JP6947011B2 - Zeolite-silica molded product - Google Patents

Zeolite-silica molded product Download PDF

Info

Publication number
JP6947011B2
JP6947011B2 JP2017247318A JP2017247318A JP6947011B2 JP 6947011 B2 JP6947011 B2 JP 6947011B2 JP 2017247318 A JP2017247318 A JP 2017247318A JP 2017247318 A JP2017247318 A JP 2017247318A JP 6947011 B2 JP6947011 B2 JP 6947011B2
Authority
JP
Japan
Prior art keywords
molded product
zeolite
silica
peak
membered ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017247318A
Other languages
Japanese (ja)
Other versions
JP2019112265A (en
Inventor
智洋 林
智洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017247318A priority Critical patent/JP6947011B2/en
Publication of JP2019112265A publication Critical patent/JP2019112265A/en
Application granted granted Critical
Publication of JP6947011B2 publication Critical patent/JP6947011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Description

本発明は、ゼオライトとシリカからなる成形体であって、特に特定のメソ細孔およびマクロ細孔を有する新規な成形体に関するものである。 The present invention relates to a molded product composed of zeolite and silica, particularly a novel molded product having specific mesopores and macropores.

ゼオライトは、石油化学触媒(例えば、特許文献1〜2参照。)、内燃機関等の排ガス浄化触媒(例えば、特許文献3〜4参照。)、吸着剤(例えば、特許文献5〜6参照。)等の用途として工業的に幅広く用いられる。工業的使用の際には、多くの場合バインダー(例えば、シリカ、粘土鉱物など)を混合し、所定の形状に成形され、高温焼成により焼結を行うことでゼオライトとバインダーとを複合化したゼオライト成形体として用いられてきた。その際にバインダーもゼオライト成形体の性能に影響し、ゼオライト成形体に所望の性能を発現させるために、適切な種類と量の選択が行われてきた。 Zeolites include petrochemical catalysts (see, for example, Patent Documents 1 and 2), exhaust gas purification catalysts for internal combustion engines (see, for example, Patent Documents 3 to 4), and adsorbents (see, for example, Patent Documents 5 to 6). It is widely used industrially for such purposes. In industrial use, in many cases, binders (for example, silica, clay minerals, etc.) are mixed, formed into a predetermined shape, and sintered by high-temperature firing to combine zeolite and binder. It has been used as a molded body. At that time, the binder also affects the performance of the zeolite molded product, and an appropriate type and amount have been selected in order to exhibit the desired performance in the zeolite molded product.

また、ゼオライト、ゼオライト複合体におけるメソ細孔は、基質の拡散等に重要な役割を果たす細孔であり、特に均一なメソ細孔はその効果は顕著なものであり、均一なメソ細孔を有するゼオライトが提案されている(例えば、特許文献7参照。)。また、高い性能を発揮する吸着剤や触媒などの利用として、成形体のマクロ細孔のサイズ等に関する検討が報告されている(例えば、特許文献8参照。)。 Further, the mesopores in the zeolite and the zeolite complex are pores that play an important role in the diffusion of the substrate, and the uniform mesopores have a remarkable effect, and the uniform mesopores are formed. Zeolites having been proposed (see, for example, Patent Document 7). Further, as a use of an adsorbent or a catalyst exhibiting high performance, studies on the size of macropores of a molded product have been reported (see, for example, Patent Document 8).

特許第3580518号公報Japanese Patent No. 3580518 特許第3950437号公報Japanese Patent No. 3950437 特許第2931332号公報Japanese Patent No. 2931332 特許第3311370号公報Japanese Patent No. 331370 特許第6147499号公報Japanese Patent No. 6147499 特許第6183580号公報Japanese Patent No. 6183580 特開2017−119267公報JP-A-2017-119267 特開2009−242163公報JP-A-2009-242163

しかし、ゼオライト成形体としては、均一なメソ細孔を有し、かつ適切なマクロ細孔を有するものは検討されておらず、その性能としても課題を有するものであった。 However, as a zeolite molded product, one having uniform mesopores and having appropriate macropores has not been studied, and there is a problem in its performance.

そこで、本発明は、芳香族化触媒としても期待される特定の均一メソ細孔およびマクロ細孔を有する新規なゼオライトとシリカからなる成形体を提供するものである。 Therefore, the present invention provides a molded article made of a novel zeolite and silica having specific uniform mesopores and macropores, which are also expected as an aromatization catalyst.

本発明者は、上記の課題を解決するため鋭意検討を行った結果、特定のメソ細孔およびマクロ細孔を有する新規の成形体を見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor has found a novel molded product having specific mesopores and macropores, and has completed the present invention.

即ち、本発明は、10員環細孔ゼオライトとシリカからなる成形体であって、下記(i)〜(ii)の特性を満足するメソ細孔および下記(iii)の特性を満足するマクロ細孔を有することを特徴とする成形体。
(i)メソ細孔容積が0.05cc/g以上である。
(ii)ピークを示す分布を有し、該ピークの半値幅(hw)がhw≦40nm、該ピークの中心値(μ)が5nm≦μ≦30nmである。
(iii)直径0.2〜200μmの範囲のマクロ細孔容積が0.03cc/g以上0.30cc/g以下である。
That is, the present invention is a molded product composed of 10-membered ring-pore zeolite and silica, and has mesopores satisfying the following characteristics (i) to (ii) and macrofine particles satisfying the following characteristics (iii). A molded product having holes.
(I) The mesopore volume is 0.05 cc / g or more.
(Ii) It has a distribution showing a peak, the full width at half maximum (hw) of the peak is hw ≦ 40 nm, and the center value (μ) of the peak is 5 nm ≦ μ ≦ 30 nm.
(Iii) The macropore volume in the range of 0.2 to 200 μm in diameter is 0.03 cc / g or more and 0.30 cc / g or less.

以下に、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の成形体は、10員環細孔ゼオライトとシリカとの成形体であって、上記(i)〜(iii)の特性を満足するメソ細孔及び上記(iii)の特性を満足するマクロ細孔を有するものである。 The molded product of the present invention is a molded product of 10-membered ring-pore zeolite and silica, and has mesopores satisfying the above-mentioned characteristics (i) to (iii) and a macro satisfying the above-mentioned characteristics (iii). It has pores.

該10員環細孔ゼオライトとしては、10員環構造を有し、細孔を有するものであれば如何なるものでも良く、該10員環細孔構造を有するゼオライトとしては、具体的にはAEL、EUO、FER、HEU、MEU、MEL、MFI、NES型等のゼオライトを挙げることができ、特に脂肪族炭化水素の芳香族化触媒として期待される複合体となることからMFI型またはMEL型であることが好ましい。そして、例えばMFI型としては、国際ゼオライト学会で定義される構造コードMFIに属するアルミノシリケート化合物を挙げることができる。 The 10-membered ring-pore zeolite may be any zeolite having a 10-membered ring structure and pores, and the zeolite having the 10-membered ring-pore structure is specifically AEL. Zeolites such as EUO, FER, HEU, MEU, MEL, MFI, and NES type can be mentioned, and in particular, they are MFI type or MEL type because they form a complex expected as an aromatization catalyst for aliphatic hydrocarbons. Is preferable. And, for example, as the MFI type, an aluminosilicate compound belonging to the structure code MFI defined by the International Zeolite Society can be mentioned.

該シリカとしては、シリカと称される範疇に属するものであれば如何なるものであってもよく、特定の結晶構造を有するもの、また、非結晶性のものであってもよい。さらに、シリカの粒子径や凝集径等に関しても如何なる制限もない。 The silica may be any silica as long as it belongs to the category called silica, and may have a specific crystal structure or may be amorphous. Furthermore, there are no restrictions on the particle size, aggregation diameter, etc. of silica.

本発明の新規な成形体は、メソ細孔を有するものであり、(i)メソ細孔容積が0.05cc/g以上のものであり、特に優れた芳香族化触媒として期待されることから0.10cc/g以上であることが好ましい。ここで、メソ細孔容積が0.05cc/g未満である場合、基質の拡散が不十分となり、触媒性能や吸着性能等の期待される効果に劣るものとなる。また、該メソ細孔は、(ii)ピークを示す分布を有し、hw≦40nmであり、特にhw≦30nmが好ましく、5nm≦μ≦30nmであり、特に10nm≦μ≦20nmであることが好ましい。ここで、hw>40nm、μ<5nm又はμ>30nmである場合も触媒性能や吸着性能等の期待される効果に劣るものとなる。 The novel molded product of the present invention has mesopores, and (i) has a mesopore volume of 0.05 cc / g or more, and is expected to be a particularly excellent aromatization catalyst. It is preferably 0.10 cc / g or more. Here, when the mesopore volume is less than 0.05 cc / g, the diffusion of the substrate becomes insufficient, and the expected effects such as catalytic performance and adsorption performance are inferior. Further, the mesopores have a distribution showing a peak (ii), hw ≦ 40 nm, particularly preferably hw ≦ 30 nm, 5 nm ≦ μ ≦ 30 nm, and particularly 10 nm ≦ μ ≦ 20 nm. preferable. Here, even when hw> 40 nm, μ <5 nm or μ> 30 nm, the expected effects such as catalyst performance and adsorption performance are inferior.

本発明の新規な成形体は、マクロ細孔をも有するものであり、(iii)直径0.2〜200μmの範囲のマクロ細孔容積が0.03cc/g以上0.30cc/g以下であり、中でも、特に反応原料や吸着基質の拡散性が向上することから0.03cc/g以上0.20cc/g以下であることがより好ましい。ここで、直径0.2〜200μmの範囲のマクロ細孔容積が0.03cc/g未満の場合、基質の拡散が十分に起こらず触媒性能や吸着性能で劣るものとなる。また、直径0.2〜200μmの範囲のマクロ細孔容積が0.30cc/gより大きい場合、成形体の巨視的空隙割合が大きくなるため、成形体の圧壊強度に劣るものとなる。 The novel molded product of the present invention also has macropores, and (iii) has a macropore volume in the range of 0.2 to 200 μm of 0.03 cc / g or more and 0.30 cc / g or less. Above all, it is more preferably 0.03 cc / g or more and 0.20 cc / g or less because the diffusibility of the reaction raw material and the adsorption substrate is improved. Here, when the macropore volume in the range of 0.2 to 200 μm in diameter is less than 0.03 cc / g, the substrate is not sufficiently diffused and the catalytic performance and adsorption performance are inferior. Further, when the macropore volume in the range of 0.2 to 200 μm in diameter is larger than 0.30 cc / g, the macroscopic void ratio of the molded body becomes large, so that the crushing strength of the molded body is inferior.

