JP2008266286A - Method for producing alkene - Google Patents

Method for producing alkene Download PDF

Info

Publication number
JP2008266286A
JP2008266286A JP2007287050A JP2007287050A JP2008266286A JP 2008266286 A JP2008266286 A JP 2008266286A JP 2007287050 A JP2007287050 A JP 2007287050A JP 2007287050 A JP2007287050 A JP 2007287050A JP 2008266286 A JP2008266286 A JP 2008266286A
Authority
JP
Japan
Prior art keywords
catalyst
weight
reaction
alkene
alkane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007287050A
Other languages
Japanese (ja)
Other versions
JP5061852B2 (en
Inventor
Makoto Takiguchi
真 滝口
Toru Setoyama
亨 瀬戸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007287050A priority Critical patent/JP5061852B2/en
Publication of JP2008266286A publication Critical patent/JP2008266286A/en
Application granted granted Critical
Publication of JP5061852B2 publication Critical patent/JP5061852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly active method for stably carrying out dehydrogenation of alkanes over a long time while suppressing lowering of catalytic activity during reaction. <P>SOLUTION: The method for producing an alkene comprises dehydrogenating an alkane in an atmosphere containing carbon dioxide in the presence of a supported catalyst containing 1-20 wt.% chromium oxide expressed in terms of metal chromium. The catalyst support is one of zeolites selected from a group consisting of MFI, MEL, MOR, MWW, CHA, BEA and FAU structure or a mixture of a plurality of zeolites and contains a boron atom. The production method of the alkene in which silicon (Si) content is ≥35 wt.% and aluminum content is ≤0.3 wt.% based on the support weight enables stable dehydrogenation reaction. The production method enables stable dehydrogenation reaction of the alkane over further long time by treating the catalyst in the presence of the catalyst, oxygen and steam. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反応中の触媒活性低下が抑制され、長時間にわたり、安定して高活性なアルケンの製造方法に関するものである。具体的にはホウ素原子を含有するゼオライトに酸化クロムを担持した触媒を用いたアルケンの製造方法、該触媒を予め酸素とスチーム共存雰囲気下処理した触媒存在下でのアルケンの製造方法、及び前記処理した触媒存在下、アルカンを二酸化炭素ガス共存雰囲気中において接触的に脱水素してアルケンを製造する方法に関するものである。   The present invention relates to a method for producing an alkene that is stable and highly active over a long period of time, in which a decrease in catalytic activity during the reaction is suppressed. Specifically, a method for producing an alkene using a catalyst having chromium oxide supported on a zeolite containing a boron atom, a method for producing an alkene in the presence of a catalyst obtained by treating the catalyst in an atmosphere coexisting with oxygen in advance, and the treatment The present invention relates to a method for producing alkenes by catalytically dehydrogenating alkanes in the presence of carbon dioxide gas in the presence of a catalyst.

アルカンを接触的に脱水素して、対応するアルケンを製造する方法は周知であり、種々の触媒が知られている。なかでも担体に酸化クロムを担持した触媒が、二酸化炭素ガス共存雰囲気中での脱水素反応に好ましいものの一つとされている。   Methods for catalytically dehydrogenating alkanes to produce the corresponding alkenes are well known and various catalysts are known. Among them, a catalyst having chromium oxide supported on a carrier is considered to be one preferable for a dehydrogenation reaction in a carbon dioxide gas coexisting atmosphere.

例えば非特許文献1には、比表面積が304m/gの二酸化珪素に酸化クロムを担持した触媒を用いて二酸化炭素ガスを含む雰囲気中でプロパンを脱水素してプロピレンを製造する方法が開示されている。また、特許文献1には、シリカ/アルミナ(SiO/Al)比が1900でホウ素原子を含まないZSM−5に酸化クロムを担持した触媒による二酸化炭素ガスを含む雰囲気中でエタンを脱水素してエチレンを製造する方法が開示されている。 For example, Non-Patent Document 1 discloses a method for producing propylene by dehydrogenating propane in an atmosphere containing carbon dioxide gas using a catalyst in which chromium oxide is supported on silicon dioxide having a specific surface area of 304 m 2 / g. ing. Further, Patent Document 1 discloses that ethane is contained in an atmosphere containing carbon dioxide gas by a catalyst in which chromium oxide is supported on ZSM-5 having a silica / alumina (SiO 2 / Al 2 O 3 ) ratio of 1900 and containing no boron atom. A method for producing hydrogen by dehydrogenation is disclosed.

Effect of supports on catalyticactivity of chromium oxide based catalyst in the dehydrogenation of propane with CO2(Catalysis Letters(2005),101(1−2),5 3−57Effect of supports on catalytic of of chromium oxide based catalytic in the dehydration of propoline with CO2 (Catalysis Letters 5-200) 特開2003―12570号公報JP 2003-12570 A

しかし、これらの方法では反応中に触媒活性が比較的速やかに低下することが記載されていたり、あるいは本発明者らの検討で明らかになっている。その原因として、反応に供する低級アルカンに由来する炭素質が酸化クロムを担持したゼオライト触媒活性面に蓄積され触媒活性が低下したことが推察される。   However, in these methods, it is described that the catalytic activity decreases relatively rapidly during the reaction, or has been clarified by the inventors' investigation. It is presumed that the carbon activity derived from the lower alkane subjected to the reaction is accumulated on the zeolite catalyst active surface supporting chromium oxide and the catalyst activity is lowered as the cause.

本発明は上記現状を改善するために検討された結果なされたものであり、活性低下の小さな触媒の提供、および反応中の触媒活性低下を抑制して、長時間にわたり、安定して高活性なアルカン脱水素方法を提供することを課題とするものである。   The present invention has been made as a result of studies to improve the above-described present situation, and provides a catalyst with a small decrease in activity, and suppresses a decrease in catalyst activity during the reaction, and is stable and highly active over a long period of time. It is an object of the present invention to provide an alkane dehydrogenation method.

本発明は発明者らが上記課題を解決するため鋭意検討した結果なされたものであり、具体的には、ホウ素原子を含むゼオライト担体に酸化クロムを担持し、予め酸素とスチームの共存雰囲気下処理した触媒の存在下、二酸化炭素ガスと酸素を含む雰囲気中で安定して高活性にアルカンを脱水素してアルケンを製造する方法を見出し本発明の完成に至った。
The present invention has been made as a result of the inventors' diligent study to solve the above-mentioned problems. Specifically, chromium oxide is supported on a zeolite carrier containing a boron atom, and is pretreated in a coexisting atmosphere of oxygen and steam. In the presence of the prepared catalyst, a method for producing alkenes by dehydrogenating alkane stably and highly active in an atmosphere containing carbon dioxide gas and oxygen has been found and the present invention has been completed.

すなわち本発明の第一の要旨は、酸化クロムを、金属クロム換算で1から20重量%含有する担持触媒の存在下、二酸化炭素ガスを含む雰囲気中でアルカンを脱水素することを
特徴とするアルケンの製造方法であって、前記触媒担体が、MFI、MEL、MOR、MWW、CHA、BEA、およびFAU構造からなる群より選ばれるゼオライトの一つまたは複数の混合物であって、ホウ素原子を含有し、かつ、該担体重量に対して、珪素(Si)換算で35重量%以上、アルミニウム含有量が0.3重量%以下である、第一発明に記載のアルケンの製造方法に存する。
That is, the first gist of the present invention is an alkene characterized in that alkane is dehydrogenated in an atmosphere containing carbon dioxide gas in the presence of a supported catalyst containing 1 to 20% by weight of chromium oxide in terms of metallic chromium. The catalyst support is a mixture of one or more zeolites selected from the group consisting of MFI, MEL, MOR, MWW, CHA, BEA, and FAU structures, and contains a boron atom. And it exists in the manufacturing method of the alkene as described in 1st invention which is 35 weight% or more and aluminum content are 0.3 weight% or less in conversion of silicon (Si) with respect to this support | carrier weight.

また、本発明の第二の要旨は、酸化クロムを、金属クロム換算で1から20重量%含有する担持触媒の存在下、二酸化炭素ガスを含む雰囲気中でアルカンを脱水素することを特徴とするアルケンの製造方法であって、前記触媒担体が、MFI、MEL、MOR、MWW、CHA、BEA、およびFAU構造からなる群より選ばれるゼオライトの一つまたは複数の混合物であって、ホウ素原子を含有し、かつ、該ゼオライト重量に対して、珪素(Si)換算で35重量%以上、アルミニウム含有量が0.3重量%以下である第二発明に記載のアルケンの製造方法に存する。   The second gist of the present invention is characterized in that alkane is dehydrogenated in an atmosphere containing carbon dioxide gas in the presence of a supported catalyst containing 1 to 20% by weight of chromium oxide in terms of metallic chromium. A method for producing an alkene, wherein the catalyst support is a mixture of one or more zeolites selected from the group consisting of MFI, MEL, MOR, MWW, CHA, BEA, and FAU structures, and contains a boron atom And it exists in the manufacturing method of the alkene as described in 2nd invention which is 35 weight% or more in conversion of silicon (Si) and aluminum content is 0.3 weight% or less with respect to this zeolite weight.

