 제조 방법.The process of claim 1, comprising applying palladium, platinum, rhodium and / or rhenium to the support as a sol. 탄소 원자수 6 내지 12인 직쇄, 분지쇄 및(또는) 시클릭 알킬 또는 알킬렌쇄가 있는 탄화수소로부터 방향족 화합물을 제조하는데 있어서 제1항에 따른 촉매의 용도.Use of a catalyst according to claim 1 in the preparation of aromatic compounds from hydrocarbons having straight, branched and / or cyclic alkyl or alkylene chains having 6 to 12 carbon atoms. 에틸벤젠 및(또는) 크실렌을 제조하는데 있어서 제1항에 따른 촉매의 용도.Use of the catalyst according to claim 1 in the preparation of ethylbenzene and / or xylene. C9-방향족 화합물을 제조하는데 있어서 제1항에 따른 촉매의 용도.Use of a catalyst according to claim 1 in the preparation of C 9 -aromatic compounds.
KR1019980708588A 1996-04-26 1997-04-23 Catalyst for Selective Aromatization KR20000065043A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19616736.1 1996-04-26
DE19616736A DE19616736A1 (en) 1996-04-26 1996-04-26 Selective aromatization catalyst
PCT/EP1997/002045 WO1997040931A1 (en) 1996-04-26 1997-04-23 Catalyst for selective aromatization

Publications (1)

Publication Number Publication Date
KR20000065043A true KR20000065043A (en) 2000-11-06

Family

ID=7792547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980708588A KR20000065043A (en) 1996-04-26 1997-04-23 Catalyst for Selective Aromatization

Country Status (6)

Country Link
EP (1) EP0900127A1 (en)
JP (1) JP2000512539A (en)
KR (1) KR20000065043A (en)
CN (1) CN1216938A (en)
DE (1) DE19616736A1 (en)
WO (1) WO1997040931A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770775B1 (en) * 1997-11-07 1999-12-24 Oreal COMPOSITION FOR OXIDATION DYEING OF KERATINIC FIBERS COMPRISING A 3,4-DIAMINO PYRAZOLE 5-SUBSTITUE AND A HALOGENATED META-AMINOPHENOL, AND DYEING METHOD
DE19937106A1 (en) * 1999-08-06 2001-02-08 Basf Ag Multicomponent catalysts
WO2002051543A1 (en) * 2000-12-22 2002-07-04 Basf Aktiengesellschaft Multiple component catalysts
DE102005053230A1 (en) * 2005-11-06 2007-05-10 Basf Ag Process for aromatizing non-aromatics and subsequent dealkylation of alkyl-substituted aromatic hydrocarbons with water vapor
CN101234349B (en) * 2007-01-31 2010-09-22 中国石油化工股份有限公司 Alkane and/or cyclanes aromatization catalyst and aromatization method
SG10201402458SA (en) * 2009-05-20 2014-07-30 Basf Se Monolith catalyst and use thereof
CN102441412B (en) * 2010-10-12 2015-02-18 中国石油化工股份有限公司 Aromatization catalyst and application thereof in highly selective preparation of p-xylene
CN106423255B (en) * 2015-08-12 2019-01-25 中国石油化工股份有限公司 Ethylbenzene catalyst and preparation method thereof
CN107282089B (en) * 2016-04-12 2020-03-31 中国石油化工股份有限公司 Catalyst for alkylation of benzene and ethane
CN107952476B (en) * 2017-12-13 2021-02-09 中石化炼化工程(集团)股份有限公司 Catalyst for preparing gasoline blending component by coupling alcohol naphtha, preparation method and application thereof
CN115518679B (en) * 2021-06-24 2024-03-26 中国石油化工股份有限公司 Aromatization catalyst, preparation method and application thereof and butane aromatization method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136130A (en) * 1977-01-12 1979-01-23 Uop Inc. Dehydrocyclization with an acidic multimetallic catalytic composite
US4246095A (en) * 1979-06-04 1981-01-20 Uop Inc. Hydrocarbon conversion with a sulfided superactive multimetallic catalytic composite
GB8303574D0 (en) * 1983-02-09 1983-03-16 Ici Plc Hydrocarbon conversion processes
EP0614692A1 (en) * 1990-05-03 1994-09-14 Sakai Chemical Industry Co., Ltd., Catalysts and methods for denitrization
DE4109502A1 (en) * 1991-03-22 1992-09-24 Degussa CATALYST FOR HARDENING FATTY ACIDS AND METHOD FOR THE PRODUCTION THEREOF
US5221464A (en) * 1991-08-12 1993-06-22 Sun Company, Inc. (R&M) Process for catalytically reforming a hydrocarbon feed in the gasoline boiling range
PL175047B1 (en) * 1993-04-22 1998-10-30 Kti Group Bv Catalyst for use in production of synthesis gas
DE4422046A1 (en) * 1994-06-27 1996-01-04 Basf Ag Process for the preparation of 1,2-butylene oxide
DE4445142A1 (en) * 1994-12-17 1996-06-20 Basf Ag Catalysts or supports consisting essentially of monoclinic zirconia
DE19516318A1 (en) * 1995-04-28 1996-10-31 Inst Angewandte Chemie Berlin Selective aromatization catalyst, process for its manufacture and use

Also Published As

Publication number Publication date
CN1216938A (en) 1999-05-19
WO1997040931A1 (en) 1997-11-06
DE19616736A1 (en) 1997-11-06
EP0900127A1 (en) 1999-03-10
JP2000512539A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
KR100522986B1 (en) Method for Producing Olefins, in Particular Propylenes, by Dehydrogenation
JP4185024B2 (en) Catalyst and method for alkane dehydrogenation
US4191846A (en) Catalytic dehydrogenation process
KR100890770B1 (en) Catalyst
TW574068B (en) Regeneration of a dehydrogenation catalyst
US5817596A (en) Catalyst, and processes for dehydrogenating dehydrogenatable hydrocarbons
AU655903B2 (en) Process for preparing a dehydrogenation catalyst
US3692701A (en) Group viii metals on tin-containing supports dehydrogenation catalysts
KR20010032982A (en) Catalyst for converting paraffinic hydrocarbon into corresponding olefin
RU2310507C2 (en) Palladium/silver hydrogenation catalyst and methods
JPH0623269A (en) Catalyst containing group viii and iiia metal supported on carrier thereof
US3957688A (en) Catalytic dehydrogenation process
NO862377L (en) PROCEDURE AND CATALYST FOR CONVERSION OF METHANE.
WO2014016811A1 (en) Alkane dehydrogenation catalyst and process for its preparation
US4548918A (en) Process for manufacturing a hydrocarbon conversion catalyst and catalyst prepared by said process
US4169815A (en) Catalyst for dehydrogenation process
KR20000065043A (en) Catalyst for Selective Aromatization
WO2019089176A1 (en) Dehydrogenation catalysts
KR20110097953A (en) Variation of the tin impregnation of a catalyst for the dehydrogenation of alkanes
JP2000317310A (en) Catalyst containing group viii, ix or x element having excellent accessibility and use thereof in dehydrogenation of paraffin
US5898011A (en) Hydrocarbon conversion catalyst composition and processes therefor and therewith
JPH10180101A (en) Dehydrogenation catalyst
US4217205A (en) Catalysts for hydrocarbon conversion
CN114733521B (en) Alkane non-oxidative dehydrogenation catalyst with double-crystal-form carrier
US4311614A (en) Catalysts for water dealkylation of aromatic hydrocarbons

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid