JP2021159884A - Alcohol conversion catalyst - Google Patents

Alcohol conversion catalyst Download PDF

Info

Publication number
JP2021159884A
JP2021159884A JP2020066576A JP2020066576A JP2021159884A JP 2021159884 A JP2021159884 A JP 2021159884A JP 2020066576 A JP2020066576 A JP 2020066576A JP 2020066576 A JP2020066576 A JP 2020066576A JP 2021159884 A JP2021159884 A JP 2021159884A
Authority
JP
Japan
Prior art keywords
zeolite
acid
alcohol
catalyst
conversion catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020066576A
Other languages
Japanese (ja)
Other versions
JP7452205B2 (en
Inventor
紗衣 本望
Sae Hommo
周 大久保
Shu Okubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020066576A priority Critical patent/JP7452205B2/en
Publication of JP2021159884A publication Critical patent/JP2021159884A/en
Application granted granted Critical
Publication of JP7452205B2 publication Critical patent/JP7452205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide an alcohol conversion catalyst having high productivity and a long catalyst life.SOLUTION: An alcohol conversion catalyst contains a 10 membered-ring pore zeolite with an average particle size of 100 nm or less and has an amount of Bronsted acid on the external surface of 0.1-10.0 μmol/g and a silver content of 0.05-3 wt.%.SELECTED DRAWING: None

Description

本発明は、メタノール、エタノール等に代表されるアルコールをパラフィン、オレフィン等の脂肪族炭化水素、芳香族炭化水素等に安定的に優れた生産性で転換することを可能とするアルコール転換触媒に関する。 The present invention relates to an alcohol conversion catalyst capable of stably converting an alcohol typified by methanol, ethanol or the like into an aliphatic hydrocarbon such as paraffin or olefin, an aromatic hydrocarbon or the like with excellent productivity.

近年、石油資源に代わって化学品原料を得るための資源として、天然ガス・石炭を原料としたC1化学が注目されている。なかでもメタノールを原料としてキシレンなどの芳香族炭化水素を製造する方法は、石油化学工業の基礎化学品製造法として重要な分野である。しかし、この反応系では、メタノールから酸触媒によって生成する水がゼオライトの脱アルミニウムを促進させ、急速な触媒劣化を引き起こす点が大きな課題である。また、芳香族化の系においては、コーク析出による触媒劣化も避けられない課題である。よって、該反応系の触媒には、高い耐水熱性、耐コーキング性、ならびに芳香族炭化水素選択性が必須となる。 In recent years, C1 chemistry using natural gas and coal as raw materials has been attracting attention as a resource for obtaining raw materials for chemical products instead of petroleum resources. Among them, the method of producing aromatic hydrocarbons such as xylene from methanol as a raw material is an important field as a method for producing basic chemicals in the petroleum chemical industry. However, in this reaction system, it is a big problem that water generated from methanol by an acid catalyst promotes dealumination of zeolite and causes rapid catalyst deterioration. Further, in the aromatization system, catalyst deterioration due to cork precipitation is also an unavoidable problem. Therefore, high water heat resistance, caulking resistance, and aromatic hydrocarbon selectivity are indispensable for the catalyst of the reaction system.

メタノールからの芳香族炭化水素の製造法として、例えば、MFI型ゼオライトとシリカバインダーから成るシリカ成形体で、リンと亜鉛を含んだ流動床触媒を用いた製造法(特許文献1参照。)、シリカで修飾した結晶性アルミノシリケートに亜鉛を担持させた触媒を用いた芳香族炭化水素の製造法(特許文献2参照。)等が提案され、さらに、ZSM−5にAg、Cu、Niのいずれかを担持した触媒を使用することで、芳香族炭化水素選択性が向上することの報告(非特許文献1参照。)、等がなされている。 As a method for producing an aromatic hydrocarbon from methanol, for example, a production method using a fluidized bed catalyst containing phosphorus and zinc in a silica molded product composed of MFI-type zeolite and a silica binder (see Patent Document 1), silica. A method for producing an aromatic hydrocarbon using a catalyst in which zinc is supported on a crystalline aluminosilicate modified with (see Patent Document 2) has been proposed, and any of Ag, Cu, and Ni is added to ZSM-5. It has been reported that the selectivity of aromatic hydrocarbons is improved by using a catalyst supporting the above (see Non-Patent Document 1).

特許第6574059号Patent No. 6574059 特開2010−208948号公報JP-A-2010-208948

Catalysis Science & Technology 第2巻、105頁(2012年)Catalysis Science & Technology Volume 2, p. 105 (2012)

しかし、特許文献1に提案される方法においては、反応器と再生器の間を循環させることで連続的な触媒再生が可能になる一方で、流動床反応器であることから循環の際の経時的な物質損失がまぬがれず、結果として触媒コストが高額になる点、つまり生産性に課題があった。また、特許文献2に提案される方法においては、ゼオライトをシリケートで被覆する際に複数回の水熱合成が必要という課題を有する上に、p−キシレンの選択率向上に特化した内容であるため、芳香族炭化水素の収率、ならびに触媒の耐水熱性という観点では満足な検討がなされていない。さらに、非特許文献1に提案された方法においては、担持金属による芳香族炭化水素の選択性向上効果は検証されたものの、触媒寿命の点は議論されておらず、改良の余地が残されたものであった。 However, in the method proposed in Patent Document 1, continuous catalyst regeneration is possible by circulating between the reactor and the regenerator, while since it is a fluidized bed reactor, the time lapse during circulation is achieved. There was a problem in that the catalyst cost became high as a result, that is, the productivity was not avoided. Further, the method proposed in Patent Document 2 has a problem that hydrothermal synthesis is required a plurality of times when the zeolite is coated with a silicate, and is specialized in improving the selectivity of p-xylene. Therefore, a satisfactory study has not been made from the viewpoint of the yield of aromatic hydrocarbons and the hydrothermal resistance of the catalyst. Further, in the method proposed in Non-Patent Document 1, although the effect of improving the selectivity of aromatic hydrocarbons by the supported metal was verified, the point of catalyst life was not discussed, and there was room for improvement. It was a thing.

そこで、本発明者らは、上記の課題を解決するため鋭意検討を行った結果、特定の平均粒子径を有する10員環細孔ゼオライトを含み、外表面ブレンステッド酸量と銀含有量が特定量であることを特徴とするアルコール転換触媒を用いることで、耐水熱性、耐コーキング性、触媒寿命、およびパラフィン、オレフィン、芳香族炭化水素の生産性が改善され、優れた性能を発揮する触媒となることを見出し、本発明を完成するに至った。 Therefore, as a result of diligent studies to solve the above problems, the present inventors have specified 10-membered ring-pore zeolite having a specific average particle size, and the outer surface blended acid content and silver content are specified. By using an alcohol conversion catalyst, which is characterized by an amount, the water heat resistance, coking resistance, catalyst life, and productivity of paraffin, olefin, and aromatic hydrocarbon are improved, and the catalyst exhibits excellent performance. It was found that this was the case, and the present invention was completed.

即ち、本発明は、平均粒子径100nm以下の10員環細孔ゼオライトを含み、外表面ブレンステッド酸量が0.1〜10.0μmol/gかつ銀含有量が0.05〜3wt%であることを特徴とするアルコール転換触媒に関するものである。 That is, the present invention contains a 10-membered ring-pore zeolite having an average particle diameter of 100 nm or less, an outer surface Bronsted acid content of 0.1 to 10.0 μmol / g, and a silver content of 0.05 to 3 wt%. It relates to an alcohol conversion catalyst characterized by the above.

以下に、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明のアルコール転換触媒は、アルコールをエタン,プロパン,ブタン等のパラフィン、エチレン,プロピレン,ブテン等のオレフィン、等に代表される脂肪族炭化水素、ベンゼン,キシレン,トルエン等に代表される芳香族炭化水素、等の炭化水素化合物への安定的な転換を可能とする触媒であり、平均粒子径100nm以下の10員環細孔ゼオライトを含み、外表面ブレンステッド酸量が0.1〜10.0μmol/gかつ銀含有量が0.05〜3wt%であることを特徴とするアルコール転換触媒である。 In the alcohol conversion catalyst of the present invention, the alcohol is an aliphatic hydrocarbon represented by paraffins such as ethane, propane and butane, olefins such as ethylene, propylene and butene, and aromatics represented by benzene, xylene and toluene. It is a catalyst that enables stable conversion to hydrocarbon compounds such as hydrocarbons, contains 10-membered ring-pore zeolite with an average particle size of 100 nm or less, and has an outer surface blended acid amount of 0.1 to 10. It is an alcohol conversion catalyst characterized by having 0 μmol / g and a silver content of 0.05 to 3 wt%.

本発明のアルコール転換触媒は平均粒子径(以下、PDと記すこともある。)が100nm以下のゼオライトを含んでなるものであり、特に熱安定性にも優れる触媒となることから、5nm≦PD≦100nmであることが望ましい。ここで、PDが100nmを越えるものである場合、アルコール転換反応の効率に劣るものとなる。 The alcohol conversion catalyst of the present invention contains zeolite having an average particle size (hereinafter, also referred to as PD) of 100 nm or less, and is particularly excellent in thermal stability. Therefore, 5 nm ≦ PD It is desirable that the value is ≦ 100 nm. Here, when PD exceeds 100 nm, the efficiency of the alcohol conversion reaction is inferior.

なお、本発明におけるPDは、その測定方法に制限はなく、例えば走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)の写真から任意の粒子を100個以上選んで、その平均直径を求める方法、ゼオライトの外表面積から以下の式(1)を用いて算出する方法、等の任意の方法を挙げることができる。
PD=6/S×(1/(2.29×10)+0.18×10−6) (1)
(ここで、Sは外表面積(m/g)を示すものである。)
なお、式(1)における外表面積(S(m/g))は、液体窒素温度における一般的な窒素吸着法を用い、t−plot法から求めることができる。例えば、tを吸着量の厚みとするときに、tについて0.6〜1nmの範囲の測定点を直線近似し、得られた回帰直線の傾きからゼオライトの外表面積を求めるものである。
The measurement method of PD in the present invention is not limited. For example, 100 or more arbitrary particles are selected from photographs of a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and the average diameter thereof is obtained. Any method can be mentioned, such as a method, a method of calculating from the outer surface surface of zeolite using the following formula (1), and the like.
PD = 6 / S × (1 / (2.29 × 10 6 ) + 0.18 × 10-6 ) (1)
(Here, S indicates the outer surface area (m 2 / g).)
The outer surface area (S (m 2 / g)) in the formula (1) can be obtained from the t-prot method using a general nitrogen adsorption method at a liquid nitrogen temperature. For example, when t is the thickness of the adsorption amount, the measurement points in the range of 0.6 to 1 nm are linearly approximated with respect to t, and the outer surface surface of the zeolite is obtained from the slope of the obtained regression line.

そして、中でも簡便な測定が可能であることから、SEM又はTEMによる方法が好ましい。 And, above all, the method by SEM or TEM is preferable because simple measurement is possible.

本発明のアルコール転換触媒は10員環細孔ゼオライトを含んでなるものであり、骨格構造が10員環構造を有し、細孔を有するゼオライトであれば如何なるものでも良く、該10員環細孔構造を有するゼオライトとしては、具体的にはAEL、EUO、FER、HEU、MEU、MEL、MFI、NES型等のゼオライトを挙げることができ、特にアルコール転換触媒として期待されるものとなることからMFI型またはMEL型であることが好ましい。そして、例えばMFI型としては、国際ゼオライト学会で定義される構造コードMFIに属するアルミノシリケート化合物を挙げることができる。 The alcohol conversion catalyst of the present invention comprises a 10-membered ring-pore zeolite, and any zeolite having a skeleton structure having a 10-membered ring structure and pores may be used. Specific examples of the zeolite having a pore structure include zeolites of AEL, EUO, FER, HEU, MEU, MEL, MFI, NES type and the like, and are particularly expected as alcohol conversion catalysts. It is preferably MFI type or MEL type. And, for example, as the MFI type, an aluminosilicate compound belonging to the structure code MFI defined by the International Zeolite Society can be mentioned.

本発明のアルコール転換触媒は、外表面のブレンステッド酸量(以下、B酸量と記す場合がある。)が0.1〜10.0μmol/gであり、特定の範囲内の外表面B酸量を有することで特に優れた触媒性能を示すものとなる。ここで、外表面B酸量が0.1μmol/g未満である場合、アルコール転換の際の生産効率、選択性の触媒性能に劣るものとなる。一方、10.0μmol/gよりも大きい場合、触媒表面における副反応、コーキングが生じやすく、触媒性能が悪化したものとなる。 The alcohol conversion catalyst of the present invention has an outer surface Bronsted acid amount (hereinafter, may be referred to as B acid amount) of 0.1 to 10.0 μmol / g, and the outer surface B acid within a specific range. Having an amount will show particularly excellent catalytic performance. Here, when the amount of B acid on the outer surface is less than 0.1 μmol / g, the production efficiency at the time of alcohol conversion and the catalytic performance of selectivity are inferior. On the other hand, if it is larger than 10.0 μmol / g, side reactions and caulking on the catalyst surface are likely to occur, and the catalyst performance is deteriorated.

本発明のアルコール転換触媒は、銀による酸点の保護効果を得ることができることから銀を0.05〜3wt%含有するものである。ここで、銀の含有量が0.05wt%未満である場合、銀による酸点の保護効果を充分に得ることができない。一方、3wt%よりも多い場合、銀の凝集粒子表面における副反応が生じやすく触媒性能が悪化したものとなる。 The alcohol conversion catalyst of the present invention contains 0.05 to 3 wt% of silver because the effect of protecting the acid spot by silver can be obtained. Here, when the silver content is less than 0.05 wt%, the effect of protecting the acid spot by silver cannot be sufficiently obtained. On the other hand, if it is more than 3 wt%, a side reaction is likely to occur on the surface of the agglutinated particles of silver, and the catalytic performance is deteriorated.

そして、該アルコール転換触媒がアルコールの転換効率、炭化水素化合物の選択性に優れる触媒となることから、B酸量は0.01〜1.0mmol/gであることが好ましく、特に0.01〜0.09mmol/gであるものが好ましい。 Since the alcohol conversion catalyst is a catalyst having excellent alcohol conversion efficiency and hydrocarbon compound selectivity, the amount of B acid is preferably 0.01 to 1.0 mmol / g, and particularly 0.01 to 1.0 mmol / g. It is preferably 0.09 mmol / g.

ここで、該アルコール転換触媒のB酸量とは、B酸点の量を示すものであり、ゼオライトに存在する酸性OH基を示すものである。通常、ゼオライトは、その外表面及び(ミクロ)細孔内にB酸点を有するものである。そして、外表面にB酸点をわずかしか有さないものとは、そのB酸点はそのほとんどが(ミクロ)細孔内に存在することを意味するものである。 Here, the amount of B acid in the alcohol conversion catalyst indicates the amount of B acid point, and indicates the acidic OH group present in the zeolite. Zeolites usually have B acid points on their outer surface and in (micro) pores. And, having only a few B acid points on the outer surface means that most of the B acid points are present in the (micro) pores.

該アルコール転換触媒における外表面のB酸量の確認方法としては、その確認を行うことが可能であれば如何なる方法をも用いることが可能であり、例えばB酸点に対する吸着性を有する2,4−ジメチルキノリンの吸着により確認することが可能である。2,4−ジメチルキノリンは、ゼオライト(細孔内を含む)に存在するB酸点(酸性OH基)との吸着性質を有している。しかし、MFI型のようにゼオライトの(ミクロ)細孔径が2,4−ジメチルキノリン分子より小さい場合、(ミクロ)細孔内に侵入することができず、(ミクロ)細孔内のB酸点と吸着することは出来ない。つまり、ゼオライトの外表面のB酸点のみと吸着するものとなる。よって、MFI型ゼオライトの外表面のB酸点への2,4−ジメチルキノリンの吸着量を求めることで、外表面のB酸量を定量することができる。 As a method for confirming the amount of B acid on the outer surface of the alcohol conversion catalyst, any method can be used as long as the confirmation can be performed. For example, 2,4 having an adsorptivity to the B acid point. -It can be confirmed by adsorption of dimethylquinoline. 2,4-Dimethylquinoline has an adsorptive property with the B acid point (acidic OH group) present in zeolite (including in the pores). However, when the (micro) pore diameter of the zeolite is smaller than the 2,4-dimethylquinoline molecule as in the MFI type, it cannot penetrate into the (micro) pores and the B acid point in the (micro) pores. Cannot be adsorbed. That is, it adsorbs only the B acid point on the outer surface of the zeolite. Therefore, the amount of B acid on the outer surface can be quantified by determining the amount of 2,4-dimethylquinoline adsorbed on the B acid point on the outer surface of the MFI-type zeolite.

より具体的な方法としては、前処理として400℃で2時間の脱気・脱水処理を行った試料の150℃における赤外吸収スペクトル測定を行う。そして、脱気・脱水処理を行った試料に2,4−ジメチルキノリンガスを導入して30分間吸着させ、150℃での排気により余剰2,4−ジメチルキノリンを除き、2,4−ジメチルキノリン吸着試料の調製を行い150℃における赤外吸収スペクトル測定を行う。つまり、2,4−ジメチルキノリン吸着前後の赤外吸収の差スペクトルにおいて、3600〜3650cm−1の範囲で赤外線吸収の差(減少)を定量することで、外表面のB酸量を得ることができる。なお、2,4−ジメチルキノリンはゼオライト表面のシラノール部位にも吸着するが、シラノールのO−H伸縮振動に由来する吸収は、3700〜3800cm−1に観測される。一方、ゼオライトの外表面のB酸点のO−H伸縮振動に由来する吸収は、3600〜3650cm−1に観測され、2,4−ジメチルキノリンを吸着してB酸点のO−H伸縮振動に由来する吸収3600〜3650cm−1の範囲に赤外吸収スペクトルの減少がみられることは、2,4−ジメチルキノリンがゼオライトの外表面のB酸点に吸着したことを示す。 As a more specific method, infrared absorption spectrum measurement at 150 ° C. is performed on a sample that has been degassed and dehydrated at 400 ° C. for 2 hours as a pretreatment. Then, 2,4-dimethylquinoline gas is introduced into the degassed / dehydrated sample and adsorbed for 30 minutes, and excess 2,4-dimethylquinoline is removed by exhaust at 150 ° C. to remove 2,4-dimethylquinoline. The adsorption sample is prepared and the infrared absorption spectrum is measured at 150 ° C. That is, the amount of B acid on the outer surface can be obtained by quantifying the difference (decrease) in infrared absorption in the range of 3600 to 3650 cm -1 in the infrared absorption difference spectrum before and after adsorption of 2,4-dimethylquinoline. can. Although 2,4-dimethylquinoline is also adsorbed on the silanol site on the zeolite surface, absorption derived from the oh expansion and contraction vibration of silanol is observed at 3700 to 3800 cm -1. On the other hand, absorption derived from the OH expansion and contraction vibration of the B acid point on the outer surface of the zeolite was observed at 3600 to 3650 cm -1 , adsorbing 2,4-dimethylquinoline and OH expansion and contraction vibration of the B acid point. The decrease in the infrared absorption spectrum in the range of absorption 3600 to 3650 cm -1 derived from the above indicates that 2,4-dimethylquinoline was adsorbed on the B acid point on the outer surface of the zeolite.

また、該アルコール転換触媒のB酸量(外表面及び(ミクロ)細孔内に存在するB酸点)の測定方法としては、その測定を行うことが可能であれば如何なる方法をも用いることが可能であり、例えばB酸点に対する吸着性を有するピリジンの吸着により確認することが可能である。ピリジンは、ゼオライト(細孔内を含む)に存在するB酸点(酸性OH基)との吸着性質を有しており、ゼオライトの(ミクロ)細孔径がピリジンより大きい場合、(ミクロ)細孔内にも侵入することができ、外表面及び(ミクロ)細孔内のB酸点とも吸着出来る。よって、MFI型ゼオライトの細孔内に存在するB酸点も含め、ゼオライトに存在するB酸量を定量することができる。 Further, as a method for measuring the amount of B acid (B acid point existing on the outer surface and in the (micro) pores) of the alcohol conversion catalyst, any method can be used as long as the measurement can be performed. It is possible, for example, it can be confirmed by adsorption of pyridine having adsorptivity to the B acid point. Pyridine has an adsorption property with the B acid point (acidic OH group) existing in the zeolite (including in the pores), and when the (micro) pore diameter of the zeolite is larger than the pyridine, the (micro) pores It can also penetrate inside and can adsorb both the outer surface and the B acid points in the (micro) pores. Therefore, the amount of B acid present in the zeolite can be quantified, including the B acid point existing in the pores of the MFI type zeolite.

より具体的な方法としては、前処理として400℃で2時間の脱気・脱水処理を行った試料の150℃における赤外吸収スペクトル測定を行う。そして、脱気・脱水処理を行った試料にピリジンガスを導入して10分間吸着させ、150℃での排気により余剰ピリジンを除き、ピリジン吸着試料の調製を行い150℃における赤外吸収スペクトル測定を行う。つまり、ピリジン吸着前後の赤外吸収の差スペクトルにおいて、1515〜1565cm−1の範囲で赤外線吸収の差(減少)を定量することで、細孔内も含めたB酸量を得ることができる。 As a more specific method, infrared absorption spectrum measurement at 150 ° C. is performed on a sample that has been degassed and dehydrated at 400 ° C. for 2 hours as a pretreatment. Then, pyridine gas is introduced into the degassed / dehydrated sample and adsorbed for 10 minutes, excess pyridine is removed by exhaust at 150 ° C., a pyridine adsorbed sample is prepared, and infrared absorption spectrum measurement at 150 ° C. is performed. conduct. That is, in the infrared absorption difference spectrum before and after pyridine adsorption, the amount of B acid including the inside of the pores can be obtained by quantifying the difference (decrease) in infrared absorption in the range of 1515 to 1565 cm -1.

そして、該アルコール転換触媒は、特にアルコール転換効率、炭化水素化合物の選択性に優れる触媒となることから、外表面に僅かなB酸点を有し、B酸点のほとんどが(ミクロ)細孔内に存在するものであることが好ましい、その外表面に存在するB酸点は、全B酸点の1〜10%のものであることが好ましい。なお、外表面のB酸点の割合は、上述したゼオライトの外表面のB酸量を、ゼオライト(細孔内を含む)に存在するB酸量の割合として求められる。 Since the alcohol conversion catalyst is particularly excellent in alcohol conversion efficiency and hydrocarbon compound selectivity, it has a slight B acid point on the outer surface, and most of the B acid points are (micro) pores. It is preferable that the compound is present inside, and the B acid point present on the outer surface thereof is preferably 1 to 10% of the total B acid point. The ratio of the B acid point on the outer surface is determined by using the amount of B acid on the outer surface of the above-mentioned zeolite as the ratio of the amount of B acid present in the zeolite (including the inside of the pores).

そして、PD≦100nmである10員環細孔ゼオライトは、一般的な公知の方法を用いることにより得ることができる。具体的にはカチオンとしてアルカリ金属及び/又はアルカリ土類金属を含む化合物、有機構造指向剤とアルミノシリケートゲルとを混合し、得られた結晶物を焼成することにより製造することができる。その際のアルカリ金属、アルカリ土類金属を含む化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等を挙げることでき、中でも水酸化ナトリウムが好ましい。有機構造指向剤としては、例えばテトラプロピルアンモニウム水酸化物、テトラブチルアンモニウム水酸化物、テトラエチルアンモニウム水酸化物等を挙げることができる。また、アルミノシリケートゲルとしては、例えば不定形アルミノシリケートゲル等を挙げることができる。 Then, the 10-membered ring-pore zeolite having PD ≦ 100 nm can be obtained by using a generally known method. Specifically, it can be produced by mixing a compound containing an alkali metal and / or an alkaline earth metal as a cation, an organic structure-directing agent and an aluminosilicate gel, and calcining the obtained crystal product. Examples of the compound containing an alkali metal and an alkaline earth metal at that time include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and the like, and sodium hydroxide is particularly preferable. Examples of the organic structure-directing agent include tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and tetraethylammonium hydroxide. Moreover, as an aluminosilicate gel, for example, an amorphous aluminosilicate gel and the like can be mentioned.

さらに、特定量の外表面B酸量を有するゼオライトを製造する際には、上記により得られた結晶物を焼成する前にイオン交換を行い、焼成の際の一部又は全部を水熱処理とし、その後、更にイオン交換を行う方法、上記により得られた結晶物を焼成した後にイオン交換を行いプロトン型ゼオライトとし、その後に水熱雰囲気下で焼成を行う方法、等により製造することが可能となる。 Further, when producing a zeolite having a specific amount of outer surface B acid, ion exchange is performed before firing the crystal obtained as described above, and a part or all of the firing is subjected to hydrothermal treatment. After that, it can be produced by a method of further ion exchange, a method of calcining the crystal obtained as described above, then ion exchange to obtain a proton-type zeolite, and then calcining in a hydrothermal atmosphere. ..

その際の焼成条件としては、処理温度としては300〜900℃が好ましく、特に400〜700℃であることが好ましい。処理時間は、工業的には好ましくは5分〜25時間である。雰囲気としては、例えば窒素、空気、酸素、アルゴン、その他不活性ガスのうち一つもしくは二つ以上の組み合わせのガスをも挙げることができる。そして、該焼成工程の一部又は全部で水熱(スチーム)処理を行うことにより、B酸点のアルミニウムが脱離される。水熱処理の処理温度としては400〜750℃が好ましく、特に500〜650℃が好ましい。また、水蒸気濃度は5〜100%が好ましく、特に10〜80%であることが好ましい。 As the firing conditions at that time, the treatment temperature is preferably 300 to 900 ° C, particularly preferably 400 to 700 ° C. The treatment time is industrially preferably 5 minutes to 25 hours. The atmosphere may also include, for example, nitrogen, air, oxygen, argon, or any other combination of one or more of the inert gases. Then, by performing a hydrothermal (steam) treatment in part or all of the firing step, the aluminum at the B acid point is desorbed. The treatment temperature of the hydrothermal treatment is preferably 400 to 750 ° C, particularly preferably 500 to 650 ° C. The water vapor concentration is preferably 5 to 100%, particularly preferably 10 to 80%.

また、イオン交換は、焼成工程の前後に行うものであり、複数回のイオン交換に分割して行ってもよい。また、イオン交換は、塩化アンモニウム、塩酸、硝酸等の酸を用いたイオン交換が挙げられ、塩酸、硝酸によるものが好ましい。また、イオン交換は水での洗浄で代用することもできる。 Further, the ion exchange is performed before and after the firing step, and may be divided into a plurality of times of ion exchange. Further, the ion exchange includes ion exchange using an acid such as ammonium chloride, hydrochloric acid and nitric acid, and those using hydrochloric acid and nitric acid are preferable. In addition, ion exchange can be replaced by washing with water.

該アルコール転換触媒の銀の導入方法としては、例えば上記特性を有するゼオライトあるいはゼオライト成形体に対し、イオン交換、含浸担持等の方法により銀を導入する方法を挙げることができる。 Examples of the method for introducing silver of the alcohol conversion catalyst include a method of introducing silver into a zeolite or zeolite molded product having the above characteristics by a method such as ion exchange or impregnation support.

本発明のアルコール転換触媒は、アルコールから炭化水素化合物を製造する際の生産性、選択性に優れる触媒としての作用を有するものである。 The alcohol conversion catalyst of the present invention has an action as a catalyst having excellent productivity and selectivity in producing a hydrocarbon compound from an alcohol.

そして、アルコール転換触媒とする際には、その取り扱い性、触媒性能に優れる触媒となることから成形体としての形状付与を行うことが好ましい。形状付与を行う際には如何なる方法により成形してもよく、例えば、ゼオライト粉末をそのまま圧縮成形等により所定形状に成形し成形体とする方法、所定割合のバインダーをゼオライトに混合し、場合によっては更なる添加剤等を所定割合で混合し、その混合物を所定形状に成形し成形体とする方法、さらには焼結を付随し成形体とする方法などを挙げることが出来る。そして、本発明のアルコール転換触媒とする際には、成形体としての成形性に優れることはもとより、高い圧壊強度を示しその取り扱い性、触媒寿命にも優れるものとなることから、該ゼオライト及びバインダーとからなる成形体であることが好ましく、より良好な触媒性能を示すものとなることから該ゼオライト及びシリカとからなる成形体であることがより好ましい。その際のシリカとしては、シリカと称される範疇に属するものであれば如何なるものであってもよく、特定の結晶構造を有するもの、また、非結晶性のものであってもよい。さらに、シリカの粒子径や凝集径等に関しても如何なる制限もない。また、該ゼオライトとシリカの配合割合は任意であり、中でも特に優れた触媒性能、取り扱い性、触媒寿命を示すアルコール転換触媒となることから、該ゼオライト:シリカ=50〜95:50〜5(重量割合)であることが好ましく、特に60〜90:40〜10であることが好ましい。 When the alcohol conversion catalyst is used, it is preferable to give the shape as a molded product because the catalyst is excellent in handleability and catalytic performance. When the shape is imparted, it may be molded by any method. For example, a method in which zeolite powder is directly molded into a predetermined shape by compression molding or the like to form a molded product, a predetermined ratio of binder is mixed with zeolite, and in some cases, the zeolite is mixed. Examples thereof include a method in which further additives and the like are mixed at a predetermined ratio and the mixture is molded into a predetermined shape to form a molded product, and a method in which sintering is accompanied to form a molded product. When the alcohol conversion catalyst of the present invention is used, not only is it excellent in moldability as a molded body, but it also exhibits high crushing strength and is excellent in handleability and catalyst life. Therefore, the zeolite and the binder are excellent. A molded body made of the above is preferable, and a molded body made of the zeolite and silica is more preferable because it exhibits better catalytic performance. The silica at that time may be any silica as long as it belongs to the category called silica, and may have a specific crystal structure or may be amorphous. Furthermore, there are no restrictions on the particle size, agglutination diameter, etc. of silica. Further, the mixing ratio of the zeolite and silica is arbitrary, and the zeolite: silica = 50 to 95: 50 to 5 (weight) because the alcohol conversion catalyst exhibits particularly excellent catalyst performance, handleability, and catalyst life. The ratio) is preferably 60 to 90:40 to 10.

該アルコール転換触媒は、その形状が如何なるものであってもよく、例えば円柱形状、円筒形状、三角柱形状,四角柱形状,五角柱形状,六角柱形状等の多角柱形状、中空多角柱形状、球形状等を挙げることができ、中でも、連続生産性に優れ、かつ圧壊強度の高い触媒となることから円柱形状、円筒形状であることが好ましい。また、その直径,幅,長さ等のサイズ、嵩密度,真密度等の密度としては充填効率等を考慮し任意に選択可能であり、特に炭化水素化合物を有効に製造することが可能となる触媒となることから、径1〜10mmの円柱形状又は厚さ0.5〜5.0mmの円筒形状を有するものであることが好ましい。さらに、該アルコール転換触媒は、更に担持、イオン交換、物理混合、蒸着等の処理により、任意の金属種を導入したものであっても良い。 The alcohol conversion catalyst may have any shape, for example, a cylindrical shape, a cylindrical shape, a triangular prism shape, a quadrangular prism shape, a pentagonal prism shape, a hexagonal prism shape, or the like, a hollow polygonal prism shape, or a sphere. The shape and the like can be mentioned, and among them, a cylindrical shape and a cylindrical shape are preferable because the catalyst has excellent continuous productivity and high crushing strength. In addition, the size such as diameter, width, and length, and the density such as bulk density and true density can be arbitrarily selected in consideration of filling efficiency and the like, and in particular, a hydrocarbon compound can be effectively produced. Since it serves as a catalyst, it preferably has a cylindrical shape having a diameter of 1 to 10 mm or a cylindrical shape having a thickness of 0.5 to 5.0 mm. Further, the alcohol conversion catalyst may be one in which any metal species is introduced by further treatments such as loading, ion exchange, physical mixing, and vapor deposition.

該アルコール転換触媒を用いる炭化水素化合物の製造方法では、原料としてメタノール、エタノール、ブタノール等に代表されるアルコールを接触させる方法を挙げることができる。一般的にゼオライトを用いたアルコールを原料とする転換反応においては、酸触媒によるアルコールの脱水反応が生じ、多量の水が発生する。そして、多量の水の発生に起因する高温・高濃度水蒸気の条件によりゼオライトの脱アルミニウムが促進し、触媒の劣化を進行させる。しかし、本発明のアルコール転換触媒を構成するゼオライトは、高い耐水熱性を有し、高温および水蒸気によるゼオライトの脱アルミニウムを抑制できることから、触媒の劣化を抑制することができる。また、外表面の酸量が特定量であるため、炭化水素化合物の生成に伴うコーク析出に対しても高い耐コーキング性を有する。これらの点により、当該反応系においても優れた生産性および触媒寿命を発揮することが可能となる。 Examples of the method for producing a hydrocarbon compound using the alcohol conversion catalyst include a method in which an alcohol typified by methanol, ethanol, butanol or the like is brought into contact with the raw material. Generally, in a conversion reaction using alcohol as a raw material using zeolite, an acid-catalyzed dehydration reaction of alcohol occurs, and a large amount of water is generated. Then, the dealumination of the zeolite is promoted under the conditions of high temperature and high concentration water vapor caused by the generation of a large amount of water, and the deterioration of the catalyst is promoted. However, the zeolite constituting the alcohol conversion catalyst of the present invention has high water heat resistance and can suppress dealumination of the zeolite due to high temperature and steam, so that deterioration of the catalyst can be suppressed. Further, since the amount of acid on the outer surface is a specific amount, it has high caulking resistance against coke precipitation accompanying the formation of hydrocarbon compounds. From these points, it becomes possible to exhibit excellent productivity and catalyst life even in the reaction system.

また、高い耐水熱性を有することから、炭素数に対する水酸基割合が高いため水の発生量の多いメタノールを原料としても、炭素数が1であるメタノールから炭素数2以上の脂肪族炭化水素、芳香族炭化水素等の炭化水素化合物を効率的に製造することが可能となることからメタノール転換反応とすることが好ましく、メタノール転換触媒として用いることが好ましい。 In addition, since it has high water heat resistance, even if methanol, which generates a large amount of water because of its high ratio of hydroxyl groups to carbon number, is used as a raw material, from methanol having 1 carbon number to aliphatic hydrocarbons having 2 or more carbon atoms, aromatics. Since it is possible to efficiently produce a hydrocarbon compound such as a hydrocarbon, it is preferable to carry out a methanol conversion reaction, and it is preferable to use it as a methanol conversion catalyst.

そして、炭化水素化合物を製造する際の反応温度は特に制限されるものではなく、炭化水素化合物の製造が可能であればよい。なかでも、必要以上の耐熱反応装置を要しない炭化水素化合物の効率的な製造方法となることから350〜650℃の範囲が望ましい。また、反応圧力にも制限はなく、例えば0.05MPa〜5MPa程度の圧力範囲で運転が可能である。そして反応原料の供給は、該触媒体積に対し原料ガスの体積の比として特に制限されるものではなく、例えば1h−1〜50000h−1程度の空間速度を挙げることができる。その際には、窒素等の不活性ガス、水素、一酸化炭素、二酸化炭素から選ばれる単一または混合ガスにより希釈したものとして用いることもできる。 The reaction temperature at the time of producing the hydrocarbon compound is not particularly limited, as long as the hydrocarbon compound can be produced. Above all, the range of 350 to 650 ° C. is desirable because it is an efficient method for producing a hydrocarbon compound that does not require an unnecessarily heat-resistant reactor. Further, the reaction pressure is not limited, and the operation can be performed in a pressure range of, for example, about 0.05 MPa to 5 MPa. The supply of the reaction raw material is not particularly limited as the ratio of the volume of the raw material gas to the volume of the catalyst, and for example, a space velocity of about 1h -1 to 50,000h -1 can be mentioned. In that case, it can also be used as a diluted gas with an inert gas such as nitrogen, hydrogen, carbon monoxide, or carbon dioxide selected from a single gas or a mixed gas.

また、製造される炭化水素化合物としては、脂肪族炭化水素、芳香族炭化水素が挙げられ、脂肪族炭化水素としては、脂肪族炭化水素を称される範疇に属するものであればよく、例えばエタン、プロパン、ブタン、ヘキサン等のパラフィン;エチレン、プロピレン、ブテン、ヘキセン等のオレフィンを挙げることができ、芳香族炭化水素としては、芳香族炭化水素と称される範疇に属するものであれば特に制限はなく、例えばベンゼン、トルエン、キシレン、トリメチルベンゼン、エチルベンゼン、エチルトルエン、プロピルベンゼン、ブチルベンゼン、ナフタレン、メチルナフタレン等を挙げることができる。 Further, examples of the hydrocarbon compound to be produced include aliphatic hydrocarbons and aromatic hydrocarbons, and examples of the aliphatic hydrocarbons may be those belonging to the category referred to as aliphatic hydrocarbons, for example, ethane. , Paraffins such as propane, butane and hexane; olefins such as ethylene, propylene, butene and hexene can be mentioned, and aromatic hydrocarbons are particularly limited as long as they belong to the category called aromatic hydrocarbons. However, for example, benzene, toluene, xylene, trimethylbenzene, ethylbenzene, ethyltoluene, propylbenzene, butylbenzene, naphthalene, methylnaphthalene and the like can be mentioned.

本発明のアルコール転換触媒は、優れた耐水熱性、耐コーキング性、選択性および触媒寿命を有し、長期にわたって安定的に脂肪族炭化水素、芳香族炭化水素に代表される炭化水素化合物の製造が可能となることから、工業的な有用性が期待されるものである。 The alcohol conversion catalyst of the present invention has excellent hydrothermal resistance, coking resistance, selectivity and catalyst life, and can stably produce hydrocarbon compounds typified by aliphatic hydrocarbons and aromatic hydrocarbons over a long period of time. Since it is possible, it is expected to be industrially useful.

以下に、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

なお、実施例および比較例に用いた10員環細孔ゼオライトは、特許6070336号に基づき調製を行った。また、ゼオライト及びアルコール転換触媒は、以下の方法により測定した。 The 10-membered ring-pore zeolite used in Examples and Comparative Examples was prepared based on Japanese Patent No. 60070336. The zeolite and alcohol conversion catalyst were measured by the following methods.

〜平均粒子径の測定〜
平均粒子径は、透過型電子顕微鏡(以下、TEMと記す場合がある。)により測定を行った。TEMは、透過型電子顕微鏡(日本電子株式会社製、(商品名)JEM−2100、加速電圧200kV、観察倍率3万倍)を用い、乳鉢で軽く粉砕した試料をアセトン中に超音波分散し、プラスチック支持膜上に滴下し自然乾燥させたものを検鏡用試料とし、写真を撮影した。写真中の各一次粒子について、最長径とその中点において直角方向の径の平均を測定し、合計300個の粒子の平均を平均粒子径とした。
~ Measurement of average particle size ~
The average particle size was measured with a transmission electron microscope (hereinafter, may be referred to as TEM). For TEM, a transmission electron microscope (manufactured by JEOL Ltd., (trade name) JEM-2100, acceleration voltage 200 kV, observation magnification 30,000 times) was used, and a sample lightly crushed in a dairy pot was ultrasonically dispersed in acetone. A sample was taken as a sample for a microscope, which was dropped on a plastic support film and naturally dried. For each primary particle in the photograph, the average of the diameters in the direction perpendicular to the longest diameter and its midpoint was measured, and the average of a total of 300 particles was taken as the average particle diameter.

〜2,4−ジメチルキノリン吸着赤外吸収分光測定〜
赤外吸収分光の測定は、FT−IR測定装置((商品名)FT/IR−6700,日本分光株式会社製)を用いて、透過法により測定を行った。MCT検出器を使用し、積算回数256回にてスペクトルを得た。試料は直径13mmのディスクに成形した後、石英製真空脱気セル内のディスクホルダーに設置することで、赤外光路上に垂直に設置した。試料の前処理として、真空排気下、10℃/分で400℃まで昇温し、2時間保持した。150℃に冷却後、2,4−ジメチルキノリン吸着前の赤外吸収スペクトルを測定した。2,4−ジメチルキノリンガスを導入し、30分間吸着させ、150℃で1時間真空排気した後、2,4−ジメチルキノリン吸着後の赤外吸収スペクトルを測定した。2,4−ジメチルキノリン吸着後の赤外吸収スペクトルと吸着前のスペクトルの差をとり、吸着による赤外吸収の変化を測定した。この差スペクトルのうち3600cm−1付近のピークがブレンステッド酸に吸着した2,4−ジメチルキノリンの吸収スペクトルのピークであり、この面積強度を求めた後、ランベルト−ベア(Lamber−berr)の法則により下記の式(2)よりB酸量を求めた。
B酸量(μmol/mg)=A・S/(W・ε) (2)
(ここで、A;対象のピークのピーク面積強度(cm−1)、S;サンプル断面積(cm)、W;サンプル重量(mg)、ε;積分吸光係数であり、3.7cm・μmol−1、のそれぞれを示す。)
〜ピリジン吸着赤外吸収分光測定〜
上記の2,4−ジメチルキノリン吸着赤外吸収分光測定において、ピリジンガスを導入し、10分間吸着させた点のみを変更し、同一の装置、同一の手法で測定した。
~ 2,4-Dimethylquinoline adsorption infrared absorption spectroscopy ~
The infrared absorption spectroscopy was measured by a transmission method using an FT-IR measuring device ((trade name) FT / IR-6700, manufactured by Nippon Spectroscopy Co., Ltd.). A spectrum was obtained after 256 integrations using an MCT detector. The sample was formed into a disc having a diameter of 13 mm and then placed in a disc holder in a quartz vacuum degassing cell, so that the sample was placed vertically on the infrared optical path. As a pretreatment of the sample, the temperature was raised to 400 ° C. at 10 ° C./min under vacuum exhaust and held for 2 hours. After cooling to 150 ° C., the infrared absorption spectrum before adsorption of 2,4-dimethylquinoline was measured. 2,4-Dimethylquinoline gas was introduced, adsorbed for 30 minutes, evacuated at 150 ° C. for 1 hour, and then the infrared absorption spectrum after adsorbing 2,4-dimethylquinoline was measured. The difference between the infrared absorption spectrum after adsorption of 2,4-dimethylquinoline and the spectrum before adsorption was taken, and the change in infrared absorption due to adsorption was measured. Of this difference spectrum, the peak near 3600 cm -1 is the peak of the absorption spectrum of 2,4-dimethylquinoline adsorbed on Bronsted acid, and after determining this area intensity, Lamber-berr's law The amount of B acid was calculated from the following formula (2).
Amount of B acid (μmol / mg) = A · S / (W · ε) (2)
(Here, A; peak area intensity of the target peak (cm -1 ), S; sample cross-sectional area (cm 2 ), W; sample weight (mg), ε; integral extinction coefficient, 3.7 cm · μmol. -1 and each are shown.)
~ Pyridine adsorption infrared absorption spectroscopy measurement ~
In the above 2,4-dimethylquinoline adsorption infrared absorption spectroscopic measurement, pyridine gas was introduced and only the point of adsorption for 10 minutes was changed, and the measurement was carried out by the same apparatus and the same method.

ただし、差スペクトルにおける1545cm−1付近のピークをブレンステッド酸に吸着したピリジンの吸収スペクトルのピークとして用い、積分吸光係数を1.67cm・μmol−1として、上記の式(2)よりB酸量を求めた。 However, the peak near 1545 cm -1 in the difference spectrum is used as the peak in the absorption spectrum of pyridine adsorbed on Bronsted acid, the integrated absorption coefficient is 1.67 cm · μmol -1 , and the amount of B acid is calculated from the above formula (2). Asked.

〜成形体最側面から成形体の中心(成形体断面の中心)又は成形体内筒の側面への最短距離の測定〜
無作為に選択した30個の成形体粒子について、ノギスを用い測定を行い、その平均を測定値とした。
-Measurement of the shortest distance from the outermost side of the molded body to the center of the molded body (center of the cross section of the molded body) or the side surface of the molded body cylinder-
30 randomly selected molded particles were measured using calipers, and the average was used as the measured value.

〜粉末X線回折の測定〜
X線回折測定装置(スペクトリス社製、(商品名)X’pert PRO MPD)を用い、管電圧45kV、管電流40mAとしてCuKα1を用いて、大気中において測定した。0.04〜5度の範囲を0.08度/ステップ、200秒/ステップで分析した。また、ダイレクトビームの吸収率で補正したバックグラウンドを除去している。
~ Measurement of powder X-ray diffraction ~
It was measured in the atmosphere using an X-ray diffraction measuring device (manufactured by Spectris, (trade name) X'pert PRO MPD), using CuKα1 as a tube voltage of 45 kV and a tube current of 40 mA. The range of 0.04 to 5 degrees was analyzed at 0.08 degrees / step and 200 seconds / step. In addition, the background corrected by the absorption rate of the direct beam is removed.

ピークの有無の確認を目視で行うことにより結晶構造の同定を行った。他の方法として、ピークサーチプログラムを利用してもよい。ピークサーチプログラムは、一般的なプログラムが利用できる。例えば、横軸が2θ(度)、縦軸が強度(a.u.)の測定結果をSAVITSKY&GOLAYの式とSliding Polynomialフィルターで平滑化した後、2次微分を行ったときに、3点以上連続する負の値がある場合、ピークが存在すると判断できる。 The crystal structure was identified by visually confirming the presence or absence of peaks. As another method, a peak search program may be used. As the peak search program, a general program can be used. For example, when the measurement results of 2θ (degrees) on the horizontal axis and intensity (a.u.) on the vertical axis are smoothed by the SAVITSKY & GOLAY equation and the Sliding Polynomial filter, and then the second derivative is performed, three or more points are continuous. If there is a negative value, it can be determined that a peak exists.

〜アルコール転換反応装置及びその反応方法〜
実施例、比較例により得られた触媒により、以下の方法によりメタノール転換反応を行い、アルコール転換用触媒としての性能評価を行った。
~ Alcohol conversion reactor and its reaction method ~
Using the catalysts obtained in Examples and Comparative Examples, a methanol conversion reaction was carried out by the following method to evaluate the performance as a catalyst for alcohol conversion.

ステンレス製反応管(内径16mm、長さ600mm)を有する固定床気相流通式反応装置を用いた。ステンレス製反応管の中段に、成形体を充填し、乾燥空気流通下での加熱前処理を行ったのち、原料を送液ポンプでフィードした。そして、加熱はセラミック製管状炉を用い、触媒(成形体)層の温度を制御した。反応出口ガスおよび反応液を採取し、ガスクロマトグラフを用い、ガス成分および液成分を個別に分析した。ガス成分は、TCD検出器を備え、充填剤(Waters社製、(商品名)PorapakQまたはGLサイエンス社製、(商品名)MS−5A)を有するガスクロマトグラフ(島津製作所製、(商品名)GC−1700)を用いて分析した。液成分は、FID検出器を備え、分離カラムとしてキャピラリーカラム(GLサイエンス社製、(商品名)TC−1)を有するガスクロマトグラフ(島津製作所製、(商品名)GC−2015)を用いて分析した。 A fixed-bed gas-phase flow reactor having a stainless steel reaction tube (inner diameter 16 mm, length 600 mm) was used. The middle stage of the stainless steel reaction tube was filled with a molded product, pretreated by heating under dry air flow, and then the raw material was fed by a liquid feed pump. Then, a ceramic tube furnace was used for heating, and the temperature of the catalyst (mold) layer was controlled. The reaction outlet gas and the reaction solution were collected, and the gas component and the liquid component were analyzed individually using a gas chromatograph. The gas component is a gas chromatograph (manufactured by Shimadzu Corporation, (trade name) GC) equipped with a TCD detector and having a filler (manufactured by Waters Corp., (trade name) PorapakQ or GL Science Co., Ltd., (trade name) MS-5A). -1700) was used for analysis. The liquid components were analyzed using a gas chromatograph (manufactured by Shimadzu Corporation, (trade name) GC-2015) equipped with a FID detector and having a capillary column (manufactured by GL Science, Inc. (trade name) TC-1) as a separation column. ..

反応条件は下記のように設定した。 The reaction conditions were set as follows.

(反応条件)
触媒重量:1.5g。
流通ガス:メタノール 0.07ml/分+窒素 40Nml/分。
反応温度:450℃。
反応時間:29時間。
(Reaction condition)
Catalyst weight: 1.5g.
Flowing gas: Methanol 0.07 ml / min + nitrogen 40 Nml / min.
Reaction temperature: 450 ° C.
Reaction time: 29 hours.

(前処理条件)
触媒温度:450℃。
流通ガス:空気40Nml/分。
処理時間:2時間。
(Pretreatment conditions)
Catalyst temperature: 450 ° C.
Flowing gas: 40 Nml / min of air.
Processing time: 2 hours.

調製例1
テトラプロピルアンモニウム(以降、TPAと略記する場合がある。)水酸化物と水酸化ナトリウムの水溶液に不定形アルミノシリケートゲルを添加して懸濁させた。得られた懸濁液にMFI型ゼオライトを種晶として加え原料組成物とした。その際の種晶の添加量は、原料組成物中のAlとSiOの重量に対して、0.7重量%とした。また、副生したエタノールは蒸発させて除いた。
Preparation Example 1
Atypical aluminosilicate gel was added to an aqueous solution of tetrapropylammonium (hereinafter sometimes abbreviated as TPA) hydroxide and sodium hydroxide and suspended. MFI-type zeolite was added as a seed crystal to the obtained suspension to prepare a raw material composition. The amount of the seed crystal added at that time was 0.7% by weight with respect to the weight of Al 2 O 3 and SiO 2 in the raw material composition. In addition, the by-produced ethanol was removed by evaporation.

該原料組成物の組成は以下のとおりである。
SiO/Alモル比=48、TPA/Siモル比=0.05、Na/Siモル比=0.16、OH/Siモル比=0.21、HO/Siモル比=10
得られた原料組成物をステンレス製オートクレーブに密閉し、115℃で攪拌しながら4日間結晶化させ、スラリー状混合液を得た。結晶化後のスラリー状混合液を遠心沈降機で固液分離した後、十分量の純水で固体粒子を洗浄し、110℃で乾燥して乾燥粉末を得た。
The composition of the raw material composition is as follows.
SiO 2 / Al 2 O 3 molar ratio = 48, TPA / Si molar ratio = 0.05, Na / Si molar ratio = 0.16, OH / Si molar ratio = 0.21, H 2 O / Si molar ratio = 10
The obtained raw material composition was sealed in a stainless steel autoclave and crystallized for 4 days with stirring at 115 ° C. to obtain a slurry-like mixed solution. The slurry-like mixed solution after crystallization was solid-liquid separated by a centrifugal settler, and then the solid particles were washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a dry powder.

得られた乾燥粉末を1mol/Lの常温の塩酸中に分散し、ろ過した後に、十分量の純水で固体粒子を洗浄し、再度ろ過後、100℃で1晩乾燥させた。空気下、550℃で1時間焼成後、600℃、30%の水蒸気で2時間処理した。 The obtained dry powder was dispersed in hydrochloric acid at room temperature of 1 mol / L, filtered, and then the solid particles were washed with a sufficient amount of pure water, filtered again, and dried at 100 ° C. overnight. After firing at 550 ° C. for 1 hour under air, it was treated with 30% steam at 600 ° C. for 2 hours.

得られた粉末を1mol/Lの常温の塩酸中に分散し、ろ過した後に、十分量の純水で固体粒子を洗浄し、再度ろ過後、プロトン型ゼオライトを得た。このゼオライトはMFI型ゼオライトの骨格構造を有する10員環細孔ゼオライトであり、TEMで測定した平均粒子径は24nmであった。 The obtained powder was dispersed in hydrochloric acid at room temperature of 1 mol / L, filtered, and then the solid particles were washed with a sufficient amount of pure water and filtered again to obtain a proton-type zeolite. This zeolite is a 10-membered ring-pore zeolite having a skeleton structure of an MFI-type zeolite, and the average particle size measured by TEM was 24 nm.

得られたゼオライト100重量部に対して、シリカ(日産化学工業社製、(商品名)スノーテックスN−30G)25重量部、セルロース5重量部、純水40重量部を加え混練した。そして、混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.5mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で2時間焼成してプロトン型ゼオライト成形体を得た。 To 100 parts by weight of the obtained zeolite, 25 parts by weight of silica (manufactured by Nissan Chemical Industries, Ltd., (trade name) Snowtex N-30G), 5 parts by weight of cellulose, and 40 parts by weight of pure water were added and kneaded. Then, the kneaded product was made into a columnar molded body having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.5 mm). This was dried at 100 ° C. overnight. The dried molded product was calcined at 600 ° C. for 2 hours under air flow to obtain a proton-type zeolite molded product.

実施例1
調製例1で得られたプロトン型ゼオライト成形体5gを、内径9.5mmの硼珪酸ガラス管に充填した。別途、硝酸銀0.3gを純水25mlに溶解させ0.05mol/Lの硝酸銀水溶液を調製した。耐薬品性ポリオレフィンホースを用いて循環ポンプとガラス管下部を接続し、暗所にて硝酸銀水溶液を2時間循環させた。硝酸銀水溶液をすべて抜き出して純水30mlを30分間循環したのち、洗浄液をすべて抜き出してpHを測定した。その後、pHが5〜6の範囲に収まるまで繰り返し洗浄を行った。洗浄後、ゼオライトを磁性皿に採取し、10℃/minの昇温速度で110℃まで昇温し一晩乾燥させた。続けて2℃/minの昇温速度で550℃まで昇温し、6時間焼成した。得られた銀含有ゼオライト成形体の銀含有量は1.3wt%であった。
Example 1
5 g of the proton-type zeolite molded product obtained in Preparation Example 1 was filled in a borosilicate glass tube having an inner diameter of 9.5 mm. Separately, 0.3 g of silver nitrate was dissolved in 25 ml of pure water to prepare a 0.05 mol / L silver nitrate aqueous solution. A circulation pump and the lower part of the glass tube were connected using a chemical-resistant polyolefin hose, and the silver nitrate aqueous solution was circulated for 2 hours in a dark place. After extracting all the silver nitrate aqueous solution and circulating 30 ml of pure water for 30 minutes, all the washing liquid was extracted and the pH was measured. Then, washing was repeated until the pH was within the range of 5 to 6. After washing, the zeolite was collected in a magnetic dish, heated to 110 ° C. at a heating rate of 10 ° C./min, and dried overnight. Subsequently, the temperature was raised to 550 ° C. at a heating rate of 2 ° C./min and calcined for 6 hours. The silver content of the obtained silver-containing zeolite molded product was 1.3 wt%.

得られた銀含有ゼオライト成形体に2,4−ジメチルキノリンを吸着させ、3600cm−1のゼオライトB酸点のOHに由来するピークの減少から求めた外表面のB酸量は1.8μmol/gであった。またピリジンを吸着させ、1545cm−1のゼオライトB酸点に吸着したピリジンに由来するピークの増加から求めたB酸量は0.05mmol/gであった。よって外表面B酸率は3.6%であった。 2,4-Dimethylquinoline was adsorbed on the obtained silver-containing zeolite molded product, and the amount of B acid on the outer surface obtained from the decrease in the peak derived from OH of the zeolite B acid point of 3600 cm -1 was 1.8 μmol / g. Met. Further, the amount of B acid obtained by adsorbing pyridine and increasing the peak derived from pyridine adsorbed on the zeolite B acid point of 1545 cm-1 was 0.05 mmol / g. Therefore, the outer surface B acid ratio was 3.6%.

得られた銀含有ゼオライト成形体をアルコール転換触媒として用い、上記の条件にてメタノール転換反応を行った結果を表1と図1、図2に示す。29時間平均の転化率、パラフィン、オレフィン、および芳香族炭化水素収率がともに安定して推移し、高い耐水熱性、耐コーク性、耐久性に優れるアルコール転換触媒であることを確認した。 The results of the methanol conversion reaction under the above conditions using the obtained silver-containing zeolite molded product as an alcohol conversion catalyst are shown in Table 1, FIG. 1 and FIG. It was confirmed that the 29-hour average conversion rate, paraffin, olefin, and aromatic hydrocarbon yields all remained stable, and that the alcohol conversion catalyst was excellent in high hydrothermal resistance, cork resistance, and durability.

実施例2
調製例1で得られたプロトン型ゼオライト成型体に対して、硝酸銀量を0.2gに変更した以外は実施例1と同様にイオン交換を行った。得られた銀含有ゼオライト成形体の銀含有量は1.1wt%であった。
Example 2
The proton-type zeolite molded product obtained in Preparation Example 1 was subjected to ion exchange in the same manner as in Example 1 except that the amount of silver nitrate was changed to 0.2 g. The silver content of the obtained silver-containing zeolite molded product was 1.1 wt%.

得られた銀含有ゼオライト成形体に2,4−ジメチルキノリンを吸着させ、3600cm−1のゼオライトB酸点のOHに由来するピークの減少から求めた外表面のB酸量は3.3μmol/gであった。またピリジンを吸着させ、1545cm−1のゼオライトB酸点に吸着したピリジンに由来するピークの増加から求めたB酸量は0.06mmol/gであった。よって外表面B酸率は5.5%であった。 2,4-Dimethylquinoline was adsorbed on the obtained silver-containing zeolite molded product, and the amount of B acid on the outer surface obtained from the decrease in the peak derived from OH of the zeolite B acid point of 3600 cm -1 was 3.3 μmol / g. Met. Further, the amount of B acid obtained by adsorbing pyridine and increasing the peak derived from pyridine adsorbed on the zeolite B acid point of 1545 cm-1 was 0.06 mmol / g. Therefore, the outer surface B acid ratio was 5.5%.

得られた銀含有ゼオライト成形体をアルコール転換触媒として用い、上記の条件にてメタノール転換反応を行った結果を表1と図1、図2に示す。29時間平均の転化率、パラフィン、オレフィン、および芳香族炭化水素収率がともに安定して推移し、高い耐水熱性、耐コーク性、耐久性に優れる触媒であることを確認した。 The results of the methanol conversion reaction under the above conditions using the obtained silver-containing zeolite molded product as an alcohol conversion catalyst are shown in Table 1, FIG. 1 and FIG. It was confirmed that the 29-hour average conversion rate, paraffin, olefin, and aromatic hydrocarbon yields all remained stable, and the catalyst was excellent in high hydrothermal resistance, cork resistance, and durability.

Figure 2021159884
Figure 2021159884


比較例1
オートクレーブによるゼオライトの結晶化、洗浄、乾燥操作までを調製例1と同様に行った。

Comparative Example 1
Crystallization, washing, and drying of zeolite by autoclave were carried out in the same manner as in Preparation Example 1.

得られた乾燥粉末を、空気下、550℃で焼成後、得られた粉末を常温の1mol/Lの塩酸中に分散し、ろ過した後に、十分量の純水で固体粒子を洗浄し、再度ろ過後、100℃で1晩乾燥させ、プロトン型ゼオライトを得た。このゼオライトはMFI型ゼオライトの骨格構造を有する10員環細孔ゼオライトであり、TEMを用いて測定した平均粒子径26nmであった。 The obtained dry powder is calcined under air at 550 ° C., the obtained powder is dispersed in 1 mol / L hydrochloric acid at room temperature, filtered, and then the solid particles are washed with a sufficient amount of pure water and again. After filtration, it was dried at 100 ° C. overnight to obtain a proton-type zeolite. This zeolite was a 10-membered ring-pore zeolite having a skeleton structure of an MFI-type zeolite, and had an average particle size of 26 nm measured using a TEM.

得られたゼオライト100重量部に対して、シリカ(日産化学工業社製、(商品名)スノーテックスN−30G)25重量部、セルロース5重量部、純水40重量部を加え混練した。そして、混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.5mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で2時間焼成して成形体を得た。 To 100 parts by weight of the obtained zeolite, 25 parts by weight of silica (manufactured by Nissan Chemical Industries, Ltd., (trade name) Snowtex N-30G), 5 parts by weight of cellulose, and 40 parts by weight of pure water were added and kneaded. Then, the kneaded product was made into a columnar molded body having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.5 mm). This was dried at 100 ° C. overnight. The dried molded product was fired at 600 ° C. for 2 hours under air flow to obtain a molded product.

得られたプロトン型ゼオライト成型体に対して、イオン交換法で銀担持を行った。硝酸銀0.3gを純水100mlに溶解させ、その水溶液に上記のプロトン型ゼオライト成型体3gを加え、室温で2時間撹拌した。ブフナー漏斗で濾過したのち、純水35gを加え、同様の操作で撹拌した。純水での撹拌を合計3回繰り返したのち、濾過したゼオライト成形体を110℃で一晩乾燥させ、550℃で6時間焼成した。得られた銀含有ゼオライト成形体の銀含有量は1.2wt%であった。 The obtained proton-type zeolite molded product was supported on silver by an ion exchange method. 0.3 g of silver nitrate was dissolved in 100 ml of pure water, 3 g of the above proton-type zeolite molded product was added to the aqueous solution, and the mixture was stirred at room temperature for 2 hours. After filtering with a Buchner funnel, 35 g of pure water was added, and the mixture was stirred in the same manner. After stirring with pure water a total of 3 times, the filtered zeolite molded product was dried at 110 ° C. overnight and calcined at 550 ° C. for 6 hours. The silver content of the obtained silver-containing zeolite molded product was 1.2 wt%.

得られた銀含有ゼオライト成形体に2,4−ジメチルキノリンを吸着させ、3600cm−1のゼオライトB酸点のOHに由来するピークの減少から求めた外表面のB酸量は10.1μmol/gであった。またピリジンを吸着させ、1545cm−1のゼオライトB酸点に吸着したピリジンに由来するピークの増加から求めたB酸量は0.10mmol/gであった。よって外表面B酸率は10.1%であった。 2,4-Dimethylquinoline was adsorbed on the obtained silver-containing zeolite molded product, and the amount of B acid on the outer surface obtained from the decrease in the peak derived from OH of the zeolite B acid point of 3600 cm -1 was 10.1 μmol / g. Met. Further, the amount of B acid obtained by adsorbing pyridine and increasing the peak derived from pyridine adsorbed on the zeolite B acid point of 1545 cm-1 was 0.10 mmol / g. Therefore, the outer surface B acid ratio was 10.1%.

得られた銀含有ゼオライト成形体を触媒として用い、上記の条件にてメタノール転換反応を行った結果を表2と図1、図2に示す。29時間平均の転化率とパラフィンおよびオレフィン収率は高いものの、ゼオライトの脱アルミニウムにより芳香族炭化水素収率が顕著に低下する傾向が見られた。よって耐久性に劣る触媒であることを確認した。 The results of the methanol conversion reaction under the above conditions using the obtained silver-containing zeolite molded product as a catalyst are shown in Table 2, FIG. 1 and FIG. Although the 29-hour average conversion rate and the yields of paraffin and olefin were high, the yield of aromatic hydrocarbons tended to decrease significantly due to the dealumination of zeolite. Therefore, it was confirmed that the catalyst was inferior in durability.

比較例2
調製例1で得られたプロトン型ゼオライト成型体を触媒として用いた。
Comparative Example 2
The proton-type zeolite molded product obtained in Preparation Example 1 was used as a catalyst.

2,4−ジメチルキノリンを吸着させ、3600cm−1のゼオライトB酸点のOHに由来するピークの減少から求めた外表面のB酸量は3.0μmol/gであった。またピリジンを吸着させ、1545cm−1のゼオライトB酸点に吸着したピリジンに由来するピークの増加から求めたB酸量は0.12mmol/gであった。よって外表面B酸率は2.5%であった。 The amount of B acid on the outer surface obtained by adsorbing 2,4-dimethylquinoline was 3.0 μmol / g as determined from the decrease in the peak derived from OH of the zeolite B acid point of 3600 cm -1. Further, the amount of B acid obtained by adsorbing pyridine and increasing the peak derived from pyridine adsorbed on the zeolite B acid point of 1545 cm-1 was 0.12 mmol / g. Therefore, the outer surface B acid ratio was 2.5%.

該ゼオライト成形体を触媒として用い、上記の条件にてメタノール転換反応を行った結果を表2と図1、図2に示す。29時間平均の転化率とパラフィンおよびオレフィン収率は高いものの、ゼオライトの脱アルミニウムにより芳香族炭化水素収率が顕著に低下する傾向が見られた。よって耐久性に劣る触媒であることを確認した。 The results of the methanol conversion reaction under the above conditions using the zeolite molded product as a catalyst are shown in Table 2, FIGS. 1 and 2. Although the 29-hour average conversion rate and the yields of paraffin and olefin were high, the yield of aromatic hydrocarbons tended to decrease significantly due to the dealumination of zeolite. Therefore, it was confirmed that the catalyst was inferior in durability.

比較例3
調製例1で得られたプロトン型ゼオライト成型体に対して、含浸法で銀担持を行った。硝酸銀1.0gを純水7mlに溶解させ、その水溶液に上記のMFI型ゼオライト15gを加え、室温で5分間浸漬した。その後ゼオライトを110℃で一晩乾燥させ、550℃で6時間焼成した。得られた銀含有ゼオライト成形体の銀含有量は3.8wt%であった。
Comparative Example 3
The proton-type zeolite molded product obtained in Preparation Example 1 was supported on silver by an impregnation method. 1.0 g of silver nitrate was dissolved in 7 ml of pure water, 15 g of the above MFI-type zeolite was added to the aqueous solution, and the mixture was immersed at room temperature for 5 minutes. The zeolite was then dried at 110 ° C. overnight and calcined at 550 ° C. for 6 hours. The silver content of the obtained silver-containing zeolite molded product was 3.8 wt%.

得られた銀含有ゼオライト成形体に2,4−ジメチルキノリンを吸着させ、3600cm−1のゼオライトB酸点のOHに由来するピークの減少から求めた外表面のB酸量は8.9μmol/gであった。またピリジンを吸着させ、1545cm−1のゼオライトB酸点に吸着したピリジンに由来するピークの増加から求めたB酸量は0.06mmol/gであった。よって外表面B酸率は14.8%であった。 2,4-Dimethylquinoline was adsorbed on the obtained silver-containing zeolite molded product, and the amount of B acid on the outer surface obtained from the decrease in the peak derived from OH of the zeolite B acid point of 3600 cm -1 was 8.9 μmol / g. Met. Further, the amount of B acid obtained by adsorbing pyridine and increasing the peak derived from pyridine adsorbed on the zeolite B acid point of 1545 cm-1 was 0.06 mmol / g. Therefore, the outer surface B acid ratio was 14.8%.

得られた銀含有ゼオライト成形体を触媒として用い、上記の条件にてメタノール転換反応を行った結果を表2と図1、図2に示す。29時間平均の転化率とパラフィンおよびオレフィン収率は高いものの、ゼオライトの脱アルミニウムにより芳香族炭化水素収率が顕著に低下する傾向が見られた。よって耐久性に劣る触媒であることを確認した。 The results of the methanol conversion reaction under the above conditions using the obtained silver-containing zeolite molded product as a catalyst are shown in Table 2, FIG. 1 and FIG. Although the 29-hour average conversion rate and the yields of paraffin and olefin were high, the yield of aromatic hydrocarbons tended to decrease significantly due to the dealumination of zeolite. Therefore, it was confirmed that the catalyst was inferior in durability.

Figure 2021159884
Figure 2021159884

;実施例1、2及び比較例1、2、3で得られたアルコール転換触媒によるメタノール転換反応における転化率の時間変化を示した図である。It is a figure which showed the time change of the conversion rate in the methanol conversion reaction by the alcohol conversion catalyst obtained in Examples 1 and 2 and Comparative Examples 1, 2 and 3. ;実施例1、2及び比較例1、2、3で得られたアルコール転換触媒によるメタノール転換反応における芳香族炭化水素収率の時間変化を示した図である。It is a figure which showed the time change of the yield of an aromatic hydrocarbon in the methanol conversion reaction by the alcohol conversion catalyst obtained in Examples 1 and 2 and Comparative Examples 1, 2 and 3.

本発明の平均粒子径が100nm以下の10員環細孔ゼオライトを含むアルコール転換触媒であって、特定量の外表面ブレンステッド酸量と銀含有量を有するアルコール転換触媒は、特異的な安定性・効率・耐久性を発現し、その触媒としての産業的価値は極めて高いものである。 The alcohol conversion catalyst containing a 10-membered ring-pore zeolite having an average particle size of 100 nm or less and having a specific amount of outer surface Bronsted acid content and silver content of the present invention has specific stability. -It exhibits efficiency and durability, and its industrial value as a catalyst is extremely high.

Claims (8)

平均粒子径100nm以下の10員環細孔ゼオライトを含み、外表面ブレンステッド酸量が0.1〜10.0μmol/gかつ銀含有量が0.05〜3wt%であることを特徴とするアルコール転換触媒。 An alcohol containing 10-membered ring-pore zeolite having an average particle size of 100 nm or less, having an outer surface Bronsted acid content of 0.1 to 10.0 μmol / g and a silver content of 0.05 to 3 wt%. Conversion catalyst. 上記10員環細孔ゼオライトがMFI型またはMEL型であることを特徴とする請求項1に記載のアルコール転換触媒。 The alcohol conversion catalyst according to claim 1, wherein the 10-membered ring-pore zeolite is of the MFI type or the MEL type. さらに、ブレンステッド酸量が0.01〜1.0mmol/g、であることを満足することを特徴とする請求項1又は2に記載のアルコール転換触媒。 The alcohol conversion catalyst according to claim 1 or 2, further satisfying that the amount of Bronsted acid is 0.01 to 1.0 mmol / g. さらに、シリカを含むことを特徴とする請求項1〜3のいずれかに記載のアルコール転換触媒。 The alcohol conversion catalyst according to any one of claims 1 to 3, further comprising silica. 円柱形状又は円筒形状を有する成形体であることを特徴とする請求項1〜4のいずれかに記載のアルコール転換触媒。 The alcohol conversion catalyst according to any one of claims 1 to 4, wherein the molded product has a cylindrical shape or a cylindrical shape. 径1〜10mmの円柱形状を有する成形体又は厚さ0.5〜5.0mmの円筒形状を有する成形体であることを特徴とする請求項5に記載のアルコール転換触媒。 The alcohol conversion catalyst according to claim 5, wherein the molded body has a cylindrical shape having a diameter of 1 to 10 mm or a molded body having a cylindrical shape having a thickness of 0.5 to 5.0 mm. アルコールの炭化水素化合物への転換用であることを特徴とする請求項1〜6のいずれかに記載のアルコール転換触媒。 The alcohol conversion catalyst according to any one of claims 1 to 6, wherein the alcohol is used for converting an alcohol into a hydrocarbon compound. 請求項1〜7のいずれかに記載のアルコール転換触媒の存在下、アルコール原料を接触しパラフィン、オレフィン及び/又は芳香族炭化水素を得ることを特徴とする炭化水素化合物の製造方法。 A method for producing a hydrocarbon compound, which comprises contacting an alcohol raw material with an alcohol raw material to obtain a paraffin, an olefin and / or an aromatic hydrocarbon in the presence of the alcohol conversion catalyst according to any one of claims 1 to 7.
JP2020066576A 2020-04-02 2020-04-02 alcohol conversion catalyst Active JP7452205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020066576A JP7452205B2 (en) 2020-04-02 2020-04-02 alcohol conversion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020066576A JP7452205B2 (en) 2020-04-02 2020-04-02 alcohol conversion catalyst

Publications (2)

Publication Number Publication Date
JP2021159884A true JP2021159884A (en) 2021-10-11
JP7452205B2 JP7452205B2 (en) 2024-03-19

Family

ID=78001924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020066576A Active JP7452205B2 (en) 2020-04-02 2020-04-02 alcohol conversion catalyst

Country Status (1)

Country Link
JP (1) JP7452205B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079815A (en) 2009-09-09 2011-04-21 Mitsubishi Chemicals Corp Method of producing p-xylene
KR101900063B1 (en) 2014-06-04 2018-09-19 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 Method for preparing paraxylene and propylene by methanol and/or dimethyl ether
JP7087636B2 (en) 2017-04-26 2022-06-21 三菱ケミカル株式会社 Zeolite catalyst treatment method and lower olefin production method
JP7110792B2 (en) 2018-07-26 2022-08-02 東ソー株式会社 Method for producing silver ion-exchanged zeolite

Also Published As

Publication number Publication date
JP7452205B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US20110160508A1 (en) Production of aromatics from methane
Álvaro-Muñoz et al. Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction
JPS61183115A (en) Synthesis of zeolite catalyst based on ph control for improving catalyst life
JP6733501B2 (en) Aromatic compound production catalyst and method for producing aromatic compound
CN113498360A (en) Catalyst for producing light olefins from C4-C7 hydrocarbons
JP2011079815A (en) Method of producing p-xylene
JP6862966B2 (en) Metal-containing zeolite
JPS6115848A (en) Production of lower olefin using zeolite catalyst modified with calcium phosphate
JP6953711B2 (en) Metal-containing MFI-type zeolite and catalyst for producing aromatic compounds
US20120157735A1 (en) Supported mesoporous and microporous material, and process for producing the same
JP2018145085A (en) Zeolite and method for producing the same
JP2021159884A (en) Alcohol conversion catalyst
JP2017119267A (en) Catalyst for manufacturing aromatic compound and method for manufacturing aromatic compound
WO2021006188A1 (en) Novel zeolite, and catalyst for use in production of aromatic hydrocarbon which comprises same
US12023658B2 (en) Zeolite, and catalyst for use in production of aromatic hydrocarbon which comprises same
JP7501347B2 (en) Alkaline earth metal-containing MFI type zeolite and catalyst for producing hydrocarbons
JP2021059484A (en) Novel silver-containing zeolite and zeolite-containing catalyst for producing aromatic hydrocarbons
JP7508816B2 (en) Olefin production catalyst
JP2021142504A (en) Catalyst for production of olefin
JP7396052B2 (en) Catalyst for producing aromatic compounds
JP2022172510A (en) Silver-alkaline earth metal-containing mfi-type zeolite and catalyst for producing hydrocarbon
JP2018154538A (en) Silver-containing zeolite
JP5023639B2 (en) Propylene production method
JP2023055086A (en) Metal-containing mfi type zeolite and catalyst for hydrocarbon compound production containing the same
JP2022110633A (en) Metal-containing mfi type zeolite and catalyst for producing hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R151 Written notification of patent or utility model registration

Ref document number: 7452205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151