また、本発明の第三の要旨は、前記触媒が、酸素とスチームが存在する雰囲気下、300〜900℃の温度で予め処理されたものである、第一発明または第二発明に記載のアルケンの製造方法に存する。   The third gist of the present invention is the alkene according to the first or second invention, wherein the catalyst is pretreated at a temperature of 300 to 900 ° C. in an atmosphere containing oxygen and steam. Exist in the manufacturing method.

また、本発明の第四の要旨は、二酸化炭素ガスと酸素を含む雰囲気中でアルカンを脱水素することである、第三発明に記載のアルケンの製造方法に存する。   Moreover, the 4th summary of this invention exists in the manufacturing method of the alkene as described in 3rd invention which is dehydrogenating in the atmosphere containing a carbon dioxide gas and oxygen.

本発明によれば、アルカンを脱水素してアルケンを製造するに際し、触媒の活性を長時間、安定して高い状態に保つことができる。   According to the present invention, when an alkane is dehydrogenated to produce an alkene, the activity of the catalyst can be stably kept high for a long time.

本発明において、担体とは活性成分である酸化クロムを分散・固定化する基材であり、それ自体が目的反応を阻害しないものである。一般的にはシリカやアルミナ等が用いられるが、ゼオライトを担体とした場合には、加えて活性成分の骨格格子内へのイオン交換による固定化やゼオライト細孔形状による立体制御による目的生成物の選択性向上等の可能性も期待される。
担体としてはInternational Zeolite Association(IZA)で規定されるコードで表
されるMFI、MEL、MOR、MWW、CHA、BEA、およびFAU構造からなる群より選ばれるゼオライトを用い、これらを単独でも2種以上混合して用いてもよい。
In the present invention, the carrier is a base material that disperses and immobilizes chromium oxide, which is an active ingredient, and does not itself inhibit the target reaction. In general, silica, alumina, etc. are used. However, when zeolite is used as a carrier, the target product can be obtained by immobilizing the active ingredient into the skeleton lattice by ion exchange or by steric control by the zeolite pore shape. Potential for improved selectivity is also expected.
As the carrier, a zeolite selected from the group consisting of MFI, MEL, MOR, MWW, CHA, BEA, and FAU structure represented by a code stipulated by the International Zeolite Association (IZA) is used. You may mix and use.

担体中に含有される珪素(Si)は、担体の重量に対して、35重量%以上が好ましく、より好ましくは40重量%以上である。アルミニウム(Al)は担体の重量に対して0.3重量%以下が好ましく、より好ましくは0.2重量%以下であり、アルミニウムを全く含まないシリカライトも含まれる。 また、担体中のホウ素(B)原子は、担体の重量
に対して、0.01重量%以上、より好ましくは0.1重量%以上である。
好ましくは、担体のゼオライト中に含有される珪素(Si)は、ゼオライトの重量に対して、35重量%以上が好ましく、より好ましくは40重量%以上である。アルミニウム(Al)はゼオライトの重量に対して0.3重量%以下が好ましく、より好ましくは0.2重量%以下であり、アルミニウムを全く含まないシリカライトも含まれる。
また、ゼオライト中のホウ素(B)原子は、ゼオライトの重量に対して、0.01重量%以上、より好ましくは0.1重量%以上である。
The silicon (Si) contained in the carrier is preferably 35% by weight or more, more preferably 40% by weight or more based on the weight of the carrier. Aluminum (Al) is preferably not more than 0.3% by weight, more preferably not more than 0.2% by weight with respect to the weight of the support, and silicalite containing no aluminum is also included. Further, the boron (B) atom in the carrier is 0.01% by weight or more, more preferably 0.1% by weight or more with respect to the weight of the carrier.
Preferably, silicon (Si) contained in the support zeolite is 35% by weight or more, and more preferably 40% by weight or more based on the weight of the zeolite. Aluminum (Al) is preferably 0.3% by weight or less, more preferably 0.2% by weight or less based on the weight of zeolite, and silicalite containing no aluminum is also included.
Further, the boron (B) atom in the zeolite is 0.01% by weight or more, more preferably 0.1% by weight or more with respect to the weight of the zeolite.

ホウ素原子はゼオライト骨格内に取り入れられた状態が好ましいが、一部骨格外に存在してもよい。また、担体として使用するゼオライトは、珪素/アルミニウム(Si/Al)比を高めるため種々の脱アルミニウム処理方法が用いられるが、その結果、一部ゼオラ
イト骨格外にアルミニウムが残存しても問題ではない。更に、担体に使用するゼオライトは、イオン交換法により予めH型としておくことが好ましいが、その結果、一部Na等がゼオライト上に残存しても問題ではない。
The boron atom is preferably incorporated in the zeolite framework, but may be partially present outside the framework. In addition, various dealumination methods are used for the zeolite used as the carrier in order to increase the silicon / aluminum (Si / Al) ratio. As a result, even if some aluminum remains outside the zeolite framework, there is no problem. . Furthermore, it is preferable that the zeolite used for the carrier is preliminarily made into an H type by an ion exchange method, but as a result, even if some Na or the like remains on the zeolite, it does not matter.

ゼオライトへの酸化クロムの担持は常法により行うことができ、一般的にはクロム化合物の溶液をゼオライトに含浸させて乾燥し、ゼオライトにクロム化合物を担持させる。
次いで、これを空気流通下に300〜1000℃、好ましくは400〜700℃で1〜 24時間熱処理(以後、触媒焼成と略記)して、クロム化合物を酸化クロムに転換する。
Chromium oxide can be supported on the zeolite by a conventional method. In general, a solution of a chromium compound is impregnated in the zeolite and dried, and the chromium compound is supported on the zeolite.
Next, this is heat-treated at 300 to 1000 ° C., preferably 400 to 700 ° C. for 1 to 24 hours under air flow (hereinafter abbreviated as catalyst firing) to convert the chromium compound into chromium oxide.

酸化クロムの酸化状態及び結晶構造は特に限定されず、酸化状態は2〜6価のいずれでもよく、酸化クロムは結晶質であっても非晶質物であってもよい。
含浸させるクロム化合物としては、硝酸クロム、硫酸クロム、塩化クロム等の無機酸塩や酢酸クロム、シュウ酸クロム等の有機酸塩をはじめ、酸化クロム触媒の製造に用いることが知られている種々のものを用いることができる。
触媒の金属クロム換算のクロム含有量{=(酸化クロムの金属クロム換算重量)/(担体ゼオライト重量+酸化クロムの金属クロム換算重量)×100}は、1〜20重量%であるのが好ましい。 触媒の金属換算クロム含有量が低すぎると触媒の脱水素反応の活性
が低くなり、また高すぎると触媒調製時の均一担持方法が難しくなるだけでなく、活性種酸化クロムと担体(例えば、ゼオライト)との相互作用が低減されて担持した効果が薄れて好ましくない。
The oxidation state and crystal structure of chromium oxide are not particularly limited, and the oxidation state may be any of divalent to hexavalent, and the chromium oxide may be crystalline or amorphous.
Examples of the chromium compound to be impregnated include inorganic acid salts such as chromium nitrate, chromium sulfate, and chromium chloride, and organic acid salts such as chromium acetate and chromium oxalate, as well as various kinds known for use in the production of chromium oxide catalysts. Things can be used.
The chromium content of the catalyst in terms of metal chromium {= (weight of chromium oxide in terms of metal chromium) / (weight of support zeolite + weight of chromium oxide in terms of metal chromium) × 100} is preferably 1 to 20% by weight. If the metal-converted chromium content of the catalyst is too low, the activity of the catalyst dehydrogenation reaction will be low, and if it is too high, not only will it be difficult to carry out a uniform support during catalyst preparation, but also active species chromium oxide and a carrier (for example, zeolite) ) Is reduced, and the supported effect is diminished.

上記触媒は、そのまま触媒として用いてもよいが、好ましくは反応に悪影響をおよばさないバインダーを用いて成型することが望ましい。成型体は、目的に合致すればいかなる形状、寸法でも限定されるものではない。   The catalyst may be used as a catalyst as it is, but is preferably molded using a binder that does not adversely influence the reaction. The molded body is not limited in any shape and size as long as it meets the purpose.

