JP3918048B2 - Method for producing lower alkene - Google Patents

Method for producing lower alkene Download PDF

Info

Publication number
JP3918048B2
JP3918048B2 JP2001202750A JP2001202750A JP3918048B2 JP 3918048 B2 JP3918048 B2 JP 3918048B2 JP 2001202750 A JP2001202750 A JP 2001202750A JP 2001202750 A JP2001202750 A JP 2001202750A JP 3918048 B2 JP3918048 B2 JP 3918048B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
lower alkene
producing
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001202750A
Other languages
Japanese (ja)
Other versions
JP2003012570A (en
Inventor
直樹 三村
功 高原
仁 稲葉
和久 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001202750A priority Critical patent/JP3918048B2/en
Publication of JP2003012570A publication Critical patent/JP2003012570A/en
Application granted granted Critical
Publication of JP3918048B2 publication Critical patent/JP3918048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エタン等の低級アルカンからエチレン等の低級アルケンを製造する方法に関するものである。
【0002】
【従来の技術】
エチレンに代表される低級オレフィン類は石油化学工業で重要な中間製品のひとつであり、工業的にはエタン、プロパン、ブタン、ナフサ、ガスオイル等の炭化水素を原料とし、スチームとともに無触媒で熱分解することにより製造されている。
一方、近年、エタンをクロム等の金属酸化物等の触媒に接触させることによりエチレンを製造する方法が研究されているが、これまでの研究では、充分な触媒活性、反応速度が得られていなかった(Applied Catalysis A: General 196 (2000) 1-8 など)。
また、一般に、脱水素反応では、触媒表面上に原料などが分解して生成する炭素質が生成し、それにより活性点が覆われ、徐々に活性が低下するという問題もある。
【0003】
【発明が解決しようとする課題】
本発明者はこれらの問題を解消するためになされたものであって、低級アルカンを触媒と接触させて低級アルケンを製造する方法において、更なる触媒能に優れた触媒を用い低級アルケンを高められた反応速度で工業的に有利に製造し得る方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した結果、触媒担体として ZSM-5 ゼオライトが有効であることを見いだし本発明を完成するに至った。
すなわち、この出願によれば、以下の発明が提供される。
(1)低級アルカンを触媒の存在下で脱水素させて低級アルケンを製造する方法において、触媒としてクロム酸化物を、触媒担体として ZSM-5 ゼオライトを用いかつ二酸化炭素含有ガスの存在下で反応を行うことを特徴とする低級アルケンの製造方法。
(2)触媒として、更にアルカリ金属を用いることを特徴とする上記(1)に記載の低級アルケンの製造方法。
(3)低級アルカンがエタンであり、低級アルケンがエチレンであることを特徴とする上記(1)又は(2)に記載の低級アルケンの製造方法。
【0005】
【発明実施の形態】
本発明方法では触媒担体として、ZSM-5ゼオライトを用いる。このZSM-5ゼオライトは、国際ゼオライト学会(IZA)によって制定された結晶構造を示す記号をもって示せばMFI構造であるアルミノシリケートであり、Nan[AlnSi96-nO192]・xH2Oとして表される。理論上可能なnの値はn<27となっており(小野、八嶋著「ゼオライトの科学と工学」、講談社サイエンティフィック、7ページ)この条件を満たせば特に限定されないが、好ましくはSiO2/Al2O3≧25 (n≦1.9)特に好ましくはSiO2/Al2O3≧100(n≦0.48)である。ZSM-5と同じくMFI構造をとり、上記の式でn=0であるアルミナを含まないシリカライト-1も範囲に含まれる。
【0006】
担体として用いる際には交換可能カチオン(上記式ではNaに相当)はイオン交換などの方法によりH、またはNaに代表されるアルカリ金属にしておくのが望ましい。また、シリカ/アルミナ比を高めるためにさまざまな方法で脱アルミニウム処理を行う方法が知られているが、それによって生じた骨格外アルミニウムが完全に除去されず触媒表面に多少残留していてもかまわない。
粒径は特に限定されないが、好ましくは10μm〜1000μmである。また、触媒の取り扱いを容易にし、機械的強度を与えるために微粒子状触媒をペレット状に成型してもよい。この場合、ペレットの大きさは限定されず、形状も限定されない。また、この際ペレットへの加工性を高めるために粘土系無機化合物などの成型助剤を触媒に混合しても良い。触媒の表面積は特に限定されない。好ましくは100〜500m2/gである。
【0007】
本発明においては、触媒としてクロム酸化物を用いる。クロムの酸化状態は特に限定されず、2価〜6価の幅広い酸化状態であってもよい。また結晶構造も特に限定されず、非晶質ものであってもよい。
【0009】
また、本発明で用いる触媒に含まれる成分は、必ずしも前記金属酸化物に限定されず、たとえば触媒の生成物の選択性を高める目的などで適宜他の触媒成分、例えば、生成物の選択性を高めるための硝酸ナトリウムなどのアルカリ金属成分、触媒粒子の機械的強度を高めるための粘土系無機化合物等の成分を混合あるいは添加しておくことが望ましい。
【0010】
本発明に係る触媒は上記金属酸化物をZSM-5ゼオライト触媒担体に担持させることにより得られる。触媒の担持方法としては、従来公知の方法、たとえば含浸法、イオン交換法、析出法などが挙げられる。担持方法は前記の例示に限定されない。
金属酸化物の触媒担体に対する割合(担持率)は特に限定されないが0.1重量%〜30重量%が好ましい範囲であり、特に好ましくは2重量%〜10重量%である。担持率が低すぎれば、目的の触媒活性が得られず、担持率が高すぎれば、金属酸化物の原料コストの増加、目的外の副反応の進行、担体の好ましい効果を得にくいなどの問題点を生じる。
【0011】
本発明のZSM-5ゼオライト担持金属酸化物触媒を調製するには、たとえばクロム硝酸塩などの前記前駆体をZSM-5ゼオライトに担持した後、加熱焼成し、クロム硝酸塩などの前駆体を酸化物の状態にすればよい。加熱焼成の際の雰囲気は、空気、酸素などが挙げられるが限定されるものではない。焼成温度は特に限定されないが望ましい温度は500〜800℃である。加熱時間も特に限定されないが望ましい時間は10分〜10時間である。得られた触媒でZSM-5ゼオライトに担持された金属酸化物の結晶構造は特に限定されない。複合酸化物などとしての特定の結晶構造を示しても良いし、非晶質でもよい。
【0012】
また、この触媒は、活性が低下した後、空気中または酸素中で加熱することにより再生が可能である。再生時の加熱温度は300℃以上が好ましく、さらに好ましくは500〜800℃で、加熱時間は特に限定しないが好ましくは10分〜10時間である。
【0013】
本発明において用いる脱水素の対象となる反応原料は、エタン、プロパン、ブタンなどの低級アルカンであり、特にエタンが好ましく使用される。
【0014】
本発明の低級アルカンの脱水素反応は、二酸化炭素含有ガスの存在下で行う。二酸化炭素含有ガスとしては、二酸化炭素ガス単独でもよいし他の共存ガスと混合されていても良い。
【0015】
共存ガスとしては空気、窒素、二酸化炭素、ヘリウム・アルゴンなどの不活性ガス、酸素、一酸化炭素、水蒸気、火力発電所などから出る燃焼排ガスのなかから少なくともひとつ選ばれたガス等が挙げられる。特に好ましいのは不活性ガスおよび窒素であるがこれに限定されるものではなく、前記の例示にも限定されない。
【0016】
また、本発明において用いられる二酸化炭素含有ガスは、NOx、SOx等の環境汚染物質を含まないほうがより望ましいが、これらの汚染物質の除去処理は必ずしも必要とされない。
二酸化炭素含有ガスの使用量は、低級アルカン1モル当り、0.1〜100モル、好ましくは1〜20モルの割合である。
【0017】
本発明において、反応温度は特に限定されないが、300〜800℃の範囲、好ましくは450〜650℃である。反応温度が高すぎると目的生成物への選択率の低下、触媒上への炭素析出が顕著になり、低すぎると十分な転化率が得られない。
【0018】
本発明の脱水素反応(接触反応)は、固定床、流動床等いずれの方式でも行なうことができる。触媒の粒子径、形状は反応器の形式に応じて任意に選択できる。また、反応圧力は、加圧、常圧、減圧いずれでも実施できるが、0.5〜5気圧(絶対圧力)の範囲が特に好ましい。反応圧が0.5気圧未満では、減圧状態を維持するための装置の運転コストが多大になり、5気圧を超えると理論的に計算される平衡収率が低下し望ましい収率が得にくくなる。
なお、前記したように、本発明の触媒は、一定時間使用後に活性が低下した場合、空気中で再度焼成することにより活性を回復させることができる。
【0019】
【実施例】
【0020】
実施例1
1.23gの硝酸クロムをイオン交換水に溶解し、4.75gのH-ZSM-5(シリカ/アルミナ比=1900)を分散し、充分撹拌した後、減圧乾燥を行い前駆体を得た。この前駆体を空気中、750℃で5時間焼成した。これによりクロム酸化物がCr2O3換算で5重量%含まれるクロム/H‐ZSM‐5触媒が調製された。
得られた触媒0.3gを内径11mmの石英製反応管に充填した。二酸化炭素流通下で650℃まで昇温したのち、二酸化炭素に加えてエタンを供給した。混合の比率はエタン10体積%、二酸化炭素90体積%である。混合ガスの流速は毎分100mlとした。反応管を通過した出口ガスはオンラインガスクロマトグラフで分析した。結果を表1に示す。また、反応終了後の触媒表面に析出している炭素の重量を測定した。測定方法は熱重量分析装置(TAインスツルメント、TGA2950)により空気流通下で加熱昇温を行い炭素の燃焼に伴う重量減少を測定することに拠った。その結果、触媒重量に対して0.6%の重量減少が確認されたので炭素析出量とした。本例では6時間の反応終了後に肉眼では炭素は確認されなかった。前記よりこの反応における炭素析出量は非常に少ないことがわかる。
【0021】
実施例2
実施例1において、硝酸クロムに加えてさらに第2成分として硝酸ナトリウムをナトリウムの量がクロムの20mol%になる量加え、実施例1と同様に触媒を調製し反応生成物の分析を行った。結果を表1に示す。この結果はナトリウムに代表されるアルカリ金属の添加により、収率をあまり低下させずにエチレンの選択率を向上することができることを示す。
【0022】
比較例1
実施例1において、H-ZSM-5(シリカ/アルミナ比=1900)に代えてH-Y(シリカ/アルミナ比=4.8)を用い実施例1と同様に触媒を調整し、反応生成物の分析を行った。結果を表1に示す。この結果と実施例1および2の比較により担体のゼオライトとしてH-ZSM-5が優れていることが判る。
【0023】
比較例2
文献(Applied Catalysis A: General 196 (2000) 1-8)に報告されているクロム酸化物を担持したシリカ(酸化ケイ素)を触媒に用いた反応結果(文献に記載されている表およびグラフから読み取った値)を示す。エチレン収率は高いが、これは原料ガスの流速が実施例1よりも小さく(エタン/二酸化炭素/窒素=6 / 24 / 30 ml/min)原料ガスと触媒の接触時間が長いためである。単位触媒重量あたりのエチレン生成速度を比較すれば実施例1および2が大きく優れていることが確認できる。
【0024】
【表1】

