JP2021109132A - Catalyst for producing aromatic compound - Google Patents

Catalyst for producing aromatic compound Download PDF

Info

Publication number
JP2021109132A
JP2021109132A JP2020001865A JP2020001865A JP2021109132A JP 2021109132 A JP2021109132 A JP 2021109132A JP 2020001865 A JP2020001865 A JP 2020001865A JP 2020001865 A JP2020001865 A JP 2020001865A JP 2021109132 A JP2021109132 A JP 2021109132A
Authority
JP
Japan
Prior art keywords
catalyst
aromatic compound
producing
amount
membered ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020001865A
Other languages
Japanese (ja)
Other versions
JP7396052B2 (en
Inventor
紗衣 本望
Sae Hommo
紗衣 本望
智洋 林
Tomohiro Hayashi
智洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020001865A priority Critical patent/JP7396052B2/en
Publication of JP2021109132A publication Critical patent/JP2021109132A/en
Application granted granted Critical
Publication of JP7396052B2 publication Critical patent/JP7396052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

To provide a catalyst for producing an aromatic compound having excellent heat resistance, hydrothermal resistance and productivity suitable for industrial use.SOLUTION: There is provided a catalyst for producing an aromatic compound, which is a molded body comprising a 10-membered ring pore zeolite and a binder, wherein silver is supported as an active metal and a ratio of an ammonia desorption amount at 500 to 750°C to an ammonia desorption amount at 350 to 500°C in a temperature programmed desorption method with ammonia adsorption is 15wt% to 50wt%. The 10-membered ring pore zeolite satisfies following requirements: (i) a mesopore volume is 0.05 cc/g or more; (ii) a mesopore exhibits a distribution having a peak, and the half width (hw) of the peak is hw≤40 nm and a central value (μ) of the peak is 5 nm≤μ≤30 nm; and (iii) a macropore in the range of 0.2 to 200 μm has a macropore volume of 0.03 to 0.30 cc/g. The 10-membered ring pore zeolite constituting the catalyst for producing an aromatic compound is an MFI type zeolite or an MEL type zeolite.SELECTED DRAWING: None

Description

本発明は、低級炭化水素からの芳香族炭化水素の製造に用いる芳香族化合物製造用触媒に関するものであり、さらに詳細には、銀を担持し、特定の特性を有することから工業的使用に適する優れた耐熱性と耐水熱性と高い生産性を備える芳香族化合物製造用触媒に関するものである。 The present invention relates to a catalyst for producing an aromatic compound used for producing an aromatic hydrocarbon from a lower hydrocarbon, and more specifically, it is suitable for industrial use because it carries silver and has specific properties. It relates to a catalyst for producing an aromatic compound having excellent heat resistance, hydrothermal resistance and high productivity.

中細孔ゼオライトは、芳香族化合物相当のサイズの細孔を利用した高選択性触媒として用いられている。中細孔ゼオライトで代表的なMFI型ゼオライトを触媒として用いた例として、トルエンの不均化(例えば、特許文献1参照。)、キシレンの異性化(例えば、特許文献2参照。)、脂肪族炭化水素の芳香族化(例えば、特許文献3参照。)などが挙げられる。これらの反応は主に、中細孔ゼオライトのミクロ細孔の特徴を利用したものである。中細孔ゼオライトのミクロ細孔は、入口径がおよそ0.5nmであり、この細孔径に近接した分子径を持つ分子の有効な反応場となると考えられる。 Medium-pore zeolite is used as a highly selective catalyst utilizing pores of a size equivalent to that of an aromatic compound. Examples of using MFI-type zeolite as a catalyst, which is a typical medium-pore zeolite, include toluene disproportionation (see, for example, Patent Document 1), xylene isomerization (see, for example, Patent Document 2), and aliphatic. Aromatization of hydrocarbons (see, for example, Patent Document 3) and the like can be mentioned. These reactions mainly utilize the characteristics of the micropores of medium-pore zeolite. The micropores of the medium-pore zeolite have an inlet diameter of about 0.5 nm, and are considered to be an effective reaction field for molecules having a molecular diameter close to the pore diameter.

一方でこれらの反応は一般的に500℃を超える高温条件下で行われるものである。その場合、表面や内部に限らず、ゼオライトの酸点は加熱もしくは水熱雰囲気下での脱アルミニウムにより経時的に減少する。この現象は、ゼオライトを触媒として使用する場合には避けられない課題である。特に水熱雰囲気下での脱アルミニウムは、コーク析出後の触媒に対して酸素を含む雰囲気下でコークを燃焼させる触媒再生工程で起こるものであり、触媒を失活させる原因である。 On the other hand, these reactions are generally carried out under high temperature conditions exceeding 500 ° C. In that case, the acidity of the zeolite, not limited to the surface or the inside, decreases with time by heating or dealumination in a hydrothermal atmosphere. This phenomenon is an unavoidable problem when zeolite is used as a catalyst. In particular, dealuminum removal in a hydrothermal atmosphere occurs in a catalyst regeneration step in which coke is burned in an atmosphere containing oxygen with respect to the catalyst after coke precipitation, and is a cause of deactivating the catalyst.

このようなゼオライトの脱アルミニウムを抑制する一つの方法として、ゼオライトにアルミニウムを担持させた後にリンを担持することで、ゼオライトの耐水熱性を向上させる方法が提案されている(例えば、特許文献4参照。)
また、その他の方法として、例えばゼオライトへ銀を含有させ酸点を保護することでゼオライトの耐熱性および耐水熱性を向上させる方法が提案されている(例えば、非特許文献1参照。)。
As one method of suppressing such dealumination of zeolite, a method of improving the water heat resistance of zeolite by supporting phosphorus after supporting aluminum on the zeolite has been proposed (see, for example, Patent Document 4). .)
Further, as another method, for example, a method of improving the heat resistance and water heat resistance of zeolite by containing silver in zeolite to protect the acid point has been proposed (see, for example, Non-Patent Document 1).

特許第4014279号Patent No. 401479 特許第2598127号Patent No. 2598127 特許第2905947号Patent No. 2905947 特開2013−184108公報JP 2013-184108

Physical Chemistry Chemical Physics 第17巻、15637頁(2015年)Physical Chemistry Chemical Physics Vol. 17, p. 15637 (2015)

しかし、特許文献4に提案された方法では、芳香族化合物の選択性が低く、生産性に課題があった。また、工業的利用にあたっては生成反応と副生コークの除去を行う再生とを繰り返すことが一般的であり、この過程における触媒の失活の抑制が求められるが、その点に関しては何ら考慮されていない。 However, in the method proposed in Patent Document 4, the selectivity of the aromatic compound is low, and there is a problem in productivity. In addition, in industrial use, it is common to repeat the formation reaction and regeneration to remove by-product cork, and it is required to suppress the deactivation of the catalyst in this process, but no consideration is given to this point. do not have.

また、非特許文献1に提案された方法においては、ゼオライトの耐熱性および耐水熱性は向上するものの銀の担持量や分散状態に関しては検討が不十分であり、工業的利用に適する触媒という点では課題を有するものであった。 Further, in the method proposed in Non-Patent Document 1, although the heat resistance and water heat resistance of zeolite are improved, the amount of silver supported and the dispersed state are not sufficiently studied, and the catalyst is suitable for industrial use. It had a problem.

そこで、本発明者らは、上記の課題を解決するため鋭意検討を行った結果、アンモニア吸着昇温脱離分析のピーク面積値を一定の範囲に規定することで、ゼオライト上に高度に銀が分散した触媒となり、工業的使用に適する優れた耐熱性と耐水熱性、および生産性を備えた芳香族化合物製造用触媒となることを見出し、本発明を完成するに至った。 Therefore, as a result of diligent studies to solve the above problems, the present inventors have determined that the peak area value of the ammonia adsorption temperature rise desorption analysis is within a certain range, so that silver is highly dispersed on the zeolite. The present invention has been completed by finding that it becomes a dispersed catalyst and becomes a catalyst for producing an aromatic compound having excellent heat resistance, water heat resistance, and productivity suitable for industrial use.

即ち、本発明は、10員環細孔ゼオライト及びバインダーを含む成形体であって、活性金属として銀を担持し、アンモニア吸着昇温脱離分析における350〜500℃のアンモニア脱離量に対する500〜750℃のアンモニア脱離量の割合が15wt%〜50wt%であることを特徴とする芳香族化合物製造用触媒に関するものである。 That is, the present invention is a molded product containing 10-membered ring-pore zeolite and a binder, which supports silver as an active metal and has 500 to 500 to 500 ° C. with respect to the amount of ammonia desorption at 350 to 500 ° C. in the ammonia adsorption heated desorption analysis. The present invention relates to a catalyst for producing an aromatic compound, wherein the ratio of the amount of ammonia desorbed at 750 ° C. is 15 wt% to 50 wt%.

以下に、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の芳香族化合物製造用触媒は、10員環細孔ゼオライトとバインダーを含む成形体であり、活性金属として銀を担持したものである。該10員環細孔ゼオライトとしては、10員環構造を有し、細孔を有するものであれば如何なるものでも良く、該10員環細孔構造を有するゼオライトとしては、具体的にはAEL、EUO、FER、HEU、MEU、MEL、MFI、NES型等のゼオライトを挙げることができ、特に脂肪族炭化水素の芳香族化触媒として期待されるものとなることからMFI型ゼオライトまたはMEL型ゼオライトであることが好ましい。そして、例えばMFI型ゼオライトとしては、国際ゼオライト学会で定義される構造コードMFIに属するアルミノシリケート化合物を挙げることができる。 The catalyst for producing an aromatic compound of the present invention is a molded product containing 10-membered ring-pore zeolite and a binder, and supports silver as an active metal. The 10-membered ring-pore zeolite may be any zeolite having a 10-membered ring structure and pores, and the zeolite having the 10-membered ring-pore structure is specifically AEL. Examples of zeolites such as EUO, FER, HEU, MEU, MEL, MFI, and NES types can be mentioned, and since they are particularly expected as an aromatization catalyst for aliphatic hydrocarbons, MFI type zeolites or MEL type zeolites can be used. It is preferable to have. And, for example, as the MFI type zeolite, an aluminosilicate compound belonging to the structure code MFI defined by the International Zeolite Society can be mentioned.

そして、該10員環細孔ゼオライトとしては、特に芳香族化合物製造用触媒として、優れた生産性を有するものとなることから、下記(i)〜(ii)の特性を満足するメソ細孔および下記(iii)の特性を満足するマクロ細孔を有するものであることが好ましい。
(i)メソ細孔容積が0.05cc/g以上である。
(ii)メソ細孔がピークを有する分布を示し、該ピークの半値幅(hw)がhw≦40nm、該ピークの中心値(μ)が5nm≦μ≦30nmである。
(iii)直径0.2〜200μmの範囲のマクロ細孔のマクロ細孔容積が0.03cc/g以上0.30cc/g以下である。
Since the 10-membered ring-pore zeolite has excellent productivity, particularly as a catalyst for producing an aromatic compound, the mesopores satisfying the following characteristics (i) to (ii) and the mesopores. It is preferable that it has macropores that satisfy the following characteristics (iii).
(I) The mesopore volume is 0.05 cc / g or more.
(Ii) The mesopores show a distribution having a peak, the full width at half maximum (hw) of the peak is hw ≦ 40 nm, and the center value (μ) of the peak is 5 nm ≦ μ ≦ 30 nm.
(Iii) The macropore volume of the macropores in the range of 0.2 to 200 μm in diameter is 0.03 cc / g or more and 0.30 cc / g or less.

該10員環細孔ゼオライトは、基質の拡散に優れ、触媒性能や吸着性能等の期待される効果に優れるものとなることからメソ細孔容積が0.05cc/g以上のものが好ましく、特に優れた芳香族化合物製造用触媒として期待されることから0.10cc/g以上であることが好ましい。また、触媒性能や吸着性能等の期待される効果に優れるものとなることからメソ細孔がピークを有する分布を示し、hw≦40nm、特にhw≦30nmであることが好ましく、μが5nm≦μ≦30nm、特に10nm≦μ≦20nmであることが好ましい。更に、マクロ細孔をも有し、直径0.2〜200μmの範囲のマクロ細孔のマクロ細孔容積が0.03cc/g以上0.30cc/g以下、特に0.03cc/g以上0.20cc/g以下であることが好ましい。 The 10-membered ring-pore zeolite is excellent in diffusion of a substrate and excellent in expected effects such as catalytic performance and adsorption performance. Therefore, a mesopore volume of 0.05 cc / g or more is preferable, and particularly Since it is expected as an excellent catalyst for producing an aromatic compound, it is preferably 0.10 cc / g or more. Further, since the expected effects such as catalyst performance and adsorption performance are excellent, the mesopores show a distribution having a peak, and hw ≦ 40 nm, particularly hw ≦ 30 nm, and μ is 5 nm ≦ μ. It is preferably ≦ 30 nm, particularly 10 nm ≦ μ ≦ 20 nm. Further, it also has macropores, and the macropore volume of the macropores having a diameter in the range of 0.2 to 200 μm is 0.03 cc / g or more and 0.30 cc / g or less, particularly 0.03 cc / g or more and 0. It is preferably 20 cc / g or less.

該10員環細孔ゼオライトは、そのSiO/Al比としてはゼオライトと称される範疇に属するものであれば如何なるものであってもよく、中でも、特に耐熱水性、耐久性に優れるものとなることから、SiO/Al比=20〜300であるものが好ましく、さらにSiO/Al比=30〜200が好ましい。 The 10-membered ring-pore zeolite may have any SiO 2 / Al 2 O 3 ratio as long as it belongs to the category called zeolite, and among them, it is particularly excellent in heat resistance and durability. since the things are preferably those which are SiO 2 / Al 2 O 3 ratio = 20 to 300, further SiO 2 / Al 2 O 3 ratio = 30 to 200 preferred.

該10員環細孔ゼオライトの製造方法としては、一般的な公知の方法を用いることができる。具体的にはカチオンとしてアルカリ金属及び/又はアルカリ土類金属を含む化合物、有機構造指向剤とアルミノシリケートゲルとを混合し、得られた結晶物を焼成することにより製造することができる。その際のアルカリ金属、アルカリ土類金属を含む化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等を挙げることでき、中でも水酸化ナトリウムが好ましい。有機構造指向剤としては、例えばテトラプロピルアンモニウム水酸化物、テトラブチルアンモニウム水酸化物、テトラエチルアンモニウム水酸化物等を挙げることができる。また、アルミノシリケートゲルとしては、例えば不定形アルミノシリケートゲル等を挙げることができる。 As a method for producing the 10-membered ring-pore zeolite, a generally known method can be used. Specifically, it can be produced by mixing a compound containing an alkali metal and / or an alkaline earth metal as a cation, an organic structure-directing agent and an aluminosilicate gel, and calcining the obtained crystal product. Examples of the compound containing an alkali metal and an alkaline earth metal at that time include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and the like, and sodium hydroxide is particularly preferable. Examples of the organic structure-directing agent include tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and tetraethylammonium hydroxide. Moreover, as an aluminosilicate gel, for example, an amorphous aluminosilicate gel and the like can be mentioned.

さらに、上記により得られた結晶物を焼成する前にイオン交換を行い、焼成の際の一部又は全部を水熱処理とし、その後、更にイオン交換を行う方法、上記により得られた結晶物を焼成した後にイオン交換を行いプロトン型ゼオライトとし、その後に水熱雰囲気下で焼成を行う方法、等により製造することが可能となる。 Further, a method in which ion exchange is performed before firing the crystal obtained as described above, a part or all of the crystal obtained during firing is subjected to hydrothermal treatment, and then further ion exchange is performed, and the crystal obtained as described above is fired. After that, ion exchange is performed to obtain a proton-type zeolite, which is then calcined in a hydrothermal atmosphere, or the like.

その際の焼成条件としては、処理温度として300〜900℃が好ましく、特に400〜700℃であることが好ましい。処理時間は、工業的には好ましくは5分〜25時間である。雰囲気としては、例えば窒素、空気、酸素、アルゴン、その他不活性ガスのうち一つもしくは二つ以上の組み合わせのガスをも挙げることができる。そして、該焼成工程の一部又は全部で水熱(スチーム)処理を行うことにより、ブレンステッド酸(以下、B酸と記す場合もある。)点のアルミニウムが脱離される。水熱処理の処理温度としては400〜750℃が好ましく、特に500〜650℃が好ましい。また、水蒸気濃度は5〜100%が好ましく、特に10〜80%であることが好ましい。 As the firing conditions at that time, the treatment temperature is preferably 300 to 900 ° C, particularly preferably 400 to 700 ° C. The treatment time is industrially preferably 5 minutes to 25 hours. The atmosphere may also include, for example, nitrogen, air, oxygen, argon, or any other combination of one or more of the inert gases. Then, by performing a hydrothermal (steam) treatment in part or all of the firing step, the aluminum at the Bronsted acid (hereinafter, may be referred to as B acid) point is desorbed. The treatment temperature of the hydrothermal treatment is preferably 400 to 750 ° C, particularly preferably 500 to 650 ° C. The water vapor concentration is preferably 5 to 100%, particularly preferably 10 to 80%.

イオン交換は、焼成工程の前後に行うものであり、複数回のイオン交換に分割して行ってもよい。また、イオン交換は、塩化アンモニウム、塩酸、硝酸等の酸を用いたイオン交換が挙げられ、塩酸、硝酸によるものが好ましい。また、イオン交換は水での洗浄で代用することもできる。 The ion exchange is performed before and after the firing step, and may be divided into a plurality of ion exchanges. Further, the ion exchange includes ion exchange using an acid such as ammonium chloride, hydrochloric acid and nitric acid, and those using hydrochloric acid and nitric acid are preferable. In addition, ion exchange can be replaced by washing with water.

本発明の芳香族化合物製造用触媒を構成するバインダーとしては、ゼオライトとの組み合わせで一般的にバインダーとして用いられるものでよく、例えばシリカ、アルミナ−シリカ、アルミナ、チタニア、炭酸カルシウム等を挙げることができ、中でも、特に触媒性能に優れる芳香族化合物製造用触媒を構成し易いことからシリカであることが好ましい。その際のシリカとしては、シリカと称される範疇に属するものであれば如何なるものであってもよく、特定の結晶構造を有するもの、また、非結晶性のものであってもよい。さらに、シリカの粒子径や凝集径等に関しても如何なる制限もない。 The binder constituting the catalyst for producing an aromatic compound of the present invention may be generally used as a binder in combination with zeolite, and examples thereof include silica, alumina-silica, alumina, titania, and calcium carbonate. Of these, silica is preferable because it is easy to form a catalyst for producing an aromatic compound, which is particularly excellent in catalytic performance. The silica at that time may be any silica as long as it belongs to the category called silica, and may have a specific crystal structure or may be amorphous. Furthermore, there are no restrictions on the particle size, aggregation diameter, etc. of silica.

そして、該10員環細孔ゼオライトとバインダーの配合割合は任意であり、中でも特に優れた触媒性能、取り扱い性、触媒寿命を示す芳香族化合物製造用触媒となることから、該10員環細孔ゼオライト:バインダー=50〜95:50〜5(重量割合)であることが好ましく、特に60〜90:40〜10であることが好ましい。 The mixing ratio of the 10-membered ring-pore zeolite and the binder is arbitrary, and the 10-membered ring-pore is a catalyst for producing an aromatic compound showing particularly excellent catalyst performance, handleability, and catalyst life. Zeolite: binder = 50 to 95:50 to 5 (weight ratio) is preferable, and 60 to 90:40 to 10 is particularly preferable.

また、成形体との形状は任意であり、例えば球状、楕円状、円柱状、円筒状、多角柱状、中空多角柱状等を挙げることができ、特に円柱状、円筒状であることが好ましい。 Further, the shape of the molded body is arbitrary, and examples thereof include a spherical shape, an elliptical shape, a columnar shape, a cylindrical shape, a polygonal columnar shape, a hollow polygonal pillar shape, and the like, and a cylindrical shape and a cylindrical shape are particularly preferable.

本発明の芳香族化合物製造用触媒は、該10員環細孔ゼオライト及びバインダーを含む成形体に活性金属として銀を担持したものである。その際の銀の担持方法としては如何なる方法を用いることも可能であり、例えば該成形体に対して、硝酸銀等により含浸担持、イオン交換等を行う方法を挙げることができる。 The catalyst for producing an aromatic compound of the present invention is obtained by supporting silver as an active metal in a molded product containing the 10-membered ring-pore zeolite and a binder. Any method can be used as the method for supporting silver at that time, and examples thereof include a method in which the molded product is impregnated with silver nitrate or the like, supported by impregnation, ion exchange, or the like.

そして、本発明の芳香族化合物製造用触媒は、アンモニア吸着昇温脱離分析により測定した際の350〜500℃のアンモニア脱離量に対する500〜750℃のアンモニア脱離量の割合が15wt%〜50wt%の範囲にあるものであり、特に高度に銀が分散し、耐熱性、耐水熱性、および芳香族化合物の生産収率に優れるものとなることから、350〜500℃のアンモニア脱離量に対する500〜750℃のアンモニア脱離量の割合が15wt%〜40wt%の範囲にあるものが好ましい。ここで、350〜500℃のアンモニア脱離量に対する500〜750℃のアンモニア脱離量の割合が15wt%未満のものである場合、銀の担持が不十分となり、耐熱性、耐水熱性に課題を有するものとなる。一方、50wt%を超えるものは、銀の分散が不均一なものとなり、耐コーキング性に劣り、触媒としての失活速度が速くなるため、生産性に課題を有するものとなる。 In the catalyst for producing an aromatic compound of the present invention, the ratio of the amount of ammonia desorbed at 500 to 750 ° C. to the amount of desorbed ammonia at 350 to 500 ° C. as measured by the ammonia adsorption heated desorption analysis is 15 wt% or more. It is in the range of 50 wt%, and in particular, silver is highly dispersed, and the heat resistance, water heat resistance, and production yield of aromatic compounds are excellent. Therefore, with respect to the amount of ammonia desorbed at 350 to 500 ° C. It is preferable that the ratio of the amount of ammonia desorbed at 500 to 750 ° C. is in the range of 15 wt% to 40 wt%. Here, when the ratio of the amount of ammonia desorbed at 500 to 750 ° C. to the amount of ammonia desorbed at 350 to 500 ° C. is less than 15 wt%, the support of silver becomes insufficient, and there is a problem in heat resistance and water heat resistance. To have. On the other hand, if it exceeds 50 wt%, the dispersion of silver becomes non-uniform, the caulking resistance is inferior, and the deactivation rate as a catalyst becomes high, so that there is a problem in productivity.

なお、本発明におけるアンモニア吸着昇温脱離分析としては如何なる制限もなく、例えば昇温脱離ガス分析装置(以下、TPDと記す場合もある)を利用したアンモニア昇温脱離分析による触媒の固体酸性質解析(例えば触媒,vol.42,p.218(2000)参照。)に準じた方法により測定することができる。具体的には、室温で芳香族化合物製造用触媒にアンモニアを飽和吸着させ、100℃に加熱して測定雰囲気中に残存するアンモニアの除去を行った後、昇温速度10℃/分で700℃までの昇温を行い、その過程で経時のアンモニアの脱離量の測定し、その脱離量をもって固体酸量とする方法を挙げることができる。そして、本発明においては、アンモニア吸着昇温脱離分析による測定温度おけるアンモニアの脱離量の変化、特に350〜500℃のアンモニア脱離量に対する500〜750℃のアンモニア脱離量の割合が銀担持状態(銀の分布状態)に起因することを見出したものである。 The ammonia adsorption temperature-temperature desorption analysis in the present invention has no limitation, and for example, a solid catalyst by ammonia temperature-temperature desorption analysis using a temperature-temperature desorption gas analyzer (hereinafter, may be referred to as TPD). It can be measured by a method according to an acid property analysis (see, for example, catalyst, vol.42, p.218 (2000)). Specifically, ammonia is saturated and adsorbed on a catalyst for producing an aromatic compound at room temperature, heated to 100 ° C. to remove ammonia remaining in the measurement atmosphere, and then 700 ° C. at a heating rate of 10 ° C./min. A method of raising the temperature up to the above, measuring the amount of ammonia desorbed over time in the process, and using the desorbed amount as the amount of solid acid can be mentioned. In the present invention, the change in the amount of ammonia desorbed at the measured temperature by the ammonia adsorption heated desorption analysis, particularly the ratio of the amount of ammonia desorbed at 500 to 750 ° C. to the amount of ammonia desorbed at 350 to 500 ° C. is silver. It was found that it was caused by the carrying state (silver distribution state).

本発明の芳香族化合物製造用触媒は、例えば、炭素数4〜6の炭化水素を原料として接触することにより、特に効率よく芳香族化合物を製造することを可能とするものである。より高効率に芳香族化合物を製造できることから、炭化水素は好ましくは20質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%の炭素数4〜6の炭化水素を含むことが好ましい。その際の炭素数4〜6の炭化水素としてはその範疇に属するものであれば如何なるものを挙げることができ、例えば飽和脂肪族炭化水素、不飽和脂肪族炭化水素、脂環式炭化水素等の脂肪族炭化水素、それらの混合物等を挙げることができ、より具体的には、n−ブタン、イソブタン、1−ブテン、2−ブテン、イソブテン、ブタジエン、シクロブテン、シクロブタン、n−ペンタン、1−ペンタン、2−ペンタン、1−ペンテン、2−ペンテン、3−ペンテン、n−ヘキサン、1−ヘキサン、2−ヘキサン、1−ヘキセン、2−ヘキセン、3−ヘキセン、ヘキサジエン、シクロヘキサン及びそれらの混合物等を挙げることができる。また、場合によっては原料中に含まれるその他の原料成分として、炭素成分を含んだ化合物であれば如何なるものであってよく、例えば、炭素数1〜3の炭化水素、炭素数7〜15の炭化水素、含酸素化合物(アルコール、エーテル、カルボン酸、ケトン等)、および含窒素化合物(アミン等)が挙げられ、芳香族化合物を効率よく製造する観点から、炭素数1〜3の炭化水素または炭素数7〜10の炭化水素であることが好ましい。 The catalyst for producing an aromatic compound of the present invention makes it possible to produce an aromatic compound particularly efficiently by, for example, contacting a hydrocarbon having 4 to 6 carbon atoms as a raw material. Since the aromatic compound can be produced with higher efficiency, the hydrocarbon preferably contains 20% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass of hydrocarbons having 4 to 6 carbon atoms. .. At that time, any hydrocarbon having 4 to 6 carbon atoms can be mentioned as long as it belongs to the category, for example, saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, alicyclic hydrocarbons and the like. Aliphatic hydrocarbons, mixtures thereof and the like can be mentioned, and more specifically, n-butane, isobutane, 1-butene, 2-butene, isobutene, butadiene, cyclobutene, cyclobutane, n-pentane, 1-pentane. , 2-pentane, 1-pentene, 2-pentene, 3-pentene, n-hexane, 1-hexane, 2-hexane, 1-hexene, 2-hexene, 3-hexene, hexadiene, cyclohexane and mixtures thereof. Can be mentioned. Further, in some cases, the other raw material component contained in the raw material may be any compound as long as it contains a carbon component, for example, a hydrocarbon having 1 to 3 carbon atoms and a hydrocarbon having 7 to 15 carbon atoms. Examples include hydrogen, oxygen-containing compounds (alcohol, ether, carboxylic acid, ketone, etc.), and nitrogen-containing compounds (amine, etc.). From the viewpoint of efficiently producing aromatic compounds, hydrocarbons or carbons having 1 to 3 carbon atoms. It is preferably a hydrocarbon having a number of 7 to 10.

