JP6426711B2 - Method for producing unsaturated hydrocarbon - Google Patents

Method for producing unsaturated hydrocarbon Download PDF

Info

Publication number
JP6426711B2
JP6426711B2 JP2016511886A JP2016511886A JP6426711B2 JP 6426711 B2 JP6426711 B2 JP 6426711B2 JP 2016511886 A JP2016511886 A JP 2016511886A JP 2016511886 A JP2016511886 A JP 2016511886A JP 6426711 B2 JP6426711 B2 JP 6426711B2
Authority
JP
Japan
Prior art keywords
zinc
unsaturated hydrocarbon
producing
catalyst
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016511886A
Other languages
Japanese (ja)
Other versions
JPWO2015152160A1 (en
Inventor
裕一 池永
裕一 池永
智 宮添
智 宮添
スーペイ ン
スーペイ ン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JPWO2015152160A1 publication Critical patent/JPWO2015152160A1/en
Application granted granted Critical
Publication of JP6426711B2 publication Critical patent/JP6426711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/86Borosilicates; Aluminoborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/60Platinum group metals with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • C07C2529/035Crystalline silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/86Borosilicates; Aluminoborosilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、炭化水素の脱水素反応を行うことによって不飽和炭化水素を製造する方法に関する。   The present invention relates to a process for producing unsaturated hydrocarbons by conducting a dehydrogenation reaction of hydrocarbons.

不飽和炭化水素、特にオレフィンおよびジエンは、石油化学工業における種々の誘導体の基礎原料として大変有用である。代表的な低級オレフィンおよびジエンとして、プロピレン、1−ブテン、2−ブテン、イソブテン、1,3−ブタジエンなどが挙げられる。これらの低級オレフィンおよびジエンは、対応するパラフィンおよびまたはオレフィンを脱水素することによっても製造されることが知られており、例えばアルミナ担体上に酸化クロムを担持した触媒、アルミナ担体もしくはアルミン酸亜鉛のようなスピネル担体上に白金を担持した触媒などが、その製造に好適であることが知られている(非特許文献1)。また、特許文献1〜9には、ゼオライト担体上に白金と亜鉛を担持した触媒は、他の触媒系に比べて長期に亘って高い活性を示すことが開示されている。   Unsaturated hydrocarbons, in particular olefins and dienes, are very useful as base materials for various derivatives in the petrochemical industry. Representative lower olefins and dienes include propylene, 1-butene, 2-butene, isobutene, 1,3-butadiene and the like. These lower olefins and dienes are also known to be produced by dehydrogenating the corresponding paraffins and / or olefins, for example catalysts supported on chromium oxide on alumina support, alumina support or zinc aluminate It is known that such a catalyst having platinum supported on a spinel support is suitable for its production (Non-patent Document 1). Further, Patent Documents 1 to 9 disclose that a catalyst having platinum and zinc supported on a zeolite carrier exhibits high activity for a long time as compared with other catalyst systems.

一方、金属亜鉛の融点は約420℃と低く、しかも高い蒸気圧を有することから、活性成分として金属亜鉛を含む脱水素触媒の場合、高温低圧を要する典型的な脱水素反応条件下では金属亜鉛が継続的に触媒上から揮散し続け、その結果として触媒には非可逆的な劣化が引き起こされる。   On the other hand, since the melting point of metallic zinc is as low as about 420 ° C. and it has a high vapor pressure, metallic dehydrogenation catalysts containing metallic zinc as an active component are metallic zinc under typical dehydrogenation reaction conditions requiring high temperature and low pressure. Continues to volatilize from the catalyst, resulting in irreversible deterioration of the catalyst.

触媒上からの亜鉛の揮散を抑制する方法として、例えば特許文献7の本文中にはジルコニウムのような第IVB族元素の添加が効果的であると記載されている。また特許文献10には、プロパンの芳香族化触媒として亜鉛が担持されたゼオライトにガリウムを添加する方法が、特許文献11には低級炭化水素の芳香族化触媒として亜鉛を含有するゼオライトを用い、原料ガスとともに二酸化炭素やスチーム、チオフェンなどを供給する方法が開示されている。さらに特許文献12には、芳香族化触媒中に含まれる亜鉛成分とアルミナの反応によるアルミン酸亜鉛の形成が、亜鉛の安定化に大きく貢献することが開示されている。   As a method of suppressing the volatilization of zinc from above the catalyst, for example, the main text of Patent Document 7 describes that the addition of a Group IVB element such as zirconium is effective. In Patent Document 10, a method in which gallium is added to a zeolite supporting zinc as a propane aromatization catalyst is used, and in Patent Document 11, a zeolite containing zinc as a lower hydrocarbon aromatization catalyst is used. There is disclosed a method of supplying carbon dioxide, steam, thiophene and the like together with a source gas. Further, Patent Document 12 discloses that the formation of zinc aluminate due to the reaction of the zinc component contained in the aromatization catalyst and alumina greatly contributes to the stabilization of zinc.

米国特許第4,962,266号明細書U.S. Pat. No. 4,962,266 米国特許第5,126,502号明細書U.S. Pat. No. 5,126,502 米国特許第5,208,201号明細書U.S. Pat. No. 5,208,201 米国特許第5,324,702号明細書U.S. Pat. No. 5,324,702 米国特許第5,453,558号明細書U.S. Patent No. 5,453,558 米国特許第6,197,717号明細書U.S. Patent No. 6,197,717 米国特許第6,555,724号明細書U.S. Patent No. 6,555,724 国際公開2012/020743号International Publication 2012/020743 特開2012−026197号公報JP 2012-026197 A 米国特許第4,490,569号明細書U.S. Pat. No. 4,490,569 米国特許第4,849,568号明細書U.S. Pat. No. 4,849,568 特開平10−52646号公報JP 10-52646 A

Industrial Organic Chemicals,Third Edition, Wiley,214ページIndustrial Organic Chemicals, Third Edition, Wiley, page 214

しかしながら、本発明者らが、これら芳香族化触媒の開発において見出された亜鉛の揮散抑制技術を脱水素触媒に応用したところ、いずれも得られる効果が小さい、もしくは活性の大幅な減少を伴うなど、上記の亜鉛揮散抑制技術は、決して満足できるとは言い難いことが分かった。それゆえ、脱水素触媒に適用可能な、効果的な亜鉛の安定化方法の確立が望まれる。   However, when the inventors of the present invention apply the zinc volatilization suppression technology found in the development of these aromatization catalysts to a dehydrogenation catalyst, the effects obtained are all small, or the activity is greatly reduced. It has been found that the above-mentioned zinc volatilization suppression technology is hardly satisfactory. Therefore, establishment of an effective zinc stabilization method applicable to a dehydrogenation catalyst is desired.

したがって本発明は、脱水素触媒を用いて炭化水素を脱水素して不飽和炭化水素を製造する方法において、脱水素触媒上からの亜鉛の揮散を効果的に抑制することにより、長期に亘って安定的に不飽和炭化水素、すなわちオレフィンまたはジエンを製造する方法を提供することを課題とする。   Therefore, the present invention is a method of dehydrogenating hydrocarbons using a dehydrogenation catalyst to produce unsaturated hydrocarbons, and effectively suppressing the volatilization of zinc from the dehydrogenation catalyst over a long period of time An object of the present invention is to provide a method for stably producing unsaturated hydrocarbons, ie, olefins or dienes.

