KR100890770B1 - Catalyst - Google Patents
Catalyst Download PDFInfo
- Publication number
- KR100890770B1 KR100890770B1 KR1020047002025A KR20047002025A KR100890770B1 KR 100890770 B1 KR100890770 B1 KR 100890770B1 KR 1020047002025 A KR1020047002025 A KR 1020047002025A KR 20047002025 A KR20047002025 A KR 20047002025A KR 100890770 B1 KR100890770 B1 KR 100890770B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- oxide
- catalyst
- support material
- overlayer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/62—Platinum group metals with gallium, indium, thallium, germanium, tin or lead
- B01J23/622—Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
- B01J23/626—Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/321—Catalytic processes
- C07C5/324—Catalytic processes with metals
- C07C5/325—Catalytic processes with metals of the platinum group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/005—Spinels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- C07C2521/08—Silica
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/10—Magnesium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/18—Carbon
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/08—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/12—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of actinides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/14—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/18—Arsenic, antimony or bismuth
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
- C07C2523/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/72—Copper
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/20—Carbon compounds
- C07C2527/22—Carbides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
탄화수소의 탈수소화 및 수소화에 적합한 촉매는 지지체 물질에 결합된 적어도 한가지의 제1의 금속과 적어도 한가지의 제2의 금속을 포함한다. 적어도 한가지 의 제1의 금속은 적어도 한가지의 전이금속을 포함하고, 적합하게는 백금족 금속이다. 지지체 물질이 덧층을 구비하여, 지지체 물질상의 산성 부위가 실질적으로 차단된다. 바람직한 구체예에서, 촉매는 또한 실질적으로 염화물이 없다. 또한, 촉매를 제조하는 방법도 개시된다. Suitable catalysts for dehydrogenation and hydrogenation of hydrocarbons include at least one first metal and at least one second metal bonded to a support material. At least one first metal comprises at least one transition metal, suitably a platinum group metal. The support material has an overlayer so that acidic sites on the support material are substantially blocked. In a preferred embodiment, the catalyst is also substantially free of chloride. Also disclosed is a method of making a catalyst.
탄화수소, 탈수소화, 수소화, 촉매, 지지체 물질, 전이금속, 백금족.Hydrocarbons, dehydrogenation, hydrogenation, catalysts, support materials, transition metals, platinum groups.
Description
본 발명은 개선된 촉매에 관한 것이고, 특히 탄화수소의 탈수소화 및 수소화에 적합한 개선된 지지된 촉매, 및 그것의 제조방법에 관한 것이다.The present invention relates to improved catalysts, and in particular to improved supported catalysts suitable for the dehydrogenation and hydrogenation of hydrocarbons, and methods for their preparation.
탄화수소의 탈수소화 및 수소화를 위한 알려진 촉매중에서, 높은 표면적 금속 산화물 지지체상에 주기율표의 백금족 금속(PGM)과 IV 족원소를 지지함으로써 제조된 것들이 가장 효과적이다. PGM 및 IV 족 원소는 지지체 표면상에 잘 상호분산되는 것이 중요하다. 이를 위해서는, 결과의 물질이 활성 촉매를 형성하도록 열처리되기 전에, 지지체에 용액으로서 도포되는 적합한 전구체의 사용을 필요로 한다. 실제로, 많은 이용가능한 전구체의 낮은 용해도 및 불충분한 상호 혼화성때문에, 요구되는 바람직한 높은 상호분산성은 달성되기 어렵다. 염화물 염은 때때로 실제로 사용되는 유일한 전구체이다. 그러나, 염화물 염의 사용은 촉매에 해로운 영향을 나타낸다. 지지체 표면상의 염화물 이온은 이성질체화, 탄소 부착 및 메탄 형성과 같은 바람직하지 않은 반응의 발생을 유발할 수 있다. 높은 표면적 지지체는 종종 염화물 이온과 같은 해로운 영향을 나타낼 수 있는 우발성 전자수용성(산성) 종 또는 부위를 함유하여 문제를 복잡화한다. Among the known catalysts for dehydrogenation and hydrogenation of hydrocarbons, those prepared by supporting the platinum group metal (PGM) and group IV elements of the periodic table on high surface area metal oxide supports are most effective. It is important that the PGM and Group IV elements are well interdispersed on the support surface. This requires the use of a suitable precursor that is applied as a solution to the support before the resulting material is heat treated to form the active catalyst. Indeed, because of the low solubility and insufficient intercompatibility of many available precursors, the desired high interdispersity is difficult to achieve. Chloride salts are sometimes the only precursors actually used. However, the use of chloride salts exhibits a deleterious effect on the catalyst. Chloride ions on the support surface can cause the occurrence of undesirable reactions such as isomerization, carbon attachment and methane formation. High surface area supports often complicate the problem by containing incidental electron-accepting (acidic) species or sites that can exhibit deleterious effects such as chloride ions.
EP 0 166 359 은 수증기 활성화된 촉매를 사용하는 이소부탄, n-부탄 및 부 타디엔을 함유하는 공급원료의 탈수소 방법을 개시한다. 3 가지 타입의 촉매가 기술되어 있으며, 이들 모두는 매우 하소된 스피넬 지지체상에 지지된다. 제1의 촉매 타입은 지지체를 예를 들어, 염화백금산과 같은, PGM 용액으로 함침시킴으로써 제조된다; 제2의 촉매 타입은 IA 족 금속 용액으로의 더 이상의 함침을 포함하고; 그리고 제3의 타입은 주석, 게르마늄 또는 납 용액으로의 더 이상의 함침을 추가한다. 염화물 함유 용액이 바람직하다. 함침 처리는 어떤 순서로도 행해질 수 있고 또는 동시에 한번에 실행해질 수도 있다. EP 0 166 359 discloses a process for dehydrogenation of a feedstock containing isobutane, n-butane and butadiene using a steam activated catalyst. Three types of catalysts are described, all of which are supported on highly calcined spinel supports. The first catalyst type is prepared by impregnating the support with a PGM solution, such as, for example, chloroplatinic acid; The second type of catalyst comprises further impregnation with a Group IA metal solution; And the third type adds further impregnation with tin, germanium or lead solutions. Chloride containing solutions are preferred. The impregnation process may be performed in any order or may be executed simultaneously.
EP 0 094 684 는 귀금속 촉매를 지지체에 도포함으로써 금속을 지지체 표면에만 잔류시키는 공정을 개시한다. 이것은 지지체를 백금 아황산염 착체로 함침시키는 것에 의해서 얻어진다고 한다. 바람직한 지지체는 아연 알루미네이트를 포함한다. 이렇게 제조된 촉매는 부탄의 탈수소화에 적합하다. EP 0 094 684 discloses a process of leaving metal only on the surface of a support by applying a noble metal catalyst to the support. This is said to be obtained by impregnating the support with a platinum sulfite complex. Preferred supports include zinc aluminate. The catalyst thus prepared is suitable for the dehydrogenation of butane.
본 발명의 제1의 양태에서, 탄화수소의 탈수소화 및 수소화에 적합한 촉매는 지지체 물질에 결합된 적어도 한가지의 제1의 금속과 적어도 한가지의 제2의 금속을 포함하며, 적어도 한가지의 제1의 금속은 적어도 한가지의 전이금속을 포함하고; 지지체 물질은 덧층을 구비하여 지지체 물질상의 산성 부위가 실질적으로 차단되도록 되어 있다. In a first aspect of the invention, a catalyst suitable for dehydrogenation and hydrogenation of hydrocarbons comprises at least one first metal and at least one second metal bonded to a support material, and at least one first metal Comprises at least one transition metal; The support material has an overlayer such that the acidic sites on the support material are substantially blocked.
예를 들어, 금속 산화물 지지체의 표면상에 본래 존재하는 산성 부위의 차단은 촉매의 선택성을 개선시키고 원하지 않는 부반응의 발생을 감소시키거나 실질적으로 차단시킨다. 산성 부위는 탄화수소를 "열분해"시켜서, 원하지 않는 메탄을 생성하고, 또한 탄화수소가 방향족 분자들을 형성하도록 유도할 수 있으며, 차례로 촉매상에 탄소 부착물을 형성함으로써 빠른 촉매 비활성화를 유발할 수 있다. 이 촉매 비활성화의 공정은 "코킹"으로 알려져 있다. For example, blocking the acidic sites originally present on the surface of the metal oxide support improves the selectivity of the catalyst and reduces or substantially blocks the occurrence of unwanted side reactions. Acidic sites can “pyrolyze” hydrocarbons, producing unwanted methane, and also inducing the hydrocarbons to form aromatic molecules, which in turn can lead to rapid catalyst deactivation by forming carbon deposits on the catalyst. This process of catalyst deactivation is known as "caking".
대조적으로, EP 0 166 359에서는, 구성요소들이 지지체상에 함침되어야 하는 명시된 순서는 없다. 덧층의 형성은 교시되어 있지 않고 따라서, 지지체상의 산성 부위가 촉매 반응을 방해하는것이 허용되도록 남아있을 것이다. In contrast, in EP 0 166 359, there is no specified order in which the components must be impregnated on the support. The formation of the overlayer is not taught and therefore will remain to allow acid sites on the support to interfere with the catalytic reaction.
바람직한 구체예에서, 촉매는 실질적으로 염화물이 없다. In a preferred embodiment, the catalyst is substantially free of chloride.
이렇게 제조된 촉매는 개선된 선택성, 원하지 않는 반응 생성물의 생성을 최소화한다. 원하는 생성물의 수율을 최적화하는 것에 추가하여, 개선된 선택성은 코킹을 감소시키고, 유의하게 증가된 촉매 수명을 유도한다. 본 발명에 따른 촉매의 사용으로부터의 유리한 방법의 한 예는 에탄을 탈수소화시켜서 에틸렌을 얻는 것이다. 현재의 최신기술의 지지된 PGM 촉매는 에틸렌을 생성하는 것보다 원하지 않는 메탄을 상당히 다량 생성하는 것에 반하여, 본원 발명의 촉매를 사용한 경우는 생성물의 대부분이 에틸렌이다. 본 발명의 실질적이고 경제적인 잇점은 분명하다. The catalyst thus prepared minimizes the production of improved selectivity, unwanted reaction products. In addition to optimizing the yield of the desired product, improved selectivity reduces coking and leads to significantly increased catalyst life. One example of an advantageous process from the use of the catalyst according to the invention is to dehydrogenate ethane to obtain ethylene. Current state of the art supported PGM catalysts produce significantly higher amounts of unwanted methane than that of ethylene, whereas most of the product is ethylene when using the catalyst of the present invention. The substantial and economic advantages of the present invention are clear.
탄화수소의 촉매작용 탈수소화 및 수소화 공정동안에 종종(예를 들어, EP 0 166 359), 탄소 형성을 억제하기 위해서 수증기가 첨가되는데, 그렇지 않으면, 탄소형성이 비효과적이 되게 한다. 수증기 발생은 에너지를 소비하여 공정에 더이상의 비용과 복잡화를 가중시킨다. 본 발명의 촉매의 더 이상의 잇점은 이러한 공정에 수증기가 요구되지 않는다는 것이다. During the catalysis dehydrogenation and hydrogenation processes of hydrocarbons (eg EP 0 166 359), water vapor is added to inhibit carbon formation, otherwise the carbon formation becomes ineffective. Steam generation consumes energy, adding further cost and complexity to the process. A further advantage of the catalyst of the present invention is that no water vapor is required for this process.
본 발명의 제2의 양태에서, 탄화수소의 탈수소화 및 수소화에 적합한 촉매를 제조하는 방법은 In a second aspect of the invention, a process for preparing a catalyst suitable for dehydrogenation and hydrogenation of hydrocarbons
(a) 지지체 물질을 덧층 전구체의 용액과 접촉시키는 단계,(a) contacting the support material with a solution of the overlayer precursor,
(b) 덧층을 형성하기 위해서 지지체 물질을 건조시키고 하소시키는 단계, (b) drying and calcining the support material to form an overlayer,
(c) 처리된 지지체 물질을 적어도 한가지의 제1의 금속 전구체 및 적어도 한가지의 제2의 금속 전구체의 용액과 접촉시키는 단계, 그리고(c) contacting the treated support material with a solution of at least one first metal precursor and at least one second metal precursor, and
(d) 처리된 지지체 물질을 건조 및 하소시켜서 촉매를 형성하는 단계를 포함하며, 덧층은 지지체 물질보다 염기성인 금속 산화물을 포함하여 지지체 물질상의 산성 부위가 실질적으로 차단되도록 한다. (d) drying and calcining the treated support material to form a catalyst, the overlayer comprising a metal oxide that is more basic than the support material to substantially block acidic sites on the support material.
바람직하게는, 덧층은 지지체 물질보다 더 염기성이고, 더욱 바람직하게는, 덧층은 실질적으로 비산성이다. 적당하게는, 덧층은 주석 산화물, 게르마늄 산화물, 납 산화물, 구리 산화물, 아연 산화물, 갈륨 산화물, 란타늄 산화물, 바륨 산화물 또는 그것의 어떤 혼합물을 포함한다. 바람직한 구체예에서, 덧층은 주석 산화물층을 포함한다. 덧층은 원하는 금속의 어떤 가용성 염을 포함할 수 있는, 덧층 전구체 용액으로부터 부착될 수 있다. 예를 들어, 염산 중의 SnCl22H2O 용액이 주석 산화물 덧층의 형성을 위한 덧층 전구체로서 적합하다. 약 2 시간동안 용액에 침지시킨 후에, 예를 들어, 지지체 물질을 120℃ 에서 약 8-12시간동안 공기중에서 건조시킨 다음, 약 500℃ 에서 4-8시간동안 공기중에서 하소시킬 수 있다. 이러한 공정 시간 및 온도는 규정된 것이 아니고 본 발명의 범위에서 벗어남이 없이 당업자에게 알려진 대로 변경될 수 있다. Preferably, the overlayer is more basic than the support material, and more preferably, the overlayer is substantially non acidic. Suitably, the overlayer comprises tin oxide, germanium oxide, lead oxide, copper oxide, zinc oxide, gallium oxide, lanthanum oxide, barium oxide or any mixture thereof. In a preferred embodiment, the overlayer comprises a tin oxide layer. The overlayer may be attached from the overlayer precursor solution, which may include any soluble salt of the desired metal. For example, a solution of SnCl 2 2H 2 O in hydrochloric acid is suitable as an overlayer precursor for the formation of tin oxide overlayer. After immersion in the solution for about 2 hours, for example, the support material may be dried in air at 120 ° C. for about 8-12 hours and then calcined in air at about 500 ° C. for 4-8 hours. These process times and temperatures are not defined and may be changed as known to those skilled in the art without departing from the scope of the present invention.
백금족 금속이 탄화수소의 탈수소화 및 수소화를 촉매작용하는데에 특히 효 과적이라는 것이 알려져 있으며, 바람직하게는 적어도 한가지의 제1의 금속은 백금, 팔라듐, 로듐, 루테늄, 이리듐 및 오스뮴의 군으로부터 선택된 전이금속을 포함한다. 적합하게는, 적어도 한가지의 제1의 금속 전구체는 백금, 팔라듐, 로듐, 루테늄, 이리듐 또는 오스뮴의 염이다. It is known that platinum group metals are particularly effective at catalyzing the dehydrogenation and hydrogenation of hydrocarbons, preferably at least one primary metal is a transition metal selected from the group of platinum, palladium, rhodium, ruthenium, iridium and osmium It includes. Suitably, the at least one first metal precursor is a salt of platinum, palladium, rhodium, ruthenium, iridium or osmium.
바람직하게는, 적어도 한가지의 제2의 금속은 주석이지만, 게르마늄, 납, 갈륨, 구리, 아연, 안티몬 및 비스무트도 또한 사용될 수 있다. 바람직하게는, 적어도 한가지의 제2의 금속 전구체는 주석, 게르마늄, 납, 갈륨, 구리, 아연, 안티몬 및 비스무트의 염을 포함하고, 주석의 염이 특히 바람직하다. Preferably, the at least one second metal is tin, but germanium, lead, gallium, copper, zinc, antimony and bismuth may also be used. Preferably, the at least one second metal precursor comprises salts of tin, germanium, lead, gallium, copper, zinc, antimony and bismuth, with salts of tin being particularly preferred.
본 발명의 어떤 구체예에서, 제2의 금속은 덧층 형성에 사용되는 것과 동일할 수 있다. 예를 들어, 주석 산화물 덧층은 주석을 포함하는 제2의 금속과 함께 사용될 수 있다. 예를 들어 주석의 2 가지 공급원의 기능은 별개라는 것이 이해될 것이다. 상기에 기술한 대로, 덧층은 지지체상의 산성 부위를 차단시켜 원하지 않는 부반응을 방지하는 반면에, 제2의 것은 예를 들어, 백금과 같은 전이 금속의 촉매 활성을 증강시킨다. In some embodiments of the invention, the second metal may be the same as used for forming the overlay. For example, tin oxide overlayer can be used with a second metal comprising tin. For example, it will be understood that the functions of the two sources of tin are separate. As described above, the overlayer blocks acidic sites on the support to prevent unwanted side reactions, while the second enhances the catalytic activity of transition metals such as, for example, platinum.
동일한 용액으로부터의 제1의 금속 및 제2의 금속을 둘다 함께 부착하는 것이, 더 적은 공정 단계를 요구하기 때문에, 가장 간단하다. 또한 단일 용액만이 사용된 다면, 금속종의 상호분산이 개선된다는 잇점이 있다. 원한다면, 각각의 종의 각각의 용액이 사용될 수 있지만, 그러나 이렇게 생성된 촉매는 덜 효과적이라는 것은 분명하다. Attaching both the first metal and the second metal from the same solution together is the simplest because it requires fewer process steps. It is also advantageous if only a single solution is used, the interdispersion of the metal species is improved. If desired, respective solutions of each species can be used, but it is clear that the catalyst thus produced is less effective.
바람직하게는, 적어도 한가지의 제1의 금속 전구체 및 적어도 한가지의 제2의 금속 전구체의 용액(또는 용액들)은 염화물이 없다. 더욱 바람직하게는, 적어도 한가지의 제1의 금속 전구체는 예를 들어, 아세테이트, 옥살레이트, 또는 타르트레이트와 같은 음이온성 카르복실레이트를 포함하고, 적어도 한가지의 제2의 금속 전구체는 BF4 - 의 음이온을 포함한다. Preferably, the solution (or solutions) of at least one first metal precursor and at least one second metal precursor is free of chloride. More preferably, the at least one first metal precursor comprises an anionic carboxylate such as, for example, acetate, oxalate, or tartrate, and the at least one second metal precursor is selected from BF 4 − . Contains anions.
특히 바람직한 구체예에서, 적어도 한가지의 제1의 금속 전구체 및 적어도 한가지의 제2의 금속 전구체의 용액은 시트르산 수용액중의 K2[Pt(C2O4) 2] 및 Sn(BF4)2 를 포함한다. In a particularly preferred embodiment, the solution of at least one first metal precursor and at least one second metal precursor comprises K 2 [Pt (C 2 O 4 ) 2 ] and Sn (BF 4 ) 2 in aqueous citric acid solution. Include.
BF4 - 의 사용은 촉매의 표면상에 BF- 착체 이온의 형성을 초래한다. 이러한 착체 음이온은 수소 제거 반응 및 수소 부가 반응동안 다음의 유리한 효과를 나타낸다고 여겨진다. BF 4 - The use of results in the formation of BF - complex ions on the surface of the catalyst. These complex anions are believed to have the following beneficial effects during the hydrogen removal reaction and the hydrogen addition reaction.
(i) 착체 음이온이 전기음성의 환경을 만들어서, 원하는 생성물의 탈착을 촉진하고,(i) complex anions create an electronegative environment, promoting desorption of the desired product,
(ii) 착체 음이온이 촉매에 탄소의 부착(코킹)을 유발하는 부반응의 발생을 방해한다. (ii) complex anions interfere with the occurrence of side reactions that lead to carbon attachment (caking) to the catalyst.
바람직하게는, 지지체 물질은 금속 또는 규소의 산화물, 탄화물 또는 황화물; 탄소; 또는 그것의 어떤 혼합물 또는 고용체 중 적어도 한가지이다. 더욱 바람직하게는, 지지체 물질은 알루미나, 스피넬, 실리카, 마그네시아, 토리아, 지르코니아 및 티타니아의 군으로부터 선택된 적어도 한가지의 금속 산화물이다. 원한다면, 히드로탈시트와 같은 적당한 산화물은 광물의 열처리에 의해서 얻어질 수 있다. Preferably, the support material is an oxide, carbide or sulfide of a metal or silicon; carbon; Or any mixture or solid solution thereof. More preferably, the support material is at least one metal oxide selected from the group of alumina, spinel, silica, magnesia, toria, zirconia and titania. If desired, suitable oxides such as hydrotalcites can be obtained by thermal treatment of the minerals.
지지체 물질은 어떠한 물리적 형태도 취할 수 있으나, 활성 표면 영역을 최대화하기 위해서 미세하게 분할된 형태가 바람직하다. 한 구체예에서, 지지체는 슬러리로 형성될 수도 있고, 슬러리는 예를 들어, 벌크 세라믹, 금속 또는 다른 고체 구조물과 같은 어떤 적합한 구조물에 촉매 코팅을 제공하기 위해서 워시코트로서 사용될 수도 있다. The support material may take any physical form, but finely divided forms are preferred to maximize the active surface area. In one embodiment, the support may be formed from a slurry and the slurry may be used as a washcoat to provide a catalyst coating to any suitable structure, such as, for example, bulk ceramics, metals or other solid structures.
원한다면, 촉매는 조촉매를 더 포함할 수 있다. 적합한 조촉매는 리튬, 나트륨, 칼륨, 루비듐 및 세슘과 같은 알칼리 금속을 포함한다. 조촉매는 예를 들어, 알칼리 금속염으로 처리하는 것에 의한 별도의 공정 단계에 의해서 촉매에 포함될 수 있지만, 바람직하게는, 조촉매는 적어도 한가지의 제1의 금속 전구체에 양이온으로서 포함된다. 예를 들어, K2[Pt(C2O4)2] 가 제1의 금속 전구체로서 사용될 때, 칼륨이 조촉매로서 포함된다. 촉매의 전체적인 산성을 더욱 감소시키는 것에 더하여, 조촉매로서 알칼리 금속의 존재는 바람직하지 않은 부반응에 대해 활성인 금속표면상의 부위를 차단시킬 수 있다. If desired, the catalyst may further comprise a promoter. Suitable promoters include alkali metals such as lithium, sodium, potassium, rubidium and cesium. The promoter may be included in the catalyst by a separate process step, for example by treatment with an alkali metal salt, but preferably the promoter is included as a cation in at least one first metal precursor. For example, when K 2 [Pt (C 2 O 4 ) 2 ] is used as the first metal precursor, potassium is included as a promoter. In addition to further reducing the overall acidity of the catalyst, the presence of alkali metals as promoters can block sites on the metal surface that are active against undesirable side reactions.
본 발명의 촉매는 어떤 탄화수소 종의 수소화 및 탈수소화에도 적합하다. 어떤 비제한적인 예들은 불포화 탄화수소를 덜 포화되거나 또는 완전히 포화된 탄화수소로 전환시키기 위한 것과 같은 수소화 반응; 및 에탄의 에틸렌으로의 전환, 프로판의 프로필렌으로의 전환, 이소부탄의 이소부틸렌으로의 전환 또는 에틸벤젠의 스티렌으로의 전환과 같은 탈수소 반응을 포함한다. 반응물질 탄화수소는 순수한 형태로 제공되거나, 질소 또는 수소와 같은 희석제로 처리되거나, 공기 또는 산소와 조합하거나, 당업계에 알려진 어떤 방법에도 의할 수 있다.The catalyst of the present invention is suitable for the hydrogenation and dehydrogenation of any hydrocarbon species. Some non-limiting examples include hydrogenation reactions such as for converting unsaturated hydrocarbons to less saturated or fully saturated hydrocarbons; And dehydrogenation reactions such as conversion of ethane to ethylene, conversion of propane to propylene, conversion of isobutane to isobutylene or conversion of ethylbenzene to styrene. The reactant hydrocarbons may be provided in pure form, treated with a diluent such as nitrogen or hydrogen, combined with air or oxygen, or by any method known in the art.
본 발명을 이제 실시예에 의해서 기재하기로 한다. The present invention will now be described by way of examples.
(실시예 1)(Example 1)
(본 발명에 따르지 않은, 표준 촉매의 제조)(Preparation of standard catalyst, not according to the present invention)
1.5% Pt-1.5%Sn/Al2O3 의 공칭 조성물(중량)을 가진 촉매를, 염화백금산과 염화 주석(II)의 산성화된 용액을 혼합함으로써 형성된 수성 착체로 γ-Al2O3 를 함침시킴으로써 (미국 특허번호 3998900 의 FC Wilhelm 에 의해 개시된 방법을 사용하여) 제조하였다. 결과의 물질을 건조시켰고(110℃; 공기중; 24시간) 하소시켰다 (500℃; 공기중; 2 시간). Impregnated γ-Al 2 O 3 with an aqueous complex formed by mixing a catalyst having a nominal composition (weight) of 1.5% Pt-1.5% Sn / Al 2 O 3 with an acidified solution of chloroplatinic acid and tin (II) chloride. By using the method disclosed by FC Wilhelm of US Pat. No. 3998900. The resulting material was dried (110 ° C .; in air; 24 hours) and calcined (500 ° C. in air; 2 hours).
(실시예 2)(Example 2)
(스피넬 지지체상의 주석 산화물 덧층을 가진 Pt-Sn 촉매의 제조)Preparation of Pt-Sn Catalyst with Tin Oxide Overlay on Spinel Support
공칭 조성물 1.5% Pt-1.5% Sn/7.5% Sn-MgAl2O4 을 가진 10g의 촉매를, (i) 마그네슘 알루미네이트 스피넬을 형성하는 단계, (ii) 스피넬에 주석 산화물 덧층을 부착시키는 단계, (iii) Pt-Sn 착체로 함침시키는 단계에 의해서 제조하였다. 10 g of a catalyst with a nominal composition 1.5% Pt-1.5% Sn / 7.5% Sn-MgAl 2 O 4 , (i) forming a magnesium aluminate spinel, (ii) attaching a tin oxide overlayer to the spinel, (iii) impregnated with Pt-Sn complex.
상세하게는 17.95g Mg(N03)2.6H20 및 52.52g Al(NO3)3.9H20 를 1dm3 의 탈이온수에 용해시켰다. 수성 NH4OH 를 첨가하여 용액의 pH 를 10으로 조정하였다. 이것은 백색 침전의 형성을 초래하였고, 침전을 분리하여 모든 잔류 미량의 NH4NO3 를 제거하기 위해서 뜨거운 탈이온수로 몇번 세척하였다. 고형분을 120℃에서 8시간동안 공기중에서 건조시켰고 최종적으로 800℃에서 16 시간동안 공기중에서 하소시켰다. 이 고형분의 X선 회절 분석으로 MgAl204 가 형성되었다는 것을 확인하였다. 1.5g SnCl2. 2H20 를 0℃에서, 6cm3 0.1 M 수성 HCl 에 용해시켰고, 2시간동안 MgAl2O4 와 접촉시켰다. 물질을 120℃에서 8 시간동안 공기중에서 건조시켰고, 이어서 500℃에서 4 시간동안 공기중에서 하소시켰다. 0.29g SnCl2.2H20 를 0℃에서 6cm3 0.1M 수성 HCl 용액에서 용해시켰다. 0.38g 의 염화백금산을 산성화된 SnCl2·2H2O 에 첨가하고, 용액은 [PtCl2(SnCl3)2]2- 착체의 형성과 일치하는 짙은 적색 색상을 나타내었다. 120℃에서 8시간동안 공기중에서 건조시키기 전에, 용액을 7.5%Sn-MgAl2O4 물질과 2 시간동안 접촉시켰다. 500℃ 에서 4 시간동안 공기중에서의 하소로 최종 촉매를 얻었다. Specifically, 17.95g Mg (N0 3) 2 .6H 2 0 and 52.52g Al (NO 3) 3 .9H 2 0 was dissolved in deionized water in 1dm 3. The pH of the solution was adjusted to 10 by addition of aqueous NH 4 OH. This resulted in the formation of a white precipitate, which was washed several times with hot deionized water to separate the precipitate and remove all residual traces of NH 4 NO 3 . The solid was dried in air at 120 ° C. for 8 hours and finally calcined in air at 800 ° C. for 16 hours. X-ray diffraction analysis of this solid content confirmed that MgAl 2 O 4 was formed. 1.5g SnCl 2 . 2H 2 O was dissolved in 6 cm 3 0.1 M aqueous HCl at 0 ° C. and contacted with MgAl 2 O 4 for 2 hours. The material was dried in air at 120 ° C. for 8 hours and then calcined in air at 500 ° C. for 4 hours. 0.29 g SnCl 2 H 2 O was dissolved in 6 cm 3 0.1 M aqueous HCl solution at 0 ° C. 0.38 g of chloroplatinic acid was added to the acidified SnCl 2 .2H 2 O and the solution showed a dark red color consistent with the formation of the [PtCl 2 (SnCl 3 ) 2 ] 2 -complex. Before drying in air at 120 ° C. for 8 hours, the solution was contacted with 7.5% Sn-MgAl 2 O 4 material for 2 hours. The final catalyst was obtained by calcination in air at 500 ° C. for 4 hours.
(실시예 3)(Example 3)
(알루미나 지지체상에 Pt-Sn 을 함유하는 염화물이 없는 촉매의 제조)Preparation of Chloride-Free Catalysts Containing Pt-Sn on Alumina Supports
공칭 조성물 1.5% Pt-1.5%Sn/θ-Al203 을 가진 5g 의 촉매를, Pt의 무염화물 전구체 및 Sn 의 무염화물 전구체로부터 형성된 Pt-Sn 착체로 저산성 알루미나(θ-Al203)를 함침시킴으로써 제조했다. A 5 g catalyst having a nominal composition 1.5% Pt-1.5% Sn / θ-Al 2 O 3 was converted into a low acid alumina (θ-Al 2 O) by a Pt-Sn complex formed from a Pt-free and precursor-free chloride precursor It was prepared by impregnation 3 ).
상세하게는, 5g θ-Al203 를 300℃에서, 공기중에서 건조시켰고 건조기에서 실온으로 냉각시켜서 기공 구조의 완전한 비움을 보장하였다. 0.18g의 K2[PtII(C204)2] 를 7cm3 100 g1-1 수성 시트르산에 첨가하였고, 형성된 용액이 라임 그린 색상을 나타낼때까지 데웠다. Specifically, 5 g θ-Al 2 O 3 was dried at 300 ° C. in air and cooled to room temperature in a dryer to ensure complete emptying of the pore structure. 0.18 g K 2 [Pt II (C 2 0 4 ) 2 ] was added to 7 cm 3 100 g1 −1 aqueous citric acid and warmed until the solution formed showed a lime green color.
0.38g Sn(BF4)2 (50% 수용액)을 이 용액에 첨가하였고 암적색 색상이 전개되는 것이 보였다. 용액을 실온으로 냉각되도록 방치하고 2 시간동안 지지체와 접촉시킨 다음, 120℃에서 하룻밤동안 공기중에서 건조시키고, 500℃에서 4 시간동안 공기중에서 최종 하소시켰다.0.38 g Sn (BF 4 ) 2 (50% aqueous solution) was added to this solution and a dark red color developed. The solution was left to cool to room temperature and contacted with the support for 2 hours, then dried in air overnight at 120 ° C. and finally calcined in air at 500 ° C. for 4 hours.
(실시예 4)(Example 4)
(스피넬 지지체상에서 Pt-Sn 을 함유하는 염화물이 없는 촉매의 제조)Preparation of Chloride-Free Catalysts Containing Pt-Sn on a Spinel Support
공칭 조성물 1.5%Pt-1.5%Sn/MgAl204 를 가진 5g 의 촉매를, (실시예 2에 기재된 대로) 마그네슘 알루미네이트 스피넬을 형성한 다음, (실시예 3에 기재된 대로) 염화물이 없는 Pt-Sn 착체로 함침시킴으로써 제조하였다. 함침된 스피넬을 120℃에서 8 시간동안 공기중에서 건조하고, 500℃에서 4 시간동안 공기중에서 하소시켰다. A 5 g catalyst having a nominal composition 1.5% Pt-1.5% Sn / MgAl 2 O 4 was formed with magnesium aluminate spinel (as described in Example 2) and then chloride-free Pt (as described in Example 3). It was prepared by impregnation with -Sn complex. The impregnated spinel was dried in air at 120 ° C. for 8 hours and calcined in air at 500 ° C. for 4 hours.
(실시예 5) (Example 5)
(촉매의 성능)(Performance of catalyst)
WO 9405608 의 BM Maunders 및 SR Partington 에 의해서 개시된 에탄 탈수소 공정(여기서, 탈수소 촉매는 수소 제거 물질과 조합된다)을 사용하여 촉매를 시험하였다.수소 제거 물질의 존재는 순방향(탈수소) 및 역방향(재-수소화) 반응이 평형에 이르도록 허용되었을때, 일반적으로 도달된 값 이상으로, 에틸렌의 수율을 증가시킬 목적이다. The catalyst was tested using the ethane dehydrogenation process disclosed by BM Maunders and SR Partington of WO 9405608, wherein the dehydrogenation catalyst is combined with a hydrogen removal material. The presence of the hydrogen removal material is in the forward (dehydrogen) and reverse (re- When the reaction is allowed to equilibrate, it is generally intended to increase the yield of ethylene above the value reached.
각각의 시험에서, 1g 의 촉매를 3g 수소-제거 물질과 혼합하였다. 혼합물을 원통형 반응기에 충전하고, 500℃로 가열하였다. 에탄의 희석화되지 않은 흐름(20cm3분-1)을 2분동안 반응기를 통해 통과시켰고, 모든 배출 가스를 수집·분석하였다. 수소 저장 물질이 포화될 때까지 과정을 반복하였고, 에틸렌 수율은 일반적인 평형값(500℃에서 3.7%)으로 복귀되었다. 수소 저장 물질은 반응기를 통해 공기를 통과시킴으로써 재생될 수 있었다. In each test, 1 g of catalyst was mixed with 3 g hydrogen-removing material. The mixture was charged to a cylindrical reactor and heated to 500 ° C. An undiluted stream of ethane (20 cm 3 min -1 ) was passed through the reactor for 2 minutes, and all the exhaust gases were collected and analyzed. The process was repeated until the hydrogen storage material was saturated and ethylene yield was returned to the normal equilibrium value (3.7% at 500 ° C.). The hydrogen storage material could be regenerated by passing air through the reactor.
표 1 은 본 발명에 따른 촉매(실시예 2 내지 4)의 각각에 대해서와, 종래의 촉매(실시예 1)에 대해서 에탄의 몰 전환, 에틸렌에 대한 몰 선택성 및 에틸렌의 몰수율을 나타낸다. 값은 수소 제거 물질이 포화되기 전과 재생된 다음 모두에서, 에탄에 대해 각각 2분 노출에 기초한 평균이다. 모든 경우에, 에틸렌 수율은 일반적인 평형 수율을 초과하였다. 종래의 촉매(실시예 1)가 전환%의 관점에서는 가장 활성이지만, 대부분의 에탄을 메탄으로 전환시킴으로써 소모시켰다. 본 발명에 따른 각각의 조제물은 에틸렌에 대해 실질적으로 높은 선택성을 나타냈으며, 가장 선 택적인 촉매는 저산성 지지체 물질을 염화물이 없는 Pt-Sn 착체로 함침시킴으로써 제조된 촉매(실시예 3)였다. Table 1 shows the molar conversion of ethane, the molar selectivity to ethylene and the molar yield of ethylene for each of the catalysts (Examples 2 to 4) according to the invention and for the conventional catalysts (Example 1). The values are averages based on two minute exposures to ethane each, both before saturation and after regeneration. In all cases, ethylene yields exceeded general equilibrium yields. The conventional catalyst (Example 1) is the most active in terms of% conversion, but was consumed by converting most of the ethane to methane. Each preparation according to the invention exhibited substantially high selectivity for ethylene and the most selective catalyst was a catalyst prepared by impregnating a low acid support material with a chloride free Pt-Sn complex (Example 3). .
(실시예 6)(Example 6)
(란타늄 산화물 덧층을 가진 촉매)(Catalyst with lanthanum oxide overlayer)
공칭 조성물 1% Pt-1%Sn/Al2O3 을 가진 (본 발명에 따르지 않은) 표준 촉매를, 실시예 1 에 따라서 제조하였다. 본 발명에 따른 더 이상의 촉매를 또한 덧층을 형성하도록 La2O3 를 부착시킨 알루미나 지지체를 사용한 것을 제외하고는 유사한 방식으로 제조하였다. 이 촉매의 공칭 조성물은 1% Pt-1%Sn/10%La2O3/Al2 O3 였다. 함침후에, 촉매를 100℃에서 24시간동안 공기중에서 건조시킨 다음에 500℃에서 2 시간동안 공기중에서 하소시켰다. A standard catalyst (not according to the invention) with the nominal composition 1% Pt-1% Sn / Al 2 O 3 was prepared according to Example 1. Further catalysts according to the invention were also prepared in a similar manner, except that an alumina support with La 2 O 3 attached to form an overlayer was used. The nominal composition of this catalyst was 1% Pt-1% Sn / 10% La 2 O 3 / Al 2 O 3 . After impregnation, the catalyst was dried in air at 100 ° C. for 24 hours and then calcined in air at 500 ° C. for 2 hours.
두 촉매를 EP 0638534 B1 의 S.E. Golunski 및 J.W. Hayes 에 의해서 개시되 알칸의 산화성 탈수소 공정을 사용하여 시험하였다. 500℃의 온도에서 이소부탄(50cm3분-1)을 원통형 반응기를 통해 통과시키고, 0.5g 의 촉매를 충전하였다. 촉매 베드 온도가 떨어지기 시작하였을때, 탈수소화 개시점에서, 단지 충분한 공기를 이소부탄에 첨가하여 열적으로 중성 조작을 달성하였다(즉, 베드 온도= 가 스 입구 온도). Both catalysts were tested using the oxidative dehydrogenation process of alkanes initiated by SE Golunski and JW Hayes of EP 0638534 B1. Isobutane (50 cm 3 min −1 ) was passed through a cylindrical reactor at a temperature of 500 ° C. and 0.5 g of catalyst was charged. When the catalyst bed temperature began to drop, at the start of dehydrogenation, only sufficient air was added to isobutane to achieve thermally neutral operation (ie bed temperature = gas inlet temperature).
2 분의 산화성 탈수소화후에, 첫번째 측정을 하였을 때, 이소부텐의 수율은 표준 촉매와 La203 덧층을 가진 촉매 모두에 대하여 동일하였다(30%). 그러나, 후속 비활성화의 속도는 표준 촉매에 대해서 더 높았다. 이소부텐 수율이 표준 촉매에 대해서 30% 에서 20% 떨어지는데는 90분이 걸렸다. 그러나, La203 덧층을 가진 촉매가 동량으로 비활성화되는데는 2배의 긴 시간이 걸렸다. After 2 minutes of oxidative dehydrogenation, at the first measurement, the yield of isobutene was the same for both the standard catalyst and the catalyst with La 2 0 3 overlayer (30%). However, the rate of subsequent deactivation was higher for standard catalysts. It took 90 minutes for the isobutene yield to drop from 30% to 20% for the standard catalyst. However, the catalyst with La 2 0 3 overlayer took twice as long to deactivate in the same amount.
Claims (16)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0119327.5A GB0119327D0 (en) | 2001-08-08 | 2001-08-08 | Catalyst |
GB0119327.5 | 2001-08-08 | ||
GB3200018 | 2004-02-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040027888A KR20040027888A (en) | 2004-04-01 |
KR100890770B1 true KR100890770B1 (en) | 2009-03-31 |
Family
ID=9920014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020047002025A KR100890770B1 (en) | 2001-08-08 | 2002-07-15 | Catalyst |
Country Status (10)
Country | Link |
---|---|
US (1) | US7375049B2 (en) |
EP (1) | EP1414570B1 (en) |
JP (1) | JP4391230B2 (en) |
KR (1) | KR100890770B1 (en) |
AU (1) | AU2002317336A1 (en) |
CA (1) | CA2456530A1 (en) |
GB (1) | GB0119327D0 (en) |
NO (1) | NO20040556L (en) |
TW (1) | TWI229661B (en) |
WO (1) | WO2003013728A2 (en) |
Families Citing this family (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007041380A1 (en) * | 2007-08-31 | 2009-03-05 | Evonik Oxeno Gmbh | Hydrogenation catalyst and process for the preparation of alcohols by hydrogenation of carbonyl compounds |
US8680317B2 (en) * | 2008-07-31 | 2014-03-25 | Celanese International Corporation | Processes for making ethyl acetate from acetic acid |
US8309772B2 (en) | 2008-07-31 | 2012-11-13 | Celanese International Corporation | Tunable catalyst gas phase hydrogenation of carboxylic acids |
US8501652B2 (en) | 2008-07-31 | 2013-08-06 | Celanese International Corporation | Catalysts for making ethanol from acetic acid |
US8471075B2 (en) | 2008-07-31 | 2013-06-25 | Celanese International Corporation | Processes for making ethanol from acetic acid |
US8304586B2 (en) | 2010-02-02 | 2012-11-06 | Celanese International Corporation | Process for purifying ethanol |
US8338650B2 (en) | 2008-07-31 | 2012-12-25 | Celanese International Corporation | Palladium catalysts for making ethanol from acetic acid |
US8309773B2 (en) | 2010-02-02 | 2012-11-13 | Calanese International Corporation | Process for recovering ethanol |
US20100197486A1 (en) * | 2008-07-31 | 2010-08-05 | Celanese International Corporation | Catalysts for making ethyl acetate from acetic acid |
US8637714B2 (en) | 2008-07-31 | 2014-01-28 | Celanese International Corporation | Process for producing ethanol over catalysts containing platinum and palladium |
US8546622B2 (en) | 2008-07-31 | 2013-10-01 | Celanese International Corporation | Process for making ethanol from acetic acid using acidic catalysts |
WO2010069548A1 (en) * | 2008-12-18 | 2010-06-24 | Uhde Gmbh | Variation of the tin impregnation of a catalyst for the dehydrogenation of alkanes |
EP2408558B1 (en) * | 2009-03-19 | 2017-06-28 | Dow Global Technologies LLC | Dehydrogenation process and catalyst |
US8450535B2 (en) | 2009-07-20 | 2013-05-28 | Celanese International Corporation | Ethanol production from acetic acid utilizing a cobalt catalyst |
US8680321B2 (en) * | 2009-10-26 | 2014-03-25 | Celanese International Corporation | Processes for making ethanol from acetic acid using bimetallic catalysts |
US8710277B2 (en) * | 2009-10-26 | 2014-04-29 | Celanese International Corporation | Process for making diethyl ether from acetic acid |
US8211821B2 (en) * | 2010-02-01 | 2012-07-03 | Celanese International Corporation | Processes for making tin-containing catalysts |
US8668750B2 (en) | 2010-02-02 | 2014-03-11 | Celanese International Corporation | Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels |
US8314272B2 (en) | 2010-02-02 | 2012-11-20 | Celanese International Corporation | Process for recovering ethanol with vapor separation |
US8932372B2 (en) | 2010-02-02 | 2015-01-13 | Celanese International Corporation | Integrated process for producing alcohols from a mixed acid feed |
US8575403B2 (en) | 2010-05-07 | 2013-11-05 | Celanese International Corporation | Hydrolysis of ethyl acetate in ethanol separation process |
US8222466B2 (en) | 2010-02-02 | 2012-07-17 | Celanese International Corporation | Process for producing a water stream from ethanol production |
US8680343B2 (en) | 2010-02-02 | 2014-03-25 | Celanese International Corporation | Process for purifying ethanol |
US8344186B2 (en) * | 2010-02-02 | 2013-01-01 | Celanese International Corporation | Processes for producing ethanol from acetaldehyde |
US8541633B2 (en) * | 2010-02-02 | 2013-09-24 | Celanese International Corporation | Processes for producing anhydrous ethanol compositions |
US8858659B2 (en) * | 2010-02-02 | 2014-10-14 | Celanese International Corporation | Processes for producing denatured ethanol |
KR20120112852A (en) | 2010-02-02 | 2012-10-11 | 셀라니즈 인터내셔날 코포레이션 | Preparation and use of a catalyst for producing ethanol comprising a crystalline support modifier |
US8460405B2 (en) | 2010-02-02 | 2013-06-11 | Celanese International Corporation | Ethanol compositions |
US8728179B2 (en) | 2010-02-02 | 2014-05-20 | Celanese International Corporation | Ethanol compositions |
US8747492B2 (en) | 2010-02-02 | 2014-06-10 | Celanese International Corporation | Ethanol/fuel blends for use as motor fuels |
US8604255B2 (en) | 2010-05-07 | 2013-12-10 | Celanese International Corporation | Process for recovering ethanol with sidedraws to regulate C3+ alcohols concentrations |
US8754267B2 (en) | 2010-05-07 | 2014-06-17 | Celanese International Corporation | Process for separating acetaldehyde from ethanol-containing mixtures |
US8710279B2 (en) | 2010-07-09 | 2014-04-29 | Celanese International Corporation | Hydrogenolysis of ethyl acetate in alcohol separation processes |
US9024083B2 (en) | 2010-07-09 | 2015-05-05 | Celanese International Corporation | Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed |
WO2012148509A1 (en) | 2011-04-26 | 2012-11-01 | Celanese International Corporation | Process for producing ethanol using a stacked bed reactor |
US8664454B2 (en) | 2010-07-09 | 2014-03-04 | Celanese International Corporation | Process for production of ethanol using a mixed feed using copper containing catalyst |
US9272970B2 (en) | 2010-07-09 | 2016-03-01 | Celanese International Corporation | Hydrogenolysis of ethyl acetate in alcohol separation processes |
DE102010039734A1 (en) * | 2010-08-25 | 2012-03-01 | Bayer Materialscience Aktiengesellschaft | Catalyst and process for producing chlorine by gas phase oxidation |
KR20120082697A (en) | 2011-01-14 | 2012-07-24 | 삼성전자주식회사 | Co2 reforming catalyst composition |
US8350098B2 (en) | 2011-04-04 | 2013-01-08 | Celanese International Corporation | Ethanol production from acetic acid utilizing a molybdenum carbide catalyst |
US8592635B2 (en) | 2011-04-26 | 2013-11-26 | Celanese International Corporation | Integrated ethanol production by extracting halides from acetic acid |
US8754268B2 (en) | 2011-04-26 | 2014-06-17 | Celanese International Corporation | Process for removing water from alcohol mixtures |
US9073816B2 (en) | 2011-04-26 | 2015-07-07 | Celanese International Corporation | Reducing ethyl acetate concentration in recycle streams for ethanol production processes |
US8895786B2 (en) | 2011-08-03 | 2014-11-25 | Celanese International Corporation | Processes for increasing alcohol production |
US8658843B2 (en) | 2011-10-06 | 2014-02-25 | Celanese International Corporation | Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation |
US8536382B2 (en) | 2011-10-06 | 2013-09-17 | Celanese International Corporation | Processes for hydrogenating alkanoic acids using catalyst comprising tungsten |
US8703868B2 (en) | 2011-11-28 | 2014-04-22 | Celanese International Corporation | Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol |
US9233899B2 (en) | 2011-12-22 | 2016-01-12 | Celanese International Corporation | Hydrogenation catalysts having an amorphous support |
US9000234B2 (en) | 2011-12-22 | 2015-04-07 | Celanese International Corporation | Calcination of modified support to prepare hydrogenation catalysts |
US9079172B2 (en) | 2012-03-13 | 2015-07-14 | Celanese International Corporation | Promoters for cobalt-tin catalysts for reducing alkanoic acids |
US9333496B2 (en) | 2012-02-29 | 2016-05-10 | Celanese International Corporation | Cobalt/tin catalyst for producing ethanol |
US9024086B2 (en) | 2012-01-06 | 2015-05-05 | Celanese International Corporation | Hydrogenation catalysts with acidic sites |
US8981164B2 (en) | 2012-01-06 | 2015-03-17 | Celanese International Corporation | Cobalt and tin hydrogenation catalysts |
WO2013103399A1 (en) | 2012-01-06 | 2013-07-11 | Celanese International Corporation | Hydrogenation catalysts with cobalt-modified supports |
US20130197278A1 (en) | 2012-01-27 | 2013-08-01 | Celanese International Corporation | Process For Manufacturing Ethanol Using A Metallic Catalyst Supported on Titania |
US8729311B2 (en) | 2012-02-10 | 2014-05-20 | Celanese International Corporaton | Catalysts for converting acetic acid to acetone |
US9050585B2 (en) | 2012-02-10 | 2015-06-09 | Celanese International Corporation | Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol |
US8729317B2 (en) | 2012-02-15 | 2014-05-20 | Celanese International Corporation | Ethanol manufacturing process over catalyst with cesium and support comprising tungsten or oxides thereof |
US9126194B2 (en) | 2012-02-29 | 2015-09-08 | Celanese International Corporation | Catalyst having support containing tin and process for manufacturing ethanol |
US8927786B2 (en) | 2012-03-13 | 2015-01-06 | Celanese International Corporation | Ethanol manufacturing process over catalyst having improved radial crush strength |
US8802903B2 (en) | 2012-03-13 | 2014-08-12 | Celanese International Corporation | Stacked bed reactor with diluents for producing ethanol |
US9073042B2 (en) | 2012-03-14 | 2015-07-07 | Celanese International Corporation | Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter |
US8536383B1 (en) | 2012-03-14 | 2013-09-17 | Celanese International Corporation | Rhodium/tin catalysts and processes for producing ethanol |
US8975452B2 (en) | 2012-03-28 | 2015-03-10 | Celanese International Corporation | Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration |
EP2689843A1 (en) | 2012-07-26 | 2014-01-29 | Saudi Basic Industries Corporation | Alkane dehydrogenation catalyst and process for its preparation |
US8772553B2 (en) | 2012-10-26 | 2014-07-08 | Celanese International Corporation | Hydrogenation reaction conditions for producing ethanol |
US8853469B2 (en) | 2012-11-20 | 2014-10-07 | Celanese International Corporation | Combined column for separating products of different hydrogenation reactors |
KR20140122117A (en) | 2013-04-09 | 2014-10-17 | 삼성전자주식회사 | Catalysts for carbon dioxide reforming of hydrocarbons |
US9415378B2 (en) | 2013-12-02 | 2016-08-16 | Saudi Basic Industries Corporation | Dehydrogenation catalyst, its use and method of preparation |
US9266095B2 (en) | 2014-01-27 | 2016-02-23 | Celanese International Corporation | Hydrogenation catalysts with cobalt and alkaline-earth metal modified supports |
KR101644695B1 (en) * | 2014-07-28 | 2016-08-01 | 롯데케미칼 주식회사 | Dehydrogenation catalyst and manufacturing method same |
US9670120B2 (en) | 2015-01-27 | 2017-06-06 | Celanese International Corporation | Process for producing ethanol using a solid catalyst |
WO2016122465A1 (en) | 2015-01-27 | 2016-08-04 | Celanese International Corporation | Process for producing ethanol using solid catalysts |
WO2017001448A1 (en) * | 2015-06-29 | 2017-01-05 | SMH Co., Ltd. | Dehydrogenation catalyst and process utilizing the catalyst |
CN106607023B (en) * | 2015-10-22 | 2019-11-08 | 中国石油化工股份有限公司 | For catalyst for preparing isobutene through dehydrogenation of iso-butane and preparation method thereof |
JP2017141208A (en) * | 2016-02-12 | 2017-08-17 | Jxtgエネルギー株式会社 | Manufacturing method of unsaturated hydrocarbon and manufacturing method of conjugated diene |
US10723674B2 (en) | 2016-03-15 | 2020-07-28 | Jxtg Nippon Oil & Energy Corporation | Unsaturated hydrocarbon production method and conjugated diene production method |
JP6883286B2 (en) * | 2017-02-21 | 2021-06-09 | Eneos株式会社 | Method for producing unsaturated hydrocarbons |
JP2019156757A (en) * | 2018-03-13 | 2019-09-19 | Jxtgエネルギー株式会社 | Production method of indan |
JP2019156758A (en) | 2018-03-13 | 2019-09-19 | Jxtgエネルギー株式会社 | Production method of indene |
US11213804B2 (en) * | 2018-03-19 | 2022-01-04 | Exxonmobil Chemical Patents Inc. | Dehydrogenation catalysts and methods of making and using the same |
CN111013642B (en) * | 2018-10-10 | 2022-10-14 | 中国石油化工股份有限公司 | Anti-carbon deposition catalyst for preparing propylene by propane dehydrogenation and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0074977A1 (en) * | 1981-03-27 | 1983-03-30 | CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif | Method for producing metallurgical coke |
KR100251260B1 (en) | 1992-04-02 | 2000-04-15 | 엘마레, 알프레드 | Catalyst containing a group viii metal and a group iiia metal deposited on support |
KR20000053085A (en) * | 1996-11-07 | 2000-08-25 | 앙드레프 프랑스와 | Selective hydrogenation catalysts containing palladium and at least one element selected among tin and lead |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3998900A (en) * | 1973-03-05 | 1976-12-21 | Universal Oil Products Company | Dehydrogenation of hydrocarbons with a multimetallic catalytic composite |
US4431750A (en) | 1982-05-19 | 1984-02-14 | Phillips Petroleum Company | Platinum group metal catalyst on the surface of a support and a process for preparing same |
AU562124B2 (en) | 1984-06-19 | 1987-05-28 | Phillips Petroleum Co. | Dehydrogenation of butanes |
US5410125A (en) | 1990-10-11 | 1995-04-25 | Harry Winston, S.A. | Methods for producing indicia on diamonds |
IT1254988B (en) * | 1992-06-23 | 1995-10-11 | Eniricerche Spa | Process for the dehydrogenation of light paraffins in a fluidised bed reactor |
GB9218823D0 (en) | 1992-09-04 | 1992-10-21 | British Petroleum Co Plc | Dehydrogenation process |
GB9316955D0 (en) | 1993-08-14 | 1993-09-29 | Johnson Matthey Plc | Improvements in catalysts |
DE69514336D1 (en) * | 1995-06-23 | 2000-02-10 | Indian Petrochemicals Corp Ltd | Compound catalyst for the dehydrogenation of paraffins in monoolefins and process for its manufacture |
US5905180A (en) * | 1996-01-22 | 1999-05-18 | Regents Of The University Of Minnesota | Catalytic oxidative dehydrogenation process and catalyst |
US6177381B1 (en) * | 1998-11-03 | 2001-01-23 | Uop Llc | Layered catalyst composition and processes for preparing and using the composition |
US6133192A (en) * | 1998-12-29 | 2000-10-17 | Phillips Petroleum Company | Catalyst material, the preparation thereof and the use thereof in converting hydrocarbons |
US6182443B1 (en) * | 1999-02-09 | 2001-02-06 | Ford Global Technologies, Inc. | Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent |
CN1090997C (en) * | 2000-04-30 | 2002-09-18 | 中国石油化工集团公司 | Selective hydrogenation acetylene-removing multimetal catalyst |
US6486370B1 (en) * | 2001-06-22 | 2002-11-26 | Uop Llc | Dehydrogenation process using layered catalyst composition |
EP1393804A1 (en) * | 2002-08-26 | 2004-03-03 | Umicore AG & Co. KG | Multi-layered catalyst for autothermal steam reforming of hydrocarbons and its use |
US6977067B2 (en) * | 2003-02-12 | 2005-12-20 | Engelhard Corporation | Selective removal of olefins from hydrocarbon feed streams |
-
2001
- 2001-08-08 GB GBGB0119327.5A patent/GB0119327D0/en not_active Ceased
-
2002
- 2002-07-15 JP JP2003518721A patent/JP4391230B2/en not_active Expired - Fee Related
- 2002-07-15 EP EP02745621.9A patent/EP1414570B1/en not_active Expired - Lifetime
- 2002-07-15 AU AU2002317336A patent/AU2002317336A1/en not_active Abandoned
- 2002-07-15 WO PCT/GB2002/003218 patent/WO2003013728A2/en active Application Filing
- 2002-07-15 CA CA002456530A patent/CA2456530A1/en not_active Abandoned
- 2002-07-15 US US10/486,622 patent/US7375049B2/en not_active Expired - Fee Related
- 2002-07-15 KR KR1020047002025A patent/KR100890770B1/en active IP Right Grant
- 2002-07-31 TW TW091117173A patent/TWI229661B/en not_active IP Right Cessation
-
2004
- 2004-02-06 NO NO20040556A patent/NO20040556L/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0074977A1 (en) * | 1981-03-27 | 1983-03-30 | CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif | Method for producing metallurgical coke |
KR100251260B1 (en) | 1992-04-02 | 2000-04-15 | 엘마레, 알프레드 | Catalyst containing a group viii metal and a group iiia metal deposited on support |
KR20000053085A (en) * | 1996-11-07 | 2000-08-25 | 앙드레프 프랑스와 | Selective hydrogenation catalysts containing palladium and at least one element selected among tin and lead |
Also Published As
Publication number | Publication date |
---|---|
WO2003013728A2 (en) | 2003-02-20 |
US7375049B2 (en) | 2008-05-20 |
GB0119327D0 (en) | 2001-10-03 |
CA2456530A1 (en) | 2003-02-20 |
KR20040027888A (en) | 2004-04-01 |
NO20040556L (en) | 2004-02-27 |
AU2002317336A1 (en) | 2003-02-24 |
WO2003013728A3 (en) | 2003-04-24 |
EP1414570B1 (en) | 2014-09-03 |
TWI229661B (en) | 2005-03-21 |
EP1414570A2 (en) | 2004-05-06 |
US20040266612A1 (en) | 2004-12-30 |
JP4391230B2 (en) | 2009-12-24 |
JP2004537407A (en) | 2004-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100890770B1 (en) | Catalyst | |
JP4185024B2 (en) | Catalyst and method for alkane dehydrogenation | |
US6582589B2 (en) | Process for the catalytic dehydrogenation of a light alkane | |
EP0623383B1 (en) | Platinum and tin-containing catalyst and use thereof in alkane dehydrogenation | |
US5219816A (en) | Dehydrogenation catalysts and process for preparing the catalysts | |
JP2001525246A (en) | Catalysts for converting paraffinic hydrocarbons to the corresponding olefins | |
KR20000062355A (en) | Method for Producing Olefins, in Particular Propylenes, by Dehydrogenation | |
JPH0623269A (en) | Catalyst containing group viii and iiia metal supported on carrier thereof | |
RU2477265C2 (en) | Regeneration of alkane dehydrogenation catalysts | |
US3696167A (en) | Catalyst and process for dehydrogenating saturated hydrocarbons | |
US7223897B2 (en) | Process for the production of olefins | |
US5214227A (en) | Low pressure dehydrogenation of light paraffins | |
JP2000317310A (en) | Catalyst containing group viii, ix or x element having excellent accessibility and use thereof in dehydrogenation of paraffin | |
AU779630B2 (en) | Process for the production of olefins | |
US4311614A (en) | Catalysts for water dealkylation of aromatic hydrocarbons | |
NO308989B1 (en) | New catalyst, process for its preparation and use of the catalyst for dehydrogenation of dehydrogenatable hydrocarbons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130307 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140306 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150312 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160310 Year of fee payment: 8 |