Figure 0003918048
【0025】
【発明の効果】
本発明によれば、低級アルカンを脱水素して低級アルケンを製造するに当り、安定な触媒活性保持率を示し、また反応後の分解炭素質の堆積が極めて小さい ZSM-5 ゼオライト担持触媒を用いる共に触媒としてクロム酸化物を用い、かつ反応を二酸化炭素含有ガスの存在下で行うことにより、低級アルケンを高められた反応速度で工業的に有利に製造することができる。 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a lower alkene such as ethylene from a lower alkane such as ethane.
[0002]
[Prior art]
Lower olefins typified by ethylene are one of the important intermediate products in the petrochemical industry, industrially using hydrocarbons such as ethane, propane, butane, naphtha, gas oil, etc. Manufactured by decomposing.
On the other hand, in recent years, methods for producing ethylene by contacting ethane with a catalyst such as a metal oxide such as chromium have been studied. However, until now, sufficient catalytic activity and reaction rate have not been obtained. (Applied Catalysis A: General 196 (2000) 1-8 etc.).
Further, in general, in the dehydrogenation reaction, there is a problem that carbonaceous material generated by decomposition of raw materials and the like is generated on the catalyst surface, thereby covering the active sites and gradually reducing the activity.
[0003]
[Problems to be solved by the invention]
The present inventor has been made to solve these problems, and in a method for producing a lower alkene by contacting a lower alkane with a catalyst, the lower alkene can be enhanced by using a catalyst having further excellent catalytic ability. Another object of the present invention is to provide a process that can be produced industrially advantageously at a high reaction rate.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that ZSM-5 zeolite is effective as a catalyst carrier and have completed the present invention.
That is, according to this application, the following invention is provided.
(1) In a method for producing a lower alkene by dehydrogenating a lower alkane in the presence of a catalyst, the reaction is carried out using chromium oxide as a catalyst, ZSM-5 zeolite as a catalyst support, and in the presence of a carbon dioxide-containing gas. A process for producing a lower alkene, characterized in that the process is carried out.
(2) The method for producing a lower alkene as described in (1) above, wherein an alkali metal is further used as the catalyst.
(3) The method for producing a lower alkene as described in (1) or (2) above, wherein the lower alkane is ethane and the lower alkene is ethylene.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, ZSM-5 zeolite is used as a catalyst carrier. This ZSM-5 zeolite is an aluminosilicate with an MFI structure, as indicated by a symbol indicating the crystal structure established by the International Zeolite Society (IZA), and Na n [Al n Si 96-n O 192 ] xH 2 O Represented as: The theoretically possible value of n is n <27 (Ono, Yashima, “Zeolite Science and Engineering”, Kodansha Scientific, page 7). If this condition is satisfied, there is no particular limitation, but SiO 2 is preferable. / Al 2 O 3 ≧ 25 (n ≦ 1.9), particularly preferably SiO 2 / Al 2 O 3 ≧ 100 (n ≦ 0.48). Silicalite-1, which has the same MFI structure as ZSM-5 and does not contain alumina where n = 0 in the above formula, is also included in the range.
[0006]
When used as a carrier, it is desirable that the exchangeable cation (corresponding to Na in the above formula) be H or an alkali metal typified by Na by a method such as ion exchange. In addition, there are known various methods of dealumination to increase the silica / alumina ratio. However, the extra-framework aluminum produced by this method may not be completely removed and may remain on the catalyst surface. Absent.
Although a particle size is not specifically limited, Preferably it is 10 micrometers-1000 micrometers. Further, in order to facilitate handling of the catalyst and give mechanical strength, the particulate catalyst may be formed into a pellet. In this case, the size of the pellet is not limited, and the shape is not limited. In this case, a molding aid such as a clay-based inorganic compound may be mixed with the catalyst in order to improve the processability to pellets. The surface area of the catalyst is not particularly limited. Preferably it is 100-500 m < 2 > / g.
[0007]
In the present invention, chromium oxide is used as a catalyst. The oxidation state of chromium is not particularly limited, and may be a wide range of bivalent to hexavalent oxidation states. The crystal structure is not particularly limited, and may be amorphous.
[0009]
In addition, the component contained in the catalyst used in the present invention is not necessarily limited to the metal oxide. For example, for the purpose of increasing the selectivity of the catalyst product, other catalyst components, for example, the selectivity of the product may be appropriately selected. It is desirable to mix or add components such as alkali metal components such as sodium nitrate for enhancing, and clay-based inorganic compounds for enhancing the mechanical strength of the catalyst particles.
[0010]
The catalyst according to the present invention can be obtained by supporting the metal oxide on a ZSM-5 zeolite catalyst support. Examples of the catalyst loading method include conventionally known methods such as an impregnation method, an ion exchange method, and a precipitation method. The supporting method is not limited to the above example.
The ratio (support rate) of the metal oxide to the catalyst carrier is not particularly limited, but is preferably 0.1% by weight to 30% by weight, and particularly preferably 2% by weight to 10% by weight. If the loading rate is too low, the desired catalytic activity cannot be obtained, and if the loading rate is too high, the raw material cost of the metal oxide increases, the progress of undesired side reactions, and the favorable effect of the carrier is difficult to obtain. Create a point.
[0011]
In order to prepare the ZSM-5 zeolite-supported metal oxide catalyst of the present invention, for example, the precursor such as chromium nitrate is supported on the ZSM-5 zeolite and then heated and calcined to convert the precursor such as chromium nitrate into the oxide. It should be in a state. The atmosphere at the time of heating and firing includes, but is not limited to, air and oxygen. Although a calcination temperature is not specifically limited, A desirable temperature is 500-800 degreeC. The heating time is not particularly limited, but a desirable time is 10 minutes to 10 hours. The crystal structure of the metal oxide supported on ZSM-5 zeolite by the obtained catalyst is not particularly limited. A specific crystal structure as a complex oxide or the like may be shown, or it may be amorphous.
[0012]
Further, this catalyst can be regenerated by heating in air or oxygen after its activity is reduced. The heating temperature during regeneration is preferably 300 ° C. or more, more preferably 500 to 800 ° C., and the heating time is not particularly limited, but is preferably 10 minutes to 10 hours.
[0013]
The reaction raw material to be dehydrogenated used in the present invention is a lower alkane such as ethane, propane or butane, and ethane is particularly preferably used.
[0014]
The dehydrogenation reaction of the lower alkane of the present invention is carried out in the presence of a carbon dioxide-containing gas. The carbon dioxide-containing gas may be carbon dioxide gas alone or mixed with another coexisting gas.
[0015]
Examples of the coexisting gas include air, nitrogen, carbon dioxide, inert gas such as helium and argon, oxygen, carbon monoxide, water vapor, and at least one gas selected from combustion exhaust gas from a thermal power plant. Particularly preferred are an inert gas and nitrogen, but the present invention is not limited thereto, and the present invention is not limited to the above examples.
[0016]
The carbon dioxide-containing gas used in the present invention is more preferably free of environmental pollutants such as NOx and SOx, but removal of these pollutants is not necessarily required.
The amount of carbon dioxide-containing gas used is 0.1 to 100 mol, preferably 1 to 20 mol, per mol of lower alkane.
[0017]
In this invention, although reaction temperature is not specifically limited, It is the range of 300-800 degreeC, Preferably it is 450-650 degreeC. When the reaction temperature is too high, the selectivity to the target product is lowered and the carbon deposition on the catalyst becomes remarkable. When the reaction temperature is too low, a sufficient conversion rate cannot be obtained.
[0018]
The dehydrogenation reaction (contact reaction) of the present invention can be carried out by any system such as a fixed bed and a fluidized bed. The particle diameter and shape of the catalyst can be arbitrarily selected according to the type of the reactor. The reaction pressure can be any of pressurization, normal pressure, and reduced pressure, but a range of 0.5 to 5 atmospheres (absolute pressure) is particularly preferable. When the reaction pressure is less than 0.5 atm, the operating cost of the apparatus for maintaining the reduced pressure state becomes great, and when it exceeds 5 atm, the theoretically calculated equilibrium yield decreases and it becomes difficult to obtain the desired yield. .
As described above, the activity of the catalyst of the present invention can be restored by calcination again in air when the activity decreases after a certain period of use.
[0019]
【Example】
[0020]
Example 1
1.23 g of chromium nitrate was dissolved in ion-exchanged water, 4.75 g of H-ZSM-5 (silica / alumina ratio = 1900) was dispersed, sufficiently stirred, and then dried under reduced pressure to obtain a precursor. This precursor was calcined in air at 750 ° C. for 5 hours. As a result, a chromium / H-ZSM-5 catalyst containing 5% by weight of chromium oxide in terms of Cr 2 O 3 was prepared.
0.3 g of the obtained catalyst was packed in a quartz reaction tube having an inner diameter of 11 mm. After raising the temperature to 650 ° C. under carbon dioxide circulation, ethane was supplied in addition to carbon dioxide. The mixing ratio is 10% by volume of ethane and 90% by volume of carbon dioxide. The flow rate of the mixed gas was 100 ml / min. The outlet gas that passed through the reaction tube was analyzed by an on-line gas chromatograph. The results are shown in Table 1. Further, the weight of carbon deposited on the surface of the catalyst after completion of the reaction was measured. The measurement method was based on the measurement of weight loss due to carbon combustion by heating and heating in an air flow with a thermogravimetric analyzer (TA Instruments, TGA2950). As a result, a weight reduction of 0.6% with respect to the catalyst weight was confirmed. In this example, carbon was not confirmed with the naked eye after the reaction for 6 hours. From the above, it can be seen that the amount of carbon deposition in this reaction is very small.
[0021]
Example 2
In Example 1, in addition to chromium nitrate, sodium nitrate was added as a second component so that the amount of sodium was 20 mol% of chromium, and a catalyst was prepared and the reaction product was analyzed in the same manner as in Example 1. The results are shown in Table 1. This result shows that the addition of an alkali metal typified by sodium can improve the selectivity of ethylene without significantly reducing the yield.
[0022]
Comparative Example 1
In Example 1, instead of H-ZSM-5 (silica / alumina ratio = 1900), HY (silica / alumina ratio = 4.8) was used to prepare a catalyst in the same manner as in Example 1, and the reaction product was analyzed. It was. The results are shown in Table 1. Comparison of this result with Examples 1 and 2 shows that H-ZSM-5 is superior as a support zeolite.
[0023]
Comparative Example 2
Reaction results using silica (silicon oxide) supported by chromium oxide reported in the literature (Applied Catalysis A: General 196 (2000) 1-8) as a catalyst (read from the tables and graphs described in the literature) Value). The ethylene yield is high, because the flow rate of the raw material gas is smaller than that of Example 1 (ethane / carbon dioxide / nitrogen = 6/24/30 ml / min), and the contact time between the raw material gas and the catalyst is long. Comparing the ethylene production rate per unit catalyst weight, it can be confirmed that Examples 1 and 2 are greatly superior.
[0024]
[Table 1]
Figure 0003918048
[0025]
【The invention's effect】
According to the present invention, when producing a lower alkene by dehydrogenating a lower alkane, a ZSM-5 zeolite-supported catalyst that exhibits a stable retention of catalytic activity and has a very low decomposition carbonaceous deposit after the reaction is used. In both cases, by using chromium oxide as a catalyst and carrying out the reaction in the presence of a carbon dioxide-containing gas, the lower alkene can be advantageously produced industrially at an increased reaction rate.