本発明者らは上記課題を解決すべく鋭意検討した結果、原料含有ガスを金属亜鉛および/または亜鉛化合物と接触させた後に触媒と接触させることにより、あるいは亜鉛蒸気を含む原料含有ガスを触媒と接触させることにより、触媒からの亜鉛の揮散を効果的に抑制し、結果として長期に亘って安定的に不飽和炭化水素すなわちオレフィン、ジエンを製造できることを見出した。   As a result of intensive studies to solve the above problems, the present inventors contacted the raw material-containing gas with metallic zinc and / or zinc compound and then brought them into contact with a catalyst, or alternatively, used the raw material-containing gas containing zinc vapor as a catalyst. It has been found that the contact effectively suppresses the volatilization of zinc from the catalyst, and as a result, unsaturated hydrocarbons, that is, olefins and dienes can be stably produced over a long period of time.

すなわち本発明の一つの態様は、炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させ、次いで活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含む不飽和炭化水素の製造方法(以下「製造方法(1)」ともいう。)である。   That is, one aspect of the present invention is to contact a hydrocarbon-containing feedstock-containing gas (1) with metallic zinc or zinc compound or both, and then with a dehydrogenation catalyst containing zinc as one of the active components. It is a method for producing unsaturated hydrocarbon (hereinafter also referred to as “production method (1)”) including the step of producing the unsaturated hydrocarbon by performing the dehydrogenation reaction of the hydrocarbon.

また、本発明の他の態様は、炭化水素および亜鉛蒸気を含む原料含有ガス(2)を、活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含む不飽和炭化水素の製造方法(以下「製造方法(2)」ともいう。)である。
前記原料含有ガス(2)は、前記原料含有ガス(1)を金属亜鉛もしくは亜鉛化合物またはその両方と接触させることにより、得ることができる。
In another aspect of the present invention, the feed gas containing hydrocarbon (2) containing hydrocarbon and zinc vapor is contacted with a dehydrogenation catalyst containing zinc as one of the active components to carry out the dehydrogenation reaction of the hydrocarbon. It is a manufacturing method (it is also called the following "manufacturing method (2).") Of unsaturated hydrocarbon including the process of performing and manufacturing unsaturated hydrocarbon.
The raw material-containing gas (2) can be obtained by bringing the raw material-containing gas (1) into contact with metallic zinc or zinc compound or both of them.

前記脱水素反応の反応温度が300〜800℃、かつ反応圧力が0.01〜1MPaであることが好ましい。
前記原料含有ガス(2)に含まれる亜鉛蒸気の分圧は、前記脱水素反応の反応温度における亜鉛の蒸気圧以下である。亜鉛蒸気の供給源としては、金属亜鉛もしくは酸化亜鉛またはその両方が好ましい。
It is preferable that the reaction temperature of the said dehydrogenation reaction is 300-800 degreeC, and the reaction pressure is 0.01-1 Mpa.
The partial pressure of zinc vapor contained in the raw material-containing gas (2) is equal to or less than the vapor pressure of zinc at the reaction temperature of the dehydrogenation reaction. As a source of zinc vapor, metallic zinc or zinc oxide or both are preferred.

原料である前記炭化水素は、好ましくはプロパン、n−ブタンおよびイソブタンから選ばれる少なくとも1種であるか、またはn−ブテンである。
前記製造方法(1)において、前記原料含有ガス(1)は、好ましくは水蒸気および/または水素をさらに含有する。
前記製造方法(2)において、前記原料含有ガス(2)は、好ましくは水蒸気および/または水素をさらに含有する。
The hydrocarbon which is a raw material is preferably at least one selected from propane, n-butane and isobutane, or n-butene.
In the production method (1), the raw material-containing gas (1) preferably further contains water vapor and / or hydrogen.
In the production method (2), the raw material-containing gas (2) preferably further contains water vapor and / or hydrogen.

また、前記脱水素触媒として好ましい形態は、ゼオライトを担体とし、活性成分として亜鉛および第VIIIA族金属が担持された触媒である。このような触媒に含まれる亜鉛の量は、該触媒全体の重量を100重量%とすると、好ましくは0.01〜15重量%であり、第VIIIA族金属の量は、該触媒全体の重量を100重量%とすると、好ましくは0.01〜5重量%である。また前記第VIIIA族金属としては白金が好ましい。   A preferred form of the dehydrogenation catalyst is a catalyst having a zeolite as a carrier and zinc and a Group VIIIA metal supported as active components. The amount of zinc contained in such a catalyst is preferably 0.01 to 15% by weight, based on 100% by weight of the total weight of the catalyst, and the amount of Group VIIIA metal corresponds to the weight of the total weight of the catalyst If it is 100% by weight, it is preferably 0.01 to 5% by weight. Further, platinum is preferable as the Group VIIIA metal.

前記ゼオライトとしてはシリカライトまたはボロシリケートが好ましく、MFI構造を有するものがより好ましい。さらに好ましいゼオライト担体は、MFI型ボロシリケートからホウ素原子の少なくとも一部を除去して得られるシリケートであり、シリケート中のホウ素原子残存率が、MFI型ボロシリケート中のホウ素原子全量の80%以下であるものが特に好ましい。   The zeolite is preferably silicalite or borosilicate, more preferably one having an MFI structure. A further preferable zeolite support is a silicate obtained by removing at least a part of boron atoms from MFI-type borosilicate, and the residual ratio of boron atoms in the silicate is 80% or less of the total amount of boron atoms in MFI-type borosilicate Some are particularly preferred.

本発明によれば、脱水素触媒上からの亜鉛の揮散を非常に簡便な方法で効果的に抑制でき、その結果として長期に亘って該脱水素触媒の高い活性が得られるため、経済上著しく優位に不飽和炭化水素、すなわちオレフィンまたはジエンを製造することが可能となる。   According to the present invention, the volatilization of zinc from the dehydrogenation catalyst can be effectively suppressed by a very simple method, and as a result, high activity of the dehydrogenation catalyst can be obtained over a long period of time, which is economically significant. It becomes possible to predominantly produce unsaturated hydrocarbons, ie olefins or dienes.

触媒層に対する、反応管内のガスの流れの上流側に酸化亜鉛を充填した場合(実施例1、○でプロット)と、充填しなかった場合(比較例1、●でプロット)のプロピレン収率の経時変化の違いを示す図である。Propylene yield of the case where zinc oxide was packed on the upstream side of the gas flow in the reaction tube with respect to the catalyst layer (Example 1, plot by ○) and when not packed (comparative example 1, plot by ●) It is a figure which shows the difference in a time-dependent change.

以下、本発明の詳細を説明する。
本発明に係る不飽和炭化水素の製造方法(製造方法(1))は、炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させ、次いで活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含んでいる。
Hereinafter, the present invention will be described in detail.
The method for producing unsaturated hydrocarbon according to the present invention (production method (1)) comprises contacting a raw material-containing gas (1) containing hydrocarbon with metallic zinc or zinc compound or both, and then one of the active components And C. contacting with a dehydrogenation catalyst containing zinc to carry out a dehydrogenation reaction of the hydrocarbon to produce an unsaturated hydrocarbon.

本発明の他の態様においては、本発明に係る不飽和炭化水素の製造方法(製造方法(2))は、炭化水素および亜鉛蒸気を含む原料含有ガス(2)を、活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含んでいる。
なお以下の記載内容は、特に断りのない限り、前記製造方法(1)および前記製造方法(2)の両方に適用される。
In another aspect of the present invention, the method for producing unsaturated hydrocarbon according to the present invention (production method (2)) comprises using a raw material-containing gas (2) containing hydrocarbon and zinc vapor as one of the active components And C. contacting with a dehydrogenation catalyst containing zinc to carry out a dehydrogenation reaction of the hydrocarbon to produce an unsaturated hydrocarbon.
The following description applies to both the production method (1) and the production method (2) unless otherwise noted.

前記脱水素反応の際の反応温度の範囲は、好ましくは300〜800℃であり、さらに好ましくは400〜700℃であり、特に好ましくは450〜650℃である。反応温度が前記の下限値以上であると、原料である炭化水素が高い平衡転化率で不飽和炭化水素に転化するため、ワンパスで高い収率で不飽和炭化水素が製造される。また、反応温度が前記の上限値以下であると、コーキング速度が大きくならず、触媒の活性劣化が抑えられる。   The reaction temperature in the dehydrogenation reaction is preferably in the range of 300 to 800 ° C, more preferably 400 to 700 ° C, and particularly preferably 450 to 650 ° C. When the reaction temperature is equal to or higher than the lower limit, unsaturated hydrocarbons are produced in a high yield in a single pass because hydrocarbons as a raw material are converted to unsaturated hydrocarbons at a high equilibrium conversion rate. In addition, when the reaction temperature is lower than the above upper limit value, the coking rate does not increase, and the catalyst activity deterioration can be suppressed.

反応圧力の範囲は、好ましくは0.01〜1MPaであり、さらに好ましくは0.01〜0.5MPaである。反応圧力が低いほど原料である炭化水素の平衡転化率は高くなり、ワンパスでの不飽和炭化水素の収率は大きくなる。   The reaction pressure is preferably in the range of 0.01 to 1 MPa, more preferably 0.01 to 0.5 MPa. The lower the reaction pressure, the higher the equilibrium conversion of the feedstock hydrocarbon and the greater the yield of unsaturated hydrocarbons in one pass.

本発明の製造方法は気相で実施されるため、連続式の反応装置にて反応を実施することが好ましい。このとき、触媒の使用量は重量空間速度WHSV(単位重量の触媒および単位時間当たりの、原料である炭化水素の供給重量)で表すのが簡便であり、また適切である。本発明においてWHSVの範囲は、特に限定されないが、好ましくは0.01〜50h-1であり、さらに好ましくは0.1〜20h-1である。Since the production method of the present invention is carried out in the gas phase, it is preferable to carry out the reaction in a continuous reactor. At this time, it is convenient and appropriate to express the amount of the catalyst used by weight hourly space velocity WHSV (the weight of catalyst and the feed weight of the raw material hydrocarbon). Although the range of WHSV in the present invention is not particularly limited, it is preferably 0.01 to 50 h -1 , more preferably 0.1 to 20 h -1 .

本発明は、前記製造方法(2)においては、亜鉛蒸気を含む原料含有ガスを、活性成分の1つとして亜鉛を含む触媒と接触させることを特徴とする。触媒に亜鉛蒸気を接触させることにより、触媒上からの亜鉛の揮散が抑制される結果、触媒は長期に亘って安定した性能を示すことが可能になる。触媒と接触する原料含有ガス中に含まれる亜鉛蒸気の分圧は、反応温度における亜鉛の蒸気圧以下であり、原料含有ガス中に含まれる亜鉛蒸気の濃度(体積基準)は0%を超える濃度であり、好ましくは0.01%以上であり、さらに好ましくは0.05%以上である。   The present invention is characterized in that, in the production method (2), a raw material-containing gas containing zinc vapor is brought into contact with a catalyst containing zinc as one of the active components. By contacting the catalyst with zinc vapor, the volatilization of zinc on the catalyst is suppressed, and as a result, the catalyst can exhibit stable performance over a long period of time. The partial pressure of zinc vapor contained in the raw material-containing gas in contact with the catalyst is below the vapor pressure of zinc at the reaction temperature, and the concentration (based on volume) of zinc vapor contained in the raw material-containing gas is greater than 0% Preferably it is 0.01% or more, More preferably, it is 0.05% or more.

亜鉛蒸気の供給源としては、例えば金属亜鉛、酸化亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛、アルミン酸亜鉛などが挙げられ、亜鉛蒸気を容易に発生させることから金属亜鉛もしくは酸化亜鉛またはその両方が好ましい。   Sources of zinc vapor include, for example, metallic zinc, zinc oxide, zinc nitrate, zinc chloride, zinc acetate, zinc aluminate and the like, and zinc zinc and / or zinc oxide or both are preferred because zinc vapor is easily generated. preferable.

亜鉛蒸気の供給源は所定の分圧の亜鉛蒸気を発生させるために加熱されるが、その温度範囲は好ましくは300℃以上かつ反応温度以下であり、さらに好ましくは400℃以上反応温度以下であり、特に好ましくは450℃以上かつ反応温度以下である。   The source of zinc vapor is heated to generate zinc vapor of a predetermined partial pressure, but its temperature range is preferably 300 ° C. or more and the reaction temperature or less, more preferably 400 ° C. or more and the reaction temperature or less. Particularly preferably, it is 450 ° C. or more and the reaction temperature or less.

原料含有ガスへの亜鉛蒸気の供給方法に特に制限はなく、例えば反応器(すなわち、炭化水素の脱水素反応を行う容器)とは別の室で金属亜鉛および/または亜鉛化合物を所定温度まで加熱し、そこに原料である炭化水素のガスと任意に使用される不活性ガスからなる混合ガスを通過させることによって、最大で蒸気圧分の亜鉛蒸気を原料である炭化水素のガスと不活性ガスからなる混合ガスに含ませてもよい。また、反応管内に、前記触媒を含む触媒層を形成し、この触媒層に対する、反応管内のガスの流れの上流側に酸化亜鉛またはアルミン酸亜鉛の層を設け、この層を還元性ガス(たとえば、水素ガス)の存在下で加熱することによりこの層から亜鉛蒸気を発生させ、原料である炭化水素のガス、任意に使用される不活性ガス、および任意に未反応の前記還元性ガスを含む混合ガスが触媒層と接触する直前に、最大で蒸気圧分の亜鉛蒸気をこの混合ガスに含有させてもよい。   There is no particular limitation on the method of supplying the zinc vapor to the raw material-containing gas, and for example, the metallic zinc and / or zinc compound is heated to a predetermined temperature in a separate room from the reactor (that is, the vessel for dehydrogenating hydrocarbon). By passing a mixed gas consisting of the hydrocarbon gas which is the raw material and the inert gas optionally used there, the hydrocarbon gas which is the raw material and the inert gas of the zinc vapor at maximum vapor pressure It may be included in the mixed gas consisting of Further, a catalyst layer containing the catalyst is formed in the reaction tube, and a layer of zinc oxide or zinc aluminate is provided on the upstream side of the gas flow in the reaction tube with respect to the catalyst layer. Zinc vapor is generated from this layer by heating in the presence of hydrogen gas, and the raw material hydrocarbon gas, optionally used inert gas, and optionally unreacted unreacted reducing gas This mixed gas may contain zinc vapor at a maximum vapor pressure just before the mixed gas contacts the catalyst layer.

亜鉛蒸気の供給は連続的でも断続的でもよいが、断続的に供給する場合は、反応器とは別の室を設ける必要がある。
本発明では、脱水素反応により不飽和炭化水素へと変換される炭化水素が反応器に供給される。本発明で製造される不飽和炭化水素は、工業的な有用性の観点から好ましくはオレフィン(二重結合が1分子内に1つ存在する不飽和炭化水素)およびジエン(二重結合が1分子内に2つ存在する不飽和炭化水素)である。すなわち本発明の不飽和炭化水素の製造方法は、好ましくはオレフィンまたはジエンの製造方法である。
The supply of zinc vapor may be continuous or intermittent, but in the case of intermittent supply, it is necessary to provide a separate chamber from the reactor.
In the present invention, a hydrocarbon which is converted to unsaturated hydrocarbon by dehydrogenation reaction is supplied to the reactor. The unsaturated hydrocarbon produced in the present invention is preferably an olefin (unsaturated hydrocarbon in which one double bond exists in one molecule) and a diene (one double bond) from the viewpoint of industrial utility. (2) unsaturated hydrocarbons). That is, the process for producing unsaturated hydrocarbons of the present invention is preferably a process for producing olefins or dienes.

原料である炭化水素として特に好ましい化合物はプロパン、n−ブタン、イソブタン、1−ブテン、2−ブテンおよびこれらの混合物であり、上記不飽和炭化水素として特に好ましい化合物は、プロピレン、1−ブテン、2−ブテン、イソブテン、1,3−ブタジエンおよびこれらの混合物である。1−ブテンと2−ブテンとの混合物は通常、n−ブテンと呼ばれる。   Particularly preferable compounds as the raw material hydrocarbon are propane, n-butane, isobutane, 1-butene, 2-butene and a mixture thereof, and particularly preferable compounds as the unsaturated hydrocarbon are propylene, 1-butene, 2 Butene, isobutene, 1,3-butadiene and mixtures thereof. The mixture of 1-butene and 2-butene is usually called n-butene.

原料である炭化水素のガスは、本発明の効果を阻害しない他のガスとともに反応器に供給されても良く、前記他のガスの例として水蒸気、窒素ガス、二酸化炭素ガス、水素ガス、メタンガスなどを挙げることができる。このうち特に、脱水素触媒の寿命を長くできる点で水蒸気が好ましい。また、他のガスとして、酸化亜鉛から亜鉛蒸気を発生させるために用いられた水素ガスの残分が供給されてもよい。炭化水素ガスと前記他のガスとの混合方法および混合比率については特に制限されない。   The hydrocarbon gas, which is a raw material, may be supplied to the reactor together with other gases that do not inhibit the effects of the present invention, and examples of the other gases include water vapor, nitrogen gas, carbon dioxide gas, hydrogen gas, methane gas, etc. Can be mentioned. Among these, water vapor is particularly preferable in that the life of the dehydrogenation catalyst can be extended. Also, as the other gas, the residue of hydrogen gas used to generate zinc vapor from zinc oxide may be supplied. There is no particular limitation on the mixing method and mixing ratio of the hydrocarbon gas and the other gas.

本発明で用いられる反応形式は特に限定されず、公知の方法を採用することができ、例えば固定床、移動床、流動床などが挙げられる。プロセス設計の容易さの観点から、特に好ましくは固定床形式である。   The reaction type used in the present invention is not particularly limited, and known methods can be adopted, and examples thereof include fixed bed, moving bed, fluidized bed and the like. From the viewpoint of process design easiness, the fixed bed type is particularly preferred.

本発明では、活性成分の1つとして亜鉛を含む脱水素触媒が用いられ、好ましくはゼオライトを担体とし、活性成分として亜鉛および第VIIIA族金属を担持した触媒が用いられる。   In the present invention, a dehydrogenation catalyst containing zinc as one of the active components is used, preferably a catalyst using a zeolite as a carrier and supporting zinc and a Group VIIIA metal as an active component.

亜鉛および第VIIIA族金属は、例えば対応する金属硝酸塩、金属塩化物または金属錯体などの金属化合物を使用して、ゼオライトに担持することが可能である。ゼオライトへの担持は、イオン交換法あるいは含浸法など公知の方法により実施することができ、担持の序列についても特に制限されない。   Zinc and Group VIIIA metals can be supported on zeolites using, for example, metal compounds such as the corresponding metal nitrates, metal chlorides or metal complexes. The support on the zeolite can be carried out by a known method such as an ion exchange method or an impregnation method, and the order of the support is not particularly limited.

前記の亜鉛化合物としては、例えば酸化亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛などが挙げられる。前記の第VIIIA族金属化合物としては、例えば塩化白金酸、塩化テトラアンミン白金、水酸化テトラアンミン白金、硝酸テトラアンミン白金などが挙げられる。
Examples of the zinc compound include zinc oxide, zinc nitrate, zinc chloride and zinc acetate. Examples of the group VIIIA metal compound include chloroplatinic acid, tetraammine platinum chloride, tetraammine platinum hydroxide, and tetraammine platinum nitrate.

前記脱水素触媒に含まれる亜鉛の量の範囲は、触媒全体の重量(100重量%)に対する亜鉛金属原子の重量の割合として、好ましくは0.01〜15重量%、さらに好ましくは0.05〜5重量%、特に好ましくは0.1〜3重量%である。   The range of the amount of zinc contained in the dehydrogenation catalyst is preferably 0.01 to 15% by weight, and more preferably 0.05 to 15% by weight, as a ratio of the weight of zinc metal atoms to the weight (100% by weight) of the total catalyst. It is 5% by weight, particularly preferably 0.1 to 3% by weight.

前記脱水素触媒に含まれる第VIIIA族金属の量の範囲は、触媒全体の重量(100重量%)に対する第VIIIA族金属原子の重量の割合として、好ましくは0.01〜5重量%、さらに好ましくは0.05〜3重量%、特に好ましくは0.1〜1.5重量%である。   The range of the amount of Group VIIIA metal contained in the dehydrogenation catalyst is preferably 0.01 to 5% by weight, more preferably as a ratio of the weight of Group VIIIA metal atom to the total weight (100% by weight) of the catalyst. Is 0.05 to 3% by weight, particularly preferably 0.1 to 1.5% by weight.

亜鉛と第VIIIA族金属との割合は、モル比(Znのモル数/第VIIIA族金属のモル数)として通常0.5以上、好ましくは0.5〜50、より好ましくは1〜30、さらに好ましくは1〜20である。   The ratio of zinc to the Group VIIIA metal is usually 0.5 or more, preferably 0.5 to 50, more preferably 1 to 30, further as the molar ratio (the number of moles of Zn / the number of moles of the Group VIIIA metal) Preferably it is 1-20.

前記第VIIIA族金属とは、旧IUPAC方式の表記であり、IUPAC方式で言えば、第8〜10族の金属である。第VIIIA族の金属として、例えば白金、パラジウム、ルテニウム、イリジウム、ロジウム、ニッケルなどが挙げられる。これらの中でも、触媒活性の観点から白金が好ましい。   The Group VIIIA metal is a notation of the old IUPAC method, and in the IUPAC method, it is a metal of Groups 8 to 10. Examples of metals of Group VIIIA include platinum, palladium, ruthenium, iridium, rhodium, nickel and the like. Among these, platinum is preferable from the viewpoint of catalytic activity.

前記脱水素触媒の製造方法の一例では、前記亜鉛化合物および任意に第VIIIA族金属化合物をゼオライトに担持した後、乾燥および焼成を行う。乾燥条件は特に制限されないが、乾燥は、通常は80〜150℃で所定の時間実施される。焼成条件も特に制限されないが、焼成は、通常は400〜600℃で所定の時間実施される。焼成時の雰囲気も特に制限されないが、通常は空気流通下で乾燥および焼成が実施される。   In one example of the method for producing the dehydrogenation catalyst, the zinc compound and optionally the Group VIIIA metal compound are supported on zeolite, and then drying and calcination are performed. Although the drying conditions are not particularly limited, the drying is usually carried out at 80 to 150 ° C. for a predetermined time. The firing conditions are also not particularly limited, but the firing is usually performed at a temperature of 400 to 600 ° C. for a predetermined time. The atmosphere at the time of firing is also not particularly limited, but usually, drying and firing are carried out under air flow.

前記ゼオライトとは、結晶性の多孔質アルミノケイ酸塩の総称として用いられる名前であり、トポロジーに従った構造コードにより分類される。各構造コードに対しては構造、組成、結晶学的データに関する情報が知られている(例えばAtlas of Zeolite Structure Types、4th Ed.、Elsevier 1996、他にCollection of Simulated XRD Powder Patterns for Zeolites、Elsevier 1996)。また、同様の結晶構造を有するアルミノケイ酸塩以外の化合物として、アルミニウムを含まないシリカライトや、アルミニウムの代わりに鉄、ガリウム、チタンなどを含むメタロケイ酸塩などもゼオライトに含まれる(例えばゼオライトの科学と工学、講談社サイエンティフィク)。   The zeolite is a name used as a generic name of crystalline porous aluminosilicates, and is classified by a structural code according to topology. For each structural code, information about structure, composition, crystallographic data is known (eg Atlas of Zeolite Structure Types, 4th Ed., Elsevier 1996, etc., Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier 1996). ). In addition, as compounds other than aluminosilicates having similar crystal structures, zeolites that do not contain aluminum, metallosilicates that contain iron, gallium, titanium, etc. instead of aluminum are also included in the zeolite (for example, And Engineering, Kodansha Scientific).

本発明においては、アルミニウムを含まないシリカライトもしくはアルミニウムの代わりにホウ素を含むメタロケイ酸塩であるボロシリケートを、触媒担体として用いることが好ましい。   In the present invention, it is preferable to use borosilicate which is a metallosilicate containing boron instead of aluminium-free silicalite or aluminum as a catalyst support.

本発明で用いられるシリカライトもしくはボロシリケート中のアルミニウム含有量は特に限定されないが、これらゼオライト中のシリカ/アルミナモル比(SiO2のモル数/Al23のモル数)は100以上であることが好ましく、500以上であることがより好ましく、1000以上であることが特に好ましく、2000以上であることが最も好ましい。シリカ/アルミナモル比が100以上であると、アルミニウムに起因する酸点上で進行するオリゴマー化などの副反応が抑制される。シリカ/アルミナモル比が2000以上であれば、こうした副反応をさらに効果的に抑制できる。The aluminum content in the silicalite or borosilicate used in the present invention is not particularly limited, but the silica / alumina molar ratio (mole number of SiO 2 / mole number of Al 2 O 3 ) in these zeolites is 100 or more. Is more preferably 500 or more, particularly preferably 1000 or more, and most preferably 2000 or more. When the silica / alumina molar ratio is 100 or more, side reactions such as oligomerization which proceed on an acid point caused by aluminum are suppressed. If the silica / alumina molar ratio is 2000 or more, such side reactions can be suppressed more effectively.

ボロシリケート中のホウ素含有量は特に限定されないが、100〜30000ppmが好ましく、500〜10000ppmがより好ましく、1000〜80000ppmが特に好ましい。   The boron content in the borosilicate is not particularly limited, but is preferably 100 to 30,000 ppm, more preferably 500 to 10,000 ppm, and particularly preferably 1,000 to 8,000 ppm.

シリカライトもしくはボロシリケート中のアルカリ金属およびアルカリ土類金属の含有量は特に限定されないが、これらの金属が実質的に存在しないことが好ましい。「実質的に存在しない」とは、シリカライトもしくはボロシリケート中のアルカリ金属およびアルカリ土類金属の含有量が各々300ppm以下であることを指す。   The content of alkali metal and alkaline earth metal in silicalite or borosilicate is not particularly limited, but it is preferable that these metals be substantially absent. "Substantially absent" indicates that the content of alkali metal and alkaline earth metal in silicalite or borosilicate is 300 ppm or less, respectively.

さらには、前記シリカライトおよび前記ボロシリケートがMFI構造を有していることが好ましい。
MFI構造を有するボロシリケート(以下「MFI型ボロシリケート」ともいう。)をそのまま担体として用いてもよいが、前記MFI型ボロシリケートからホウ素原子の少なくとも一部を除去して得られるシリケートを担体として用いることが好ましい。
Furthermore, it is preferable that the silicalite and the borosilicate have an MFI structure.
Although a borosilicate having an MFI structure (hereinafter also referred to as "MFI-type borosilicate") may be used as a carrier as it is, a silicate obtained by removing at least a part of boron atoms from the MFI-type borosilicate is used as a carrier It is preferred to use.

前記MFI型ボロシリケートからホウ素原子の少なくとも一部を除去した後のシリケート中のホウ素原子残存率は、前記ボロシリケート中のホウ素原子全量の80%以下であることが好ましく、50%以下であることがより好ましく、30%以下であることが特に好ましく、20%以下であることが最も好ましい。   The residual ratio of boron atoms in the silicate after removing at least a part of the boron atoms from the MFI-type borosilicate is preferably 80% or less of the total amount of boron atoms in the borosilicate, and is 50% or less Is more preferable, 30% or less is particularly preferable, and 20% or less is most preferable.

ホウ素原子残存率は、ホウ素原子を除去する前のボロシリケートにおけるホウ素原子の含有量と、ホウ素原子を除去した後のシリケートにおけるホウ素原子の含有量との比較により算出される。前記ボロシリケートからホウ素原子の少なくとも一部を除去する方法に制限はなく、公知の方法、例えば無機酸もしくは有機酸の水溶液で処理する方法などが採用される。   The residual ratio of boron atoms is calculated by comparing the content of boron atoms in the borosilicate before removing the boron atoms with the content of boron atoms in the silicate after removing the boron atoms. There is no limitation on the method of removing at least a part of the boron atom from the borosilicate, and a known method such as a method of treating with an aqueous solution of an inorganic acid or an organic acid may be employed.

反応器に充填する触媒は、粉末状であってもよく、成型体であってもよい。成型方法について制限はなく、押し出し成型、打錠成型、コーティング成型など公知の方法が採用される。   The catalyst loaded into the reactor may be in the form of powder or in the form of a molded body. There is no restriction on the molding method, and known methods such as extrusion molding, tableting molding, coating molding and the like are adopted.