成型法も特に限定されるものではなく、例えば、予め担体ゼオライトをアルミナまたは
アルミナゾル、シリカ、シリカゲル、石英、およびそれらの混合物等のバインダーを用
いたゼオライト担体の成型方法や、クロム化合物を担持した触媒前駆体あるいは予備焼成後の粉末あるいは顆粒体を前記バインダー、あるいはクロム化合物(担持したクロム化合物も含む)をバインダーとした成型方法がある。
The molding method is not particularly limited. For example, a zeolite carrier molding method using a support zeolite such as alumina or alumina sol, silica, silica gel, quartz, and a mixture thereof, or a catalyst supporting a chromium compound in advance. There is a molding method in which a precursor or a powder or granule after preliminary firing is used as a binder, or a chromium compound (including a supported chromium compound) as a binder.

酸化クロムを担持した触媒は、触媒焼成時、触媒焼成後継続して、または反応前等、の何れかの方法で、少なくともアルカン脱水素反応前に、予め酸素とスチームが存在する雰囲気下処理されることがより好ましい。   The catalyst supporting chromium oxide is treated in an atmosphere in which oxygen and steam are present in advance, at least before the alkane dehydrogenation reaction, by any method, such as during the catalyst calcination, continuously after the catalyst calcination, or before the reaction. More preferably.

処理は、雰囲気中の酸素濃度が15容積%以下、好ましくは10容積%以下であり、更に好ましくは5容積%以下である。なお本願での触媒を処理するとは少なくとも反応に使用される触媒が目的条件下(雰囲気、温度、時間)で暴露されることをいう。   In the treatment, the oxygen concentration in the atmosphere is 15% by volume or less, preferably 10% by volume or less, and more preferably 5% by volume or less. The treatment of the catalyst in the present application means that at least the catalyst used for the reaction is exposed under the target conditions (atmosphere, temperature, time).

触媒の処理時のスチーム濃度は、全フィードガス中の1容積%以上、好ましくは10容積%以上である。   The steam concentration during the treatment of the catalyst is 1% by volume or more, preferably 10% by volume or more, based on the total feed gas.

また、触媒の処理温度は300〜900℃であり、好ましくは400〜800℃であり、処理時間は1分以上であり、処理再現安定性から好ましくは5分以上、24時間以下である。   The treatment temperature of the catalyst is 300 to 900 ° C., preferably 400 to 800 ° C., the treatment time is 1 minute or more, and preferably 5 minutes or more and 24 hours or less in view of process reproducibility stability.

この触媒の処理による触媒への化学的効果のメカニズムは明らかではないが、本発明者らの検討によると、雰囲気中の酸素はスチームとの共存によって初めて効果を発現する。したがって、雰囲気中の酸素はクロムのスチーム処理による水酸化および/又は過還元を
抑制する働きをしていると考えられる。
Although the mechanism of the chemical effect on the catalyst by this catalyst treatment is not clear, according to the study by the present inventors, the oxygen in the atmosphere exhibits an effect only when it coexists with steam. Therefore, oxygen in the atmosphere is considered to have a function of suppressing hydroxylation and / or overreduction by chromium steam treatment.

また、スチームは、ゼオライト表面にシラノール基および/又はボラノール基を生成させ、それらが酸化クロムと反応して活性種Crを安定的に配位させているメカニズムが推測される。あるいはスチームは脱ホウ素を引き起こすとも考えられ、ホウ素が脱離した骨格部分に、酸化クロムが活性種Crとして取り込まれ、安定化されるメカニズムが推測される。   In addition, it is presumed that the steam generates a silanol group and / or a boranol group on the zeolite surface and reacts with chromium oxide to stably coordinate the active species Cr. Alternatively, it is considered that steam causes deboronation, and it is assumed that chromium oxide is incorporated as an active species Cr in the skeleton portion from which boron is eliminated and is stabilized.

処理に供する酸素およびスチームは、被処理触媒に達した時点で酸素およびスチームの形態であればよく、被処理触媒到達以前に分解等で酸素およびスチームを発生するものの単独あるいは複数での使用が可能である。酸素源の一例として、オゾン、酸化窒素あるいは過酸化水素等が挙げられる。しかし、本反応を単独プロセスで運転するのであるならば、酸素源として空気を、スチーム源として水を使用するのが経済的に好ましい。   The oxygen and steam used for the treatment need only be in the form of oxygen and steam when they reach the catalyst to be treated. Oxygen and steam that are generated by decomposition or the like before reaching the catalyst to be treated can be used alone or in combination. It is. Examples of the oxygen source include ozone, nitric oxide, hydrogen peroxide, and the like. However, if this reaction is operated as a single process, it is economically preferable to use air as the oxygen source and water as the steam source.

脱水素反応に供するアルカンとしては特に制限はなく、例えば分岐を有していてもよく、その分岐内に飽和・不飽和結合基や芳香族基やシクロ環基等が存在していてもよく、ハロゲン、酸素、窒素、リン、イオウ等の原子が存在してもよい。これらのアルカンのうち、好ましくは炭素数が2〜5のアルカンであり、例えばエタン、プロパン、ブタンおよびペンタンが挙げられる。直鎖炭素数が5以上でも脱水素は可能であるが転化率が低くなることと、脱水素分解による低炭素数アルケンの生成が推察される。
また、側鎖に飽和・不飽和結合を有するアルカンの例示としては、2−メチルブタン、2,2−ジメチルプロパン、2−メチルペンタン、1−ペンテン、3−メチル−1−ブテン、2−メチル−1−ブテン、プロピルアルコール、ブチルアルコール等が挙げられる。また、側鎖に芳香族基やシクロ環を有するアルカンの例示としては、エチルベンゼン、プロピルベンゼン、ジエチルベンゼン、p−クロロエチルベンゼン、p−エチルスルフォン酸、p−ブチルスチレン、2−シクロヘキシルブタン等が挙げられる。
The alkane used for the dehydrogenation reaction is not particularly limited, and may have, for example, a branch, and a saturated / unsaturated bond group, an aromatic group, a cyclo ring group, or the like may exist in the branch. Atoms such as halogen, oxygen, nitrogen, phosphorus, sulfur may be present. Among these alkanes, an alkane having 2 to 5 carbon atoms is preferable, and examples thereof include ethane, propane, butane and pentane. Although dehydrogenation is possible even with a straight-chain carbon number of 5 or more, it is presumed that the conversion rate is low and that a low-carbon alkene is produced by dehydrogenolysis.
Examples of alkanes having a saturated / unsaturated bond in the side chain include 2-methylbutane, 2,2-dimethylpropane, 2-methylpentane, 1-pentene, 3-methyl-1-butene, 2-methyl- Examples include 1-butene, propyl alcohol, and butyl alcohol. Examples of alkanes having an aromatic group or cyclo ring in the side chain include ethylbenzene, propylbenzene, diethylbenzene, p-chloroethylbenzene, p-ethylsulfonic acid, p-butylstyrene, 2-cyclohexylbutane, and the like. .

本発明では、上述したアルカン、例えばエタン、プロパン、ブタンおよびペンタンからは各々対応するアルケン(エチレン、プロピレン、ブテンおよびペンテン)が生成する。さらには、所望ならばブタンから1,3−ブタジエンを生成することもできる。この反応はブタン→ブテン→1,3−ブタジエンという経路を経るものと考えられる。ブタンの場合は、途中異性化反応により、n−ブタンからはイソブテンが、イソブタンからはn−ブテンが併産される。また、エチルベンゼンからスチレンへの脱水素反応への適用も可能である。   In the present invention, the corresponding alkenes (ethylene, propylene, butene and pentene) are produced from the alkanes described above, such as ethane, propane, butane and pentane. Further, 1,3-butadiene can be produced from butane if desired. This reaction is considered to pass through the route of butane → butene → 1,3-butadiene. In the case of butane, isobutene is produced from n-butane and n-butene is produced from isobutane by an isomerization reaction. Moreover, application to the dehydrogenation reaction from ethylbenzene to styrene is also possible.

脱水素反応は二酸化炭素ガスを含む雰囲気中で行う。脱水素反応に供するアルカンに対する二酸化炭素ガスのモル比は、通常0.1〜100であるが、0.5〜20が好ましい。モル比が小さ過ぎると触媒の脱水素反応の活性が低くなる。一方、モル比を大きくすると触媒活性は高くなるが、生成ガス中に占める生成アルケンの濃度が低くなるので経済的に不利となる。   The dehydrogenation reaction is performed in an atmosphere containing carbon dioxide gas. The molar ratio of carbon dioxide gas to alkane subjected to the dehydrogenation reaction is usually 0.1 to 100, but 0.5 to 20 is preferable. When the molar ratio is too small, the activity of the catalyst dehydrogenation reaction is lowered. On the other hand, if the molar ratio is increased, the catalytic activity is increased, but the concentration of the produced alkene in the produced gas is lowered, which is economically disadvantageous.

また、脱水素反応に供するアルカンに対する酸素のモル比および雰囲気中酸素濃度は、通常1.0比以下および約10容積%以下であるが、0.7比以下および約7容積%以下が好ましい。   In addition, the molar ratio of oxygen to alkane and the oxygen concentration in the atmosphere used for the dehydrogenation reaction are usually 1.0 ratio or less and about 10% by volume or less, preferably 0.7 ratio or less and about 7% by volume or less.