Claims (3)

低級アルカンを触媒の存在下で脱水素させて低級アルケンを製造する方法において、触媒としてクロム酸化物を、触媒担体として  In a method for producing a lower alkene by dehydrogenating a lower alkane in the presence of a catalyst, chromium oxide is used as a catalyst, and catalyst support is used. ZSM-5ZSM-5 ゼオライトを用いかつ二酸化炭素含有ガスの存在下で反応を行うことを特徴とする低級アルケンの製造方法。A method for producing a lower alkene, wherein the reaction is carried out using zeolite and in the presence of a carbon dioxide-containing gas. 触媒として、更にアルカリ金属を用いることを特徴とする請求項1に記載の低級アルケンの製造方法。  2. The method for producing a lower alkene according to claim 1, wherein an alkali metal is further used as the catalyst. 低級アルカンがエタンであり、低級アルケンがエチレンであることを特徴とする請求項1又は2に記載の低級アルケンの製造方法。  The method for producing a lower alkene according to claim 1 or 2, wherein the lower alkane is ethane and the lower alkene is ethylene.
JP2001202750A 2001-07-03 2001-07-03 Method for producing lower alkene Expired - Lifetime JP3918048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202750A JP3918048B2 (en) 2001-07-03 2001-07-03 Method for producing lower alkene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001202750A JP3918048B2 (en) 2001-07-03 2001-07-03 Method for producing lower alkene

Publications (2)

Publication Number Publication Date
JP2003012570A JP2003012570A (en) 2003-01-15
JP3918048B2 true JP3918048B2 (en) 2007-05-23

Family

ID=19039498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202750A Expired - Lifetime JP3918048B2 (en) 2001-07-03 2001-07-03 Method for producing lower alkene

Country Status (1)

Country Link
JP (1) JP3918048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709480B2 (en) 2001-10-17 2010-05-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061852B2 (en) * 2007-03-26 2012-10-31 三菱化学株式会社 Alkene production method
EP2165997A1 (en) * 2008-09-18 2010-03-24 Rohm and Haas Company Improved process for the oxidative dehydrogenation of ethane
US10343148B2 (en) * 2016-12-01 2019-07-09 Southern Research Institute Mixed metal oxide catalysts and methods for olefin production in an oxidative dehydrogenation reaction process
JP7349857B2 (en) * 2019-09-10 2023-09-25 学校法人 関西大学 Ethylene production catalyst and ethylene production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709480B2 (en) 2001-10-17 2010-05-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives
US8420630B2 (en) 2001-10-17 2013-04-16 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives

Also Published As

Publication number Publication date
JP2003012570A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
US5316661A (en) Processes for converting feedstock organic compounds
US3140253A (en) Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst
JP2000300987A (en) Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor
US5310714A (en) Synthesis of zeolite films bonded to substrates, structures and uses thereof
RU2422418C2 (en) Use of zeolite-based catalyst for converting oxygen-containing compounds to lower olefins, as well as method of producing lower olefins
JP5061852B2 (en) Alkene production method
US5085762A (en) Catalytic cracking of hydrocarbons
JP3918048B2 (en) Method for producing lower alkene
KR940000786B1 (en) Process for oligomerizing light olefins
JP3741455B2 (en) Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same
JP4159853B2 (en) Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same
JP3497043B2 (en) Adsorbent for purifying hydrocarbons in exhaust gas
JP2997890B2 (en) Production and use of metal-containing zeolite catalysts
CA2108267A1 (en) Catalyst and process for hydrocarbon dehydrogenation
WO2014093440A1 (en) Conversion of methane to aromatic compounds using uzm-44 aluminosilicate zeolite
JP2000202282A (en) Adsorbent of hydrocarbon in exhaust gas of automobile
RU2177827C1 (en) Paraffin hydrocarbon dehydrogenation catalyst
RU2160634C1 (en) Paraffin hydrocarbon dehydrogenation catalysts
RU2188073C2 (en) Paraffin hydrocarbon dehydrogenation catalyst
JP3882071B2 (en) Method for producing styrene monomer
JPH0663394A (en) Adsorbent for cleaning hydrocarbon in exhaust gas
JPH09253483A (en) Adsorbent for cleaning off hydrocarbons in exhaust gas
JP2021109132A (en) Catalyst for producing aromatic compound
JPH06170170A (en) Removal of nitrogen oxide
JPH0760064A (en) Removing process for nitrogen oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3918048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term