触媒を反応器に充填した後および反応開始前に、触媒を活性化するための前処理を実施しても良く、前処理では、通常は、前記触媒に水素あるいは一酸化炭素などの還元性ガスを接触させる。これらの還元性ガスは希釈せずに用いても良いし、上述の不活性ガスで適宜希釈して用いても良い。   After loading the catalyst into the reactor and prior to the start of the reaction, pretreatment may be carried out to activate the catalyst, which usually involves reducing the catalyst such as hydrogen or reducing gas such as carbon monoxide Contact These reducing gases may be used without dilution, or may be appropriately diluted with the above-mentioned inert gas.

反応開始より一定時間が経過し、触媒活性の低下が確認された場合には反応を中止し、再生処理と呼ばれる方法によって触媒を再活性化してもよい。その方法は特に制限されないが、通常は所定の温度で酸素を含むガスを触媒と接触させることにより、触媒表面上に付着したコークとよばれる炭化水素の重質物を燃焼除去する方法がとられる。   When a certain time has passed from the start of the reaction and a decrease in catalyst activity is confirmed, the reaction may be stopped and the catalyst may be reactivated by a method called regeneration treatment. The method is not particularly limited, but usually, a method is employed in which heavy substances of hydrocarbon called coke deposited on the catalyst surface are burned off by contacting a gas containing oxygen with a catalyst at a predetermined temperature.

以下に実施例を示して本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(触媒調製1)
ホウ素原子を3200ppm含有するMFI型ボロシリケート10gを、1N硝酸水溶液200ml中で80℃、2時間攪拌した後、ろ過してケーキとろ液に分別した。さらに、ろ別されたケーキを、1N硝酸水溶液200ml中で80℃、2時間攪拌した後、ろ過してケーキとろ液に分別する、という操作を2回繰り返し、次いでろ別されたケーキを、使用された洗浄液が中性になるまで蒸留水で洗浄した。洗浄されたケーキを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃で4時間焼成し、MFI型ボロシリケートからホウ素原子の少なくとも一部を除去したシリケートを得た。得られたシリケート中のホウ素原子量は260ppmであり、このときのホウ素原子残存率は8%であった。
EXAMPLES The present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
(Catalyst preparation 1)
After 10 g of MFI-type borosilicate containing 3200 ppm of boron atoms was stirred in 200 ml of 1 N aqueous nitric acid solution at 80 ° C. for 2 hours, it was filtered and separated into a cake and a filtrate. Furthermore, after stirring the filtered cake in 200 ml of 1 N nitric acid aqueous solution at 80 ° C. for 2 hours, the procedure of filtering and fractionating into a cake and a filtrate is repeated twice, and then the filtered cake is used The resultant was washed with distilled water until the washings became neutral. The washed cake is dried for 3 hours in a static electric furnace kept at 120 ° C. by circulating air, and subsequently calcined at 500 ° C. for 4 hours to obtain at least one of MFI-type borosilicate and boron atoms. Part of the removed silicate was obtained. The boron atom weight in the obtained silicate was 260 ppm, and the boron atom residual ratio at this time was 8%.

(触媒調製2)
触媒調製1で得たシリケート2gに、硝酸亜鉛六水和物0.058gを含む水溶液0.66gを添加して、incipient−wetness法にて亜鉛イオンを含浸させた。亜鉛イオンが含浸されたシリケートを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃、4時間焼成して亜鉛が担持されたシリケートを調製した。
(Catalyst preparation 2)
To 2 g of the silicate obtained in Catalyst Preparation 1, 0.66 g of an aqueous solution containing 0.058 g of zinc nitrate hexahydrate was added to impregnate zinc ions by the incipient-wetness method. The silicate impregnated with zinc ions is dried for 3 hours in a stationary electric furnace kept at 120 ° C. by circulating air, and subsequently calcined at 500 ° C. for 4 hours to carry out the zinc-loaded silicate Prepared.

(触媒調製3)
触媒調製2で得た亜鉛が担持されたシリケート1.5gに、塩化白金酸六水和物0.0127gを含有する水溶液0.375gを添加して、incipient−wetness法にて白金イオンを含浸させた。白金イオンが含浸されたシリケートを、空気を流通させ120℃に保持した静置式電気炉内で3時間かけて乾燥させた後、引き続いて500℃、4時間焼成して白金および亜鉛が担持されたシリケート触媒の粉末を得た。このシリケート触媒の白金担持量は0.32重量%、亜鉛担持量は0.64重量%であった。
(Catalyst preparation 3)
0.375 g of an aqueous solution containing 0.0127 g of chloroplatinic acid hexahydrate was added to 1.5 g of the zinc-supported silicate obtained in Catalyst Preparation 2 to impregnate platinum ions by the incipient-wetness method. The The silicate ion impregnated with platinum ions was dried for 3 hours in a stationary electric furnace kept at 120 ° C. by flowing air, and subsequently calcined at 500 ° C. for 4 hours to support platinum and zinc. The powder of the silicate catalyst was obtained. The supported amount of platinum of this silicate catalyst was 0.32% by weight, and the supported amount of zinc was 0.64% by weight.

[実施例1]
内径6mmのアルミナの内挿管が装着されたSUS製チューブに、触媒調製3で得た白金および亜鉛が担持されたシリケート触媒0.2gを充填し、次いでシリカウールを挟んで触媒の上流側に酸化亜鉛(シグマアルドリッチ製)0.1gを充填し、それらの前後にアルミナボールを充填して触媒および酸化亜鉛を固定することにより反応管を製作した。反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流して触媒を前処理した後、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給してプロパンの脱水素反応を開始した。また、反応開始とともに反応温度を650℃まで上げた。
触媒は長期に亘って安定した活性を示し、約120時間に亘ってプロピレン収率60%を示した。
Example 1
0.2 g of the platinum and zinc supported silicate catalyst obtained in Catalyst Preparation 3 is packed in a SUS tube equipped with an inner tube of alumina with an inner diameter of 6 mm, and then the silica wool is sandwiched and oxidized on the upstream side of the catalyst A reaction tube was manufactured by charging 0.1 g of zinc (manufactured by Sigma Aldrich) and packing alumina balls before and after them to fix the catalyst and zinc oxide. After pretreating the catalyst by flowing a mixed gas consisting of 20 sccm of hydrogen and 0.064 g / min of steam at a temperature of 600 ° C. under normal pressure for 2 hours, the reaction tube was pretreated with 2.1 sccm of hydrogen, 13.55 sccm of propane and 0. Dehydrogenation of propane was initiated by feeding 022 g / min. The reaction temperature was raised to 650 ° C. with the start of the reaction.
The catalyst showed stable activity over time and showed a 60% propylene yield over about 120 hours.

[比較例1]
酸化亜鉛を充填しなかった以外は実施例1と同じ方法で反応管を製作し、実施例1と同じ前処理条件および反応条件でプロパンの脱水素反応を開始した。触媒は約60時間に亘ってプロピレン収率60%を示した。
Comparative Example 1
A reaction tube was manufactured in the same manner as in Example 1 except that zinc oxide was not loaded, and the propane dehydrogenation reaction was initiated under the same pretreatment conditions and reaction conditions as in Example 1. The catalyst showed a propylene yield of 60% over about 60 hours.