反応雰囲気中、酸素が全く存在しないと経時的に触媒活性が低下し、目的生産量を維持するための触媒再生回数が増すか、予め活性低下を見越した触媒量の反応器への充填が必要となり経済的に好ましくない。また、アルカンに対する酸素比および雰囲気中の酸素濃度が高過ぎるとアルカンおよび生成アルケン等の燃焼反応が助長されて目的生成物の選択性が低下するため経済的に好ましくない。   If no oxygen is present in the reaction atmosphere, the catalyst activity will decrease over time, increasing the number of catalyst regenerations to maintain the target production volume, or filling the reactor with a catalyst amount in anticipation of a decrease in activity in advance. It is economically undesirable. On the other hand, if the oxygen ratio to the alkane and the oxygen concentration in the atmosphere are too high, the combustion reaction of the alkane and the produced alkene is promoted and the selectivity of the target product is lowered, which is economically undesirable.

反応雰囲気中の酸素は、触媒活性面に蓄積した炭素質の酸化による除去と活性種クロムの価数安定化および酸化脱水素の一部併発に寄与しているものと推察される。   It is inferred that oxygen in the reaction atmosphere contributes to the removal of carbonaceous material accumulated on the catalyst active surface by oxidation, stabilization of the valence of active species chromium, and partial oxidative dehydrogenation.

なお、雰囲気中には、二酸化炭素ガスと酸素以外に窒素、ヘリウム、アルゴン、水蒸気などのガスが共存してもよい。したがって、石炭や石油等の化石燃料の燃焼排ガスを雰囲気ガスとして用いることもできる。   In the atmosphere, a gas such as nitrogen, helium, argon, or water vapor may coexist in addition to the carbon dioxide gas and oxygen. Therefore, the combustion exhaust gas of fossil fuels such as coal and petroleum can be used as the atmospheric gas.

脱水素反応の温度は通常300〜1000℃であるが、この範囲内でも下限近くでは、触媒の活性が低下するし、上限近くではアルカンの熱分解反応が生起してアルケンの選択率が低下すると共に触媒の劣化もし易い。従って、脱水素反応は400〜800℃で行うのが好ましい。   The temperature of the dehydrogenation reaction is usually 300 to 1000 ° C., but even within this range, the activity of the catalyst is reduced near the lower limit, and the alkane thermal decomposition reaction occurs near the upper limit, and the alkene selectivity is lowered. At the same time, the catalyst is likely to deteriorate. Therefore, the dehydrogenation reaction is preferably performed at 400 to 800 ° C.

反応圧力は、反応に供するアルカンにより適宜選択すればよいが、通常は1MPa以下であり0.5MPa以下が好ましく、反応は低圧で行うのが反応平衡上好ましい。
通常、反応は触媒を充填した反応器に原料のアルカンと二酸化炭素ガスと酸素を含む雰囲気ガスとの混合物を流通させる固定床反応方式で行う。
The reaction pressure may be appropriately selected depending on the alkane used for the reaction, but is usually 1 MPa or less, preferably 0.5 MPa or less, and the reaction is preferably performed at a low pressure in view of the reaction equilibrium.
Usually, the reaction is carried out by a fixed bed reaction system in which a mixture of a raw material alkane, carbon dioxide gas, and atmospheric gas containing oxygen is passed through a reactor filled with a catalyst.

空間速度は、0.001〜1000/hrの範囲であり、好ましくは0.01〜100 /hrの範囲である。空間速度が高すぎると原料のアルカンの脱水素転化率が低く、また、空間速度が低すぎると、一定の生産量を得るのに必要な触媒量が多くなり反応器が大きくなりすぎると共に、目的生成物アルケンの選択率が低下するため好ましくない。ここで言う空間速度とは、触媒重量当たりの反応原料アルカンと二酸化炭素ガスと酸素と、窒素等の不活性ガスの、時間あたりの総重量流量であり、触媒重量とは反応管に充填した触媒総重量である。   The space velocity is in the range of 0.001 to 1000 / hr, preferably in the range of 0.01 to 100 / hr. If the space velocity is too high, the dehydrogenation conversion rate of the raw material alkane is low, and if the space velocity is too low, the amount of catalyst necessary to obtain a certain production amount increases and the reactor becomes too large. This is not preferable because the selectivity of the product alkene decreases. The space velocity mentioned here is the total weight flow rate per hour of the reaction raw material alkane, carbon dioxide gas, oxygen and inert gas such as nitrogen per catalyst weight, and the catalyst weight is the catalyst filled in the reaction tube. Total weight.

反応器には一種類の触媒を充填してもよく、また、活性の異なる複数種の触媒を混合あるいは層別に充填してもよい。所望ならば活性の異なる複数種の触媒を、または一種類の触媒と希釈剤として使用する不活性な無機物とを、用いて、反応器入り口から出口へ向けて活性が変化する様に触媒を充填することも可能である。   The reactor may be filled with one type of catalyst, or a plurality of types of catalysts having different activities may be mixed or packed in layers. If desired, use multiple types of catalysts with different activities, or one type of catalyst and an inert inorganic substance used as a diluent, and fill the catalyst so that the activity changes from the reactor inlet to the outlet. It is also possible to do.

尚、脱水素反応は固定床反応方式以外にも、流動床反応方式や移動床反応方式等で行うこともできる。また、脱水素反応に用いて活性低下した触媒は、酸素含有ガス中で300℃以上、好ましくは400〜700℃に加熱することにより触媒活性を回復させることができる。   Note that the dehydrogenation reaction can be carried out by a fluidized bed reaction system, a moving bed reaction system, or the like in addition to the fixed bed reaction system. In addition, the catalyst whose activity has been reduced by use in the dehydrogenation reaction can be recovered in catalytic activity by heating to 300 ° C. or higher, preferably 400 to 700 ° C. in an oxygen-containing gas.

反応器出口ガスとして、反応原料によって異なるが反応目的生成物であるエチレン、プロピレン、ブテン等に代表されるアルケン類およびスチレンに代表される芳香族アルケン類、1,3−ブタジエンに代表されるジエン類、等の目的脱水素生成物、一酸化炭素、水素、未反応原料、副生成物および反応に別途添加した希釈剤等、を含む混合ガスは、公知の分離・精製設備に導入し、それぞれの成分に応じて回収、精製、リサイクル、排出の処理を行えばよい。
目的生成物以外の成分であるアルカン、アルケン等の一部または全ては、上記分離・精製された後に反応原料と混合するか、または直接反応器に供給することでリサイクルするのが好ましい。また、副生成物のうち、反応に不活性な成分は希釈剤として再利用することも可能である。
The reactor outlet gas varies depending on the reaction raw material, but the target product of the reaction is an alkene typified by ethylene, propylene, butene, etc., an aromatic alkene typified by styrene, or a diene typified by 1,3-butadiene. Gas mixtures containing the desired dehydrogenation products, carbon monoxide, hydrogen, unreacted raw materials, by-products and diluents added separately to the reaction, etc. are introduced into known separation / purification facilities, Recovery, purification, recycling, and discharge processing may be performed according to the components.
It is preferable that some or all of alkanes, alkenes, and the like, which are components other than the target product, are recycled after being separated and purified and mixed with the reaction raw materials or supplied directly to the reactor. In addition, among the by-products, components inactive to the reaction can be reused as a diluent.

以下に実施例により、本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、これらの実施例により限定されるものではない。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples unless it exceeds the gist.

[実施例1]
<担体合成>
水150gに加温溶解した硼酸(HBO)7.44gを水ガラス62.1gと臭化テトラ−n−プロピルアンモニウム(TPABr)16.0gを水30gに溶解した撹拌液にゆっくり加え、1時間以上、充分撹拌して水性ゲルを得た。次に、このゲルを1000mlのオートクレーブに仕込み自圧下170℃で72時間水熱合成を行った。その後、濾過により分離回収された水熱合成固体成分は、水にて充分洗浄後、100℃で充分乾燥した。
得られた乾燥品は、空気流通下550℃で6時間を施し、Na型アルミノシリケートを得た。
[Example 1]
<Carrier synthesis>
7.44 g of boric acid (H 3 BO 3 ) dissolved in 150 g of water by heating was slowly added to a stirring solution prepared by dissolving 62.1 g of water glass and 16.0 g of tetra-n-propylammonium bromide (TPABr) in 30 g of water, The gel was sufficiently stirred for 1 hour or more to obtain an aqueous gel. Next, this gel was charged into a 1000 ml autoclave, and hydrothermal synthesis was performed at 170 ° C. for 72 hours under an autogenous pressure. Thereafter, the hydrothermally synthesized solid component separated and recovered by filtration was sufficiently washed at 100 ° C. after sufficiently washed with water.
The obtained dried product was subjected to air flow at 550 ° C. for 6 hours to obtain Na-type aluminosilicate.

このNa型のアルミノシリケート2.0gを1Mの硝酸アンモニウム水溶液40ccに懸濁させ、80℃で2時間攪拌した。処理後の液は吸引濾過により固体成分を分離し、充分水洗を行った後、再度1Mの硝酸アンモニウム水溶液40ccに懸濁させ、80℃で2時間攪拌した。処理後の液は吸引濾過により固体成分を分離し、充分水洗を行った後、100℃で24時間乾燥した。乾燥品は、空気流通下500℃で4時間焼成を行い、H型のアルミノシリケートを得た。   2.0 g of this Na type aluminosilicate was suspended in 40 cc of 1M ammonium nitrate aqueous solution and stirred at 80 ° C. for 2 hours. After the treatment, the solid component was separated by suction filtration, sufficiently washed with water, then suspended again in 40 cc of 1M aqueous ammonium nitrate solution, and stirred at 80 ° C. for 2 hours. The liquid after the treatment was separated by solid filtration by suction filtration, sufficiently washed with water, and then dried at 100 ° C. for 24 hours. The dried product was fired at 500 ° C. for 4 hours under air flow to obtain an H-type aluminosilicate.

得られたH型アルミノシリケートはXRD(X線回折)によりゼオライトの構造がMFI型であることと、元素分析結果、珪素(Si)44.9重量%、アルミニウム(Al)0.04重量%、ホウ素(B)0.41重量%、ナトリウム(Na)<0.01重量%であり、これらの値から、合成MFI構造ゼオライトの珪素/アルミニウム(Si/Al)比は1078、珪素/ホウ素(Si/B)比は42.2であることを確認した。   The obtained H-type aluminosilicate had a zeolite structure of MFI type by XRD (X-ray diffraction), and as a result of elemental analysis, 44.9% by weight of silicon (Si), 0.04% by weight of aluminum (Al), Boron (B) 0.41 wt%, sodium (Na) <0.01 wt%. From these values, the silicon / aluminum (Si / Al) ratio of the synthetic MFI structure zeolite is 1078, and silicon / boron (Si / B) The ratio was confirmed to be 42.2.

<触媒調製>
合成MFI構造ゼオライト1gに水0.88gに溶解した硝酸クロム・9水和物[Cr
(NO・9HO]0.2709gを加え、含浸後、ロータリーエバポレーターに
て充分乾燥した。乾燥品は120℃の乾燥機器にて10時間以上乾燥後、空気流通下550℃で6時間焼成して触媒とした。得られた触媒のCr含有量は元素分析の結果、3.4重量%であった。
<Catalyst preparation>
Chromium nitrate 9 hydrate dissolved in 0.88 g of water in 1 g of synthetic MFI structure zeolite [Cr
(NO 3) 3 · 9H 2 O] 0.2709g was added, after impregnation, and thoroughly dried in a rotary evaporator. The dried product was dried at 120 ° C. for 10 hours or more and then calcined at 550 ° C. for 6 hours under air flow to prepare a catalyst. As a result of elemental analysis, the Cr content of the obtained catalyst was 3.4% by weight.

<触媒前処理>
得られた触媒0.5gを2mlの石英砂で希釈して、内径7mmの石英反応管に充填して、酸素0.59ml/分、窒素31.1ml/分の混合ガスフィード下触媒層を600℃に昇温後、0.02ml(液)/分の速度で水を反応管へフィードして処理を開始した。この時のフィード組成は、O/N/HO=0.02/1.0/0.8モル比である。同処理は60分で終結とし、水のフィードを停止すると同時に室温まで降温した。
<Catalyst pretreatment>
0.5 g of the obtained catalyst was diluted with 2 ml of quartz sand and filled into a quartz reaction tube having an inner diameter of 7 mm, and a catalyst layer under a mixed gas feed of oxygen of 0.59 ml / min and nitrogen of 31.1 ml / min was 600. After raising the temperature to 0 ° C., water was fed to the reaction tube at a rate of 0.02 ml (liquid) / min to start the treatment. The feed composition at this time is O 2 / N 2 / H 2 O = 0.02 / 1.0 / 0.8 molar ratio. The treatment was completed in 60 minutes, and the temperature was lowered to room temperature at the same time as the water feed was stopped.

<反応>
前処理された触媒は、酸素0.6ml/分、窒素9.1ml/分および二酸化炭素50.3ml/分の混合ガス流通下、600℃まで昇温後、プロパン7.2ml/分の速度でフィードして反応を開始した。この時のフィード組成は、O2/N/CO/プロパン=0.08/1.3/7.0/1.0モル比である。
<Reaction>
The pretreated catalyst was heated to 600 ° C. under a mixed gas flow of oxygen 0.6 ml / min, nitrogen 9.1 ml / min and carbon dioxide 50.3 ml / min, and then propane 7.2 ml / min. The reaction was started by feeding. The feed composition at this time is O 2 / N 2 / CO 2 /propane=0.08/1.3/7.0/1.0 molar ratio.

反応管出口ガスをガスクロマトグラフィーで測定し、プロパンの転化率及びプロピレンの選択率を求めた。結果を表−1に示す。表中には、反応開始15分後に対する360分後の転化率比を示す。ただし、反応時間が360分に満たない場合は最終時間の転化率比を示す。反応終了後の触媒への炭素蓄積量を高周波炉燃焼−非分散赤外検出法で分析した結果、0.13重量%であった。   The reaction tube outlet gas was measured by gas chromatography, and the propane conversion and the propylene selectivity were determined. The results are shown in Table-1. In the table, the conversion ratio after 360 minutes to the reaction after 15 minutes is shown. However, when the reaction time is less than 360 minutes, the conversion ratio of the final time is shown. The amount of carbon accumulated in the catalyst after completion of the reaction was analyzed by a high-frequency furnace combustion-non-dispersive infrared detection method. As a result, it was 0.13% by weight.

[実施例2]
評価時間を約70時間まで継続した以外は 実施例1と全く同様にしてプロパンからプ
ロピレンへの脱水素反応を行った。結果を表−2に示す。
[実施例3]
触媒前処理を省略した以外は実施例1と全く同様にしてプロパンからプロピレンへの脱水素反応を行った。結果を表−1に示す。実施例1と同手法で測定した反応後触媒への炭素蓄積量は、2.96重量%であった。
[実施例4]
触媒前処理時のフィードを、窒素8.4ml/分、二酸化炭素24.1ml/分および水0.02ml(液)/分とした以外は実施例1と全く同様にしてプロパンからプロピレンへの脱水素反応を行った。触媒前処理時のフィード組成は、N/CO/HO=1.0/2.9/3.0モル比である。結果を表−1に示す。
[実施例5]
充填触媒を0.91gとし反応時のフィードガス量を酸素0.3ml/分、窒素4.2
ml/分、二酸化炭素23.1ml/分およびプロパン3.3ml/分とした以外は実施例1と全く同様にしてプロパンからプロピレンへの脱水素反応を行った。この時のフィード組成は、O/N/CO/プロパン=0.08/1.3/7.0/1.0モル比である。結果を表−1に示す。
[比較例1]
水酸化ナトリウム(NaOH)4.8gに水230gを加え、撹拌下硝酸アルミニウム・9水和物[Al(NO・9HO]1.25gと硼酸12.4gをゆっくり加えた液に、臭化テトラ−n−プロピルアンモニウム(TPABr)26.6gと水50gの混合溶液を加えた。次に、40%シリカゾル水分散液(スノーテックス40:日産化学(株)社製)75.1gと水35.0gの混合液を撹拌下ゆっくり加え、その後1時間以上充分撹拌して水性ゲルを得た。次に、このゲルを1000mlのオートクレーブに仕込み自圧下170℃で72時間水熱合成を行った。その後、濾過により分離回収された水熱合成固体成分は、水にて充分洗浄後、100℃で充分乾燥した。
得られた乾燥品は、空気流通下550℃で6時間を施し、Na型アルミノシリケートを得た。
[Example 2]
A dehydrogenation reaction from propane to propylene was performed in exactly the same manner as in Example 1 except that the evaluation time was continued up to about 70 hours. The results are shown in Table-2.
[Example 3]
A dehydrogenation reaction from propane to propylene was carried out in the same manner as in Example 1 except that the catalyst pretreatment was omitted. The results are shown in Table-1. The amount of carbon accumulated in the post-reaction catalyst measured by the same method as in Example 1 was 2.96% by weight.
[Example 4]
Dehydration from propane to propylene in exactly the same manner as in Example 1 except that the feed during the catalyst pretreatment was 8.4 ml / min of nitrogen, 24.1 ml / min of carbon dioxide and 0.02 ml (liquid) / min of water. An elementary reaction was performed. The feed composition at the catalyst pretreatment is N 2 / CO 2 / H 2 O = 1.0 / 2.9 / 3.0 molar ratio. The results are shown in Table-1.
[Example 5]
The amount of feed gas at the time of reaction was 0.91 g, oxygen was 0.3 ml / min, nitrogen was 4.2
The dehydrogenation reaction from propane to propylene was carried out in exactly the same manner as in Example 1 except that ml / min, carbon dioxide 23.1 ml / min and propane 3.3 ml / min were used. Feed composition at this time is O 2 / N 2 / CO 2 / propane = 0.08 / 1.3 / 7.0 / 1.0 molar ratio. The results are shown in Table-1.
[Comparative Example 1]
Water 230g was added to sodium hydroxide (NaOH) 4.8 g, stirring aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O] in solution was slowly added 1.25g boric acid 12.4g Then, a mixed solution of 26.6 g of tetra-n-propylammonium bromide (TPABr) and 50 g of water was added. Next, a mixture of 75.1 g of 40% silica sol aqueous dispersion (Snowtex 40: manufactured by Nissan Chemical Co., Ltd.) and 35.0 g of water is slowly added with stirring. Obtained. Next, this gel was charged into a 1000 ml autoclave, and hydrothermal synthesis was performed at 170 ° C. for 72 hours under an autogenous pressure. Thereafter, the hydrothermally synthesized solid component separated and recovered by filtration was sufficiently washed at 100 ° C. after sufficiently washed with water.
The obtained dried product was subjected to air flow at 550 ° C. for 6 hours to obtain Na-type aluminosilicate.

このNa型のアルミノシリケート2.0gを1Mの硝酸アンモニウム水溶液40ccに懸濁させ、80℃で2時間攪拌した。処理後の液は吸引濾過により固体成分を分離し、
充分水洗を行った後、100℃で24時間乾燥した。乾燥品は、空気流通下500℃で4時間焼成を行い、H型のアルミノシリケートを得た。
2.0 g of this Na type aluminosilicate was suspended in 40 cc of 1M ammonium nitrate aqueous solution and stirred at 80 ° C. for 2 hours. The processed liquid is separated by solid filtration by suction filtration,
After sufficiently washing with water, it was dried at 100 ° C. for 24 hours. The dried product was fired at 500 ° C. for 4 hours under air flow to obtain an H-type aluminosilicate.

得られたH型アルミノシリケートはXRD(X線回折)によりゼオライトの構造がMFI型であることと、元素分析の結果、珪素(Si)46.1重量%、アルミニウム(Al)0.43重量%、ホウ素(B)0.30重量%、ナトリウム(Na)<0.01重量%であり、これらの値から、合成MFI構造ゼオライトの珪素/アルミニウム(Si/Al)比は103、珪素/ホウ素(Si/B)比は59であることを確認した。   The obtained H-type aluminosilicate had a zeolite structure of MFI type by XRD (X-ray diffraction), and as a result of elemental analysis, silicon (Si) 46.1% by weight, aluminum (Al) 0.43% by weight Boron (B) 0.30 wt%, sodium (Na) <0.01 wt%, and from these values, the silicon / aluminum (Si / Al) ratio of the synthetic MFI structure zeolite is 103, silicon / boron ( It was confirmed that the Si / B) ratio was 59.

<触媒調製>
前記合成MFI構造ゼオライトを用いた以外は実施例1と全く同じ方法で調製した。
<触媒前処理>
触媒担体が、前記合成MFI構造ゼオライトを用いた以外は実施例1と全く同じ方法で処理した。
<反応>
触媒担体が前記前処理された合成MFI構造ゼオライトを用いた以外は実施例1と全く同じ方法でプロパンからプロピレンへの脱水素反応を行った。結果を表−1に示す。
[比較例2]
<触媒調製>
3.1gのイオン交換水に、0.8548gの硝酸クロム・9水和物[Cr(NO・9HO]を溶解した。得られた水溶液にシリカ(CARiACT Q−15 比表面積177m/g、平均細孔径180Å、細孔容積1.03ml/g、粒子径0.85〜1.7mm:富士シリシア化学(株)社製)3.15gを加え、シリカに水溶液を含浸した後、ロータリーエバポレーターを用いて約90℃で減圧乾燥した。更に乾燥器にて120℃で一夜乾燥した後、空気流通下、650℃で3時間焼成して、酸化クロムを金属クロム換算で3.4重量%含有する触媒を得た。
<Catalyst preparation>
It was prepared in exactly the same manner as in Example 1 except that the synthetic MFI structure zeolite was used.
<Catalyst pretreatment>
The catalyst support was treated in exactly the same manner as in Example 1 except that the synthetic MFI zeolite was used.
<Reaction>
A dehydrogenation reaction from propane to propylene was carried out in exactly the same manner as in Example 1 except that the pre-treated synthetic MFI structure zeolite was used as the catalyst carrier. The results are shown in Table-1.
[Comparative Example 2]
<Catalyst preparation>
In 3.1 g of ion exchange water, 0.8548 g of chromium nitrate.9 hydrate [Cr (NO 3 ) 3 .9H 2 O] was dissolved. Silica (CARIACT Q-15 specific surface area 177 m 2 / g, average pore diameter 180 mm, pore volume 1.03 ml / g, particle diameter 0.85 to 1.7 mm: manufactured by Fuji Silysia Chemical Co., Ltd. ) 3.15 g was added, silica was impregnated with an aqueous solution, and then dried under reduced pressure at about 90 ° C. using a rotary evaporator. Furthermore, after drying at 120 degreeC with a dryer overnight, it baked for 3 hours at 650 degreeC by air circulation, and obtained the catalyst which contains 3.4 weight% of chromium oxide in conversion of metal chromium.

<触媒前処理>
触媒担体が、合成MFI構造ゼオライトの代わりにシリカである触媒を希釈無しで2.3ml充填した以外は実施例1と全く同じ方法で処理した。
<反応>
触媒担体が合成MFI構造ゼオライトの代わりにシリカである以外は実施例1と全く同様にして触媒前処理に引き続きプロパンからプロピレンへの脱水素反応を行った。結果を表−1に示す。
[比較例3]
水酸化ナトリウム(NaOH)4.8gに水230gを加え、撹拌下臭化テトラ−n−プロピルアンモニウム(TPABr)26.6gと水50gの混合溶液を加えた。次に、40%シリカゾル水分散液(スノーテックス40:日産化学(株)社製)75.1gと水35.0gの混合液を撹拌下ゆっくり加え、その後1時間以上充分撹拌して水性ゲルを得た。次に、このゲルを1000mlのオートクレーブに仕込み自圧下170℃で72時間水熱合成を行った。その後、濾過により分離回収された水熱合成固体成分は、水にて充分洗浄後、100℃で充分乾燥した。
得られた乾燥品は、空気流通下550℃で6時間を施し、Na型アルミノシリケートを得た。
<Catalyst pretreatment>
The catalyst support was treated in exactly the same manner as in Example 1 except that 2.3 ml of the catalyst, which was silica instead of the synthetic MFI structure zeolite, was packed without dilution.
<Reaction>
A dehydrogenation reaction from propane to propylene was performed following the catalyst pretreatment in the same manner as in Example 1 except that the catalyst support was silica instead of the synthetic MFI structure zeolite. The results are shown in Table-1.
[Comparative Example 3]
230 g of water was added to 4.8 g of sodium hydroxide (NaOH), and a mixed solution of 26.6 g of tetra-n-propylammonium bromide (TPABr) and 50 g of water was added with stirring. Next, a mixture of 75.1 g of 40% silica sol aqueous dispersion (Snowtex 40: manufactured by Nissan Chemical Co., Ltd.) and 35.0 g of water is slowly added with stirring. Obtained. Next, this gel was charged into a 1000 ml autoclave, and hydrothermal synthesis was performed at 170 ° C. for 72 hours under an autogenous pressure. Thereafter, the hydrothermally synthesized solid component separated and recovered by filtration was sufficiently washed at 100 ° C. after sufficiently washed with water.
The obtained dried product was subjected to air flow at 550 ° C. for 6 hours to obtain Na-type aluminosilicate.

このNa型のアルミノシリケート2.0gを1Mの硝酸アンモニウム水溶液40ccに懸濁させ、80℃で2時間攪拌した。処理後の液は吸引濾過により固体成分を分離し、
充分水洗を行った後、100℃で24時間乾燥した。乾燥品は、空気流通下500℃で4時間焼成を行い、H型のアルミノシリケートを得た。
2.0 g of this Na type aluminosilicate was suspended in 40 cc of 1M ammonium nitrate aqueous solution and stirred at 80 ° C. for 2 hours. The processed liquid is separated by solid filtration by suction filtration,
After sufficiently washing with water, it was dried at 100 ° C. for 24 hours. The dried product was fired at 500 ° C. for 4 hours under air flow to obtain an H-type aluminosilicate.

得られたH型アルミノシリケートはXRD(X線回折)によりゼオライトの構造がMFI型であることと、元素分析の結果、合成MFI構造ゼオライトの珪素/アルミニウム(Si/Al)比は1454であることとホウ素を含有しないことを確認した。   The obtained H-type aluminosilicate has a zeolite structure of MFI type by XRD (X-ray diffraction) and, as a result of elemental analysis, the synthetic MFI-structured zeolite has a silicon / aluminum (Si / Al) ratio of 1454. And no boron.

<触媒調製>
前記合成MFI構造ゼオライトを用いた以外は実施例1と全く同じ方法で調製した。
<触媒前処理> 触媒担体が、前記合成MFI構造ゼオライトを用いた以外は実施例1と全く同じ方法で処理した。結果を表−1に示す。
[実施例6]
プロパンの代わりにエタンを用いた以外は実施例1と全く同様にしてエタンからエチレンへの脱水素反応を行った。結果を表−1に示す。
<Catalyst preparation>
It was prepared in exactly the same manner as in Example 1 except that the synthetic MFI structure zeolite was used.
<Catalyst pretreatment> The catalyst carrier was treated in the same manner as in Example 1 except that the synthetic MFI structure zeolite was used. The results are shown in Table-1.
[Example 6]
A dehydrogenation reaction from ethane to ethylene was carried out in the same manner as in Example 1 except that ethane was used instead of propane. The results are shown in Table-1.

[実施例7]
プロパンの代わりにn−ブタンを用いた以外は実施例1と全く同様にしてn−ブタンからブテン、さらには1,3−ブタジエンへの脱水素反応を行った。結果を表−3に示す。
[Example 7]
A dehydrogenation reaction from n-butane to butene and further to 1,3-butadiene was carried out in the same manner as in Example 1 except that n-butane was used instead of propane. The results are shown in Table-3.

[実施例8]
プロパンの代わりにイソブタンを用いた以外は実施例1と全く同様に
してイソブタンからブテン、さらには1,3−ブタジエンへの脱水素反応を行った。結果を表−3に示す。
[Example 8]
Exactly the same as Example 1 except that isobutane was used instead of propane
Then, a dehydrogenation reaction from isobutane to butene and further to 1,3-butadiene was carried out. The results are shown in Table-3.

[実施例9]
触媒前処理温度を535℃とし、処理を6分で終結とした以外は、実施例1と全く同様にしてプロパンからプロピレンへの脱水素反応を行った。結果を表―1に示す。
[Example 9]
A dehydrogenation reaction from propane to propylene was carried out in the same manner as in Example 1 except that the catalyst pretreatment temperature was 535 ° C. and the treatment was completed in 6 minutes. The results are shown in Table-1.

[実施例10]
触媒前処理を酸素3.9ml/分、窒素27.5ml/分の混合ガスフィード下触媒層を550℃に昇温後、0.02ml(液)/分の速度で水を反応管へフィードして処理を開始した。この時のフィード組成は、O/N/HO=0.14/1.0/0.9モル比である。同処理は6分で終結とした以外は、実施例1と全く同様にしてプロパンからプロピレンへの脱水素反応を行った。結果を表―1に示す。
[Example 10]
The catalyst pretreatment is 3.9 ml / min for oxygen and 27.5 ml / min for nitrogen gas mixture, and the catalyst layer is heated to 550 ° C and then water is fed to the reaction tube at a rate of 0.02 ml (liquid) / min. Started processing. The feed composition at this time is O 2 / N 2 / H 2 O = 0.14 / 1.0 / 0.9 molar ratio. The dehydrogenation reaction from propane to propylene was carried out in the same manner as in Example 1 except that the treatment was completed in 6 minutes. The results are shown in Table-1.

[実施例11]
触媒前処理温度を550℃とし、処理を6分で終結とした以外は、実施例1と全く同じ方法で前処理した触媒を用い、酸素0.3ml/分、窒素9.5ml/分および二酸化炭素50.3ml/分の混合ガス流通下、600℃まで昇温後、プロパン7.2ml/分の速度でフィードして反応を開始した。この時のフィード組成は、O/N/CO/プロパン=0.04/1.3/7.0/1.0モル比である以外は、実施例1と全く同様にしてプロパンからプロピレンへの脱水素反応を行った。結果を表―1に示す。
[Example 11]
A catalyst pretreated in the same manner as in Example 1 except that the catalyst pretreatment temperature was 550 ° C. and the treatment was completed in 6 minutes, oxygen 0.3 ml / min, nitrogen 9.5 ml / min, and carbon dioxide were used. Under a mixed gas flow of carbon 50.3 ml / min, the temperature was raised to 600 ° C., and then the reaction was started by feeding propane at a rate of 7.2 ml / min. At this time, the feed composition was O 2 / N 2 / CO 2 /propane=0.04/1.3/7.0/1.0 molar ratio from propane in exactly the same manner as in Example 1. A dehydrogenation reaction to propylene was performed. The results are shown in Table-1.

[実施例12]
触媒前処理温度を550℃とし、処理を6分で終結とした以外は、実施例1と全く同じ方法で前処理した触媒を用い、窒素9.8ml/分および二酸化炭素50.3ml/分の混合ガス流通下、600℃まで昇温後、プロパン7.2ml/分の速度でフィードして反応を開始した。この時のフィード組成は、N/CO/プロパン=1.4/7.0/1.0モル比である以外は、実施例1と全く同様にしてプロパンからプロピレンへの脱水素反応を行った。結果を表―1に示す。
[Example 12]
A catalyst pretreated in the same manner as in Example 1 except that the catalyst pretreatment temperature was 550 ° C. and the treatment was completed in 6 minutes, nitrogen 9.8 ml / min and carbon dioxide 50.3 ml / min were used. Under a mixed gas flow, the temperature was raised to 600 ° C., and then the reaction was started by feeding propane at a rate of 7.2 ml / min. At this time, the dehydrogenation reaction from propane to propylene was carried out in the same manner as in Example 1 except that the feed composition was N 2 / CO 2 /propane=1.4/7.0/1.0 molar ratio. went. The results are shown in Table-1.

Figure 2008266286
Figure 2008266286

Figure 2008266286
Figure 2008266286

Figure 2008266286
Figure 2008266286



Claims (4)

酸化クロムを、金属クロム換算で1から20重量%含有する担持触媒の存在下、二酸化炭素ガスを含む雰囲気中でアルカンを脱水素することを特徴とするアルケンの製造方法であって、前記触媒担体が、MFI、MEL、MOR、MWW、CHA、BEA、およびFAU構造からなる群より選ばれるゼオライトの一つまたは複数の混合物であって、ホウ素原子を含有し、かつ、該担体重量に対して、珪素(Si)含有量が35重量%以上、アルミニウム含有量が0.3重量%以下であるアルケンの製造方法。   A method for producing an alkene, comprising dehydrogenating an alkane in an atmosphere containing carbon dioxide gas in the presence of a supported catalyst containing 1 to 20% by weight of chromium oxide in terms of metallic chromium, the catalyst carrier Is a mixture of one or more zeolites selected from the group consisting of MFI, MEL, MOR, MWW, CHA, BEA, and FAU structures, containing boron atoms, and based on the weight of the carrier, A method for producing an alkene having a silicon (Si) content of 35% by weight or more and an aluminum content of 0.3% by weight or less. 酸化クロムを、金属クロム換算で1から20重量%含有する担持触媒の存在下、二酸化炭素ガスを含む雰囲気中でアルカンを脱水素することを特徴とするアルケンの製造方法であって、前記触媒担体が、MFI、MEL、MOR、MWW、CHA、BEA、およびFAU構造からなる群より選ばれるゼオライトの一つまたは複数の混合物であって、ホウ素原子を含有し、かつ、該ゼオライト重量に対して、珪素(Si)含有量が35重量%以上、アルミニウム含有量が0.3重量%以下であるアルケンの製造方法。   A method for producing an alkene, comprising dehydrogenating an alkane in an atmosphere containing carbon dioxide gas in the presence of a supported catalyst containing 1 to 20% by weight of chromium oxide in terms of metallic chromium, the catalyst carrier Is a mixture of one or more zeolites selected from the group consisting of MFI, MEL, MOR, MWW, CHA, BEA, and FAU structures, containing boron atoms, and based on the weight of the zeolite, A method for producing an alkene having a silicon (Si) content of 35% by weight or more and an aluminum content of 0.3% by weight or less. 前記触媒が、酸素とスチームが存在する雰囲気下、300〜900℃の温度で予め処理されたものである、請求項1または2に記載のアルケンの製造方法。   The method for producing an alkene according to claim 1 or 2, wherein the catalyst is pretreated at a temperature of 300 to 900 ° C in an atmosphere containing oxygen and steam. 二酸化炭素ガスと酸素を含む雰囲気中でアルカンを脱水素することを特徴とする請求項3に記載のアルケンの製造方法。   The alkane production method according to claim 3, wherein the alkane is dehydrogenated in an atmosphere containing carbon dioxide gas and oxygen.
JP2007287050A 2007-03-26 2007-11-05 Alkene production method Active JP5061852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287050A JP5061852B2 (en) 2007-03-26 2007-11-05 Alkene production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007079411 2007-03-26
JP2007079411 2007-03-26
JP2007287050A JP5061852B2 (en) 2007-03-26 2007-11-05 Alkene production method

Publications (2)

Publication Number Publication Date
JP2008266286A true JP2008266286A (en) 2008-11-06
JP5061852B2 JP5061852B2 (en) 2012-10-31

Family

ID=40046286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287050A Active JP5061852B2 (en) 2007-03-26 2007-11-05 Alkene production method

Country Status (1)

Country Link
JP (1) JP5061852B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524913A (en) * 2008-06-19 2011-09-08 ルマス テクノロジー インコーポレイテッド A combined method of carbon dioxide and oxygen for the dehydrogenation of ethylbenzene to styrene.
JP2012512181A (en) * 2009-03-25 2012-05-31 ルマス テクノロジー インコーポレイテッド Propylene production from butane
RU2463109C1 (en) * 2011-02-18 2012-10-10 Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) Dehydrogenation catalyst, production method thereof and method of producing c2-c5 olefin hydrocarbons using said catalyst
JP2013103893A (en) * 2011-11-11 2013-05-30 Jx Nippon Oil & Energy Corp Method for producing jointly 1,3-butadiene and c6-c8 aromatic hydrocarbon
CN104250192A (en) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 Propylene and butadiene preparation method
CN106964392A (en) * 2016-01-13 2017-07-21 中国石油化工股份有限公司 Oxidative dehydrogenation of propane catalyst and application thereof
JP2017177056A (en) * 2016-03-31 2017-10-05 三菱ケミカル株式会社 Catalyst for alkane dehydrogenation and method for producing alkane using the same
RU2817966C1 (en) * 2023-05-11 2024-04-23 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук Method of preparing zeolite catalyst

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355500A (en) * 1976-10-18 1978-05-19 Standard Oil Co Crystalline borosilicate and method of conversing hydrocarbon using same
WO1991000844A1 (en) * 1989-07-07 1991-01-24 Chevron Research And Technology Company Zeolite (b)ssz-24
WO1991011416A1 (en) * 1990-01-24 1991-08-08 Mobil Oil Corporation Process for dehydrogenation/dehydrocyclization of aliphatics
JPH06262081A (en) * 1993-03-12 1994-09-20 Nippon Shokubai Co Ltd Regeneration of catalyst
JPH06330055A (en) * 1993-05-19 1994-11-29 Asahi Chem Ind Co Ltd Method for converting light hydrocarbon
JPH08231441A (en) * 1995-02-28 1996-09-10 Agency Of Ind Science & Technol Production of propylene
JP2000143557A (en) * 1998-11-17 2000-05-23 Agency Of Ind Science & Technol Production of lower olefin
JP2001302561A (en) * 2000-04-19 2001-10-31 Natl Inst Of Advanced Industrial Science & Technology Meti Method for producing isobutene
JP2003012570A (en) * 2001-07-03 2003-01-15 National Institute Of Advanced Industrial & Technology Method for producing lower alkene
JP2004307451A (en) * 2003-04-08 2004-11-04 Saudi Basic Industries Corp Carbon dioxide accelerated dehydrogenation process for olefin production
JP2004307450A (en) * 2003-04-08 2004-11-04 Saudi Basic Industries Corp Process for dehydrogenation for olefin production
JP2007308451A (en) * 2006-05-22 2007-11-29 Mitsubishi Chemicals Corp Method for producing lower alkene

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355500A (en) * 1976-10-18 1978-05-19 Standard Oil Co Crystalline borosilicate and method of conversing hydrocarbon using same
WO1991000844A1 (en) * 1989-07-07 1991-01-24 Chevron Research And Technology Company Zeolite (b)ssz-24
WO1991011416A1 (en) * 1990-01-24 1991-08-08 Mobil Oil Corporation Process for dehydrogenation/dehydrocyclization of aliphatics
JPH06262081A (en) * 1993-03-12 1994-09-20 Nippon Shokubai Co Ltd Regeneration of catalyst
JPH06330055A (en) * 1993-05-19 1994-11-29 Asahi Chem Ind Co Ltd Method for converting light hydrocarbon
JPH08231441A (en) * 1995-02-28 1996-09-10 Agency Of Ind Science & Technol Production of propylene
JP2000143557A (en) * 1998-11-17 2000-05-23 Agency Of Ind Science & Technol Production of lower olefin
JP2001302561A (en) * 2000-04-19 2001-10-31 Natl Inst Of Advanced Industrial Science & Technology Meti Method for producing isobutene
JP2003012570A (en) * 2001-07-03 2003-01-15 National Institute Of Advanced Industrial & Technology Method for producing lower alkene
JP2004307451A (en) * 2003-04-08 2004-11-04 Saudi Basic Industries Corp Carbon dioxide accelerated dehydrogenation process for olefin production
JP2004307450A (en) * 2003-04-08 2004-11-04 Saudi Basic Industries Corp Process for dehydrogenation for olefin production
JP2007308451A (en) * 2006-05-22 2007-11-29 Mitsubishi Chemicals Corp Method for producing lower alkene

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524913A (en) * 2008-06-19 2011-09-08 ルマス テクノロジー インコーポレイテッド A combined method of carbon dioxide and oxygen for the dehydrogenation of ethylbenzene to styrene.
US8765082B2 (en) 2008-06-19 2014-07-01 Lummus Technology Inc. Combined carbon dioxide and oxygen process for ethylbenzene dehydrogenation to styrene
JP2012512181A (en) * 2009-03-25 2012-05-31 ルマス テクノロジー インコーポレイテッド Propylene production from butane
RU2463109C1 (en) * 2011-02-18 2012-10-10 Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) Dehydrogenation catalyst, production method thereof and method of producing c2-c5 olefin hydrocarbons using said catalyst
JP2013103893A (en) * 2011-11-11 2013-05-30 Jx Nippon Oil & Energy Corp Method for producing jointly 1,3-butadiene and c6-c8 aromatic hydrocarbon
CN104250192A (en) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 Propylene and butadiene preparation method
CN106964392A (en) * 2016-01-13 2017-07-21 中国石油化工股份有限公司 Oxidative dehydrogenation of propane catalyst and application thereof
CN106964392B (en) * 2016-01-13 2021-08-03 中国石油化工股份有限公司 Propane oxidative dehydrogenation catalyst and application thereof
JP2017177056A (en) * 2016-03-31 2017-10-05 三菱ケミカル株式会社 Catalyst for alkane dehydrogenation and method for producing alkane using the same
RU2817966C1 (en) * 2023-05-11 2024-04-23 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук Method of preparing zeolite catalyst

Also Published As

Publication number Publication date
JP5061852B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
EP3571177B1 (en) Multiple-stage catalyst system and a process for propene production
JP5061852B2 (en) Alkene production method
JP6595606B2 (en) Catalyst and process for producing olefins
US9713804B2 (en) Catalyst composition for the dehydrogenation of alkanes
JPH0729058B2 (en) Chemical methods and catalysts
JP6835873B2 (en) High silica AFX framework type zeolite
JP7156455B2 (en) Method for producing propylene and linear butene
US20200078776A1 (en) Modified Crystalline Aluminosilicate for Dehydration of Alcohols
JP2014024007A (en) Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin
JP2011079815A (en) Method of producing p-xylene
JP5600923B2 (en) Method for producing aluminosilicate
JP5895705B2 (en) Propylene production method
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
US20120142986A1 (en) Process for producing aromatic hydrocarbon and transition-metal-containing crystalline metallosilicate catalyst for use in the production process
JP2011079818A (en) Method of producing propylene
US8921634B2 (en) Conversion of methane to aromatic compounds using UZM-44 aluminosilicate zeolite
JP2021147310A (en) Con type zeolite, method for producing con type zeolite, and method for producing lower olefin
JP3918048B2 (en) Method for producing lower alkene
JP6633440B2 (en) Alkane dehydrogenation catalyst and method for producing alkene using the same
JP4774812B2 (en) Propylene production method
US20230405562A1 (en) Composit catalyst, method for producing composit catalyst, and method for producing lower olefins
WO2022270401A1 (en) Method for producing cyclopentadiene
JP6037849B2 (en) Method for producing oxidative dehydrogenation catalyst and method for producing alkene
JP7222743B2 (en) Zeolite catalyst and method for producing lower olefins using the zeolite catalyst
JP2010105974A (en) Method for producing olefin

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350