本発明の新規な成形体は、該10員環細孔ゼオライトとシリカからなり、その配合割合は任意である。中でも特に優れた芳香族化触媒として期待される成形体となることから、10員環細孔ゼオライト:シリカ=50〜95:50〜5(重量割合)である成形体であることが好ましく、特に60〜90:40〜10である成形体が好ましい。 The novel molded product of the present invention comprises the 10-membered ring-pore zeolite and silica, and the blending ratio thereof is arbitrary. Among them, since it is a molded product expected as a particularly excellent aromatization catalyst, it is preferable that the molded product has 10-membered ring-pore zeolite: silica = 50 to 95: 50 to 5 (weight ratio). A molded product having a ratio of 60 to 90:40 to 10 is preferable.

本発明の新規な成形体の製造方法としては、如何なる方法を用いてもよく、例えばゼオライトとシリカ、場合によっては更なる添加剤等を所定割合で混合し、その混合物を所定形状に成形し、焼結することにより合成する方法を挙げることができる。その際の焼成温度としては、上記(i)〜(ii)の特性を満足するメソ細孔および上記(iii)の特性を満足するマクロ細孔を有する成形体を容易に製造することが可能となることから400〜800℃とすることが好ましい。 Any method may be used as a method for producing a novel molded product of the present invention. For example, zeolite and silica, and in some cases, further additives are mixed at a predetermined ratio, and the mixture is molded into a predetermined shape. A method of synthesizing by sintering can be mentioned. As the firing temperature at that time, it is possible to easily produce a molded product having mesopores satisfying the above-mentioned characteristics (i) to (ii) and macropores satisfying the above-mentioned characteristics (iii). Therefore, the temperature is preferably 400 to 800 ° C.

本発明の新規な成形体は、如何なる形状を有するものであってもよく、例えば円柱形状、円筒形状、三角柱形状,四角柱形状,五角柱形状,六角柱形状等の多角柱形状、中空多角柱形状等を挙げることができ、中でも、連続生産性に優れ、かつ高圧壊強度の成形体となることから円柱形状、円筒形状、又は多角柱形状であることが好ましい。また、その直径,幅,長さ等のサイズ、嵩密度,真密度等の密度としては充填効率等を考慮し任意に選択可能である。さらに、該成形体には、更に担持、イオン交換、物理混合、蒸着等の処理により、任意の金属種を導入しても良い。 The novel molded body of the present invention may have any shape, for example, a polygonal column shape such as a cylindrical shape, a cylindrical shape, a triangular column shape, a square column shape, a pentagonal column shape, a hexagonal column shape, or a hollow polygonal column. The shape and the like can be mentioned, and among them, a cylindrical shape, a cylindrical shape, or a polygonal prism shape is preferable because the molded body has excellent continuous productivity and high-pressure fracture strength. In addition, the size such as diameter, width, and length, and the density such as bulk density and true density can be arbitrarily selected in consideration of filling efficiency and the like. Further, any metal species may be introduced into the molded product by further treatments such as loading, ion exchange, physical mixing, and vapor deposition.

本発明は、10員環細孔ゼオライトとシリカからなる成形体であり、特定のメソ細孔およびマクロ細孔を有する新規な成形体であり、触媒、吸着剤として工業的な有用性が期待されるものである。 The present invention is a molded body composed of 10-membered ring-pore zeolite and silica, which is a novel molded body having specific mesopores and macropores, and is expected to be industrially useful as a catalyst and an adsorbent. It is a thing.

以下に、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

なお、実施例および比較例に用いた10員環細孔ゼオライトは、特許6070336号に基づき調製を行った。また、成形体およびゼオライトは、以下の方法により測定した。 The 10-membered ring-pore zeolite used in Examples and Comparative Examples was prepared based on Japanese Patent No. 60070336. The molded product and zeolite were measured by the following methods.

〜メソ細孔の分布、細孔径・容積の測定〜
メソ細孔分布、メソ細孔径は窒素吸脱着測定により測定した。
~ Measurement of mesopore distribution, pore diameter and volume ~
The mesopore distribution and mesopore diameter were measured by nitrogen adsorption / desorption measurement.

その際の窒素吸脱着測定としては、窒素吸脱着装置((商品名)OMNISORP360CX,BeckmanCoulter社製)を用い、吸脱着とも30torr/stepの条件で測定した。 As the nitrogen adsorption / desorption measurement at that time, a nitrogen adsorption / desorption device ((trade name) OMNISORP360CX, manufactured by Beckman Coulter) was used, and both adsorption and desorption were measured under the condition of 30 torr / step.

そして、窒素吸脱着測定の脱着過程をBarret−Joyner−Halenda法(Journal of the American Chemical Society、1951年、頁373〜380)にて解析し、横軸が細孔直径の常数、縦軸が窒素ガスの脱着量の微分値であるメソ細孔分布曲線を得た。メソ細孔分布曲線の解析にはHULINKS社のPeakfit(ver.4.12)を用いた。 Then, the desorption process of the nitrogen adsorption / desorption measurement was analyzed by the Barret-Joiner-Halenda method (Journal of the American Chemical Society, 1951, pp. 373-380). A mesopore distribution curve, which is a differential value of the amount of gas desorption, was obtained. Peakfit (ver. 4.12) manufactured by HULINKS was used for the analysis of the mesopore distribution curve.

メソ細孔容積は、2nm以上50nm以下の範囲の窒素ガス脱着量を積算することにより求めた。そして、メソ細孔からの窒素ガス脱着量のメソ細孔直径値での微分値(d(V/m)/d(D))のピークの内、最大のピークをガウス関数の強度近似で解析し、そのガウス関数の中心値(つまり、細孔分布のピーク中心値)(μ)から標準偏差の2倍(2σ)の範囲(=μ±2σ)内の直径を有するメソ細孔を均一メソ細孔と定義した。 The mesopore volume was determined by integrating the amount of nitrogen gas desorption in the range of 2 nm or more and 50 nm or less. Then, among the peaks of the differential value (d (V / m) / d (D)) of the amount of nitrogen gas desorbed from the mesopores at the mesopore diameter value, the largest peak is analyzed by the intensity approximation of the Gaussian function. Then, the mesopores having a diameter within the range (= μ ± 2σ) of twice the standard deviation (2σ) from the median value of the Gaussian function (that is, the peak center value of the pore distribution) (μ) are made uniform. Defined as pores.

〜粉末X線回折の測定〜
X線回折装置(スペクトリス社製、(商品名)X’pert PRO MPD)を用い、管電圧45kV、管電流40mAとしてCuKα1を用いて、大気中において測定した。5〜60度の範囲を0.04度/ステップ、4度/分で分析した。また、ダイレクトビームの吸収率で補正したバックグラウンドを除去している。ピークの有無の確認は目視で行った。
~ Measurement of powder X-ray diffraction ~
The measurement was performed in the atmosphere using an X-ray diffractometer (manufactured by Spectris, (trade name) X'pert PRO MPD), using CuKα1 as a tube voltage of 45 kV and a tube current of 40 mA. The range of 5-60 degrees was analyzed at 0.04 degrees / step, 4 degrees / minute. In addition, the background corrected by the absorption rate of the direct beam is removed. The presence or absence of a peak was visually confirmed.

〜マクロ細孔容積の測定〜
水銀ポロシメーター((商品名)POREMASTER GT、Quantachrome Instruments社製)を用いて、測定セル(0.5ccガラスセル)に成形体試料約0.6gを導入し、各測定圧力下での水銀圧入量を測定した。水銀圧入量はブランクセルの測定時の圧入量をベースとして差し引くことにより得た。直径0.2〜200μmの範囲のマクロ細孔容積は、上記より得られた水銀圧入量のうち、直径範囲0.2〜200μmの圧入量を積算することで得た。マクロ孔容積の解析は解析ソフト((商品名)Poremaster for WindowsR、Quantachrome Instruments社製)により行った。水銀の表面張力は480erg/cm、水銀の前進角は140°とした。
~ Measurement of macropore volume ~
Using a mercury porosimeter ((trade name) POREMASTER GT, manufactured by Quantachrome Instruments), about 0.6 g of a molded product sample was introduced into a measurement cell (0.5 cc glass cell), and the amount of mercury press-fitted under each measurement pressure was measured. It was measured. The mercury injection amount was obtained by subtracting the mercury injection amount based on the injection amount at the time of measurement of the blank cell. The macropore volume in the range of 0.2 to 200 μm in diameter was obtained by integrating the press-fitting amount in the diameter range of 0.2 to 200 μm among the mercury injecting amounts obtained from the above. The analysis of the macropore volume was performed by analysis software ((trade name) Polemaster for Windows R, manufactured by Quantachrome Instruments). The surface tension of mercury was 480 erg / cm 2 , and the advancing angle of mercury was 140 °.

〜芳香族化合物製造装置及びその製造方法〜
実施例、比較例により得られた成形体は、以下の方法により芳香族化合物の製造を行い、芳香族化触媒としての性能評価を行った。
~ Aromatic compound manufacturing equipment and its manufacturing method ~
Aromatic compounds were produced from the molded articles obtained in Examples and Comparative Examples by the following methods, and their performance as an aromatization catalyst was evaluated.

ステンレス製反応管(内径16mm、長さ600mm)を有する固定床気相流通式反応装置を用いた。ステンレス製反応管の中段に、成形体を充填し、乾燥空気流通下での加熱前処理を行ったのち、原料ガスをフィードした。そして、加熱はセラミック製管状炉を用い、触媒(成形体)層の温度を制御した。反応出口ガスおよび反応液を採取し、ガスクロマトグラフを用い、ガス成分および液成分を個別に分析した。ガス成分は、TCD検出器を備え、充填剤(Waters社製、(商品名)PorapakQまたはGLサイエンス社製、(商品名)MS−5A)を有するガスクロマトグラフ(島津製作所製、(商品名)GC−1700)を用いて分析した。液成分は、FID検出器を備え、分離カラムとしてキャピラリーカラム(GLサイエンス社製、(商品名)TC−1)を有するガスクロマトグラフ(島津製作所製、(商品名)GC−2015)を用いて分析した。 A fixed-bed gas-phase flow reactor having a stainless steel reaction tube (inner diameter 16 mm, length 600 mm) was used. The middle stage of the stainless steel reaction tube was filled with a molded product, pretreated by heating under a dry air flow, and then the raw material gas was fed. Then, a ceramic tube furnace was used for heating, and the temperature of the catalyst (mold) layer was controlled. The reaction outlet gas and the reaction solution were collected, and the gas component and the liquid component were analyzed individually using a gas chromatograph. The gas component is a gas chromatograph (manufactured by Shimadzu Corporation, (trade name) GC) equipped with a TCD detector and having a filler (manufactured by Waters Corp., (trade name) PorapakQ or GL Science Co., Ltd., (trade name) MS-5A). -1700) was used for analysis. The liquid components were analyzed using a gas chromatograph (manufactured by Shimadzu Corporation, (trade name) GC-2015) equipped with a FID detector and having a capillary column (manufactured by GL Science, Inc. (trade name) TC-1) as a separation column. ..

反応条件は下記のように設定した。 The reaction conditions were set as follows.

(芳香族化合物製造条件)
原料ガス:エチレン
成形体重量:1.9g。
流通ガス:原料ガス50mol%+窒素50mol%の混合ガス、100Nml/分。
反応温度:600℃。
(Aromatic compound production conditions)
Raw material gas: Ethylene molded body weight: 1.9 g.
Distribution gas: Mixed gas of raw material gas 50 mol% + nitrogen 50 mol%, 100 Nml / min.
Reaction temperature: 600 ° C.

(前処理条件)
触媒温度:600℃。
流通ガス:空気100Nml/分。
(Pretreatment conditions)
Catalyst temperature: 600 ° C.
Flowing gas: Air 100 Nml / min.

実施例1
SiO/Al比=46のMFI型ゼオライト100重量部に対して、シリカ(日産化学工業社製、(商品名)スノーテックスN−30G)25重量部、セルロース3重量部、純水20重量部を加え混練した。なお、該MFI型ゼオライトは、メソ細孔容積0.38cc/g、メソ細孔分布のピークの半値幅10nm、該ピーク中心値14nmを有するものであった。そして、混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.4mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で3時間焼成して成形体を得た。得られた成形体の物性を表1に示す。均一メソ細孔および直径0.2〜200μmのマクロ細孔容積を有する、新規な成形体であった。
Example 1
25 parts by weight of silica (manufactured by Nissan Chemical Industries, Ltd. (trade name) Snowtex N-30G), 3 parts by weight of cellulose, pure water with respect to 100 parts by weight of MFI-type zeolite having a SiO 2 / Al 2 O 3 ratio = 46. 20 parts by weight was added and kneaded. The MFI-type zeolite had a mesopore volume of 0.38 cc / g, a half-value width of 10 nm at the peak of the mesopore distribution, and a peak center value of 14 nm. Then, the kneaded product was made into a columnar molded body having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.4 mm). This was dried at 100 ° C. overnight. The dried molded product was fired at 600 ° C. for 3 hours under air flow to obtain a molded product. Table 1 shows the physical characteristics of the obtained molded product. It was a novel molded body with uniform mesopores and macropore volume with a diameter of 0.2-200 μm.

得られた成形体を触媒とし、上記した条件にて芳香族化合物の製造を行い、芳香族化の評価を行った。反応時間に対するエチレン転化率の変化を図1に示す。また、芳香族収率の変化を図2に示す。反応時間480分間、安定して高い反応活性を示した。 Using the obtained molded product as a catalyst, an aromatic compound was produced under the above conditions, and aromatization was evaluated. The change in ethylene conversion rate with respect to the reaction time is shown in FIG. The change in aromatic yield is shown in FIG. The reaction time was 480 minutes, and the reaction activity was stable and high.

Figure 0006947011
Figure 0006947011

実施例2
SiO/Al比=46のMFI型ゼオライト100重量部に対して、シリカ(日産化学工業社製、(商品名)スノーテックスN−30G)43重量部、セルロース4重量部、純水21重量部を加え混練した。なお、該MFI型ゼオライトは、メソ細孔容積0.43cc/g、メソ細孔分布のピーク半値幅13nm、ピーク中心値16nmを有するものであった。そして、混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.5mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で3時間焼成して成形体を得た。得られた成形体の物性を表1に示す。均一メソ細孔および直径0.2〜200μmのマクロ細孔容積を有する、新規な成形体であった。
Example 2
Silica (manufactured by Nissan Chemical Industries, Ltd. (trade name) Snowtex N-30G) 43 parts by weight, cellulose 4 parts by weight, pure water with respect to 100 parts by weight of MFI-type zeolite having a SiO 2 / Al 2 O 3 ratio = 46. 21 parts by weight were added and kneaded. The MFI-type zeolite had a mesopore volume of 0.43 cc / g, a peak half width of 13 nm in the mesopore distribution, and a peak center value of 16 nm. Then, the kneaded product was made into a columnar molded body having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.5 mm). This was dried at 100 ° C. overnight. The dried molded product was fired at 600 ° C. for 3 hours under air flow to obtain a molded product. Table 1 shows the physical characteristics of the obtained molded product. It was a novel molded body with uniform mesopores and macropore volume with a diameter of 0.2-200 μm.

得られた成形体を触媒とし、上記した条件にて芳香族化合物の製造を行い、その性能評価を行った。反応時間に対するエチレン転化率の変化を図1に示す。また、反応時間に対する芳香族収率の変化を図2に示す。反応時間480分間、安定して高い反応活性であった。 Using the obtained molded product as a catalyst, an aromatic compound was produced under the above conditions, and its performance was evaluated. The change in ethylene conversion rate with respect to the reaction time is shown in FIG. The change in aromatic yield with respect to the reaction time is shown in FIG. The reaction time was 480 minutes, and the reaction activity was stable and high.

実施例3
SiO/Al比=46のMFI型ゼオライト100重量部に対して、シリカ(日産化学工業製、(商品名)スノーテックスN−30G)25重量部、セルロース4重量部、純水30重量部を加え混練した。なお、該MFI型ゼオライトは、メソ細孔容積0.43cc/g、メソ細孔分布のピーク半値幅27nm、ピーク中心値15nmを有するものであった。そして、混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.5mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で3時間焼成して成形体を得た。得られた成形体の物性を表1に示す。均一メソ細孔および直径0.2〜200μmのマクロ細孔容積を有する、新規な成形体であった。
Example 3
25 parts by weight of silica (manufactured by Nissan Chemical Industries, Ltd. (trade name) Snowtex N-30G), 4 parts by weight of cellulose, 30 parts by weight of pure water with respect to 100 parts by weight of MFI-type zeolite having a SiO 2 / Al 2 O 3 ratio = 46. A heavy part was added and kneaded. The MFI-type zeolite had a mesopore volume of 0.43 cc / g, a peak half width of 27 nm in the mesopore distribution, and a peak center value of 15 nm. Then, the kneaded product was made into a columnar molded body having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.5 mm). This was dried at 100 ° C. overnight. The dried molded product was fired at 600 ° C. for 3 hours under air flow to obtain a molded product. Table 1 shows the physical characteristics of the obtained molded product. It was a novel molded body with uniform mesopores and macropore volume with a diameter of 0.2-200 μm.

得られた成形体を触媒とし、上記した条件にて芳香族化合物の製造を行い、その性能評価を行った。反応時間に対するエチレン転化率の変化を図1に示す。また、反応時間に対する芳香族収率の変化を図2に示す。反応時間480分間、安定して高い反応活性であった。 Using the obtained molded product as a catalyst, an aromatic compound was produced under the above conditions, and its performance was evaluated. The change in ethylene conversion rate with respect to the reaction time is shown in FIG. The change in aromatic yield with respect to the reaction time is shown in FIG. The reaction time was 480 minutes, and the reaction activity was stable and high.

比較例1
SiO/Al比=46のMFI型ゼオライト100重量部に対して、アタパルジャイト型粘土(アクティブミネラルズ社製、(商品名)ミニゲルMB)25重量部、セルロース4重量部、純水30重量部を加え混練した。なお、MFI型ゼオライトは、メソ細孔容積0.39cc/g、メソ細孔分布のピーク半値幅10nm、ピーク中心値14nmを有するものであった。混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.3mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で3時間焼成して成形体を得た。得られた成形体の物性を表1に示す。
Comparative Example 1
25 parts by weight of attapulsite type clay (manufactured by Active Minerals, (trade name) Minigel MB), 4 parts by weight of cellulose, 30 parts by weight of pure water with respect to 100 parts by weight of MFI type zeolite having a SiO 2 / Al 2 O 3 ratio = 46. A heavy part was added and kneaded. The MFI-type zeolite had a mesopore volume of 0.39 cc / g, a peak half width of 10 nm in the mesopore distribution, and a peak center value of 14 nm. The kneaded product was a columnar molded product having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.3 mm). This was dried at 100 ° C. overnight. The dried molded product was fired at 600 ° C. for 3 hours under air flow to obtain a molded product. Table 1 shows the physical characteristics of the obtained molded product.

得られた成形体を触媒とし、上記した条件にて芳香族化合物の製造を行い、その性能評価を行った。反応時間に対するエチレン転化率の変化を図1に示す。また、反応時間に対する芳香族収率の変化を図2に示す。反応時間480分経過後に活性の低下が見られ、性能に劣る成形体であった。 Using the obtained molded product as a catalyst, an aromatic compound was produced under the above conditions, and its performance was evaluated. The change in ethylene conversion rate with respect to the reaction time is shown in FIG. The change in aromatic yield with respect to the reaction time is shown in FIG. After a reaction time of 480 minutes, a decrease in activity was observed, and the molded product was inferior in performance.

比較例2
SiO/Al比=46のMFI型ゼオライト100重量部に対して、シリカ(日産化学工業製、(商品名)スノーテックスN−30G)25重量部、セルロース4重量部、純水30重量部を加え混練した。該MFI型ゼオライトは、メソ細孔容積0.02cc/g、メソ細孔分布のピーク半値幅0.1nm、ピーク中心値15nmを有するものであった。混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.5mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で3時間焼成して成形体を得た。得られた成形体の物性を表1に示す。均一メソ細孔を有さない成形体であった。
Comparative Example 2
25 parts by weight of silica (manufactured by Nissan Chemical Industries, Ltd. (trade name) Snowtex N-30G), 4 parts by weight of cellulose, 30 parts by weight of pure water with respect to 100 parts by weight of MFI-type zeolite having a SiO 2 / Al 2 O 3 ratio = 46. A heavy part was added and kneaded. The MFI-type zeolite had a mesopore volume of 0.02 cc / g, a peak half width of 0.1 nm in the mesopore distribution, and a peak center value of 15 nm. The kneaded product was a cylindrical molded body having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.5 mm). This was dried at 100 ° C. overnight. The dried molded product was fired at 600 ° C. for 3 hours under air flow to obtain a molded product. Table 1 shows the physical characteristics of the obtained molded product. It was a molded product having no uniform mesopores.

得られた成形体を触媒とし、上記した条件にて芳香族化合物の製造を行い、その性能評価を行った。反応時間に対するエチレン転化率の変化を図1に示す。また、反応時間に対する芳香族収率の変化を図2に示す。反応時間480分経過後に活性の低下が見られ、性能に劣る成形体であった。 Using the obtained molded product as a catalyst, an aromatic compound was produced under the above conditions, and its performance was evaluated. The change in ethylene conversion rate with respect to the reaction time is shown in FIG. The change in aromatic yield with respect to the reaction time is shown in FIG. After a reaction time of 480 minutes, a decrease in activity was observed, and the molded product was inferior in performance.

比較例3
SiO/Al比=46のMFI型ゼオライト100重量部に対して、シリカ(日産化学工業製、(商品名)スノーテックスN−30G)25重量部、セルロース2重量部、純水20重量部を加え混練した。メソ細孔容積0.39cc/g、メソ細孔分布のピークの半値幅11nm、該ピーク中心値14nmを有するものであった。混練物を直径1.5mm、長さ1.0〜7.0mm(平均長さ3.4mm)の円柱状の成形体とした。これを100℃で1晩乾燥した。乾燥後の成形体を、空気流通下、600℃で3時間焼成して成形体を得た。得られた成形体の物性を表1に示す。直径0.2〜200μmの範囲のマクロ細孔容積を十分に有さない成形体であった。
Comparative Example 3
25 parts by weight of silica (manufactured by Nissan Chemical Industries, Ltd. (trade name) Snowtex N-30G), 2 parts by weight of cellulose, 20 parts by weight of pure water with respect to 100 parts by weight of MFI-type zeolite having a SiO 2 / Al 2 O 3 ratio = 46. A heavy part was added and kneaded. The mesopore volume was 0.39 cc / g, the half width of the peak of the mesopore distribution was 11 nm, and the peak center value was 14 nm. The kneaded product was a columnar molded product having a diameter of 1.5 mm and a length of 1.0 to 7.0 mm (average length of 3.4 mm). This was dried at 100 ° C. overnight. The dried molded product was fired at 600 ° C. for 3 hours under air flow to obtain a molded product. Table 1 shows the physical characteristics of the obtained molded product. It was a molded product having a sufficient macropore volume in the range of 0.2 to 200 μm in diameter.

得られた成形体を触媒とし、上記した条件にて芳香族化合物の製造を行い、その性能評価を行った。反応時間に対するエチレン転化率の変化を図1に示す。また、反応時間に対する芳香族収率の変化を図2に示す。反応時間480分経過後に活性の低下が見られ、性能に劣る成形体であった。 Using the obtained molded product as a catalyst, an aromatic compound was produced under the above conditions, and its performance was evaluated. The change in ethylene conversion rate with respect to the reaction time is shown in FIG. The change in aromatic yield with respect to the reaction time is shown in FIG. After a reaction time of 480 minutes, a decrease in activity was observed, and the molded product was inferior in performance.

;実施例、比較例により得られた成形体を用い、反応時間に対するエチレン転化率の評価を行ったものである。; The ethylene conversion rate with respect to the reaction time was evaluated using the molded products obtained in Examples and Comparative Examples. ;実施例、比較例により得られた成形体を用い、反応時間に対する芳香族化合物の収率の評価を行ったものである。; The yield of the aromatic compound with respect to the reaction time was evaluated using the molded articles obtained in Examples and Comparative Examples.

10員環細孔ゼオライトとシリカとの成形体であり、特定のメソ細孔およびマクロ細孔を有する新規な成形体に関するものであり、該成形体は、触媒、吸着剤として工業的な有用性が期待されるものである。 It is a molded product of 10-membered ring-pore zeolite and silica, and relates to a novel molded product having specific mesopores and macropores, and the molded product is industrially useful as a catalyst and an adsorbent. Is expected.

Claims (4)

10員環細孔ゼオライトとシリカからなる成形体であって、下記(i)〜(ii)の特性を満足するメソ細孔および下記(iii)の特性を満足するマクロ細孔を有することを特徴とする成形体。
(i)メソ細孔容積が0.05cc/g以上である。
(ii)ピークを示す分布を有し、該ピークの半値幅(hw)がhw≦40nm、該ピークの中心値(μ)が5nm≦μ≦30nmである。
(iii)直径0.2〜200μmの範囲のマクロ細孔容積が0.03cc/g以上0.30cc/g以下である。
A molded product composed of 10-membered ring-pore zeolite and silica, characterized by having mesopores satisfying the following characteristics (i) to (ii) and macropores satisfying the following characteristics (iii). Molded body.
(I) The mesopore volume is 0.05 cc / g or more.
(Ii) It has a distribution showing a peak, the full width at half maximum (hw) of the peak is hw ≦ 40 nm, and the center value (μ) of the peak is 5 nm ≦ μ ≦ 30 nm.
(Iii) The macropore volume in the range of 0.2 to 200 μm in diameter is 0.03 cc / g or more and 0.30 cc / g or less.
10員環細孔ゼオライトとシリカとの配合割合が、10員環細孔ゼオライト:シリカ=50〜95:50〜5(重量割合)であることを特徴とする請求項1に記載の成形体。 The molded product according to claim 1, wherein the compounding ratio of the 10-membered ring-pore zeolite and silica is 10-membered ring-pore zeolite: silica = 50 to 95: 50 to 5 (weight ratio). 上記10員環細孔ゼオライトがMFI型またはMEL型であることを特徴とする請求項1又は2に記載の成形体。 The molded product according to claim 1 or 2, wherein the 10-membered ring-pore zeolite is an MFI type or a MEL type. 円柱形状、円筒形状、又は多角柱形状を有することを特徴とする請求項1〜3のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 3, which has a cylindrical shape, a cylindrical shape, or a polygonal prism shape.
JP2017247318A 2017-12-25 2017-12-25 Zeolite-silica molded product Active JP6947011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017247318A JP6947011B2 (en) 2017-12-25 2017-12-25 Zeolite-silica molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247318A JP6947011B2 (en) 2017-12-25 2017-12-25 Zeolite-silica molded product

Publications (2)

Publication Number Publication Date
JP2019112265A JP2019112265A (en) 2019-07-11
JP6947011B2 true JP6947011B2 (en) 2021-10-13

Family

ID=67221217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247318A Active JP6947011B2 (en) 2017-12-25 2017-12-25 Zeolite-silica molded product

Country Status (1)

Country Link
JP (1) JP6947011B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396052B2 (en) 2020-01-09 2023-12-12 東ソー株式会社 Catalyst for producing aromatic compounds

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122496B2 (en) * 2003-05-01 2006-10-17 Bp Corporation North America Inc. Para-xylene selective adsorbent compositions and methods
JP4914069B2 (en) * 2006-01-16 2012-04-11 Jx日鉱日石エネルギー株式会社 Method for producing lubricating base oil
MY160594A (en) * 2009-11-27 2017-03-15 Basf Se Process for the preparation of a titanium zeolite catalyst
JP6780369B2 (en) * 2015-12-18 2020-11-04 東ソー株式会社 Aromatic compound production catalyst and method for producing aromatic compounds

Also Published As

Publication number Publication date
JP2019112265A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
KR101851542B1 (en) A hydrocracking catalyst, process for preparing the same and use thereof
US8680344B2 (en) Molecular sieve adsorbent blends and uses thereof
RU2619788C2 (en) Method for separating gases using ddr-type zeolites with stabilized adsorption activity
JP6615898B2 (en) Zeolite adsorbent with a large external surface area and use of the zeolite adsorbent
JP2017521243A (en) Fluid separation and storage using ITQ-55
Hung et al. Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study
JP6460651B2 (en) Adsorbent based on zeolite and silica-rich clay, and method for purifying hydrocarbon feedstock containing unsaturated molecules
JP2006240920A (en) Method for producing catalyst having nanoporous zeolite catalyst surface
Zheng et al. Synthesis of wool-ball-like ZSM-5 with enlarged external surfaces and improved diffusion: a potential highly-efficient FCC catalyst component for elevating pre-cracking of large molecules and catalytic longevity
JP6947011B2 (en) Zeolite-silica molded product
CN103785449A (en) Binder-free ZSM-5 molecular sieve catalyst, preparation method thereof and using method thereof
JP6733501B2 (en) Aromatic compound production catalyst and method for producing aromatic compound
US20040035751A1 (en) Inorganic mesoporous solids, a process for their preparation and their use, notably as catalysts and adsorbents
KR101815852B1 (en) TRANSITION METAL-DOPED and MODIFIED POROUS CRYSTALLINE ZEOLITE L CATALYST, METHOD FOR PREPARING THEREOF AND METHOD FOR AROMTIZATION USING THE SAME
Wang et al. In situ crystal engineering on 3D-printed woodpile scaffolds: a monolith catalyst with highly accessible active sites for enhanced catalytic cracking
JP6780369B2 (en) Aromatic compound production catalyst and method for producing aromatic compounds
JP2018104217A (en) Metal-containing mfi-type zeolite and aromatic compound producing catalyst formed therefrom
ES2376270T3 (en) OLEFIN PRODUCTION.
JP7443684B2 (en) New zeolite and catalyst for producing aromatic hydrocarbons containing it
Chu et al. The Effect of Pretreatment Method on the Preparation of Micro-mesoporous ZSM-5/Y-Al2O3 Composite Materials
JP2021109132A (en) Catalyst for producing aromatic compound
CN113546671B (en) Light gasoline cracking yield-increasing propylene catalyst containing ultra-macroporous silica gel, and preparation method and application thereof
Cao et al. Comparison of surface passivation modification of two mordenite zeolites and their application on the isomerisation of o-ethyltoluene
US11571654B2 (en) Ethylene separations using a small pore zeolite with CDO framework
US20240139720A1 (en) Methods of producing catalyst compositions, and methods of cracking hydrocarbon feed streams using such catalyst compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R151 Written notification of patent or utility model registration

Ref document number: 6947011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151