[比較例2]
シリケート触媒を充填しなかった以外は実施例1と同じ方法で反応管を製作し、実施例1と同様に、反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流した後、650℃で、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給した。酸化亜鉛は、プロパンの脱水素反応における触媒活性を全く示さなかった。
以上の結果から、触媒の上流に充填された酸化亜鉛自体に触媒活性はない一方、酸化亜鉛の存在によって触媒が長期に亘って高い活性を示すことは明らかである。
Comparative Example 2
A reaction tube was manufactured in the same manner as in Example 1 except that the silicate catalyst was not loaded, and in the same manner as in Example 1, 20 sccm of hydrogen and 0.064 g / min of steam were added to the reaction tube at 600.degree. The mixed gas was allowed to flow for 2 hours, and then, at 650 ° C., 2.1 sccm of hydrogen, 13.55 sccm of propane and 0.022 g / min of water vapor were supplied. Zinc oxide showed no catalytic activity in the propane dehydrogenation reaction.
From the above results, it is clear that while zinc oxide loaded upstream of the catalyst itself has no catalytic activity, the catalyst exhibits high activity over a long period due to the presence of zinc oxide.

[参考例]
アルミナ内挿管が装着されたSUS製チューブの代わりに、触媒を固定するための加工を施した石英製チューブを用い、アルミナボールを充填しなかった以外は比較例2と同じ方法で反応管を製作し、比較例2と同様に、反応管に、600℃、常圧で水素20sccmと水蒸気0.064g/分とからなる混合ガスを2時間流した後、650℃で、水素2.1sccm、プロパン13.55sccm、および水蒸気0.022g/分を供給した。比較例2と同様、酸化亜鉛はプロパンの脱水素反応における触媒活性を全く示さなかったが、反応後の石英チューブ下部には銀色かつ帯状の膜が形成されていた。この膜を希硝酸で溶かした後の溶液をICP(誘導結合プラズマ)で分析した結果、銀色かつ帯状の膜は亜鉛であることが確認された。
[Reference example]
A reaction tube was manufactured in the same manner as in Comparative Example 2 except that a quartz tube processed for fixing the catalyst was used instead of the SUS tube to which the alumina inlaid tube was attached, and the alumina ball was not filled. Then, similarly to Comparative Example 2, after flowing a mixed gas consisting of 20 sccm of hydrogen and 0.064 g / min of water vapor at 600.degree. C. and normal pressure for 2 hours in a reaction tube, then 2.1 sccm of hydrogen and propane at 650.degree. 13.55 sccm, and 0.022 g / min of water vapor were supplied. As in Comparative Example 2, zinc oxide did not exhibit any catalytic activity in the dehydrogenation reaction of propane, but a silver-colored and band-like film was formed at the lower part of the quartz tube after the reaction. As a result of analyzing the solution after dissolving this film with dilute nitric acid by ICP (inductively coupled plasma), it was confirmed that the silver-colored and band-shaped film is zinc.

以上の結果から、酸化亜鉛の少なくとも一部が前処理中および反応中に還元されて金属亜鉛となり、さらにそこから亜鉛蒸気が発生して気相中を移動したことが明らかである。またこのときの亜鉛蒸気の分圧は、反応温度である650℃における亜鉛の蒸気圧以下であることも明らかである。   From the above results, it is clear that at least part of the zinc oxide is reduced during the pretreatment and reaction to metal zinc, from which zinc vapor is generated to move in the gas phase. It is also apparent that the partial pressure of zinc vapor at this time is equal to or less than the vapor pressure of zinc at the reaction temperature of 650 ° C.

Claims (18)

炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させ、次いで活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含み、
前記炭化水素が、脱水素反応により不飽和炭化水素へと変換される炭化水素であり、
前記亜鉛化合物が酸化亜鉛であり、
前記脱水素触媒が、ゼオライトを担体とし、活性成分として亜鉛および第VIIIA族金属が担持された触媒である
不飽和炭化水素の製造方法。
The hydrocarbon containing raw material containing gas (1) is brought into contact with metallic zinc or zinc compound or both, and then with a dehydrogenation catalyst containing zinc as one of the active components to carry out the dehydrogenation reaction of the hydrocarbon. the process of manufacturing a performed unsaturated hydrocarbons seen including,
The hydrocarbon is a hydrocarbon which is converted to unsaturated hydrocarbon by dehydrogenation reaction,
The zinc compound is zinc oxide,
The method for producing an unsaturated hydrocarbon , wherein the dehydrogenation catalyst is a catalyst having a zeolite as a carrier and zinc and a Group VIIIA metal supported as an active component .
前記原料含有ガス(1)が水蒸気をさらに含む請求項1に記載の不飽和炭化水素の製造方法。   The method for producing unsaturated hydrocarbon according to claim 1, wherein the raw material-containing gas (1) further contains water vapor. 前記原料含有ガス(1)が水素をさらに含む請求項1または2に記載の不飽和炭化水素の製造方法。   The method for producing unsaturated hydrocarbon according to claim 1 or 2, wherein the raw material-containing gas (1) further contains hydrogen. 炭化水素を含む原料含有ガス(1)を、金属亜鉛もしくは亜鉛化合物またはその両方と接触させて炭化水素および亜鉛蒸気を含む原料含有ガス(2)を得て、該原料含有ガス(2)を、活性成分の1つとして亜鉛を含む脱水素触媒と接触させて、該炭化水素の脱水素反応を行い不飽和炭化水素を製造する工程を含む、請求項1に記載の不飽和炭化水素の製造方法。   A feed containing gas (1) containing hydrocarbon is brought into contact with metal zinc or zinc compound or both to obtain a feed containing gas (2) containing hydrocarbon and zinc vapor, and the feed containing gas (2) is obtained by The method for producing unsaturated hydrocarbon according to claim 1, comprising the step of dehydrogenating said hydrocarbon to produce unsaturated hydrocarbon in contact with a dehydrogenation catalyst containing zinc as one of the active components. . 前記原料含有ガス(2)に含まれる亜鉛蒸気の分圧が、前記脱水素反応の反応温度における亜鉛の蒸気圧以下である請求項4に記載の不飽和炭化水素の製造方法。   The method for producing unsaturated hydrocarbon according to claim 4, wherein the partial pressure of zinc vapor contained in the raw material-containing gas (2) is equal to or less than the vapor pressure of zinc at the reaction temperature of the dehydrogenation reaction. 前記原料含有ガス(2)が水蒸気をさらに含む請求項4または5に記載の不飽和炭化水素の製造方法。   The method for producing unsaturated hydrocarbon according to claim 4 or 5, wherein the raw material-containing gas (2) further contains water vapor. 前記原料含有ガス(2)が水素をさらに含む請求項4〜6のいずれか一項に記載の不飽和炭化水素の製造方法。   The method for producing unsaturated hydrocarbon according to any one of claims 4 to 6, wherein the raw material-containing gas (2) further contains hydrogen. 前記脱水素反応の際の反応温度が300〜800℃、かつ反応圧力が0.01〜1MPaの範囲にある請求項1〜7のいずれか一項に記載の不飽和炭化水素の製造方法。   The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 7, wherein the reaction temperature in the dehydrogenation reaction is 300 to 800 ° C, and the reaction pressure is in the range of 0.01 to 1 MPa. 前記炭化水素が、プロパン、n−ブタン、イソブタン、1−ブテン、2−ブテンおよびこれらの混合物から選ばれる請求項1〜8のいずれか一項に記載の不飽和炭化水素の製造方法。  The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 8, wherein the hydrocarbon is selected from propane, n-butane, isobutane, 1-butene, 2-butene and a mixture thereof. 前記炭化水素が、プロパン、n−ブタンおよびイソブタンから選ばれる少なくとも1種の炭化水素である請求項1〜のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 8 , wherein the hydrocarbon is at least one hydrocarbon selected from propane, n-butane and isobutane. 前記炭化水素が、n−ブテンである請求項1〜のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing unsaturated hydrocarbon according to any one of claims 1 to 8 , wherein the hydrocarbon is n-butene. 前記脱水素触媒に含まれる亜鉛の量が、該触媒全体の重量を100重量%とすると、0.01〜15重量%である請求項1〜11のいずれか一項に記載の不飽和炭化水素の製造方法。 The unsaturated hydrocarbon according to any one of claims 1 to 11 , wherein the amount of zinc contained in the dehydrogenation catalyst is 0.01 to 15% by weight based on 100% by weight of the total weight of the catalyst. Manufacturing method. 前記脱水素触媒に含まれる第VIIIA族金属の量が、該触媒全体の重量を100重量%とすると、0.01〜5重量%である請求項1〜12のいずれか一項に記載の不飽和炭化水素の製造方法。 The amount of Group VIIIA metal contained in the dehydrogenation catalyst is 0.01 to 5% by weight, based on 100% by weight of the total weight of the catalyst, the non-dehydrogenation catalyst according to any one of claims 1 to 12. Process for producing saturated hydrocarbons. 前記第VIIIA族金属が白金である請求項1〜13のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 1 to 13 , wherein the Group VIIIA metal is platinum. 前記ゼオライトがシリカライトまたはボロシリケートである請求項1〜14のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing unsaturated hydrocarbon according to any one of claims 1 to 14 , wherein the zeolite is silicalite or borosilicate. 前記シリカライトおよび前記ボロシリケートがMFI構造を有する請求項15に記載の不飽和炭化水素の製造方法。 The method for producing unsaturated hydrocarbon according to claim 15 , wherein the silicalite and the borosilicate have an MFI structure. 前記ゼオライトがMFI型ボロシリケートからホウ素原子の少なくとも一部を除去して得られるシリケートである請求項1〜14のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing unsaturated hydrocarbon according to any one of claims 1 to 14 , wherein the zeolite is a silicate obtained by removing at least a part of boron atoms from MFI-type borosilicate. 前記シリケート中のホウ素原子残存率が、前記MFI型ボロシリケート中のホウ素原子全量の80%以下である請求項17に記載の不飽和炭化水素の製造方法。 The method for producing unsaturated hydrocarbon according to claim 17 , wherein the residual ratio of boron atoms in the silicate is 80% or less of the total amount of boron atoms in the MFI-type borosilicate.
JP2016511886A 2014-03-31 2015-03-30 Method for producing unsaturated hydrocarbon Expired - Fee Related JP6426711B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014073071 2014-03-31
JP2014073071 2014-03-31
PCT/JP2015/059947 WO2015152160A1 (en) 2014-03-31 2015-03-30 Method for producing unsaturated hydrocarbon