そして、芳香族化合物の製造において、オレフィン又はアルカンの副生を抑制し、必要以上の耐熱反応装置を要しない芳香族化合物の効率的な製造方法となることから、反応温度として400〜800℃の範囲が望ましい。また、反応圧力にも制限はなく、例えば0.05MPa〜5MPa程度の圧力範囲で運転が可能である。そして、該芳香族化合物製造用触媒に対する反応原料の供給は、該触媒体積に対し原料ガスの体積の比として特に制限されるものではなく、例えば1h−1〜50000h−1程度の空間速度を挙げることができる。炭化水素を原料ガスとして供給する際には、特定の炭化水素の単一ガス、混合ガス、およびこれらを窒素等の不活性ガス、水素、一酸化炭素、二酸化炭素から選ばれる単一または混合ガスにより希釈したものとして用いることもできる。 Then, in the production of the aromatic compound, the reaction temperature is 400 to 800 ° C. because it is an efficient production method of the aromatic compound which suppresses the by-production of olefins or alkanes and does not require an unnecessarily heat-resistant reaction device. Range is desirable. Further, the reaction pressure is not limited, and the operation can be performed in a pressure range of, for example, about 0.05 MPa to 5 MPa. The supply of the reaction raw material to the catalyst for producing the aromatic compound is not particularly limited as the ratio of the volume of the raw material gas to the catalyst volume, and for example, an air velocity of about 1h -1 to 50,000h -1 is given. be able to. When supplying a hydrocarbon as a raw material gas, a single gas of a specific hydrocarbon, a mixed gas, and a single or mixed gas selected from an inert gas such as nitrogen, hydrogen, carbon monoxide, and carbon dioxide. It can also be used as diluted with.

芳香族化合物を製造する際の反応形式としての制限はなく、例えば固定床、輸送床、流動床、移動床、多管式反応器のみならず連続流式および間欠流式並びにスイング式反応器、等を用いることができる。 There are no restrictions on the reaction form when producing aromatic compounds, for example, fixed bed, transport bed, fluidized bed, moving bed, multi-tube reactor as well as continuous flow type, intermittent flow type and swing type reactor. Etc. can be used.

また、製造される芳香族化合物としては、芳香族化合物と称される範疇に属するものであれば特に制限はなく、例えばベンゼン、トルエン、キシレン、トリメチルベンゼン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、ナフタレン、メチルナフタレン等を挙げることができ、特に、ベンゼン、トルエン、キシレンであることが好ましい。 The aromatic compound to be produced is not particularly limited as long as it belongs to the category called an aromatic compound. For example, benzene, toluene, xylene, trimethylbenzene, ethylbenzene, propylbenzene, butylbenzene, naphthalene, etc. Methylnaphthalene and the like can be mentioned, and benzene, toluene and xylene are particularly preferable.

本発明の芳香族化合物製造用触媒は、優れた耐熱性と耐水熱性、および生産性を有することから、工業的な有用性が期待されるものである。 The catalyst for producing an aromatic compound of the present invention is expected to be industrially useful because it has excellent heat resistance, water heat resistance, and productivity.

以下に、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

なお、実施例および比較例に用いた10員環細孔ゼオライトは、特許6070336号公報に基づき調製を行った。また、ゼオライト及び芳香族化合物製造用触媒は、以下の方法により測定した。 The 10-membered ring-pore zeolite used in Examples and Comparative Examples was prepared based on Japanese Patent No. 60070336. The catalyst for producing zeolite and aromatic compound was measured by the following method.

〜銀担持量の定量方法〜
銀担持量の測定はICP装置((商品名)Optima 8300 パーキンエルマー株式会社製)を用いた。試料を100mlポリメスフラスコに精秤した後、フッ酸、硝酸および超純水を添加し一晩静置溶解させた。メスアップ後、試料を分取しICP−AESを測定し、検量線から銀担持量を算出した。
~ Method for quantifying the amount of silver carried ~
An ICP device ((trade name) Optima 8300, manufactured by PerkinElmer Co., Ltd.) was used for measuring the amount of silver carried. After the sample was precisely weighed in a 100 ml volumetric flask, hydrofluoric acid, nitric acid and ultrapure water were added and allowed to dissolve overnight. After the volumetric flask, the sample was sampled, ICP-AES was measured, and the amount of silver carried was calculated from the calibration curve.

〜メソ細孔の分布、細孔径、容積の測定〜
メソ細孔分布、メソ細孔径は窒素吸脱着測定により測定した。
~ Measurement of mesopore distribution, pore diameter, and volume ~
The mesopore distribution and mesopore diameter were measured by nitrogen adsorption / desorption measurement.

その際の窒素吸脱着測定としては、窒素吸脱着装置((商品名)OMNISORP360CX,BeckmanCoulter社製)を用い、吸脱着とも30torr/stepの条件で測定した。 As the nitrogen adsorption / desorption measurement at that time, a nitrogen adsorption / desorption device ((trade name) OMNISORP360CX, manufactured by Beckman Coulter) was used, and both adsorption and desorption were measured under the condition of 30 torr / step.

そして、窒素吸脱着測定の脱着過程をBarret−Joyner−Halenda法(Journal of the American Chemical Society、1951年、頁373〜380)にて解析し、横軸が細孔直径の常数、縦軸が窒素ガ
の脱着量の微分値であるメソ細孔分布曲線を得た。メソ細孔分布曲線の解析にはHULINKS社のPeakfit(ver.4.12)を用いた。
Then, the desorption process of the nitrogen adsorption / desorption measurement was analyzed by the Barret-Joiner-Halenda method (Journal of the American Chemical Society, 1951, pp. 373-380). A mesopore distribution curve, which is a differential value of the amount of desorption of moth, was obtained. Peakfit (ver. 4.12) manufactured by HULINKS was used for the analysis of the mesopore distribution curve.

メソ細孔容積は、2nm以上50nm以下の範囲の窒素ガス脱着量を積算することにより求めた。そして、メソ細孔からの窒素ガス脱着量のメソ細孔直径値での微分値(d(V/m)/d(D))のピークの内、最大のピークをガウス関数の強度近似で解析し、そのガウス関数の中心値(つまり、細孔分布のピーク中心値)(μ)から標準偏差の2倍(2σ)の範囲(=μ±2σ)内の直径を有するメソ細孔を均一メソ細孔と定義した。 The mesopore volume was determined by integrating the amount of nitrogen gas desorption in the range of 2 nm or more and 50 nm or less. Then, among the peaks of the differential value (d (V / m) / d (D)) of the amount of nitrogen gas desorbed from the mesopores at the mesopore diameter value, the largest peak is analyzed by the intensity approximation of the Gaussian function. Then, the mesopores having a diameter within the range (= μ ± 2σ) of twice the standard deviation (2σ) from the median value of the Gaussian function (that is, the peak center value of the pore distribution) (μ) are uniformly meso-meso. Defined as pores.

〜マクロ細孔容積の測定〜
水銀ポロシメーター((商品名)POREMASTER GT、Quantachrome Instruments社製)を用いて、測定セル(0.5ccガラスセル)に試料約0.6gを導入し、各測定圧力下での水銀圧入量を測定した。水銀圧入量はブランクセルの測定時の圧入量をベースとして差し引くことにより得た。直径0.2〜200μmの範囲のマクロ細孔容積は、上記より得られた水銀圧入量のうち、直径範囲0.2〜200μmの圧入量を積算することで得た。マクロ孔容積の解析は解析ソフト((商品名)Poremaster for WindowsR、Quantachrome Instruments社製)により行った。水銀の表面張力は480erg/cm、水銀の前進角は140°とした。
~ Measurement of macropore volume ~
Using a mercury porosimeter ((trade name) POREMASTER GT, manufactured by Quantachrome Instruments), about 0.6 g of a sample was introduced into a measurement cell (0.5 cc glass cell), and the amount of mercury injection under each measurement pressure was measured. .. The mercury injection amount was obtained by subtracting the mercury injection amount based on the injection amount at the time of measurement of the blank cell. The macropore volume in the range of 0.2 to 200 μm in diameter was obtained by integrating the press-fitting amount in the diameter range of 0.2 to 200 μm among the mercury injecting amounts obtained from the above. The analysis of the macropore volume was performed by analysis software ((trade name) Polemaster for Windows R, manufactured by Quantachrome Instruments). The surface tension of mercury was 480 erg / cm 2 , and the advancing angle of mercury was 140 °.

〜アンモニア吸着昇温脱離分析〜
アンモニア吸着昇温脱離分析は一般的なNH−TPD装置((商品名)BELCATII、マイクロトラック・ベル株式会社製)とガス分析装置((商品名)BELMass、マイクロトラック・ベル株式会社製)を用いた。試料は顆粒状にしたのち、セルに入れ、ヘリウム雰囲気下で10℃/分で500℃まで昇温し、1時間保持した。その後100℃まで降温し、0.2%アンモニアガスを30分間導入した。10℃/分で600℃まで昇温し、脱離するアンモニアをガス分析装置で分析した。350℃〜500℃におけるアンモニア脱離量と、500〜750℃におけるアンモニア脱離量を算出し、その割合を算出した。
~ Ammonia adsorption temperature rise desorption analysis ~
Ammonia adsorption temperature rise desorption analysis is performed by a general NH 3- TPD device ((trade name) BELCATII, manufactured by Microtrack Bell Co., Ltd.) and a gas analyzer ((trade name) BELMass, manufactured by Microtrack Bell Co., Ltd.). Was used. The sample was granulated, placed in a cell, heated to 500 ° C. at 10 ° C./min under a helium atmosphere, and held for 1 hour. Then, the temperature was lowered to 100 ° C., and 0.2% ammonia gas was introduced for 30 minutes. The temperature was raised to 600 ° C. at 10 ° C./min, and the desorbed ammonia was analyzed with a gas analyzer. The amount of ammonia desorbed at 350 ° C. to 500 ° C. and the amount of ammonia desorbed at 500 to 750 ° C. were calculated, and the ratios were calculated.

〜耐水熱性評価試験条件〜
実施例、比較例により得られた触媒により、以下の方法により耐水熱性の評価を行った。
~ Water heat resistance evaluation test conditions ~
Using the catalysts obtained in Examples and Comparative Examples, the water heat resistance was evaluated by the following method.

磁性皿に5gの試料を載せ、マッフル炉に入れ3hかけて600℃まで加熱した。25℃の水を0.5ml/分の速度でマッフル炉内に流通させた。その際に同伴気体は空気を使用し、1000ml/分の速度で流通させた。1h後に水の流通を停止し、室温まで自然降温した。炉内から取り出した試料を上記の酸量測定方法にて測定し、試料の酸量を算出した。次式を用いて酸量維持率を算出した。
酸量維持率=(試験後の酸量)/(試験前の酸量)×100
〜芳香族化合物製造装置及びその製造方法〜
実施例、比較例により得られた触媒により、以下の方法により芳香族化合物の製造を行い、芳香族化合物製造用触媒としての性能評価を行った。
A 5 g sample was placed on a magnetic dish, placed in a muffle furnace, and heated to 600 ° C. over 3 hours. Water at 25 ° C. was circulated in the muffle furnace at a rate of 0.5 ml / min. At that time, air was used as the companion gas, and the gas was circulated at a rate of 1000 ml / min. After 1 hour, the flow of water was stopped and the temperature was naturally lowered to room temperature. The sample taken out from the furnace was measured by the above acid amount measuring method, and the acid amount of the sample was calculated. The acid amount maintenance rate was calculated using the following formula.
Acid amount maintenance rate = (acid amount after test) / (acid amount before test) x 100
~ Aromatic compound manufacturing equipment and its manufacturing method ~
Using the catalysts obtained in Examples and Comparative Examples, aromatic compounds were produced by the following methods, and their performance as catalysts for producing aromatic compounds was evaluated.

ステンレス製反応管(内径16mm、長さ600mm)を有する固定床気相流通式反応装置を用いた。ステンレス製反応管の中段に、試料を充填し、乾燥空気流通下での加熱前処理を行ったのち、原料ガスをフィードした。そして、加熱はセラミック製管状炉を用い、触媒(成形体)層の温度を制御した。反応出口ガスおよび反応液を採取し、ガスクロマトグラフを用い、ガス成分および液成分を個別に分析した。ガス成分は、TCD検出器を備え、充填剤(Waters社製、(商品名)PorapakQまたはGLサイエンス社製、(商品名)MS−5A)を有するガスクロマトグラフ(島津製作所製、(商品名)GC−1700)を用いて分析した。液成分は、FID検出器を備え、分離カラムとしてキャピラリーカラム(GLサイエンス社製、(商品名)TC−1)を有するガスクロマトグラフ(島津製作所製、(商品名)GC−2015)を用いて分析した。 A fixed-bed gas-phase flow reactor having a stainless steel reaction tube (inner diameter 16 mm, length 600 mm) was used. The middle stage of the stainless steel reaction tube was filled with a sample, pretreated by heating under a dry air flow, and then the raw material gas was fed. Then, a ceramic tube furnace was used for heating, and the temperature of the catalyst (mold) layer was controlled. The reaction outlet gas and the reaction solution were collected, and the gas component and the liquid component were analyzed individually using a gas chromatograph. The gas component is a gas chromatograph (manufactured by Shimadzu Corporation, (trade name) GC) equipped with a TCD detector and having a filler (manufactured by Waters, (trade name) PorapakQ or GL Science, (trade name) MS-5A). -1700) was used for analysis. The liquid components were analyzed using a gas chromatograph (manufactured by Shimadzu Corporation, (trade name) GC-2015) equipped with a FID detector and having a capillary column (manufactured by GL Science, Inc. (trade name) TC-1) as a separation column. ..

反応条件は下記のように設定した。 The reaction conditions were set as follows.

(芳香族化合物製造条件)
触媒重量:0.5g。
流通ガス:原料ガス55mol%+窒素45mol%の混合ガス
原料ガス:イソブタン2Nml/分、ノルマルブタン9Nml/分、2−ブテン12Nml/分、1−ブテン21Nml/分、イソブテン6Nml/分、プロパン9Nml/分
反応温度:600℃。
反応時間:24時間。
(Aromatic compound production conditions)
Catalyst weight: 0.5 g.
Flowing gas: Mixed gas of 55 mol% of raw material gas + 45 mol% of nitrogen Raw material gas: Isobutane 2 Nml / min, Normal butene 9 Nml / min, 2-Butene 12 Nml / min, 1-Butene 21 Nml / min, Isobutene 6 Nml / min, Propane 9 Nml / min Minute reaction temperature: 600 ° C.
Reaction time: 24 hours.

24時間の反応の後、再生ガスをフィードした。反応時同様、加熱はセラミック製管状炉を用い、触媒(成形体)層の温度を制御した。 After a 24-hour reaction, the regenerated gas was fed. As in the reaction, a ceramic tube furnace was used for heating, and the temperature of the catalyst (mold) layer was controlled.

再生条件は下記のように設定した。
触媒温度:490〜600℃。
処理時間:21時間。
再生ガス:空気10〜40Nml/分。
The playback conditions were set as follows.
Catalyst temperature: 490-600 ° C.
Processing time: 21 hours.
Regenerated gas: Air 10-40 Nml / min.

反応と再生を繰り返すサイクルを計4回行った。 A total of four cycles of repeating the reaction and regeneration were performed.

調製例1
テトラプロピルアンモニウム(以降、TPAと略記する場合がある。)水酸化物と水酸化ナトリウムの水溶液に不定形アルミノシリケートゲルを添加して懸濁させた。得られた懸濁液にMFI型ゼオライトを種晶として加え原料組成物とした。その際の種晶の添加量は、原料組成物中のAlとSiOの重量に対して、0.7重量%とした。また、副生したエタノールは蒸発させて除いた。
Preparation Example 1
Atypical aluminosilicate gel was added to an aqueous solution of tetrapropylammonium (hereinafter sometimes abbreviated as TPA) hydroxide and sodium hydroxide and suspended. MFI-type zeolite was added as a seed crystal to the obtained suspension to prepare a raw material composition. The amount of the seed crystal added at that time was 0.7% by weight with respect to the weight of Al 2 O 3 and SiO 2 in the raw material composition. In addition, the by-produced ethanol was removed by evaporation.

該原料組成物の組成は以下のとおりである。
SiO/Alモル比=48、TPA/Siモル比=0.05、Na/Siモル比=0.16、OH/Siモル比=0.21、HO/Siモル比=10
得られた原料組成物をステンレス製オートクレーブに密閉し、115℃で攪拌しながら4日間結晶化させ、スラリー状混合液を得た。結晶化後のスラリー状混合液を遠心沈降機で固液分離した後、十分量の純水で固体粒子を洗浄し、110℃で乾燥して乾燥粉末を得た。
The composition of the raw material composition is as follows.
SiO 2 / Al 2 O 3 molar ratio = 48, TPA / Si molar ratio = 0.05, Na / Si molar ratio = 0.16, OH / Si molar ratio = 0.21, H 2 O / Si molar ratio = 10
The obtained raw material composition was sealed in a stainless steel autoclave and crystallized for 4 days with stirring at 115 ° C. to obtain a slurry-like mixture. The slurry-like mixture after crystallization was solid-liquid separated by a centrifugal sedimentation machine, and then the solid particles were washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a dry powder.

得られた乾燥粉末を1mol/Lの常温の塩酸中に分散し、ろ過した後に、十分量の純水で固体粒子を洗浄し、再度ろ過後、100℃で1晩乾燥させた。空気下、550℃で1時間焼成後、600℃、30%の水蒸気で2時間処理した。 The obtained dry powder was dispersed in hydrochloric acid at room temperature of 1 mol / L, filtered, and then the solid particles were washed with a sufficient amount of pure water, filtered again, and dried at 100 ° C. overnight. After firing at 550 ° C. for 1 hour under air, it was treated with 30% steam at 600 ° C. for 2 hours.

得られた粉末を1mol/Lの常温の塩酸中に分散し、ろ過した後に、十分量の純水で固体粒子を洗浄し、再度ろ過後、ゼオライトを得た。得られたゼオライトは、10員環細孔ゼオライトであるMFI型ゼオライトであり、メソ細孔容積0.37cc/g、メソ細孔分布のピークの半値幅10nm、該ピーク中心値14nmのメソ細孔分布を有した。直径0.2〜200μmのマクロ細孔容積は0.10cc/gであった。 The obtained powder was dispersed in hydrochloric acid at room temperature of 1 mol / L, filtered, and then the solid particles were washed with a sufficient amount of pure water and filtered again to obtain zeolite. The obtained zeolite is an MFI-type zeolite which is a 10-membered ring-pore zeolite, and has a mesopore volume of 0.37 cc / g, a half-value width of 10 nm at the peak of the mesopore distribution, and a mesopore with a peak center value of 14 nm. It had a distribution. The macropore volume with a diameter of 0.2 to 200 μm was 0.10 cc / g.

得られたゼオライト100重量部に対して、シリカ(日産化学工業社製、(商品名)スノーテックスN−30G)25重量部、セルロース5重量部、純水40重量部を加え混練した。そして、混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.5mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で2時間焼成して成形体を得た。 To 100 parts by weight of the obtained zeolite, 25 parts by weight of silica (manufactured by Nissan Chemical Industries, Ltd., (trade name) Snowtex N-30G), 5 parts by weight of cellulose, and 40 parts by weight of pure water were added and kneaded. Then, the kneaded product was made into a columnar molded body having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.5 mm). This was dried at 100 ° C. overnight. The dried molded product was fired at 600 ° C. for 2 hours under air flow to obtain a molded product.

実施例1
調製例1で得られたMFI型ゼオライト成形体5gに対して室温で硝酸銀水溶液を2時間通液させてイオン交換を行った。使用した硝酸銀水溶液は、硝酸銀0.2gを純水25mlに溶解させたものを使用した。その後純水を通液させて副生する硝酸を除去したのち、110℃で一晩乾燥させ、続けて550℃で6時間焼成した。銀担持量0.8wt%の銀イオン交換成形体である芳香族化合物製造用触媒を得た。
Example 1
Ion exchange was carried out by passing an aqueous silver nitrate solution through 5 g of the MFI-type zeolite molded product obtained in Preparation Example 1 at room temperature for 2 hours. As the silver nitrate aqueous solution used, 0.2 g of silver nitrate was dissolved in 25 ml of pure water. Then, pure water was passed to remove nitric acid produced as a by-product, and then the mixture was dried at 110 ° C. overnight and then calcined at 550 ° C. for 6 hours. A catalyst for producing an aromatic compound, which is a silver ion exchange molded product having a silver loading of 0.8 wt%, was obtained.

上記に従い得られた芳香族化合物製造用触媒のアンモニアTPD測定を実施した。結果を表1に記載した。350℃〜500℃におけるアンモニア脱離量は0.11mmol/gであり、500℃〜750℃におけるアンモニア脱離量は0.026mmol/gであった。両者の数値から算出された350℃〜500℃におけるアンモニア脱離量に対する500℃〜750℃におけるアンモニア脱離量の割合は、24.1%であった。 Ammonia TPD measurement of the catalyst for producing an aromatic compound obtained according to the above was carried out. The results are shown in Table 1. The amount of ammonia desorbed at 350 ° C. to 500 ° C. was 0.11 mmol / g, and the amount of ammonia desorbed at 500 ° C. to 750 ° C. was 0.026 mmol / g. The ratio of the amount of ammonia desorbed at 500 ° C. to 750 ° C. to the amount of ammonia desorbed at 350 ° C. to 500 ° C. calculated from both values was 24.1%.

得られた芳香族化合物製造用触媒を用いて上記の条件で水熱試験を行い、耐水熱性の評価を行った。結果を表1に記載した。高温、高濃度水蒸気の条件下においても高い酸量維持率を示した。 Using the obtained catalyst for producing aromatic compounds, a water heat test was conducted under the above conditions to evaluate the water heat resistance. The results are shown in Table 1. It showed a high acid content maintenance rate even under the conditions of high temperature and high concentration of water vapor.

そして、得られた芳香族化合物製造用触媒を用い、上記した条件にて芳香族化合物の製造を行い、芳香族化の評価を行った。1〜4サイクルにおける3時間および22時間経過後のC4成分転化率と芳香族化合物収率を表1に示す。高いC4成分転化率および芳香族収率を示し、その高い触媒成績を4サイクル目まで維持することを確認した。 Then, using the obtained catalyst for producing an aromatic compound, an aromatic compound was produced under the above-mentioned conditions, and the aromatization was evaluated. Table 1 shows the conversion rate of C4 components and the yield of aromatic compounds after 3 hours and 22 hours in 1 to 4 cycles. It was confirmed that it showed a high C4 component conversion rate and aromatic yield, and maintained its high catalytic performance until the 4th cycle.

実施例2
調製例1で得られたMFI型ゼオライト成形体5gに対し、硝酸銀水溶液に用いた硝酸銀の量を0.3gに変更したこと以外は、実施例1と同様の操作で銀イオン交換成形体を得、銀担持量1.0wt%の銀イオン交換成形体である芳香族化合物製造用触媒を得た。
Example 2
A silver ion exchange molded product was obtained by the same operation as in Example 1 except that the amount of silver nitrate used in the silver nitrate aqueous solution was changed to 0.3 g with respect to 5 g of the MFI type zeolite molded product obtained in Preparation Example 1. , A catalyst for producing an aromatic compound, which is a silver ion exchange molded product having a silver carrying amount of 1.0 wt%, was obtained.

得られた芳香族化合物製造用触媒を用いて上記のアンモニアTPD測定を実施した。結果を表1に記載した。350℃〜500℃におけるアンモニア脱離量は0.11mmol/gであり、500℃〜750℃におけるアンモニア脱離量は0.036mmol/gであった。両者の数値から算出された350℃〜500℃におけるアンモニア脱離量に対する500℃〜750℃におけるアンモニア脱離量の割合は、33.4%であった。 The above ammonia TPD measurement was carried out using the obtained catalyst for producing an aromatic compound. The results are shown in Table 1. The amount of ammonia desorbed at 350 ° C. to 500 ° C. was 0.11 mmol / g, and the amount of ammonia desorbed at 500 ° C. to 750 ° C. was 0.036 mmol / g. The ratio of the amount of ammonia desorbed at 500 ° C. to 750 ° C. to the amount of ammonia desorbed at 350 ° C. to 500 ° C. calculated from both values was 33.4%.

得られた芳香族化合物製造用触媒を用いて上記の条件で水熱試験を行い、耐水熱性の評価を行った。結果を表1に記載した。高温・高濃度水蒸気の条件下においても高い酸量維持率を示した。 Using the obtained catalyst for producing aromatic compounds, a water heat test was conducted under the above conditions to evaluate the water heat resistance. The results are shown in Table 1. It showed a high acid content maintenance rate even under the conditions of high temperature and high concentration of water vapor.

そして、得られた芳香族化合物製造用触媒を用い、上記した条件にて芳香族化合物の製造を行い、芳香族化の評価を行った。1〜4サイクルにおける3時間および22時間経過後のC4成分転化率と芳香族化合物収率を表1に示す。高いC4成分転化率および芳香族収率を示し、その高い触媒成績を4サイクル目まで維持することを確認した。 Then, using the obtained catalyst for producing an aromatic compound, an aromatic compound was produced under the above-mentioned conditions, and the aromatization was evaluated. Table 1 shows the conversion rate of C4 components and the yield of aromatic compounds after 3 hours and 22 hours in 1 to 4 cycles. It was confirmed that it showed a high C4 component conversion rate and aromatic yield, and maintained its high catalytic performance until the 4th cycle.

実施例3
調製例1で得られたMFI型ゼオライト成形体5gに対し、硝酸銀水溶液に用いた硝酸銀の量を0.5gに変更したこと以外は、実施例1と同様の操作で銀イオン交換成形体を得、銀担持量1.2wt%の銀イオン交換成形体である芳香族化合物製造用触媒を得た。
Example 3
A silver ion exchange molded product was obtained by the same operation as in Example 1 except that the amount of silver nitrate used in the silver nitrate aqueous solution was changed to 0.5 g with respect to 5 g of the MFI type zeolite molded product obtained in Preparation Example 1. , A catalyst for producing an aromatic compound, which is a silver ion exchange molded product having a silver carrying amount of 1.2 wt%, was obtained.

得られた芳香族化合物製造用触媒を用いて上記のアンモニアTPD測定を実施した。結果を表1に記載した。350℃〜500℃におけるアンモニア脱離量は0.092mmol/gであり、500℃〜750℃におけるアンモニア脱離量は0.026mmol/gであった。両者の数値から算出された350℃〜500℃におけるアンモニア脱離量に対する500℃〜750℃におけるアンモニア脱離量の割合は、28.3%であった。 The above ammonia TPD measurement was carried out using the obtained catalyst for producing an aromatic compound. The results are shown in Table 1. The amount of ammonia desorbed at 350 ° C. to 500 ° C. was 0.092 mmol / g, and the amount of ammonia desorbed at 500 ° C. to 750 ° C. was 0.026 mmol / g. The ratio of the amount of ammonia desorbed at 500 ° C. to 750 ° C. to the amount of ammonia desorbed at 350 ° C. to 500 ° C. calculated from both values was 28.3%.

得られた芳香族化合物製造用触媒を用いて上記の条件で水熱試験を行い、耐水熱性の評価を行った。結果を表1に記載した。高温・高濃度水蒸気の条件下においても高い酸量維持率を示した。 Using the obtained catalyst for producing aromatic compounds, a water heat test was conducted under the above conditions to evaluate the water heat resistance. The results are shown in Table 1. It showed a high acid content maintenance rate even under the conditions of high temperature and high concentration of water vapor.

そして、芳香族化合物製造用触媒を用い、上記した条件にて芳香族化合物の製造を行い、芳香族化の評価を行った。1〜4サイクルにおける3時間および22時間経過後のC4成分転化率と芳香族化合物収率を表1に示す。高いC4成分転化率および芳香族収率を示し、その高い触媒成績を4サイクル目まで維持することを確認した。 Then, using a catalyst for producing an aromatic compound, an aromatic compound was produced under the above-mentioned conditions, and the aromatization was evaluated. Table 1 shows the conversion rate of C4 components and the yield of aromatic compounds after 3 hours and 22 hours in 1 to 4 cycles. It was confirmed that it showed a high C4 component conversion rate and aromatic yield, and maintained its high catalytic performance until the 4th cycle.

比較例1
調製例1で得られたMFI型ゼオライト成形体を用いて、上記のアンモニアTPD測定を実施した。結果を表1に記載した。350℃〜500℃におけるアンモニア脱離量は0.14mmol/gであり、500℃〜750℃におけるアンモニア脱離量は0.027mmol/gであった。両者の数値から算出された350℃〜500℃におけるアンモニア脱離量に対する500℃〜750℃におけるアンモニア脱離量の割合は、19.2%であった。
Comparative Example 1
The above ammonia TPD measurement was carried out using the MFI type zeolite molded product obtained in Preparation Example 1. The results are shown in Table 1. The amount of ammonia desorbed at 350 ° C. to 500 ° C. was 0.14 mmol / g, and the amount of ammonia desorbed at 500 ° C. to 750 ° C. was 0.027 mmol / g. The ratio of the amount of ammonia desorbed at 500 ° C. to 750 ° C. to the amount of ammonia desorbed at 350 ° C. to 500 ° C. calculated from both values was 19.2%.

上記の条件で水熱試験を行い、耐水熱性の評価を行った。結果を表1に記載した。酸量維持率が大幅に低下し、耐熱性・耐水熱性の低さが確認された。 A water heat test was conducted under the above conditions to evaluate the water heat resistance. The results are shown in Table 1. It was confirmed that the acid content maintenance rate was significantly reduced and the heat resistance and water heat resistance were low.

また、得られた成形体を用い、上記した条件にて芳香族化合物の製造を行い、芳香族化の評価を行った。1〜4サイクルにおける3時間および22時間経過後のC4成分転化率と芳香族炭化水素収率を表1に示す。C4成分転化率および芳香族収率は低く、触媒性能に劣ることが確認された。 Further, using the obtained molded product, an aromatic compound was produced under the above-mentioned conditions, and the aromatization was evaluated. Table 1 shows the conversion rate of C4 components and the yield of aromatic hydrocarbons after 3 hours and 22 hours in 1 to 4 cycles. It was confirmed that the conversion rate of C4 components and the yield of aromatics were low and the catalytic performance was inferior.

比較例2
調製例1で得られたMFI型ゼオライト成形体3gを用いて、室温で硝酸銀水溶液に10分間含浸した。使用した硝酸銀水溶液は、硝酸銀0.2g、純水2mlにより調製した。含浸後
110℃で一晩乾燥させ、続けて550℃で6時間焼成した。得られた銀イオン交換成形体の銀担持量は3.0wt%であった。
Comparative Example 2
Using 3 g of the MFI-type zeolite molded product obtained in Preparation Example 1, the silver nitrate aqueous solution was impregnated at room temperature for 10 minutes. The silver nitrate aqueous solution used was prepared with 0.2 g of silver nitrate and 2 ml of pure water. After impregnation, the mixture was dried at 110 ° C. overnight and then calcined at 550 ° C. for 6 hours. The amount of silver supported by the obtained silver ion exchange molded product was 3.0 wt%.

得られた銀イオン交換成形体を用いて上記のアンモニアTPD測定を実施した。結果を表1に記載した。350℃〜500℃におけるアンモニア脱離量は0.19mmol/gであり、500℃〜750℃におけるアンモニア脱離量は0.13mmol/gであった。両者の数値から算出された350℃〜500℃におけるアンモニア脱離量に対する500℃〜750℃におけるアンモニア脱離量の割合は、71.3%であった。 The above ammonia TPD measurement was carried out using the obtained silver ion exchange molded product. The results are shown in Table 1. The amount of ammonia desorbed at 350 ° C. to 500 ° C. was 0.19 mmol / g, and the amount of ammonia desorbed at 500 ° C. to 750 ° C. was 0.13 mmol / g. The ratio of the amount of ammonia desorbed at 500 ° C. to 750 ° C. to the amount of ammonia desorbed at 350 ° C. to 500 ° C. calculated from both values was 71.3%.

得られた銀イオン交換成形体を用いて、上記の条件で水熱試験および芳香族化の評価を行った。結果を表1に記載した。酸量維持率は高いものの、1サイクル〜4サイクルにかけて反応成績が低下し、触媒性能に劣ることが確認された。 Using the obtained silver ion exchange molded product, a hydrothermal test and an evaluation of aromatization were performed under the above conditions. The results are shown in Table 1. Although the acid content maintenance rate was high, it was confirmed that the reaction results deteriorated from 1 cycle to 4 cycles and the catalytic performance was inferior.

比較例3
調製例1で得られたMFI型ゼオライト成形体10gに対し、硝酸銀0.1g、純水25mlを用いてイオン交換を行った。副生硝酸を除去したのち、110℃で一晩乾燥させ、続けて450℃で2時間焼成した。得られた銀イオン交換成形体の銀担持量は1.2wt%であった。
Comparative Example 3
Ion exchange was carried out with 0.1 g of silver nitrate and 25 ml of pure water with respect to 10 g of the MFI type zeolite molded product obtained in Preparation Example 1. After removing the by-product nitric acid, it was dried at 110 ° C. overnight and then calcined at 450 ° C. for 2 hours. The amount of silver supported by the obtained silver ion exchange molded product was 1.2 wt%.

得られた銀イオン交換成形体を用いて上記のアンモニアTPD測定を実施した。結果を表1に記載した。350℃〜500℃におけるアンモニア脱離量は0.12mmol/gであり、500℃〜750℃におけるアンモニア脱離量は0.069mmol/gであった。両者の数値から算出された350℃〜500℃におけるアンモニア脱離量に対する500℃〜750℃におけるアンモニア脱離量の割合は55.1%であった。 The above ammonia TPD measurement was carried out using the obtained silver ion exchange molded product. The results are shown in Table 1. The amount of ammonia desorbed at 350 ° C. to 500 ° C. was 0.12 mmol / g, and the amount of ammonia desorbed at 500 ° C. to 750 ° C. was 0.069 mmol / g. The ratio of the amount of ammonia desorbed at 500 ° C. to 750 ° C. to the amount of ammonia desorbed at 350 ° C. to 500 ° C. calculated from both values was 55.1%.

得られた銀イオン交換成形体を用いて、上記の条件で水熱試験および芳香族化の評価を行った。結果を表1に記載した。酸量維持率は高いものの、1サイクル〜4サイクルにかけて反応成績が低下し、触媒性能に劣ることが確認された。 Using the obtained silver ion exchange molded product, a hydrothermal test and an evaluation of aromatization were performed under the above conditions. The results are shown in Table 1. Although the acid content maintenance rate was high, it was confirmed that the reaction results deteriorated from 1 cycle to 4 cycles and the catalytic performance was inferior.

比較例4
調製例1で得られたMFI型ゼオライト成形体5gに対し、硝酸銀0.1g、純水25mlを用いてイオン交換を行った。副生硝酸を除去したのち、110℃で一晩乾燥させ、続けて550℃で6時間焼成した。得られた銀イオン交換成形体の銀担持量は0.6wt%であった。
Comparative Example 4
Ion exchange was carried out with 0.1 g of silver nitrate and 25 ml of pure water with respect to 5 g of the MFI type zeolite molded product obtained in Preparation Example 1. After removing the by-product nitric acid, it was dried at 110 ° C. overnight and then calcined at 550 ° C. for 6 hours. The amount of silver supported by the obtained silver ion exchange molded product was 0.6 wt%.

得られた銀イオン交換成形体を用いて上記のアンモニアTPD測定を実施した。結果を表1に記載した。350℃〜500℃におけるアンモニア脱離量は0.11mmol/gであり、500℃〜750℃におけるアンモニア脱離量は0.014mmol/gであった。両者の数値から算出された350℃〜500℃におけるアンモニア脱離量に対する500℃〜750℃におけるアンモニア脱離量の割合は12.9%であった。 The above ammonia TPD measurement was carried out using the obtained silver ion exchange molded product. The results are shown in Table 1. The amount of ammonia desorbed at 350 ° C. to 500 ° C. was 0.11 mmol / g, and the amount of ammonia desorbed at 500 ° C. to 750 ° C. was 0.014 mmol / g. The ratio of the amount of ammonia desorbed at 500 ° C. to 750 ° C. to the amount of ammonia desorbed at 350 ° C. to 500 ° C. calculated from both values was 12.9%.

得られた銀イオン交換成形体を用いて、上記の条件で水熱試験および芳香族化の評価を行った。結果を表1に記載した。酸量維持率は高いものの、1サイクル〜4サイクルにかけて反応成績が低下し、触媒性能に劣ることが確認された。 Using the obtained silver ion exchange molded product, a hydrothermal test and an evaluation of aromatization were performed under the above conditions. The results are shown in Table 1. Although the acid content maintenance rate was high, it was confirmed that the reaction results deteriorated from 1 cycle to 4 cycles and the catalytic performance was inferior.

Figure 2021109132
Figure 2021109132

本発明の高度に銀が分散した芳香族化合物製造用触媒は、高い耐熱性、耐水熱性を有すと同時に高い生産性を備えることがから、その触媒としての産業的価値は極めて高いものである。 The highly silver-dispersed aromatic compound production catalyst of the present invention has high heat resistance and water heat resistance, and at the same time has high productivity, and therefore has extremely high industrial value as a catalyst. ..

Claims (6)

10員環細孔ゼオライト及びバインダーを含む成形体であって、活性金属として銀を担持し、アンモニア吸着昇温脱離分析における350〜500℃のアンモニア脱離量に対する500〜750℃のアンモニア脱離量の割合が15wt%〜50wt%であることを特徴とする芳香族化合物製造用触媒。 A molded body containing 10-membered ring-pore zeolite and a binder, supporting silver as an active metal, and desorbing ammonia at 500 to 750 ° C. with respect to the amount of ammonia desorbed at 350 to 500 ° C. in the ammonia adsorption heated desorption analysis. A catalyst for producing an aromatic compound, wherein the ratio of the amount is 15 wt% to 50 wt%. 10員環細孔ゼオライトが、下記(i)〜(ii)の特性を満足するメソ細孔および下記(iii)の特性を満足するマクロ細孔を有する10員環細孔ゼオライトであることを特徴とする請求項1に記載の芳香族化合物製造用触媒。
(i)メソ細孔容積が0.05cc/g以上である。
(ii)メソ細孔がピークを有する分布を示し、該ピークの半値幅(hw)がhw≦40nm、該ピークの中心値(μ)が5nm≦μ≦30nmである。
(iii)直径0.2〜200μmの範囲のマクロ細孔のマクロ細孔容積が0.03cc/g以上0.30cc/g以下である。
The 10-membered ring-pore zeolite is a 10-membered ring-pore zeolite having mesopores satisfying the following characteristics (i) to (ii) and macropores satisfying the following characteristics (iii). The catalyst for producing an aromatic compound according to claim 1.
(I) The mesopore volume is 0.05 cc / g or more.
(Ii) The mesopores show a distribution having a peak, the full width at half maximum (hw) of the peak is hw ≦ 40 nm, and the center value (μ) of the peak is 5 nm ≦ μ ≦ 30 nm.
(Iii) The macropore volume of the macropores in the range of 0.2 to 200 μm in diameter is 0.03 cc / g or more and 0.30 cc / g or less.
10員環細孔ゼオライトが、MFI型ゼオライトまたはMEL型ゼオライトであることを特徴とする請求項1又は2に記載の芳香族化合物製造用触媒。 The catalyst for producing an aromatic compound according to claim 1 or 2, wherein the 10-membered ring-pore zeolite is an MFI-type zeolite or a MEL-type zeolite. 10員環細孔ゼオライトが、水蒸気雰囲気下で焼成処理済の10員環細孔ゼオライトであることを特徴とする請求項1〜3のいずれかに記載の芳香族化合物製造用触媒。 The catalyst for producing an aromatic compound according to any one of claims 1 to 3, wherein the 10-membered ring-pore zeolite is a 10-membered ring-pore zeolite that has been calcined in a water vapor atmosphere. バインダーが、シリカであることを特徴とする請求項1〜4のいずれかに記載の芳香族化合物製造用触媒。 The catalyst for producing an aromatic compound according to any one of claims 1 to 4, wherein the binder is silica. 請求項1〜5のいずれかに記載の芳香族化合物製造用触媒の存在下、炭素数4〜炭素数6の炭化水素を500〜650℃の温度範囲内で接触することを特徴とする芳香族化合物の製造方法。 An aromatic characterized by contacting a hydrocarbon having 4 to 6 carbon atoms in a temperature range of 500 to 650 ° C. in the presence of the catalyst for producing an aromatic compound according to any one of claims 1 to 5. Method for producing a compound.
JP2020001865A 2020-01-09 2020-01-09 Catalyst for producing aromatic compounds Active JP7396052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020001865A JP7396052B2 (en) 2020-01-09 2020-01-09 Catalyst for producing aromatic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020001865A JP7396052B2 (en) 2020-01-09 2020-01-09 Catalyst for producing aromatic compounds

Publications (2)

Publication Number Publication Date
JP2021109132A true JP2021109132A (en) 2021-08-02
JP7396052B2 JP7396052B2 (en) 2023-12-12

Family

ID=77058626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020001865A Active JP7396052B2 (en) 2020-01-09 2020-01-09 Catalyst for producing aromatic compounds

Country Status (1)

Country Link
JP (1) JP7396052B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179882B2 (en) 2006-01-31 2013-04-10 旭化成ケミカルズ株式会社 Catalyst for the production of aromatic hydrocarbon compounds
JP6733501B2 (en) 2016-01-18 2020-08-05 東ソー株式会社 Aromatic compound production catalyst and method for producing aromatic compound
JP6947011B2 (en) 2017-12-25 2021-10-13 東ソー株式会社 Zeolite-silica molded product

Also Published As

Publication number Publication date
JP7396052B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
JP6733501B2 (en) Aromatic compound production catalyst and method for producing aromatic compound
JP6862966B2 (en) Metal-containing zeolite
Wang et al. Tandem catalysts for the conversion of methanol to aromatics with excellent selectivity and stability
JP6953711B2 (en) Metal-containing MFI-type zeolite and catalyst for producing aromatic compounds
JP2006524180A (en) Zeolite processing method
JP7119397B2 (en) Zeolite and its manufacturing method
JP2021109132A (en) Catalyst for producing aromatic compound
JP2017119267A (en) Catalyst for manufacturing aromatic compound and method for manufacturing aromatic compound
TW201902861A (en) Process for converting acyclic C5 compound into a cyclic C5 compound and the formulated catalyst composition used therein
JP6947011B2 (en) Zeolite-silica molded product
JP7293622B2 (en) METHOD FOR REGENERATING METAL ION-SUPPORTED ZEOLITE CATALYST
JP3918048B2 (en) Method for producing lower alkene
JP7271975B2 (en) Method for regenerating aromatic compound production catalyst
JP7218553B2 (en) Method for regenerating silver ion-supported zeolite catalyst
US20220355280A1 (en) Novel zeolite, and catalyst for use in production of aromatic hydrocarbon which comprises same
JP2018154538A (en) Silver-containing zeolite
JP2023108285A (en) Method for producing hydrocarbon compound
JP2023055086A (en) Metal-containing mfi type zeolite and catalyst for hydrocarbon compound production containing the same
KR20200083980A (en) Catalyst for producing olefin from dehydrogenation of alkane, and method for producing olefin using the catalyst
JP2022098620A (en) Alkaline earth metal-containing mfi-type zeolite and catalyst for producing hydrocarbon
JP2023055080A (en) Mfi type zeolite and catalyst for hydrocarbon production containing the same
JP2021059484A (en) Novel silver-containing zeolite and zeolite-containing catalyst for producing aromatic hydrocarbons
JP2022172510A (en) Silver-alkaline earth metal-containing mfi-type zeolite and catalyst for producing hydrocarbon
JP2021159884A (en) Alcohol conversion catalyst
JP2022110633A (en) Metal-containing mfi type zeolite and catalyst for producing hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R151 Written notification of patent or utility model registration

Ref document number: 7396052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151