Publications (2)

Publication Number Publication Date
JPWO2015152160A1 JPWO2015152160A1 (en) 2017-04-13
JP6426711B2 true JP6426711B2 (en) 2018-11-21

Family

ID=54240483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016511886A Expired - Fee Related JP6426711B2 (en) 2014-03-31 2015-03-30 Method for producing unsaturated hydrocarbon

Country Status (3)

Country Link
JP (1) JP6426711B2 (en)
TW (1) TW201542512A (en)
WO (1) WO2015152160A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6633440B2 (en) * 2016-03-31 2020-01-22 三菱ケミカル株式会社 Alkane dehydrogenation catalyst and method for producing alkene using the same
CN110903155B (en) * 2019-12-18 2020-09-08 四川润和催化新材料股份有限公司 Method, device and reaction system for low-carbon alkane dehydrogenation process
FR3135458A1 (en) * 2022-05-10 2023-11-17 Arkema France IMPROVED PROCESS FOR DEHYDROGENATION OF HYDROCARBONS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171877B2 (en) * 1991-06-12 2001-06-04 石油資源開発株式会社 Process for producing liquid hydrocarbon mixtures from ethane
JPH0975732A (en) * 1995-09-08 1997-03-25 Chiyoda Corp Dehydrogenation catalyst
JP2000037629A (en) * 1998-07-24 2000-02-08 Chiyoda Corp Dehydrogenation catalyst
JP4559714B2 (en) * 2003-06-19 2010-10-13 独立行政法人科学技術振興機構 Alkene production method, hydrogen sulfide production method, alkane dehydrogenation method, and catalyst
DE102008036724A1 (en) * 2008-08-07 2010-02-11 Uhde Gmbh Highly porous foam ceramics as catalyst supports for the dehydrogenation of alkanes

Also Published As

Publication number Publication date
TW201542512A (en) 2015-11-16
WO2015152160A1 (en) 2015-10-08
JPWO2015152160A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
RU2614977C2 (en) Catalytic composition and process for dehydrogenation of butenes or mixtures of butanes and butenes to give 1,3-butadiene
JP5231991B2 (en) A selective hydrogenation process of acetylene to ethylene.
JP5836354B2 (en) Process for producing platinum-tin-alumina catalyst for direct dehydrogenation of normal-butane and process for producing C4 olefin using said catalyst
JP6595606B2 (en) Catalyst and process for producing olefins
MX2011007098A (en) Catalyst regeneration.
WO2012020743A1 (en) Method for manufacturing unsaturated hydrocarbon, and dehydrogenation catalyst used in said method
US11203010B2 (en) Catalyst for dehydrogenation of light alkanes
JP5345058B2 (en) Method for reactivating metathesis catalyst and method for producing olefins including reactivation step thereof
JP6426711B2 (en) Method for producing unsaturated hydrocarbon
JPWO2007083684A1 (en) Catalyst and method for producing olefin using the same
CA2747085A1 (en) Variation of tin impregnation of a catalyst for alkane dehydrogenation
JP2008266286A (en) Method for producing alkene
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
JP2018520858A (en) Catalyst and hydrocarbon conversion process using the catalyst
KR101440695B1 (en) A catalyst with increased selectivity for n-butene and 1,3-butadiene in dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butane, 1,3-butadiene and iso-butene in high yield using the same
AU777050B2 (en) Process for the production of olefins
TW201822880A (en) Catalyst system and process for conversion of a hydrocarbon feed utilizing the catalyst system
TW201822879A (en) Hydrocarbon conversion catalyst system
KR101485697B1 (en) An alkali-modified catalyst for dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butene, 1,3-butadiene and iso-butene with controlled ratio of isobutene to n-butene using the same
TW201822884A (en) Catalyst system and process utilizing the catalyst system
US12134084B2 (en) Catalyst for dehydrogenation of light alkanes
WO2017138667A1 (en) Method for producing unsaturated hydrocarbon, and method for producing conjugated diene
KR102234498B1 (en) Dehydrogenation Catalysts Having Metal Clusters Encapsulated on Titania and Process For Preparation Thereof
RU2127242C1 (en) Process for preparing olefinic hydrocarbons
JP6268110B2 (en) Process for producing hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees