WO2015152075A1 - Gas barrier laminate body, electronic device member, and electronic device - Google Patents

Gas barrier laminate body, electronic device member, and electronic device Download PDF

Info

Publication number
WO2015152075A1
WO2015152075A1 PCT/JP2015/059726 JP2015059726W WO2015152075A1 WO 2015152075 A1 WO2015152075 A1 WO 2015152075A1 JP 2015059726 W JP2015059726 W JP 2015059726W WO 2015152075 A1 WO2015152075 A1 WO 2015152075A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
barrier laminate
thickness
electronic device
Prior art date
Application number
PCT/JP2015/059726
Other languages
French (fr)
Japanese (ja)
Inventor
渉 岩屋
公市 永元
智史 永縄
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2016511630A priority Critical patent/JP6544832B2/en
Publication of WO2015152075A1 publication Critical patent/WO2015152075A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a gas barrier laminate having a small thickness and excellent in ultraviolet blocking properties and gas barrier properties, an electronic device member comprising the gas barrier laminate, and an electronic device provided with the electronic device member.
  • Gas barrier films are widely used for liquid crystal displays and electroluminescence (EL) displays.
  • this gas barrier film a film having an ultraviolet blocking property and capable of reducing deterioration of an element or the like due to ultraviolet rays has been proposed.
  • Patent Document 1 includes a base material, an organic layer provided on the base material, and an inorganic layer provided on the organic layer, and the organic layer includes an electron beam curable resin, an ultraviolet ray, and the like.
  • a gas barrier film containing an absorber and a light stabilizer is described.
  • electronic devices have been made lighter and thinner, and gas barrier laminates used for electronic devices are also required to be thin.
  • an electron beam curable resin is used as a material for forming an organic layer containing an ultraviolet absorber or the like.
  • the reason for using an electron beam curable resin is that when an ultraviolet curable resin composition is used as a material for forming an organic layer, ultraviolet rays are absorbed by the ultraviolet absorber, so that the organic layer is sufficiently cured. It is stated that it is impossible.
  • the thickness of the organic layer is increased or the concentration of the ultraviolet absorber contained in the organic layer is increased. It was necessary to make it high.
  • a thin gas barrier laminate cannot be obtained, and in the latter case, since the ultraviolet ray is absorbed by the ultraviolet absorber, the organic layer may not be sufficiently cured.
  • the present invention has been made in view of such circumstances, and has a gas barrier laminate that is thin and excellent in ultraviolet blocking properties and gas barrier properties, a member for an electronic device comprising the gas barrier laminate, and the electronic device. It aims at providing an electronic device provided with a member.
  • the inventors of the present invention as a base material, a smoothing layer, and a gas barrier layer in which a gas barrier layer are laminated in this order, have the light transmittance at a wavelength of 360 nm as the base material.
  • the smoothing layer is made of a cured product of an ultraviolet curable resin composition, the thickness of the substrate (T 1 ), and the thickness of the smoothing layer (T 2 )
  • T 1 the thickness of the substrate
  • T 2 the thickness of the smoothing layer
  • gas barrier laminates (1) to (9), (10) electronic device members, and (11) electronic devices are provided.
  • a gas barrier laminate in which a substrate, a smoothing layer, and a gas barrier layer are laminated in this order, and the substrate comprises a resin film having a light transmittance of 3.0% or less at a wavelength of 360 nm,
  • the smoothing layer is made of a cured product of an ultraviolet curable resin composition, and the thickness of the substrate (T 1 ), the thickness of the smoothing layer (T 2 ), and the thickness of the gas barrier layer (T 3 )
  • a gas barrier laminate characterized by satisfying (1) and (2).
  • the arithmetic mean roughness (Ra) of the interface between the smoothing layer and the gas barrier layer is 5 nm or less, and the maximum cross-sectional height (Rt) of the roughness curve is 100 nm or less.
  • the substrate thickness (T 1 ) is 5 to 28 ⁇ m
  • the smoothing layer thickness (T 2 ) is 0.5 to 3 ⁇ m
  • the gas barrier layer thickness (T 3 ) is 0.05 to 0.3 ⁇ m.
  • the gas barrier laminate according to (1) The gas barrier laminate according to (1).
  • (6) The gas barrier laminate according to (1), further having a hard coat layer / base material / smoothing layer / gas barrier layer, which is a gas barrier laminate having a hard coat layer.
  • (7) The gas barrier laminate according to (1), wherein the thickness of the gas barrier laminate is 5 to 35 ⁇ m.
  • (8) The gas barrier laminate according to (1), wherein the water vapor permeability of the gas barrier laminate at a temperature of 40 ° C. and a relative humidity of 90% is 0.05 g / (m 2 ⁇ day) or less.
  • (9) The gas barrier laminate according to (1), wherein the light transmittance at a wavelength of 360 nm of the gas barrier laminate is 3.0% or less.
  • (1010) A member for an electronic device comprising the gas barrier laminate according to (1).
  • (11) An electronic device comprising the electronic device member according to (10).
  • a gas barrier laminate having a small thickness and excellent in ultraviolet blocking properties and gas barrier properties, an electronic device member comprising the gas barrier laminate, and an electronic device comprising the electronic device member.
  • Gas barrier laminate of the present invention is a gas barrier laminate in which a substrate, a smoothing layer, and a gas barrier layer are laminated in this order, and the substrate has a light transmittance at a wavelength of 360 nm.
  • the smoothing layer is made of a cured product of an ultraviolet curable resin composition
  • the thickness of the base material (T 1 ) the thickness of the smoothing layer (T 2 )
  • the thickness (T 3 ) of the gas barrier layer satisfies the above formulas (1) and (2).
  • the base material which comprises the gas-barrier laminated body of this invention consists of a resin film whose light transmittance in wavelength 360nm is 3.0% or less.
  • a resin film excellent in ultraviolet blocking properties that is, a “resin film having a light transmittance of 3.0% or less at a wavelength of 360 nm”.
  • the light transmittance at a wavelength of 360 nm of the resin film to be used is preferably 2.5% or less, and more preferably 2.0% or less.
  • the light transmittance at a wavelength of 360 nm can be measured using an ultraviolet spectrophotometer.
  • the resin film having an ultraviolet blocking property examples include a resin film containing a resin component and an ultraviolet absorber.
  • a resin component of the resin film polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyether sulfone, polyphenylene sulfide, acrylic resin, cycloolefin Based polymers, aromatic polymers, and the like.
  • These resin components can be used alone or in combination of two or more.
  • polyester, polyamide, polysulfone, polyether sulfone, polyphenylene sulfide, or cycloolefin-based polymer is more preferable, and polyester or cycloolefin-based polymer is more preferable because of excellent transparency and versatility.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • cycloolefin polymers examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • the ultraviolet absorber is not particularly limited as long as a resin film having a light transmittance of 3.0% or less at a wavelength of 360 nm can be obtained.
  • UV absorbers include salicylic acid UV absorbers such as pt-butylphenyl salicylate and p-octylphenyl salicylate; 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy Benzophenone ultraviolet absorbers such as -5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane; 2- (2'- Hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-y
  • the content of the ultraviolet absorber is preferably from 0.1 to 10% by mass, more preferably from 0.5 to 5% by mass, based on the resin component.
  • the resin film having ultraviolet blocking properties may contain various additives.
  • the additive include an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, and a color pigment. What is necessary is just to determine suitably content of these additives according to the objective.
  • the resin film having ultraviolet blocking properties can be obtained by preparing a resin composition containing a resin component and optionally various additives, and molding the resin composition into a film.
  • the forming method is not particularly limited, and a known film forming method such as a casting method or a melt extrusion method can be used.
  • the smoothing layer which comprises the gas-barrier laminated body of this invention consists of hardened
  • a smoothing layer reduces the unevenness
  • the base material contains an additive such as an ultraviolet absorber, it is possible to prevent these additives from bleeding out and diffusing into the gas barrier layer by providing a smoothing layer. The performance degradation can be avoided.
  • the ultraviolet curable resin composition usually contains a polymerizable compound and a photopolymerization initiator.
  • the polymerizable compound include polymerizable prepolymers and polymerizable monomers.
  • the polymerizable prepolymer includes a polyester oligomer having a hydroxyl group at both ends, a polyester acrylate prepolymer obtained by a reaction with (meth) acrylic acid, a low molecular weight bisphenol type epoxy resin or a novolac type epoxy resin, ) By reaction of epoxy acrylate prepolymer, polyurethane oligomer obtained by reaction with acrylic acid, urethane acrylate prepolymer, polyether polyol obtained by reaction of (meth) acrylic acid, and (meth) acrylic acid Examples thereof include a polyol acrylate prepolymer to be obtained.
  • Examples of the polymerizable monomer include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and hydroxypivalic acid.
  • the active energy ray-curable resin composition may contain a polymer resin component that does not have reaction curability, such as an acrylic resin.
  • the viscosity of the composition can be adjusted by adding a polymer resin component.
  • a photoinitiator will not be specifically limited if a polymerization reaction is started by irradiation of an ultraviolet-ray.
  • the photopolymerization initiator include benzoin-based polymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, and benzoin isobutyl ether; acetophenone, 4′-dimethylaminoacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [ 4- (Methylthio) phenyl] -2-morpholino-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -
  • the ultraviolet curable resin composition may contain other components as long as the effects of the present invention are not hindered.
  • other components include an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, an inorganic filler, and a color pigment. What is necessary is just to determine these content suitably according to the objective.
  • the method for forming the smoothing layer is not particularly limited.
  • an ultraviolet curable resin composition and, if necessary, a coating liquid containing a solvent is prepared, and then this coating liquid is coated on a substrate by a known method, and the obtained coating film Is cured to form a smoothing layer made of a cured product of the ultraviolet curable resin composition.
  • the solvent for the coating solution examples include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n-pentane, n- And aliphatic hydrocarbon solvents such as hexane and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
  • Examples of the coating method include a bar coating method, a spin coating method, a dipping method, a roll coating, a gravure coating, a knife coating, an air knife coating, a roll knife coating, a die coating, a screen printing method, a spray coating, and a gravure offset method.
  • drying method When the coating film is dried, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted as the drying method.
  • the drying temperature is usually in the range of 60 to 130 ° C.
  • the drying time is usually several seconds to several tens of minutes.
  • Curing of the coating film can be performed by irradiating with ultraviolet rays from the surface of the coating film (side where the substrate does not exist).
  • a light source such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a black light lamp, a metal halide lamp, or the like can be used.
  • No particular restrictions on the quantity of ultraviolet light it is usually 100mJ / cm 2 ⁇ 1,000mJ / cm 2.
  • the irradiation time is usually several seconds to several hours, and the irradiation temperature is usually room temperature (20 ° C.) to 100 ° C.
  • the arithmetic mean roughness (Ra) of the surface of the smoothing layer is preferably 5 nm or less, more preferably 0.1 to 4 nm, and the maximum cross-sectional height (Rt) of the roughness curve is preferably 100 nm or less.
  • the thickness is preferably 1 to 100 nm, more preferably 20 to 80 nm, and particularly preferably 30 to 65 nm.
  • Gas barrier layer which comprises the gas barrier laminated body of this invention is a layer which has the characteristic (gas barrier property) which suppresses permeation
  • the gas barrier layer for example, a layer obtained by subjecting an inorganic vapor deposition film or a layer containing a polymer compound (hereinafter, also referred to as “polymer layer”) to a modification treatment [in this case, the gas barrier layer is In addition, it means not only a region modified by ion implantation treatment or the like, but a “polymer layer including a modified region”. ] Etc. are mentioned.
  • the inorganic vapor deposition film examples include vapor deposition films of inorganic compounds and metals.
  • inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide
  • inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride
  • inorganic carbides Inorganic sulfides
  • inorganic oxynitrides such as silicon oxynitride
  • Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, and tin. These can be used singly or in combination of two or more. Among these, an inorganic vapor-deposited film using an inorganic oxide, inorganic nitride or metal as a raw material is preferable from the viewpoint of gas barrier properties, and further, an inorganic material using an inorganic oxide or inorganic nitride as a raw material from the viewpoint of transparency. A vapor deposition film is preferred.
  • a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, a photo CVD method, etc.
  • the CVD method is mentioned.
  • the thickness of the inorganic vapor deposition film varies depending on the inorganic compound to be used, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm from the viewpoint of gas barrier properties and handling properties.
  • the polymer compound used includes silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether Examples include ketones, polyether ether ketones, polyolefins, polyesters, polycarbonates, polysulfones, polyether sulfones, polyphenylene sulfides, polyarylates, acrylic resins, cycloolefin polymers, and aromatic polymers. These polymer compounds can be used alone or in combination of two or more.
  • a silicon-containing polymer compound is preferable as the polymer compound because a gas barrier layer having better gas barrier properties can be formed.
  • silicon-containing polymer compounds include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds.
  • a polysilazane compound is preferable because a gas barrier layer having excellent gas barrier properties can be formed even if it is thin.
  • the polysilazane compound is a polymer compound having a repeating unit containing —Si—N— bond (silazane bond) in the molecule. Specifically, the formula (1)
  • the compound which has a repeating unit represented by these is preferable.
  • the number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably 100 to 50,000.
  • n represents arbitrary natural numbers.
  • Rx, Ry, and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or substituted Represents a non-hydrolyzable group such as an aryl group having a group or an alkylsilyl group;
  • alkyl group of the unsubstituted or substituted alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, Examples thereof include alkyl groups having 1 to 10 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
  • Examples of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • alkenyl group of an unsubstituted or substituted alkenyl group examples include, for example, a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and the like having 2 to 2 carbon atoms. 10 alkenyl groups are mentioned.
  • substituents for the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
  • hydroxyl group such as hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group
  • An unsubstituted or substituted aryl group such as a phenyl group, a 4-methylphenyl group, and a 4-chlorophenyl group;
  • aryl group of an unsubstituted or substituted aryl group examples include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • substituent of the aryl group examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, etc.
  • alkylsilyl group examples include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group, and ethylsilyl group.
  • Rx, Ry, and Rz a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom is particularly preferable.
  • Examples of the polysilazane compound having a repeating unit represented by the formula (1) include inorganic polysilazanes in which Rx, Ry, and Rz are all hydrogen atoms, and organic polysilazanes in which at least one of Rx, Ry, and Rz is not a hydrogen atom. It may be.
  • a modified polysilazane compound can also be used as the polysilazane compound.
  • the modified polysilazane include, for example, JP-A-62-195024, JP-A-2-84437, JP-A-63-81122, JP-A-1-138108, and JP-A-2-175726.
  • JP-A-5-238827, JP-A-5-238827, JP-A-6-122852, JP-A-6-306329, JP-A-6-299118, JP-A-9-31333 Examples thereof include those described in Kaihei 5-345826 and JP-A-4-63833.
  • the polysilazane compound perhydropolysilazane in which Rx, Ry, and Rz are all hydrogen atoms is preferable from the viewpoint of easy availability and the ability to form an ion-implanted layer having excellent gas barrier properties.
  • a polysilazane compound a commercially available product as a glass coating material or the like can be used as it is.
  • the polysilazane compounds can be used alone or in combination of two or more.
  • the polymer layer may contain other components in addition to the polymer compound described above as long as the object of the present invention is not impaired.
  • other components include a curing agent, an anti-aging agent, a light stabilizer, and a flame retardant.
  • the content of the polymer compound in the polymer layer is preferably 50% by mass or more and more preferably 70% by mass or more because a gas barrier layer having better gas barrier properties can be obtained.
  • the thickness of the polymer layer is not particularly limited, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm. In the present invention, even if the thickness of the polymer layer is nano-order, a gas barrier laminate having a sufficient gas barrier property can be obtained.
  • the method for forming the polymer layer is not particularly limited. For example, preparing a polymer layer forming solution containing at least one polymer compound, optionally other components, a solvent, etc., and then applying this polymer layer forming solution by a known method, A polymer layer can be formed by drying the obtained coating film.
  • Solvents used for the polymer layer forming solution include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n- And aliphatic hydrocarbon solvents such as pentane, n-hexane, and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
  • Coating methods for the polymer layer forming solution include bar coating, spin coating, dipping, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing, spray coating, and gravure. Examples include an offset method.
  • drying the formed coating film As a method for drying the formed coating film, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed.
  • the heating temperature is usually in the range of 60 to 130 ° C.
  • the heating time is usually several seconds to several tens of minutes.
  • Examples of the polymer layer modification treatment include ion implantation treatment, plasma treatment, and ultraviolet irradiation treatment.
  • the ion implantation process is a method of modifying the polymer layer by implanting ions into the polymer layer, as will be described later.
  • the plasma treatment is a method for modifying the polymer layer by exposing the polymer layer to plasma.
  • plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
  • the ultraviolet irradiation treatment is a method for modifying the polymer layer by irradiating the polymer layer with ultraviolet rays.
  • the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
  • the ion implantation treatment is preferable because the gas barrier layer can be efficiently modified to the inside without roughening the surface of the polymer layer and more excellent in gas barrier properties.
  • ions implanted into the polymer layer ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .; methane, ethane, etc.
  • rare gases such as argon, helium, neon, krypton, and xenon
  • fluorocarbon hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .
  • Ion of alkane gases such as ethylene and propylene
  • Ions of alkadiene gases such as pentadiene and butadiene
  • Ions of alkyne gases such as acetylene
  • Aromatic carbonization such as benzene and toluene
  • Examples include ions of hydrogen-based gases; ions of cycloalkane-based gases such as cyclopropane; ions of cycloalkene-based gases such as cyclopentene; ions of metals; ions of organosilicon compounds. These ions can be used alone or in combination of two or more.
  • ions of rare gases such as argon, helium, neon, krypton, and xenon are preferable because ions can be more easily implanted and a gas barrier layer having better gas barrier properties can be obtained.
  • the ion implantation amount can be appropriately determined according to the purpose of use of the gas barrier laminate (necessary gas barrier properties, transparency, etc.).
  • Examples of the method of implanting ions include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like.
  • the latter method of implanting plasma ions is preferable because the desired barrier layer can be easily obtained.
  • plasma is generated in an atmosphere containing a plasma generation gas such as a rare gas, and a negative high voltage pulse is applied to the polymer layer, whereby ions (positive ions) in the plasma are It can be performed by injecting into the surface portion of the polymer layer.
  • a plasma generation gas such as a rare gas
  • the thickness of the region into which ions are implanted can be controlled by implantation conditions such as ion type, applied voltage, and processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the laminate, etc. Usually, it is 10 to 300 nm.
  • the gas barrier laminate of the present invention comprises the base material, the smoothing layer and the gas barrier layer laminated in this order, and the thickness (T 1 ) of the base material and the thickness of the smoothing layer ( T 2 ) and the gas barrier layer thickness (T 3 ) satisfy the following formulas (1) and (2).
  • the gas barrier laminate of the present invention since a resin film having ultraviolet blocking properties is used as the substrate, it is not necessary to include an ultraviolet absorber in the smoothing layer. Therefore, since it is not necessary to increase the thickness of the smoothing layer in order to obtain sufficient ultraviolet blocking properties, the thickness of the smoothing layer can be sufficiently reduced. Moreover, since it is not necessary to laminate
  • the curability of the smoothing layer is not lowered by the absorption of ultraviolet rays by the ultraviolet absorber.
  • the smoothing layer can be sufficiently cured by irradiating ultraviolet rays, and as a result, a gas barrier laminate having excellent gas barrier properties can be obtained.
  • the lower limit value of T 1 + T 2 + T 3 is usually 5 ⁇ m.
  • the substrate thickness (T 1 ), smoothing layer thickness (T 2 ), and gas barrier layer thickness (T 3 ) are preferably 5 to 28 ⁇ m, 0.5 to 3 ⁇ m, and 0.05 to 0.3 ⁇ m, respectively. More preferably, T 1 is 20 to 28 ⁇ m, T 2 is 0.5 to 2 ⁇ m, and T 3 is 0.05 to 0.2 ⁇ m.
  • the thickness of each layer can be measured by the method described in the examples.
  • the gas barrier laminate of the present invention may have a layer other than the substrate, the smoothing layer, and the gas barrier layer.
  • layers other than the base material, the smoothing layer, and the gas barrier layer include a hard code layer, a conductor layer, a shock absorbing layer, an adhesive layer, and a process sheet.
  • the process sheet has a role of protecting the gas barrier laminate when the laminate is stored, transported, etc., and is peeled off when the gas barrier laminate is used.
  • the arrangement of these layers is not particularly limited as long as the layer configuration of the base material / smoothing layer / gas barrier layer is maintained.
  • the layer structure of the gas barrier laminate of the present invention include the following.
  • the gas barrier laminate of (ii) is the side where the smoothing layer of the base material is formed. It has a hard coat layer on the opposite surface.
  • the ultraviolet absorber can be prevented from bleeding out, and by imparting scratch resistance, it can be avoided that the ultraviolet blocking property due to the substrate being damaged is deteriorated.
  • the thickness of the hard coat layer is preferably 0.5 to 3 ⁇ m, more preferably 0.5 to 2.5 ⁇ m.
  • the gas barrier laminate of the present invention can be produced, for example, by the following method.
  • a gas barrier layer having a layer structure of base material / smoothing layer / gas barrier layer can be obtained by forming a gas barrier layer on the obtained smoothing layer using the method described above. .
  • a hard coat layer is formed on one surface of the base material, and then the other surface of the base material
  • a smoothing layer is formed using the method described above.
  • a gas barrier layer having a layer configuration of hard coat layer / base material / smoothing layer / gas barrier layer is formed on the obtained smoothing layer by forming a gas barrier layer using the method described above.
  • each layer can be formed in the order of a smoothing layer, a hard coat layer, and a gas barrier layer, or each layer can be formed in the order of a smoothing layer, a gas barrier layer, and a hard coat layer to obtain a gas barrier laminate.
  • the hard coat layer can be formed by the same method as that for forming the smoothing layer, using the same material as that of the smoothing layer.
  • the gas barrier laminate of the present invention has a layer other than the base material, the smoothing layer, the gas barrier layer, and the hard coat layer, the above-described production method can be performed by appropriately adding necessary steps. A gas barrier laminate can be obtained.
  • the thickness of the gas barrier laminate of the present invention is not particularly limited, but is preferably 5 to 35 ⁇ m, more preferably 10 to 34 ⁇ m, and still more preferably 20 to 33 ⁇ m.
  • the gas barrier layered product of the present invention is preferably 0.05g / (m 2 ⁇ day) or less, more preferably 0.04g / (m 2 ⁇ day ) Or less, and more preferably 0.03 g / (m 2 ⁇ day) or less.
  • the water vapor transmission rate can be measured by the method described in the examples.
  • the light transmittance at a wavelength of 360 nm of the gas barrier laminate of the present invention is preferably 3.0% or less, preferably 2.5% or less, and more preferably 2.0% or less.
  • the lower limit of the light transmittance is usually 0.01% or more. Since it has these characteristics, the gas barrier laminate of the present invention is excellent in gas barrier properties and ultraviolet blocking properties, and is suitably used as a member for electronic devices.
  • the electronic device member of the present invention comprises the gas barrier laminate of the present invention. Since the electronic device member of the present invention has excellent gas barrier properties, it is possible to prevent deterioration of the element due to gas such as water vapor. Moreover, since it is excellent in ultraviolet-blocking property, deterioration of the element by ultraviolet irradiation can be prevented. Therefore, the electronic device member of the present invention is suitable as a display member such as a liquid crystal display or an EL display.
  • the electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery. Since the electronic device of the present invention includes the electronic device member comprising the gas barrier laminate of the present invention, it is thin, lightweight, and excellent in durability against water vapor and ultraviolet rays.
  • -Substrate (1) Polyethylene terephthalate film (manufactured by Teijin DuPont, resin film containing an ultraviolet absorber, trade name: Teijin Tetron film HB3, thickness: 25 ⁇ m, light transmittance at a wavelength of 360 nm: 1.6%)
  • -Substrate (2) Polyethylene terephthalate film (Mitsubishi Plastics, trade name: PET25 T-100, thickness: 25 ⁇ m, light transmittance at a wavelength of 360 nm: 89%)
  • Production Example 3 In Production Example 2, a smoothing layer forming solution (3) was prepared in the same manner as in Production Example 2 except that the blending amount of the ultraviolet absorber was changed to 8 parts.
  • Example 1 On the base material (1), the smoothing layer forming solution (1) obtained in Production Example 1 was applied by the bar coating method, and the obtained coating film was heated and dried at 70 ° C. for 1 minute, and then irradiated with UV light. UV light irradiation is performed using a line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes 2 times), and a smoothing layer (1) having a thickness of 1 ⁇ m is applied. Formed.
  • a line high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes 2 times
  • perhydropolysilazane manufactured by AZ Electronic Materials, trade name: AZNL110A-20
  • AZNL110A-20 perhydropolysilazane
  • the smoothing layer (1) by a spin coating method, and the resulting coating film was heated at 120 ° C. for 2 minutes.
  • a perhydropolysilazane layer was formed.
  • argon (Ar) is ion-implanted on the surface of the perhydropolysilazane layer using a plasma ion implantation apparatus to form a gas barrier layer, and the base material (1) / smoothing layer (1)
  • a gas barrier laminate 1 having a layer structure of / gas barrier layer was obtained.
  • the plasma ion implantation apparatus and plasma ion implantation conditions used for forming the gas barrier layer are as follows.
  • RF power supply Model number “RF” 56000
  • JEOL high voltage pulse power supply “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd.
  • Plasma generated gas Ar ⁇ Gas flow rate: 100sccm ⁇ Duty ratio: 0.5% ⁇ Repetition frequency: 1000Hz ⁇ Applied voltage: -10kV ⁇ RF power supply: frequency 13.56 MHz, applied power 1000 W -Chamber internal pressure: 0.2 Pa ⁇ Pulse width: 5 ⁇ sec ⁇ Processing time (ion implantation time): 5 minutes ⁇ Conveying speed: 0.2 m / min
  • Example 2 The hard coat layer forming solution obtained in Production Example 1 was applied to the surface of the base material (1) of the gas barrier laminate 1 obtained by the method described in Example 1 by the bar coating method. After the coating film is heated and dried at 70 ° C. for 1 minute, UV light irradiation is performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, pass The gas barrier laminate 2 having a layer structure of hard coat layer / base material (1) / smoothing layer (1) / gas barrier layer was obtained by forming a hard coat layer having a thickness of 2 ⁇ m twice.
  • a UV light irradiation line high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W
  • Example 1 In Example 1, in place of the substrate (1), the substrate (2) / smoothing layer (1) / gas barrier layer was produced in the same manner as in Example 1 except that the substrate (2) was used. Thus, a gas barrier laminate 3 having a layer structure of was obtained.
  • Comparative Example 2 In Comparative Example 1, a smoothing layer forming solution (2) obtained in Production Example 2 was used in place of the smoothing layer forming solution (1). A gas barrier laminate 4 having a layer structure of material (2) / smoothing layer (2) / gas barrier layer was obtained.
  • Comparative Example 3 In Comparative Example 1, in place of the smoothing layer forming solution (1), the smoothing layer forming solution (3) obtained in Production Example 3 was used. A gas barrier laminate 5 having a layer structure of material (2) / smoothing layer (3) / gas barrier layer was obtained.
  • Comparative Example 4 In Comparative Example 2, the layer structure of the base material (2) / smoothing layer (2) / gas barrier layer was the same as in Comparative Example 2 except that the thickness of the smoothing layer (2) was changed to 10 ⁇ m. A gas barrier laminate 6 having the following was obtained.
  • UV transmittance The light transmittance at 360 nm of the gas barrier laminates 1 to 6 was measured using an ultraviolet / visible / near infrared spectrophotometer (UV-3600, manufactured by Shimadzu Corporation). The measurement results are shown in Table 1.
  • the gas barrier laminates 1 to 6 were subjected to an abrasion resistance test to evaluate the abrasion resistance.
  • the pencil hardness of the surface opposite to the side on which the smoothing layer and the gas barrier layer of the gas barrier laminate are laminated is JIS. Measurement was performed according to K5600-5-4, and the scratch resistance was evaluated according to the following criteria.
  • Table 1 shows the following.
  • the gas barrier laminates of Examples 1 and 2 satisfy the above formulas (1) and (2), are thin, and have excellent gas barrier properties and ultraviolet blocking properties. Furthermore, the gas barrier laminate of Example 2 has these characteristics and is excellent in scratch resistance.
  • the gas barrier laminates of Comparative Examples 1 and 2 satisfy the above-described formulas (1) and (2), but the base material does not have ultraviolet blocking properties, so that the ultraviolet blocking properties are inferior.
  • the smoothing layer contains the ultraviolet absorber
  • the gas barrier laminate of Comparative Example 2 is inferior in ultraviolet blocking property because the thickness of the smoothing layer is thin.
  • the gas barrier laminate of Comparative Example 3 is excellent in ultraviolet blocking property as a result of containing a large amount of ultraviolet absorber in the smoothing layer, but has a high water vapor transmission rate.
  • the gas barrier laminate of Comparative Example 4 is excellent in UV blocking properties, but does not satisfy the above formula (2), and the thickness of the gas barrier laminate is increased. Yes.
  • the smoothing layer is excessively thick with respect to the thickness of the base material, the gas barrier laminate may be curled.

Abstract

The present invention is a gas barrier laminate body, an electronic device member comprising the gas barrier laminate body, and an electronic device equipped with the electronic device member. The gas barrier laminate body contains a base material, a leveling layer, and a gas barrier layer that are laminated in that order, and is characterized in that: the base material comprises a resin film having a 360nm wavelength light transmittance of equal to or less than 3.0%; the leveling layer comprises a cured product of a UV-ray curable resin composition; and the thickness (T1) of the base material, the thickness (T2) of the leveling layer, and the thickness (T3) of the gas barrier layer satisfy formula (1) (T>T>T) and formula (2) (T+T+T<30μm). The present invention provides a thin gas barrier laminate body having superior UV-ray shielding properties and gas barrier properties, an electronic device member comprising the gas barrier laminate body, and an electronic device equipped with the electronic device member.

Description

ガスバリア性積層体、電子デバイス用部材および電子デバイスGAS BARRIER LAMINATE, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE
 本発明は、厚みが薄く、紫外線遮断性及びガスバリア性に優れるガスバリア性積層体、このガスバリア性積層体からなる電子デバイス用部材、及び、この電子デバイス用部材を備える電子デバイスに関する。 The present invention relates to a gas barrier laminate having a small thickness and excellent in ultraviolet blocking properties and gas barrier properties, an electronic device member comprising the gas barrier laminate, and an electronic device provided with the electronic device member.
 液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等にガスバリアフィルムが広く用いられている。
 近年においては、このガスバリアフィルムとして、紫外線遮断性を有し、紫外線による素子等の劣化を低減し得るものが提案されている。例えば、特許文献1には、基材と、該基材上に設けられた有機層と、該有機層上に設けられた無機層とを有し、前記有機層が、電子線硬化樹脂、紫外線吸収剤及び光安定剤を含有するガスバリアフィルムが記載されている。
 また、近年においては、電子デバイスの軽量化、薄型化が進んでおり、電子デバイスに用いるガスバリア性積層体にも厚みの薄いものが求められている。
Gas barrier films are widely used for liquid crystal displays and electroluminescence (EL) displays.
In recent years, as this gas barrier film, a film having an ultraviolet blocking property and capable of reducing deterioration of an element or the like due to ultraviolet rays has been proposed. For example, Patent Document 1 includes a base material, an organic layer provided on the base material, and an inorganic layer provided on the organic layer, and the organic layer includes an electron beam curable resin, an ultraviolet ray, and the like. A gas barrier film containing an absorber and a light stabilizer is described.
In recent years, electronic devices have been made lighter and thinner, and gas barrier laminates used for electronic devices are also required to be thin.
特開2013-154584号公報JP 2013-154484 A
 上記のように、特許文献1に記載のガスバリアフィルムにおいては、紫外線吸収剤等を含有する有機層の形成材料として、電子線硬化樹脂を用いている。この文献には、電子線硬化樹脂を用いる理由として、有機層を形成する材料として紫外線硬化型樹脂組成物を用いた場合、紫外線吸収剤により紫外線が吸収されるため、有機層を十分に硬化させることができないからであると記載されている。
 一方、汎用性の高い紫外線硬化性樹脂を使用して優れた紫外線吸収能を有する有機層を形成するためには、有機層の厚みを厚くしたり、有機層に含有させる紫外線吸収剤の濃度を高くしたりする必要があった。しかし、前者の場合は、厚みの薄いガスバリア性積層体が得られず、後者の場合は、紫外線吸収剤により紫外線が吸収されるため、有機層を十分に硬化させることができない場合があった。
As described above, in the gas barrier film described in Patent Document 1, an electron beam curable resin is used as a material for forming an organic layer containing an ultraviolet absorber or the like. In this document, the reason for using an electron beam curable resin is that when an ultraviolet curable resin composition is used as a material for forming an organic layer, ultraviolet rays are absorbed by the ultraviolet absorber, so that the organic layer is sufficiently cured. It is stated that it is impossible.
On the other hand, in order to form an organic layer having excellent ultraviolet absorption ability using a highly versatile ultraviolet curable resin, the thickness of the organic layer is increased or the concentration of the ultraviolet absorber contained in the organic layer is increased. It was necessary to make it high. However, in the former case, a thin gas barrier laminate cannot be obtained, and in the latter case, since the ultraviolet ray is absorbed by the ultraviolet absorber, the organic layer may not be sufficiently cured.
 本発明は、かかる実情に鑑みてなされたものであり、厚みが薄く、紫外線遮断性及びガスバリア性に優れるガスバリア性積層体、このガスバリア性積層体からなる電子デバイス用部材、並びに、この電子デバイス用部材を備える電子デバイスを提供することを目的とする。 The present invention has been made in view of such circumstances, and has a gas barrier laminate that is thin and excellent in ultraviolet blocking properties and gas barrier properties, a member for an electronic device comprising the gas barrier laminate, and the electronic device. It aims at providing an electronic device provided with a member.
 本発明者らは上記課題を解決すべく鋭意検討した結果、基材、平滑化層及びガスバリア層がこの順で積層されてなるガスバリア性積層体において、前記基材として、波長360nmにおける光線透過率が3.0%以下の樹脂フィルムを用い、前記平滑化層を紫外線硬化型樹脂組成物の硬化物からなるものとし、かつ、前記基材の厚み(T)、平滑化層の厚み(T)、ガスバリア層の厚み(T)を所定の関係式を満たすように積層体を形成すると、厚みが薄く、紫外線遮断性とガスバリア性に優れるガスバリア性積層体が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention, as a base material, a smoothing layer, and a gas barrier layer in which a gas barrier layer are laminated in this order, have the light transmittance at a wavelength of 360 nm as the base material. Is 3.0% or less, the smoothing layer is made of a cured product of an ultraviolet curable resin composition, the thickness of the substrate (T 1 ), and the thickness of the smoothing layer (T 2 ) It has been found that when a laminate is formed so that the thickness (T 3 ) of the gas barrier layer satisfies a predetermined relational expression, a gas barrier laminate having a small thickness and excellent in ultraviolet blocking properties and gas barrier properties can be obtained. The invention has been completed.
 かくして本発明によれば、下記(1)~(9)のガスバリア性積層体、(10)の電子デバイス用部材、および、(11)の電子デバイスが提供される。 Thus, according to the present invention, the following gas barrier laminates (1) to (9), (10) electronic device members, and (11) electronic devices are provided.
(1)基材、平滑化層及びガスバリア層がこの順に積層されてなるガスバリア性積層体であって、前記基材が、波長360nmにおける光線透過率が3.0%以下の樹脂フィルムからなり、前記平滑化層が、紫外線硬化型樹脂組成物の硬化物からなり、前記基材の厚み(T)、平滑化層の厚み(T)、ガスバリア層の厚み(T)が、下記式(1)、(2)を満たすものであること、を特徴とするガスバリア性積層体。 (1) A gas barrier laminate in which a substrate, a smoothing layer, and a gas barrier layer are laminated in this order, and the substrate comprises a resin film having a light transmittance of 3.0% or less at a wavelength of 360 nm, The smoothing layer is made of a cured product of an ultraviolet curable resin composition, and the thickness of the substrate (T 1 ), the thickness of the smoothing layer (T 2 ), and the thickness of the gas barrier layer (T 3 ) A gas barrier laminate characterized by satisfying (1) and (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
(2)前記樹脂フィルムが、紫外線吸収剤を含有する樹脂フィルムである、(1)に記載のガスバリア性積層体。
(3)前記平滑化層のガスバリア層との界面の算術平均粗さ(Ra)が5nm以下であり、粗さ曲線の最大断面高さ(Rt)が100nm以下である、(1)に記載のガスバリア性積層体。
(4)前記ガスバリア層が、ポリシラザン化合物を含有する層を改質処理して得られる層である、(1)に記載のガスバリア性積層体。
(5)基材の厚み(T)が5~28μm、平滑化層の厚み(T)が0.5~3μm、ガスバリア層の厚み(T)が0.05~0.3μmである、(1)に記載のガスバリア性積層体。
(6)さらに、ハードコート層を有するガスバリア性積層体であって、ハードコート層/基材/平滑化層/ガスバリア層、の層構成を有する、(1)に記載のガスバリア性積層体。
(7)前記ガスバリア性積層体の厚みが5~35μmである、(1)に記載のガスバリア性積層体。
(8)前記ガスバリア性積層体の、温度40℃、相対湿度90%における水蒸気透過率が、0.05g/(m・day)以下である、(1)に記載のガスバリア性積層体。
(9)ガスバリア性積層体の波長360nmにおける光線透過率が3.0%以下である、(1)に記載のガスバリア性積層体。
(10)前記(1)に記載のガスバリア性積層体からなる電子デバイス用部材。
(11)前記(10)に記載の電子デバイス用部材を備える電子デバイス。
(2) The gas barrier laminate according to (1), wherein the resin film is a resin film containing an ultraviolet absorber.
(3) The arithmetic mean roughness (Ra) of the interface between the smoothing layer and the gas barrier layer is 5 nm or less, and the maximum cross-sectional height (Rt) of the roughness curve is 100 nm or less. Gas barrier laminate.
(4) The gas barrier laminate according to (1), wherein the gas barrier layer is a layer obtained by modifying a layer containing a polysilazane compound.
(5) The substrate thickness (T 1 ) is 5 to 28 μm, the smoothing layer thickness (T 2 ) is 0.5 to 3 μm, and the gas barrier layer thickness (T 3 ) is 0.05 to 0.3 μm. The gas barrier laminate according to (1).
(6) The gas barrier laminate according to (1), further having a hard coat layer / base material / smoothing layer / gas barrier layer, which is a gas barrier laminate having a hard coat layer.
(7) The gas barrier laminate according to (1), wherein the thickness of the gas barrier laminate is 5 to 35 μm.
(8) The gas barrier laminate according to (1), wherein the water vapor permeability of the gas barrier laminate at a temperature of 40 ° C. and a relative humidity of 90% is 0.05 g / (m 2 · day) or less.
(9) The gas barrier laminate according to (1), wherein the light transmittance at a wavelength of 360 nm of the gas barrier laminate is 3.0% or less.
(10) A member for an electronic device comprising the gas barrier laminate according to (1).
(11) An electronic device comprising the electronic device member according to (10).
 本発明によれば、厚みが薄く、紫外線遮断性とガスバリア性に優れるガスバリア性積層体、このガスバリア性積層体からなる電子デバイス用部材、及び、この電子デバイス用部材を備える電子デバイスが提供される。 According to the present invention, there are provided a gas barrier laminate having a small thickness and excellent in ultraviolet blocking properties and gas barrier properties, an electronic device member comprising the gas barrier laminate, and an electronic device comprising the electronic device member. .
 以下、本発明を、1)ガスバリア性積層体、並びに、2)電子デバイス用部材及び電子デバイス、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by classifying it into 1) a gas barrier laminate, and 2) an electronic device member and an electronic device.
1)ガスバリア性積層体
 本発明のガスバリア性積層体は、基材、平滑化層及びガスバリア層がこの順に積層されてなるガスバリア性積層体であって、前記基材が、波長360nmにおける光線透過率が3.0%以下の樹脂フィルムからなり、前記平滑化層が、紫外線硬化型樹脂組成物の硬化物からなり、前記基材の厚み(T)、平滑化層の厚み(T)、ガスバリア層の厚み(T)が、前記式(1)、(2)を満たすものであること、を特徴とする。
1) Gas barrier laminate The gas barrier laminate of the present invention is a gas barrier laminate in which a substrate, a smoothing layer, and a gas barrier layer are laminated in this order, and the substrate has a light transmittance at a wavelength of 360 nm. Is made of a resin film of 3.0% or less, the smoothing layer is made of a cured product of an ultraviolet curable resin composition, the thickness of the base material (T 1 ), the thickness of the smoothing layer (T 2 ), The thickness (T 3 ) of the gas barrier layer satisfies the above formulas (1) and (2).
(1)基材
 本発明のガスバリア性積層体を構成する基材は、波長360nmにおける光線透過率が3.0%以下の樹脂フィルムからなる。本発明は、紫外線遮断性に優れる樹脂フィルム、すなわち、「波長360nmにおける光線透過率が3.0%以下である樹脂フィルム」を用いることを特徴の一つとしている。用いる樹脂フィルムの波長360nmにおける光線透過率は、2.5%以下が好ましく、2.0%以下がより好ましい。
 波長360nmにおける光線透過率は、紫外分光光度計を用いて測定することができる。
(1) Base material The base material which comprises the gas-barrier laminated body of this invention consists of a resin film whose light transmittance in wavelength 360nm is 3.0% or less. One feature of the present invention is to use a resin film excellent in ultraviolet blocking properties, that is, a “resin film having a light transmittance of 3.0% or less at a wavelength of 360 nm”. The light transmittance at a wavelength of 360 nm of the resin film to be used is preferably 2.5% or less, and more preferably 2.0% or less.
The light transmittance at a wavelength of 360 nm can be measured using an ultraviolet spectrophotometer.
 紫外線遮断性を有する樹脂フィルムとしては、樹脂成分と紫外線吸収剤を含有する樹脂フィルムが挙げられる。
 前記樹脂フィルムの樹脂成分としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
 これらの樹脂成分は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
Examples of the resin film having an ultraviolet blocking property include a resin film containing a resin component and an ultraviolet absorber.
As the resin component of the resin film, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyether sulfone, polyphenylene sulfide, acrylic resin, cycloolefin Based polymers, aromatic polymers, and the like.
These resin components can be used alone or in combination of two or more.
 これらの中でも、透明性に優れ、汎用性があることから、ポリエステル、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド又はシクロオレフィン系ポリマーがより好ましく、ポリエステル又はシクロオレフィン系ポリマーがさらに好ましい。 Among these, polyester, polyamide, polysulfone, polyether sulfone, polyphenylene sulfide, or cycloolefin-based polymer is more preferable, and polyester or cycloolefin-based polymer is more preferable because of excellent transparency and versatility.
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。 Examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
 シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。 Examples of cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
 紫外線吸収剤は、波長360nmにおける光線透過率が3.0%以下の樹脂フィルムが得られるものであれば、特に限定されない。
 紫外線吸収剤としては、p-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート等のサリチル酸系紫外線吸収剤;2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン等のベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系紫外線吸収剤;エチル-2-シアノ-3,3’-ジフェニルアクリレート)等のシアノアクリレート系紫外線吸収剤;2-p-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-(p-ベンゾイルフェニル)-3,1-ベンゾオキサジン-4-オン、2-(2-ナフチル)-3,1-ベンゾオキサジン-4-オン、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2,6-ナフチレン)ビス(3,1-ベンゾオキサジン-4-オン等のベンゾオキサジノン系紫外線吸収剤;二酸化チタン、酸化セリウム、酸化亜鉛、酸化鉄、硫酸バリウム等の無機系紫外線吸収剤が挙げられる。
 これらの紫外線吸収剤は一種単独で、あるいは二種以上を組み合わせて用いることができる。
The ultraviolet absorber is not particularly limited as long as a resin film having a light transmittance of 3.0% or less at a wavelength of 360 nm can be obtained.
Examples of UV absorbers include salicylic acid UV absorbers such as pt-butylphenyl salicylate and p-octylphenyl salicylate; 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy Benzophenone ultraviolet absorbers such as -5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane; 2- (2'- Hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol] and other benzotri Azole ultraviolet absorbers; cyanoacrylate ultraviolet absorbers such as ethyl-2-cyano-3,3′-diphenylacrylate); 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2- ( p-benzoylphenyl) -3,1-benzoxazin-4-one, 2- (2-naphthyl) -3,1-benzoxazin-4-one, 2,2′-p-phenylenebis (3,1- Benzoxazinone UV absorbers such as benzoxazin-4-one), 2,2 ′-(2,6-naphthylene) bis (3,1-benzoxazin-4-one); titanium dioxide, cerium oxide, zinc oxide And inorganic ultraviolet absorbers such as iron oxide and barium sulfate.
These ultraviolet absorbers can be used alone or in combination of two or more.
 紫外線吸収剤の含有量は、樹脂成分に対して、0.1~10質量%が好ましく、0.5~5質量%がより好ましい。 The content of the ultraviolet absorber is preferably from 0.1 to 10% by mass, more preferably from 0.5 to 5% by mass, based on the resin component.
 本発明の効果を妨げない範囲において、紫外線遮断性を有する樹脂フィルムは各種添加剤を含有していてもよい。添加剤としては、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、充填剤、着色顔料等が挙げられる。これらの添加剤の含有量は、目的に合わせて適宜決定すればよい。 In the range that does not hinder the effects of the present invention, the resin film having ultraviolet blocking properties may contain various additives. Examples of the additive include an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, and a color pigment. What is necessary is just to determine suitably content of these additives according to the objective.
 紫外線遮断性を有する樹脂フィルムは、樹脂成分及び所望により各種添加剤を含む樹脂組成物を調製し、これをフィルム状に成形することにより得ることができる。成形方法は特に限定されず、キャスト法や溶融押出法等の公知の成膜方法を利用することができる。 The resin film having ultraviolet blocking properties can be obtained by preparing a resin composition containing a resin component and optionally various additives, and molding the resin composition into a film. The forming method is not particularly limited, and a known film forming method such as a casting method or a melt extrusion method can be used.
(2)平滑化層
 本発明のガスバリア性積層体を構成する平滑化層は、紫外線硬化型樹脂組成物の硬化物からなる。平滑化層は、基材表面の凹凸を低減し、ガスバリア性積層体の層間密着性を向上させるものである。また、基材が紫外線吸収剤等の添加剤を含有する場合、平滑化層を設けることにより、これらの添加剤がブリードアウトし、ガスバリア層内に拡散するのを防ぐことができるため、ガスバリア層の性能低下を避けることができる。
(2) Smoothing layer The smoothing layer which comprises the gas-barrier laminated body of this invention consists of hardened | cured material of an ultraviolet curable resin composition. A smoothing layer reduces the unevenness | corrugation of the base-material surface, and improves the interlayer adhesiveness of a gas-barrier laminated body. In addition, when the base material contains an additive such as an ultraviolet absorber, it is possible to prevent these additives from bleeding out and diffusing into the gas barrier layer by providing a smoothing layer. The performance degradation can be avoided.
 紫外線硬化型樹脂組成物は、通常、重合性化合物及び光重合開始剤を含有する。
 重合性化合物としては、重合性プレポリマーや重合性モノマーが挙げられる。
 重合性プレポリマーとしては、両末端に水酸基を有するポリエステルオリゴマーと、(メタ)アクリル酸との反応により得られるポリエステルアクリレート系プレポリマー、低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂と、(メタ)アクリル酸との反応により得られるエポキシアクリレート系プレポリマー、ポリウレタンオリゴマーと、(メタ)アクリル酸との反応により得られるウレタンアクリレート系プレポリマー、ポリエーテルポリオールと、(メタ)アクリル酸との反応により得られるポリオールアクリレート系プレポリマー等が挙げられる。
The ultraviolet curable resin composition usually contains a polymerizable compound and a photopolymerization initiator.
Examples of the polymerizable compound include polymerizable prepolymers and polymerizable monomers.
The polymerizable prepolymer includes a polyester oligomer having a hydroxyl group at both ends, a polyester acrylate prepolymer obtained by a reaction with (meth) acrylic acid, a low molecular weight bisphenol type epoxy resin or a novolac type epoxy resin, ) By reaction of epoxy acrylate prepolymer, polyurethane oligomer obtained by reaction with acrylic acid, urethane acrylate prepolymer, polyether polyol obtained by reaction of (meth) acrylic acid, and (meth) acrylic acid Examples thereof include a polyol acrylate prepolymer to be obtained.
 重合性モノマーとしては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート等の2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート;プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート;エチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、トリメチロールプロパンジビニルエーテル、エチレンオキサイド変性ヒドロキノンジビニルエーテル、エチレンオキサイド変性ビスフェノールAジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、ジトリメチロールプロパンポリビニルエーテル等のビニル化合物;等が挙げられるが、必ずしもこれらに限定されるものではない。
 これらの重合性化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 ここで、(メタ)アクリロイル基なる表記は、アクリロイル基及びメタクリロイル基の両方を含む意味である。
Examples of the polymerizable monomer include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and hydroxypivalic acid. Neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphate di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyania Bifunctional (meth) acrylates such as nurate di (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propionic acid-modified dipentaeri Trifunctional (meth) acrylates such as lithol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate; propionic acid modified dipentaerythritol penta (Meth) acrylates such as (meth) acrylates, dipentaerythritol hexa (meth) acrylates, caprolactone-modified dipentaerythritol hexa (meth) acrylates and more than four functional (meth) acrylates; ethylene glycol divinyl ether, pentaerythritol divinyl ether, 1,6-hexane Diol divinyl ether, trimethylolpropane divinyl ether, ethylene oxide modified hydroquinone divinyl ether, ethylene Side-modified bisphenol A divinyl ether, pentaerythritol trivinyl ether, dipentaerythritol hexavinyl ether, vinyl compounds such as ditrimethylolpropane polyvinyl ether; and others as mentioned, is not necessarily limited thereto.
These polymerizable compounds can be used singly or in combination of two or more.
Here, the notation of (meth) acryloyl group means to include both acryloyl group and methacryloyl group.
 また、前記活性エネルギー線硬化型樹脂組成物中に、それ自身は反応硬化性を有しないような高分子樹脂成分、例えばアクリル樹脂を含ませてもよい。高分子樹脂成分の添加により該組成物の粘度を調整することができる。 Also, the active energy ray-curable resin composition may contain a polymer resin component that does not have reaction curability, such as an acrylic resin. The viscosity of the composition can be adjusted by adding a polymer resin component.
 光重合開始剤は、紫外線の照射により重合反応を開始させるものであれば、特に限定されない。光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン系重合開始剤;アセトフェノン、4’-ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン系重合開始剤;ベンゾフェノン、4-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン等のベンゾフェノン系重合開始剤;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン等のアントラキノン系重合開始剤;2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系重合開始剤;等が挙げられる。
 光重合開始剤の含有量は、特に限定されないが、通常、前記重合性化合物に対して、0.2~30質量%、好ましくは0.5~20質量%である。
A photoinitiator will not be specifically limited if a polymerization reaction is started by irradiation of an ultraviolet-ray. Examples of the photopolymerization initiator include benzoin-based polymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, and benzoin isobutyl ether; acetophenone, 4′-dimethylaminoacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [ 4- (Methylthio) phenyl] -2-morpholino-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl -Propane-1 An acetophenone-based polymerization initiator such as —one; a benzophenone-based polymerization initiator such as benzophenone, 4-phenylbenzophenone, 4,4′-diethylaminobenzophenone, 4,4′-dichlorobenzophenone; 2-methylanthraquinone, 2-ethylanthraquinone, Anthraquinone polymerization initiators such as 2-t-butylanthraquinone and 2-aminoanthraquinone; thioxanthones such as 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone and 2,4-diethylthioxanthone System polymerization initiators; and the like.
The content of the photopolymerization initiator is not particularly limited, but is usually 0.2 to 30% by mass, preferably 0.5 to 20% by mass with respect to the polymerizable compound.
 紫外線硬化型樹脂組成物は、本発明の効果を妨げない範囲で、その他の成分を含有してもよい。
 その他の成分としては、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、充填剤、無機フィラー、着色顔料等が挙げられる。これらの含有量は、目的に合わせて適宜決定すればよい。
The ultraviolet curable resin composition may contain other components as long as the effects of the present invention are not hindered.
Examples of other components include an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, an inorganic filler, and a color pigment. What is necessary is just to determine these content suitably according to the objective.
 平滑化層を形成する方法は特に限定されない。例えば、紫外線硬化型樹脂組成物、及び必要に応じて溶媒を含有する塗工液を調製し、次いで、基材上に、この塗工液を公知の方法により塗工し、得られた塗膜を硬化させることにより、紫外線硬化型樹脂組成物の硬化物からなる平滑化層を形成することができる。また、必要に応じて、塗膜を硬化させる前に、乾燥処理を施してもよい。 The method for forming the smoothing layer is not particularly limited. For example, an ultraviolet curable resin composition and, if necessary, a coating liquid containing a solvent is prepared, and then this coating liquid is coated on a substrate by a known method, and the obtained coating film Is cured to form a smoothing layer made of a cured product of the ultraviolet curable resin composition. Moreover, you may give a drying process before hardening a coating film as needed.
 塗工液の溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
 これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
Examples of the solvent for the coating solution include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n-pentane, n- And aliphatic hydrocarbon solvents such as hexane and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane.
These solvents can be used alone or in combination of two or more.
 塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。 Examples of the coating method include a bar coating method, a spin coating method, a dipping method, a roll coating, a gravure coating, a knife coating, an air knife coating, a roll knife coating, a die coating, a screen printing method, a spray coating, and a gravure offset method.
 塗膜を乾燥させる場合、その乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を採用できる。乾燥温度は、通常60~130℃の範囲である。乾燥時間は、通常数秒から数十分である。 When the coating film is dried, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted as the drying method. The drying temperature is usually in the range of 60 to 130 ° C. The drying time is usually several seconds to several tens of minutes.
 塗膜の硬化は、塗膜の表面(基材が存在しない側)から、紫外線を照射することにより行うことができる。
 紫外線源としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、ブラックライトランプ、メタルハライドランプ等の光源を用いることができる。紫外線の光量には特に制限はないが、通常100mJ/cm~1,000mJ/cmである。照射時間は、通常数秒から数時間であり、照射温度は、通常室温(20℃)から100℃である。
Curing of the coating film can be performed by irradiating with ultraviolet rays from the surface of the coating film (side where the substrate does not exist).
As the ultraviolet light source, a light source such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a black light lamp, a metal halide lamp, or the like can be used. No particular restrictions on the quantity of ultraviolet light, it is usually 100mJ / cm 2 ~ 1,000mJ / cm 2. The irradiation time is usually several seconds to several hours, and the irradiation temperature is usually room temperature (20 ° C.) to 100 ° C.
 平滑化層の表面の算術平均粗さ(Ra)は、好ましくは5nm以下、より好ましくは0.1~4nmであり、粗さ曲線の最大断面高さ(Rt)は、好ましくは100nm以下、より好ましくは1~100nm、さらに好ましくは20~80nm、特に好ましくは30~65nmである。
 Ra、Rtが、上記範囲内であることで、ガスバリア層との密着性により優れ、かつ、ガスバリア層にピンホールが発生するのを防止できるため、ガスバリア性により優れるガスバリア性積層体を得ることができる。
 Ra、Rtは、実施例に記載の方法により、測定することができる。
The arithmetic mean roughness (Ra) of the surface of the smoothing layer is preferably 5 nm or less, more preferably 0.1 to 4 nm, and the maximum cross-sectional height (Rt) of the roughness curve is preferably 100 nm or less. The thickness is preferably 1 to 100 nm, more preferably 20 to 80 nm, and particularly preferably 30 to 65 nm.
When Ra and Rt are within the above ranges, adhesion to the gas barrier layer is excellent and pinholes can be prevented from being generated in the gas barrier layer, so that a gas barrier laminate having excellent gas barrier properties can be obtained. it can.
Ra and Rt can be measured by the method described in Examples.
(3)ガスバリア層
 本発明のガスバリア性積層体を構成するガスバリア層は、酸素や水蒸気等のガスの透過を抑制する特性(ガスバリア性)を有する層である。
(3) Gas barrier layer The gas barrier layer which comprises the gas barrier laminated body of this invention is a layer which has the characteristic (gas barrier property) which suppresses permeation | transmission of gas, such as oxygen and water vapor | steam.
 ガスバリア層としては、例えば、無機蒸着膜や高分子化合物を含む層(以下、「高分子層」ということがある。)に改質処理を施して得られたもの〔この場合、ガスバリア層とは、イオン注入処理等により改質された領域のみを意味するのではなく、「改質された領域を含む高分子層」を意味する。〕等が挙げられる。 As the gas barrier layer, for example, a layer obtained by subjecting an inorganic vapor deposition film or a layer containing a polymer compound (hereinafter, also referred to as “polymer layer”) to a modification treatment [in this case, the gas barrier layer is In addition, it means not only a region modified by ion implantation treatment or the like, but a “polymer layer including a modified region”. ] Etc. are mentioned.
 無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
 無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
 金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
 これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、さらに、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。
Examples of the inorganic vapor deposition film include vapor deposition films of inorganic compounds and metals.
As the raw material for the vapor-deposited film of the inorganic compound, inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide; inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride; inorganic carbides; Inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxide carbides; inorganic nitride carbides; inorganic oxynitride carbides and the like.
Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, and tin.
These can be used singly or in combination of two or more.
Among these, an inorganic vapor-deposited film using an inorganic oxide, inorganic nitride or metal as a raw material is preferable from the viewpoint of gas barrier properties, and further, an inorganic material using an inorganic oxide or inorganic nitride as a raw material from the viewpoint of transparency. A vapor deposition film is preferred.
 無機蒸着膜を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。 As a method of forming an inorganic vapor deposition film, a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, a photo CVD method, etc. The CVD method is mentioned.
 無機蒸着膜の厚さは、使用する無機化合物によっても異なるが、ガスバリア性と取り扱い性の観点から、好ましくは50~300nm、より好ましくは50~200nmの範囲である。 The thickness of the inorganic vapor deposition film varies depending on the inorganic compound to be used, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm from the viewpoint of gas barrier properties and handling properties.
 高分子層に改質処理を施して得られるガスバリア層において、用いる高分子化合物としては、ポリオルガノシロキサン、ポリシラザン系化合物等のケイ素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
 これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。
In the gas barrier layer obtained by modifying the polymer layer, the polymer compound used includes silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether Examples include ketones, polyether ether ketones, polyolefins, polyesters, polycarbonates, polysulfones, polyether sulfones, polyphenylene sulfides, polyarylates, acrylic resins, cycloolefin polymers, and aromatic polymers.
These polymer compounds can be used alone or in combination of two or more.
 これらの中でも、より優れたガスバリア性を有するガスバリア層を形成し得ることから、高分子化合物として、ケイ素含有高分子化合物が好ましい。ケイ素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。なかでも、薄くても優れたガスバリア性を有するガスバリア層を形成できることから、ポリシラザン系化合物が好ましい。ポリシラザン系化合物を含む層に改質処理を施すことで、酸素、窒素、ケイ素を主構成原子として有する層(酸窒化珪素層)を形成することができる。 Among these, a silicon-containing polymer compound is preferable as the polymer compound because a gas barrier layer having better gas barrier properties can be formed. Examples of silicon-containing polymer compounds include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds. Among these, a polysilazane compound is preferable because a gas barrier layer having excellent gas barrier properties can be formed even if it is thin. By subjecting the layer containing the polysilazane compound to a modification treatment, a layer (silicon oxynitride layer) having oxygen, nitrogen, and silicon as main constituent atoms can be formed.
 ポリシラザン系化合物は、分子内に-Si-N-結合(シラザン結合)を含む繰り返し単位を有する高分子化合物である。具体的には、式(1) The polysilazane compound is a polymer compound having a repeating unit containing —Si—N— bond (silazane bond) in the molecule. Specifically, the formula (1)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表される繰り返し単位を有する化合物が好ましい。また、用いるポリシラザン系化合物の数平均分子量は、特に限定されないが、100~50,000であるのが好ましい。 The compound which has a repeating unit represented by these is preferable. The number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably 100 to 50,000.
 前記式(1)中、nは任意の自然数を表す。
Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基又はアルキルシリル基等の非加水分解性基を表す。
In said formula (1), n represents arbitrary natural numbers.
Rx, Ry, and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or substituted Represents a non-hydrolyzable group such as an aryl group having a group or an alkylsilyl group;
 前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。 Examples of the alkyl group of the unsubstituted or substituted alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, Examples thereof include alkyl groups having 1 to 10 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
 無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3~10のシクロアルキル基が挙げられる。 Examples of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
 無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。 Examples of the alkenyl group of an unsubstituted or substituted alkenyl group include, for example, a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and the like having 2 to 2 carbon atoms. 10 alkenyl groups are mentioned.
 前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。 Examples of the substituent for the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group An unsubstituted or substituted aryl group such as a phenyl group, a 4-methylphenyl group, and a 4-chlorophenyl group;
 無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。 Examples of the aryl group of an unsubstituted or substituted aryl group include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
 前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。 Examples of the substituent of the aryl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, etc. An aryl group having a substituent; and the like.
 アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。 Examples of the alkylsilyl group include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group, and ethylsilyl group.
 これらの中でも、Rx、Ry、Rzとしては、水素原子、炭素数1~6のアルキル基、又はフェニル基が好ましく、水素原子が特に好ましい。 Among these, as Rx, Ry, and Rz, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom is particularly preferable.
 前記式(1)で表される繰り返し単位を有するポリシラザン系化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンのいずれであってもよい。 Examples of the polysilazane compound having a repeating unit represented by the formula (1) include inorganic polysilazanes in which Rx, Ry, and Rz are all hydrogen atoms, and organic polysilazanes in which at least one of Rx, Ry, and Rz is not a hydrogen atom. It may be.
 また、本発明においては、ポリシラザン系化合物として、ポリシラザン変性物を用いることもできる。ポリシラザン変性物としては、例えば、特開昭62-195024号公報、特開平2-84437号公報、特開昭63-81122号公報、特開平1-138108号公報等、特開平2-175726号公報、特開平5-238827号公報、特開平5-238827号公報、特開平6-122852号公報、特開平6-306329号公報、特開平6-299118号公報、特開平9-31333号公報、特開平5-345826号公報、特開平4-63833号公報等に記載されているものが挙げられる。
 これらの中でも、ポリシラザン系化合物としては、入手容易性、及び優れたガスバリア性を有するイオン注入層を形成できる観点から、Rx、Ry、Rzが全て水素原子であるペルヒドロポリシラザンが好ましい。
 また、ポリシラザン系化合物としては、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
 ポリシラザン系化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
In the present invention, a modified polysilazane compound can also be used as the polysilazane compound. Examples of the modified polysilazane include, for example, JP-A-62-195024, JP-A-2-84437, JP-A-63-81122, JP-A-1-138108, and JP-A-2-175726. JP-A-5-238827, JP-A-5-238827, JP-A-6-122852, JP-A-6-306329, JP-A-6-299118, JP-A-9-31333, Examples thereof include those described in Kaihei 5-345826 and JP-A-4-63833.
Among these, as the polysilazane compound, perhydropolysilazane in which Rx, Ry, and Rz are all hydrogen atoms is preferable from the viewpoint of easy availability and the ability to form an ion-implanted layer having excellent gas barrier properties.
Moreover, as a polysilazane compound, a commercially available product as a glass coating material or the like can be used as it is.
The polysilazane compounds can be used alone or in combination of two or more.
 高分子層は、上述した高分子化合物の他に、本発明の目的を阻害しない範囲で他の成分を含有してもよい。他の成分としては、硬化剤、老化防止剤、光安定剤、難燃剤等が挙げられる。
 高分子層中の高分子化合物の含有量は、より優れたガスバリア性を有するガスバリア層が得られることから、50質量%以上が好ましく、70質量%以上がより好ましい。
The polymer layer may contain other components in addition to the polymer compound described above as long as the object of the present invention is not impaired. Examples of other components include a curing agent, an anti-aging agent, a light stabilizer, and a flame retardant.
The content of the polymer compound in the polymer layer is preferably 50% by mass or more and more preferably 70% by mass or more because a gas barrier layer having better gas barrier properties can be obtained.
 高分子層の厚みは特に制限されないが、好ましくは50~300nm、より好ましくは50~200nmの範囲である。
 本発明においては、高分子層の厚みがナノオーダーであっても、充分なガスバリア性を有するガスバリア性積層体を得ることができる。
The thickness of the polymer layer is not particularly limited, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm.
In the present invention, even if the thickness of the polymer layer is nano-order, a gas barrier laminate having a sufficient gas barrier property can be obtained.
 高分子層を形成する方法は特に限定されない。例えば、高分子化合物の少なくとも一種、所望により他の成分、及び溶剤等を含有する高分子層形成用溶液を調製し、次いで、この高分子層形成用溶液を、公知の方法により塗工し、得られた塗膜を乾燥することにより、高分子層を形成することができる。 The method for forming the polymer layer is not particularly limited. For example, preparing a polymer layer forming solution containing at least one polymer compound, optionally other components, a solvent, etc., and then applying this polymer layer forming solution by a known method, A polymer layer can be formed by drying the obtained coating film.
 高分子層形成用溶液に用いる溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
 これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
Solvents used for the polymer layer forming solution include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n- And aliphatic hydrocarbon solvents such as pentane, n-hexane, and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane.
These solvents can be used alone or in combination of two or more.
 高分子層形成用溶液の塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。 Coating methods for the polymer layer forming solution include bar coating, spin coating, dipping, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing, spray coating, and gravure. Examples include an offset method.
 形成された塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常60~130℃の範囲である。加熱時間は、通常数秒から数十分である。 As a method for drying the formed coating film, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed. The heating temperature is usually in the range of 60 to 130 ° C. The heating time is usually several seconds to several tens of minutes.
 高分子層の改質処理としては、イオン注入処理、プラズマ処理、紫外線照射処理等が挙げられる。
 イオン注入処理は、後述するように、高分子層にイオンを注入して、高分子層を改質する方法である。
 プラズマ処理は、高分子層をプラズマ中に晒して、高分子層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。
 紫外線照射処理は、高分子層に紫外線を照射して高分子層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。
 これらの中でも、高分子層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
Examples of the polymer layer modification treatment include ion implantation treatment, plasma treatment, and ultraviolet irradiation treatment.
The ion implantation process is a method of modifying the polymer layer by implanting ions into the polymer layer, as will be described later.
The plasma treatment is a method for modifying the polymer layer by exposing the polymer layer to plasma. For example, plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
The ultraviolet irradiation treatment is a method for modifying the polymer layer by irradiating the polymer layer with ultraviolet rays. For example, the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
Among these, the ion implantation treatment is preferable because the gas barrier layer can be efficiently modified to the inside without roughening the surface of the polymer layer and more excellent in gas barrier properties.
 高分子層に注入するイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン等のアルカン系ガス類のイオン;エチレン、プロピレン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン等の芳香族炭化水素系ガス類のイオン;シクロプロパン等のシクロアルカン系ガス類のイオン;シクロペンテン等のシクロアルケン系ガス類のイオン;金属のイオン;有機ケイ素化合物のイオン;等が挙げられる。
 これらのイオンは1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、より簡便にイオンを注入することができ、より優れたガスバリア性を有するガスバリア層が得られることから、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオンが好ましい。
As ions implanted into the polymer layer, ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .; methane, ethane, etc. Ion of alkane gases such as ethylene and propylene; Ions of alkadiene gases such as pentadiene and butadiene; Ions of alkyne gases such as acetylene; Aromatic carbonization such as benzene and toluene Examples include ions of hydrogen-based gases; ions of cycloalkane-based gases such as cyclopropane; ions of cycloalkene-based gases such as cyclopentene; ions of metals; ions of organosilicon compounds.
These ions can be used alone or in combination of two or more.
Among these, ions of rare gases such as argon, helium, neon, krypton, and xenon are preferable because ions can be more easily implanted and a gas barrier layer having better gas barrier properties can be obtained.
 イオンの注入量は、ガスバリア性積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定することができる。 The ion implantation amount can be appropriately determined according to the purpose of use of the gas barrier laminate (necessary gas barrier properties, transparency, etc.).
 イオンを注入する方法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。なかでも、本発明においては、簡便に目的のバリア層が得られることから、後者のプラズマイオンを注入する方法が好ましい。 Examples of the method of implanting ions include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like. In particular, in the present invention, the latter method of implanting plasma ions is preferable because the desired barrier layer can be easily obtained.
 プラズマイオン注入は、例えば、希ガス等のプラズマ生成ガスを含む雰囲気下でプラズマを発生させ、高分子層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を、高分子層の表面部に注入して行うことができる。 In the plasma ion implantation, for example, plasma is generated in an atmosphere containing a plasma generation gas such as a rare gas, and a negative high voltage pulse is applied to the polymer layer, whereby ions (positive ions) in the plasma are It can be performed by injecting into the surface portion of the polymer layer.
 イオン注入により、イオンが注入される領域の厚みは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、高分子層の厚み、積層体の使用目的等に応じて決定すればよいが、通常、10~300nmである。 By ion implantation, the thickness of the region into which ions are implanted can be controlled by implantation conditions such as ion type, applied voltage, and processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the laminate, etc. Usually, it is 10 to 300 nm.
(4)ガスバリア性積層体
 本発明のガスバリア性積層体は、前記基材、平滑化層及びガスバリア層がこの順に積層されてなり、前記基材の厚み(T)、平滑化層の厚み(T)、ガスバリア層の厚み(T)が、下記式(1)、(2)を満たすものである。
(4) Gas barrier laminate The gas barrier laminate of the present invention comprises the base material, the smoothing layer and the gas barrier layer laminated in this order, and the thickness (T 1 ) of the base material and the thickness of the smoothing layer ( T 2 ) and the gas barrier layer thickness (T 3 ) satisfy the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 本発明のガスバリア性積層体においては、基材として、紫外線遮断性を有する樹脂フィルムを用いるため、平滑化層に紫外線吸収剤を含有させる必要がない。したがって、十分な紫外線遮断性を得るために、平滑化層の厚みを厚くする必要がないので、平滑化層の厚みを十分に薄くすることができる。また、基材、平滑化層およびガスバリア層以外に、別途、紫外線吸収剤含有層を積層させる必要がないので、ガスバリア性積層体の厚みを過剰に厚くなるのを防止することができる。このため、式(1)、(2)で規定される要件を満たすガスバリア性積層体を容易に得ることができる。
 また、本発明のガスバリア性積層体においては、平滑化層に紫外線吸収剤を含有させる必要がないため、紫外線吸収剤により紫外線が吸収されることにより平滑化層の硬化性が低下することがなく、紫外線を照射することにより平滑化層を十分に硬化させることができ、結果として、ガスバリア性に優れるガスバリア性積層体が得ることができる。
 本発明のガスバリア性積層体においては、T+T+Tの下限値は、通常5μmである。
In the gas barrier laminate of the present invention, since a resin film having ultraviolet blocking properties is used as the substrate, it is not necessary to include an ultraviolet absorber in the smoothing layer. Therefore, since it is not necessary to increase the thickness of the smoothing layer in order to obtain sufficient ultraviolet blocking properties, the thickness of the smoothing layer can be sufficiently reduced. Moreover, since it is not necessary to laminate | stack a ultraviolet absorber containing layer separately besides a base material, a smoothing layer, and a gas barrier layer, it can prevent that the thickness of a gas-barrier laminated body becomes thick too much. For this reason, the gas-barrier laminated body which satisfy | fills the requirements prescribed | regulated by Formula (1), (2) can be obtained easily.
Further, in the gas barrier laminate of the present invention, since it is not necessary to contain an ultraviolet absorber in the smoothing layer, the curability of the smoothing layer is not lowered by the absorption of ultraviolet rays by the ultraviolet absorber. The smoothing layer can be sufficiently cured by irradiating ultraviolet rays, and as a result, a gas barrier laminate having excellent gas barrier properties can be obtained.
In the gas barrier laminate of the present invention, the lower limit value of T 1 + T 2 + T 3 is usually 5 μm.
 基材の厚み(T)、平滑化層の厚み(T)、ガスバリア層の厚み(T)は、それぞれ、5~28μm、0.5~3μm、0.05~0.3μmが好ましく、Tが20~28μm、Tが0.5~2μm、Tが0.05~0.2μmがより好ましい。
 各層の厚みは、実施例に記載の方法により測定することができる。
The substrate thickness (T 1 ), smoothing layer thickness (T 2 ), and gas barrier layer thickness (T 3 ) are preferably 5 to 28 μm, 0.5 to 3 μm, and 0.05 to 0.3 μm, respectively. More preferably, T 1 is 20 to 28 μm, T 2 is 0.5 to 2 μm, and T 3 is 0.05 to 0.2 μm.
The thickness of each layer can be measured by the method described in the examples.
 本発明のガスバリア性積層体は、基材、平滑化層及びガスバリア層以外の層を有するものであってもよい。
 基材、平滑化層及びガスバリア層以外の層としては、ハードコード層、導電体層、衝撃吸収層、粘着剤層、工程シート等が挙げられる。なお、工程シートは、積層体を保存、運搬等する際に、ガスバリア性積層体を保護する役割を有し、ガスバリア性積層体が使用される際には剥離されるものである。これらの層の配置は、基材/平滑化層/ガスバリア層
の層構成が維持される限り、特に制限されない。
The gas barrier laminate of the present invention may have a layer other than the substrate, the smoothing layer, and the gas barrier layer.
Examples of layers other than the base material, the smoothing layer, and the gas barrier layer include a hard code layer, a conductor layer, a shock absorbing layer, an adhesive layer, and a process sheet. The process sheet has a role of protecting the gas barrier laminate when the laminate is stored, transported, etc., and is peeled off when the gas barrier laminate is used. The arrangement of these layers is not particularly limited as long as the layer configuration of the base material / smoothing layer / gas barrier layer is maintained.
 本発明のガスバリア性積層体の層構成の具体例としては、次のものが挙げられる。
(i)基材/平滑化層/ガスバリア層
(ii)ハードコート層/基材/平滑化層/ガスバリア層
 (ii)のガスバリア性積層体は、基材の平滑化層が形成されている側とは反対側の面にハードコート層を有するものである。ハードコート層を設けることにより、紫外線吸収剤がブリードアウトするのを防止したり、また、耐擦傷性を付与することで、基材が傷つくことによる紫外遮断性が低下するのを避けることができる。
 本発明のガスバリア性積層体がハードコート層を有する場合、ハードコート層の厚みは、好ましくは0.5~3μm、より好ましくは0.5~2.5μmである。
Specific examples of the layer structure of the gas barrier laminate of the present invention include the following.
(I) Base material / smoothing layer / gas barrier layer (ii) Hard coat layer / base material / smoothing layer / gas barrier layer The gas barrier laminate of (ii) is the side where the smoothing layer of the base material is formed. It has a hard coat layer on the opposite surface. By providing a hard coat layer, the ultraviolet absorber can be prevented from bleeding out, and by imparting scratch resistance, it can be avoided that the ultraviolet blocking property due to the substrate being damaged is deteriorated. .
When the gas barrier laminate of the present invention has a hard coat layer, the thickness of the hard coat layer is preferably 0.5 to 3 μm, more preferably 0.5 to 2.5 μm.
 本発明のガスバリア性積層体は、例えば、以下の方法により製造することができる。
(i)基材/平滑化層/ガスバリア層の層構成を有するガスバリア性積層体
 基材上に、先に説明した方法を用いて平滑化層を形成する。次いで、得られた平滑化層上に、先に説明した方法を用いてガスバリア層を形成することにより、基材/平滑化層/ガスバリア層の層構成を有するガスバリア性積層体を得ることができる。
The gas barrier laminate of the present invention can be produced, for example, by the following method.
(I) Gas barrier laminate having a layer structure of substrate / smoothing layer / gas barrier layer A smoothing layer is formed on a substrate using the method described above. Next, a gas barrier layer having a layer structure of base material / smoothing layer / gas barrier layer can be obtained by forming a gas barrier layer on the obtained smoothing layer using the method described above. .
(ii)ハードコート層/基材/平滑化層/ガスバリア層の層構成を有するガスバリア性積層体
 まず、基材の一方の面にハードコート層を形成し、次いで、基材のもう一方の面に先に示した方法を用いて平滑化層を形成する。次いで、得られた平滑化層上に、先に説明した方法を用いてガスバリア層を形成することにより、ハードコート層/基材/平滑化層/ガスバリア層の層構成を有するガスバリア性積層体を得ることができる。
 また、平滑化層、ハードコート層、ガスバリア層の順に各層を形成したり、平滑化層、ガスバリア層、ハードコート層の順に各層を形成して、ガスバリア性積層体を得ることもできる。
 ハードコート層は、平滑化層の材料と同様の材料を用いて、平滑化層を形成するのと同様の方法により形成することができる。
(Ii) Gas barrier laminate having a layer configuration of hard coat layer / base material / smoothing layer / gas barrier layer First, a hard coat layer is formed on one surface of the base material, and then the other surface of the base material A smoothing layer is formed using the method described above. Next, a gas barrier layer having a layer configuration of hard coat layer / base material / smoothing layer / gas barrier layer is formed on the obtained smoothing layer by forming a gas barrier layer using the method described above. Obtainable.
Moreover, each layer can be formed in the order of a smoothing layer, a hard coat layer, and a gas barrier layer, or each layer can be formed in the order of a smoothing layer, a gas barrier layer, and a hard coat layer to obtain a gas barrier laminate.
The hard coat layer can be formed by the same method as that for forming the smoothing layer, using the same material as that of the smoothing layer.
 本発明のガスバリア性積層体が、基材、平滑化層、ガスバリア層、ハードコート層以外の層を有するものである場合は、上記の製造方法において、適宜必要な工程を加えることで、目的のガスバリア性積層体を得ることができる。 When the gas barrier laminate of the present invention has a layer other than the base material, the smoothing layer, the gas barrier layer, and the hard coat layer, the above-described production method can be performed by appropriately adding necessary steps. A gas barrier laminate can be obtained.
 本発明のガスバリア性積層体の厚みは、特に限定されないが、好ましくは、5~35μm、より好ましくは、10~34μm、さらに好ましくは、20~33μmである。 The thickness of the gas barrier laminate of the present invention is not particularly limited, but is preferably 5 to 35 μm, more preferably 10 to 34 μm, and still more preferably 20 to 33 μm.
 本発明のガスバリア性積層体の、温度40℃、相対湿度90%における、水蒸気透過率は、好ましくは0.05g/(m・day)以下、より好ましくは0.04g/(m・day)以下、さらに好ましくは、0.03g/(m・day)以下である。下限値は特になく、小さいほど好ましいが、通常は、0.001g/(m・day)以上である。
 水蒸気透過率は、実施例に記載の方法により測定することができる。
The gas barrier layered product of the present invention, the temperature 40 ° C., 90% relative humidity, the water vapor permeability is preferably 0.05g / (m 2 · day) or less, more preferably 0.04g / (m 2 · day ) Or less, and more preferably 0.03 g / (m 2 · day) or less. There is no particular lower limit, and the lower the better, the better, but it is usually 0.001 g / (m 2 · day) or more.
The water vapor transmission rate can be measured by the method described in the examples.
 本発明のガスバリア性積層体の波長360nmにおける光線透過率は3.0%以下が好ましく、2.5%以下が好ましく、2.0%以下がより好ましい。光線透過率の下限値は、通常0.01%以上である。
 これらの特性を有するため、本発明のガスバリア性積層体は、ガスバリア性及び紫外線遮断性に優れ、電子デバイス用部材として好適に用いられる。
The light transmittance at a wavelength of 360 nm of the gas barrier laminate of the present invention is preferably 3.0% or less, preferably 2.5% or less, and more preferably 2.0% or less. The lower limit of the light transmittance is usually 0.01% or more.
Since it has these characteristics, the gas barrier laminate of the present invention is excellent in gas barrier properties and ultraviolet blocking properties, and is suitably used as a member for electronic devices.
2)電子デバイス用部材及び電子デバイス
 本発明の電子デバイス用部材は、本発明のガスバリア性積層体からなることを特徴とする。本発明の電子デバイス用部材は、優れたガスバリア性を有しているので、水蒸気等のガスによる素子の劣化を防ぐことができる。また、紫外線遮断性に優れるので、紫外線照射による素子の劣化を防ぐことができる。したがって、本発明の電子デバイス用部材は、液晶ディスプレイ、ELディスプレイ等のディスプレイ部材;等として好適である。
2) Electronic device member and electronic device The electronic device member of the present invention comprises the gas barrier laminate of the present invention. Since the electronic device member of the present invention has excellent gas barrier properties, it is possible to prevent deterioration of the element due to gas such as water vapor. Moreover, since it is excellent in ultraviolet-blocking property, deterioration of the element by ultraviolet irradiation can be prevented. Therefore, the electronic device member of the present invention is suitable as a display member such as a liquid crystal display or an EL display.
 本発明の電子デバイスは、本発明の電子デバイス用部材を備える。具体例としては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
 本発明の電子デバイスは、本発明のガスバリア性積層体からなる電子デバイス用部材を備えているので、薄く、軽量で、水蒸気及び紫外線に対する耐久性に優れるものである。
The electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery.
Since the electronic device of the present invention includes the electronic device member comprising the gas barrier laminate of the present invention, it is thin, lightweight, and excellent in durability against water vapor and ultraviolet rays.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 各例中の部及び%は、特に断りのない限り、質量基準である。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
Unless otherwise indicated, the part and% in each example are based on mass.
(化合物)
 各例で用いた材料を以下に示す。
・基材(1):ポリエチレンテレフタレートフィルム(帝人デュポン社製、紫外線吸収剤を含有する樹脂フィルム、商品名:テイジンテトロンフィルムHB3、厚み:25μm、波長360nmにおける光線透過率:1.6%)
・基材(2):ポリエチレンテレフタレートフィルム(三菱樹脂社製、商品名:PET25 T-100、厚み:25μm、波長360nmにおける光線透過率:89%)
(Compound)
The materials used in each example are shown below.
-Substrate (1): Polyethylene terephthalate film (manufactured by Teijin DuPont, resin film containing an ultraviolet absorber, trade name: Teijin Tetron film HB3, thickness: 25 μm, light transmittance at a wavelength of 360 nm: 1.6%)
-Substrate (2): Polyethylene terephthalate film (Mitsubishi Plastics, trade name: PET25 T-100, thickness: 25 μm, light transmittance at a wavelength of 360 nm: 89%)
〔製造例1〕
 重合性化合物として、ジペンタエリスリトールヘキサアクリレート(新中村化学社製、商品名:A-DPH)20部をメチルイソブチルケトン100部に溶解させた後、光重合開始剤(BASF社製、商品名:Irgacure127)3部を添加して、樹脂層形成溶液を調製した。
 以下において、この樹脂層形成溶液を、平滑化層形成用溶液(1)やハードコート層形成用溶液として用いた。
[Production Example 1]
As a polymerizable compound, 20 parts of dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) was dissolved in 100 parts of methyl isobutyl ketone, and then a photopolymerization initiator (manufactured by BASF, trade name: 3 parts of Irgacure 127) was added to prepare a resin layer forming solution.
In the following, this resin layer forming solution was used as a smoothing layer forming solution (1) or a hard coat layer forming solution.
〔製造例2〕
 重合性化合物として、ジペンタエリスリトールヘキサアクリレート(新中村化学社製、商品名:A-DPH)20部をメチルイソブチルケトン100部に溶解させた後、光重合開始剤(BASF社製、商品名:Irgacure127)3部、紫外線吸収剤(BASF社製、商品名:TINVIN477)1部を添加して、平滑化層形成用溶液(2)を調製した。
[Production Example 2]
As a polymerizable compound, 20 parts of dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) was dissolved in 100 parts of methyl isobutyl ketone, and then a photopolymerization initiator (manufactured by BASF, trade name: A smoothing layer forming solution (2) was prepared by adding 3 parts of Irgacure 127) and 1 part of an ultraviolet absorber (trade name: TINVIN477 manufactured by BASF).
〔製造例3〕
 製造例2において、紫外線吸収剤の配合量を8部に変更したことを除き、製造例2と同様にして、平滑化層形成用溶液(3)を調製した。
[Production Example 3]
In Production Example 2, a smoothing layer forming solution (3) was prepared in the same manner as in Production Example 2 except that the blending amount of the ultraviolet absorber was changed to 8 parts.
〔実施例1〕
 基材(1)上に、製造例1で得た平滑化層形成用溶液(1)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚さ1μmの平滑化層(1)を形成した。
 次いで、平滑化層(1)上に、ペルヒドロポリシラザン(AZエレクトロニックマテリアルズ社製、商品名:AZNL110A-20)をスピンコート法により塗布し、得られた塗膜を120℃で2分間加熱し、ペルヒドロポリシラザン層を形成した。その後、改質処理として、プラズマイオン注入装置を用いてペルヒドロポリシラザン層の表面に、アルゴン(Ar)をプラズマイオン注入し、ガスバリア層を形成し、基材(1)/平滑化層(1)/ガスバリア層、の層構成を有するガスバリア性積層体1を得た。
[Example 1]
On the base material (1), the smoothing layer forming solution (1) obtained in Production Example 1 was applied by the bar coating method, and the obtained coating film was heated and dried at 70 ° C. for 1 minute, and then irradiated with UV light. UV light irradiation is performed using a line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes 2 times), and a smoothing layer (1) having a thickness of 1 μm is applied. Formed.
Next, perhydropolysilazane (manufactured by AZ Electronic Materials, trade name: AZNL110A-20) was applied on the smoothing layer (1) by a spin coating method, and the resulting coating film was heated at 120 ° C. for 2 minutes. A perhydropolysilazane layer was formed. Then, as a modification treatment, argon (Ar) is ion-implanted on the surface of the perhydropolysilazane layer using a plasma ion implantation apparatus to form a gas barrier layer, and the base material (1) / smoothing layer (1) A gas barrier laminate 1 having a layer structure of / gas barrier layer was obtained.
 ガスバリア層を形成するために用いたプラズマイオン注入装置及びプラズマイオン注入条件は以下の通りである。
(プラズマイオン注入装置)
RF電源:型番号「RF」56000、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
(プラズマイオン注入条件)
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-10kV
・RF電源:周波 13.56MHz、印加電力 1000W
・チャンバー内圧:0.2Pa
・パルス幅:5μsec
・処理時間(イオン注入時間):5分間
・搬送速度:0.2m/分
The plasma ion implantation apparatus and plasma ion implantation conditions used for forming the gas barrier layer are as follows.
(Plasma ion implantation system)
RF power supply: Model number “RF” 56000, JEOL high voltage pulse power supply: “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd. (plasma ion implantation conditions)
・ Plasma generated gas: Ar
・ Gas flow rate: 100sccm
・ Duty ratio: 0.5%
・ Repetition frequency: 1000Hz
・ Applied voltage: -10kV
・ RF power supply: frequency 13.56 MHz, applied power 1000 W
-Chamber internal pressure: 0.2 Pa
・ Pulse width: 5μsec
・ Processing time (ion implantation time): 5 minutes ・ Conveying speed: 0.2 m / min
〔実施例2〕
 実施例1に記載の方法により得られたガスバリア性積層体1の基材(1)の面に、製造例1で得たハードコート層形成用溶液を、バーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚さ2μmのハードコート層を形成し、ハードコート層/基材(1)/平滑化層(1)/ガスバリア層、の層構成を有するガスバリア性積層体2を得た。
[Example 2]
The hard coat layer forming solution obtained in Production Example 1 was applied to the surface of the base material (1) of the gas barrier laminate 1 obtained by the method described in Example 1 by the bar coating method. After the coating film is heated and dried at 70 ° C. for 1 minute, UV light irradiation is performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, pass The gas barrier laminate 2 having a layer structure of hard coat layer / base material (1) / smoothing layer (1) / gas barrier layer was obtained by forming a hard coat layer having a thickness of 2 μm twice.
〔比較例1〕
 実施例1において、基材(1)に代えて、基材(2)を用いたことを除き、実施例1と同様の方法により、基材(2)/平滑化層(1)/ガスバリア層、の層構成を有するガスバリア性積層体3を得た。
[Comparative Example 1]
In Example 1, in place of the substrate (1), the substrate (2) / smoothing layer (1) / gas barrier layer was produced in the same manner as in Example 1 except that the substrate (2) was used. Thus, a gas barrier laminate 3 having a layer structure of was obtained.
〔比較例2〕
 比較例1において、平滑化層形成用溶液(1)に代えて、製造例2で得た平滑化層形成用溶液(2)を用いたことを除き、比較例1と同様の方法により、基材(2)/平滑化層(2)/ガスバリア層、の層構成を有するガスバリア性積層体4を得た。
[Comparative Example 2]
In Comparative Example 1, a smoothing layer forming solution (2) obtained in Production Example 2 was used in place of the smoothing layer forming solution (1). A gas barrier laminate 4 having a layer structure of material (2) / smoothing layer (2) / gas barrier layer was obtained.
〔比較例3〕
 比較例1において、平滑化層形成用溶液(1)に代えて、製造例3で得た平滑化層形成用溶液(3)を用いたことを除き、比較例1と同様の方法により、基材(2)/平滑化層(3)/ガスバリア層、の層構成を有するガスバリア性積層体5を得た。
[Comparative Example 3]
In Comparative Example 1, in place of the smoothing layer forming solution (1), the smoothing layer forming solution (3) obtained in Production Example 3 was used. A gas barrier laminate 5 having a layer structure of material (2) / smoothing layer (3) / gas barrier layer was obtained.
〔比較例4〕
 比較例2において、平滑化層(2)の厚みを10μmに変更したことを除き、比較例2と同様の方法により、基材(2)/平滑化層(2)/ガスバリア層、の層構成を有するガスバリア性積層体6を得た。
[Comparative Example 4]
In Comparative Example 2, the layer structure of the base material (2) / smoothing layer (2) / gas barrier layer was the same as in Comparative Example 2 except that the thickness of the smoothing layer (2) was changed to 10 μm. A gas barrier laminate 6 having the following was obtained.
 実施例1、2及び比較例1~4で得たガスバリア性積層体1~6について、以下の測定を行った。
(ガスバリア性積層体の各層の厚み)
 触針式段差計(AMBIOS TECNOLOGY社製、XP-1)を用いて、ガスバリア性積層体の各層の厚みを測定した。
The following measurements were performed on the gas barrier laminates 1 to 6 obtained in Examples 1 and 2 and Comparative Examples 1 to 4.
(Thickness of each layer of the gas barrier laminate)
The thickness of each layer of the gas barrier laminate was measured using a stylus type step gauge (AMBIOS TECNOLOGY, XP-1).
(平滑化層の平滑性)
 光干渉顕微鏡(Veeco社製、「NT1100」)を用いて、250000μm(500μm×500μm)の領域について、平滑化層を観察し、算術平均粗さ(Ra)、粗さ曲線の最大断面高さ(Rt)を求めた。
(Smoothness of smoothing layer)
Using an optical interference microscope (manufactured by Veeco, “NT1100”), the smoothing layer was observed in the region of 250,000 μm 2 (500 μm × 500 μm), and the arithmetic mean roughness (Ra), the maximum cross-sectional height of the roughness curve (Rt) was determined.
(水蒸気透過率測定)
 温度40℃、相対湿度90%における、ガスバリア性積層体1~6の水蒸気透過率を、水蒸気透過率測定装置(LYSSY社製、L80-5000)を用いて測定した。
 測定結果を第1表に示す。
(Water vapor transmission rate measurement)
The water vapor transmission rate of the gas barrier laminates 1 to 6 at a temperature of 40 ° C. and a relative humidity of 90% was measured using a water vapor transmission rate measuring device (manufactured by LYSSY, L80-5000).
The measurement results are shown in Table 1.
(紫外線透過率)
 ガスバリア性積層体1~6の360nmにおける光線透過率を、紫外・可視・近赤外分光光度計(島津製作所社製、UV-3600)を用いて測定した。
 測定結果を第1表に示す。
(UV transmittance)
The light transmittance at 360 nm of the gas barrier laminates 1 to 6 was measured using an ultraviolet / visible / near infrared spectrophotometer (UV-3600, manufactured by Shimadzu Corporation).
The measurement results are shown in Table 1.
(耐擦傷性評価)
 ガスバリア性積層体1~6について、耐擦傷性試験を行い、耐擦傷性を評価した。
 具体的には、ガスバリア性積層の平滑化層およびガスバリア層が積層された側とは反対側(実施例1においては基材面、実施例2においてはハードコート層面)の面の鉛筆硬度をJIS K5600-5-4に準じて測定し、以下の基準により耐擦傷性を評価した。
A:鉛筆硬度がHB以上
B:鉛筆硬度がHB未満
 評価結果を第1表に示す。
(Abrasion resistance evaluation)
The gas barrier laminates 1 to 6 were subjected to an abrasion resistance test to evaluate the abrasion resistance.
Specifically, the pencil hardness of the surface opposite to the side on which the smoothing layer and the gas barrier layer of the gas barrier laminate are laminated (the substrate surface in Example 1 and the hard coat layer surface in Example 2) is JIS. Measurement was performed according to K5600-5-4, and the scratch resistance was evaluated according to the following criteria.
A: Pencil hardness is HB or higher B: Pencil hardness is lower than HB Evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 第1表から、以下のことがわかる。
 実施例1、2のガスバリア性積層体は、上述の式(1)、(2)を満たし、薄く、ガスバリア性及び紫外線遮断性に優れている。
 さらに、実施例2のガスバリア性積層体は、これらの特性を有し、かつ、耐擦傷性にも優れている。
 一方、比較例1、2のガスバリア性積層体は、上述の式(1)、(2)を満たしているが、基材が紫外線遮断性を有していないため、紫外線遮断性に劣っている。さらに、比較例2のガスバリア性積層体は、平滑化層が紫外線吸収剤を含有しているものの、平滑化層の厚みが薄いため、紫外線遮断性に劣っている。
 比較例3のガスバリア性積層体は、平滑化層に紫外線吸収剤を大量に含有させた結果、紫外線遮断性に優れるものの、水蒸気透過率が高くなっている。
 比較例4のガスバリア性積層体は、紫外線吸収剤を含有する平滑化層を厚くした結果、紫外線遮断性に優れるものの、上述の式(2)を満たさず、ガスバリア性積層体の厚みが増している。このようなガスバリア性積層体は、平滑化層が基材の厚さに対して過度に厚いため、ガスバリア性積層体にカールが発生するおそれがある。
Table 1 shows the following.
The gas barrier laminates of Examples 1 and 2 satisfy the above formulas (1) and (2), are thin, and have excellent gas barrier properties and ultraviolet blocking properties.
Furthermore, the gas barrier laminate of Example 2 has these characteristics and is excellent in scratch resistance.
On the other hand, the gas barrier laminates of Comparative Examples 1 and 2 satisfy the above-described formulas (1) and (2), but the base material does not have ultraviolet blocking properties, so that the ultraviolet blocking properties are inferior. . Furthermore, although the smoothing layer contains the ultraviolet absorber, the gas barrier laminate of Comparative Example 2 is inferior in ultraviolet blocking property because the thickness of the smoothing layer is thin.
The gas barrier laminate of Comparative Example 3 is excellent in ultraviolet blocking property as a result of containing a large amount of ultraviolet absorber in the smoothing layer, but has a high water vapor transmission rate.
As a result of thickening the smoothing layer containing the UV absorber, the gas barrier laminate of Comparative Example 4 is excellent in UV blocking properties, but does not satisfy the above formula (2), and the thickness of the gas barrier laminate is increased. Yes. In such a gas barrier laminate, since the smoothing layer is excessively thick with respect to the thickness of the base material, the gas barrier laminate may be curled.

Claims (11)

  1.  基材、平滑化層及びガスバリア層がこの順に積層されてなるガスバリア性積層体であって、
     前記基材が、波長360nmにおける光線透過率が3.0%以下の樹脂フィルムからなり、
     前記平滑化層が、紫外線硬化型樹脂組成物の硬化物からなり、
     前記基材の厚み(T)、平滑化層の厚み(T)、ガスバリア層の厚み(T)が、下記式(1)、(2)を満たすものであること、を特徴とするガスバリア性積層体。
    Figure JPOXMLDOC01-appb-M000001
    A gas barrier laminate in which a substrate, a smoothing layer and a gas barrier layer are laminated in this order,
    The base material comprises a resin film having a light transmittance of 3.0% or less at a wavelength of 360 nm,
    The smoothing layer is made of a cured product of an ultraviolet curable resin composition,
    The thickness of the substrate (T 1), the thickness of the smoothing layer (T 2), the thickness of the gas barrier layer (T 3) is a compound represented by the following formula (1), characterized in, that satisfies the (2) Gas barrier laminate.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記樹脂フィルムが、紫外線吸収剤を含有する樹脂フィルムである、請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the resin film is a resin film containing an ultraviolet absorber.
  3.  前記平滑化層のガスバリア層との界面の算術平均粗さ(Ra)が5nm以下であり、粗さ曲線の最大断面高さ(Rt)が100nm以下である、請求項1に記載のガスバリア性積層体。 2. The gas barrier laminate according to claim 1, wherein an arithmetic average roughness (Ra) of an interface between the smoothing layer and the gas barrier layer is 5 nm or less, and a maximum cross-sectional height (Rt) of the roughness curve is 100 nm or less. body.
  4.  前記ガスバリア層が、ポリシラザン化合物を含有する層を改質処理して得られる層である、請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the gas barrier layer is a layer obtained by modifying a layer containing a polysilazane compound.
  5.  基材の厚み(T)が5~28μm、平滑化層の厚み(T)が0.5~3μm、ガスバリア層の厚み(T)が0.05~0.3μmである、請求項1に記載のガスバリア性積層体。 The thickness (T 1 ) of the substrate is 5 to 28 μm, the thickness (T 2 ) of the smoothing layer is 0.5 to 3 μm, and the thickness (T 3 ) of the gas barrier layer is 0.05 to 0.3 μm. 2. The gas barrier laminate according to 1.
  6.  さらに、ハードコート層を有するガスバリア性積層体であって、ハードコート層/基材/平滑化層/ガスバリア層、の層構成を有する、請求項1に記載のガスバリア性積層体。 Furthermore, it is a gas-barrier laminated body which has a hard-coat layer, Comprising: The gas-barrier laminated body of Claim 1 which has a layer structure of a hard-coat layer / base material / smoothing layer / gas barrier layer.
  7.  前記ガスバリア性積層体の厚みが5~35μmである、請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the thickness of the gas barrier laminate is 5 to 35 µm.
  8.  前記ガスバリア性積層体の、温度40℃、相対湿度90%における水蒸気透過率が、0.05g/(m・day)以下である、請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the gas barrier laminate has a water vapor transmission rate of 0.05 g / (m 2 · day) or less at a temperature of 40 ° C and a relative humidity of 90%.
  9.  ガスバリア性積層体の波長360nmにおける光線透過率が3.0%以下である、請求項1に記載のガスバリア性積層体。 The gas barrier laminate according to claim 1, wherein the gas barrier laminate has a light transmittance of 3.0% or less at a wavelength of 360 nm.
  10.  請求項1に記載のガスバリア性積層体からなる電子デバイス用部材。 An electronic device member comprising the gas barrier laminate according to claim 1.
  11.  請求項10に記載の電子デバイス用部材を備える電子デバイス。 An electronic device comprising the electronic device member according to claim 10.
PCT/JP2015/059726 2014-03-31 2015-03-27 Gas barrier laminate body, electronic device member, and electronic device WO2015152075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016511630A JP6544832B2 (en) 2014-03-31 2015-03-27 Gas barrier laminate, member for electronic device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014073104 2014-03-31
JP2014-073104 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152075A1 true WO2015152075A1 (en) 2015-10-08

Family

ID=54240399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059726 WO2015152075A1 (en) 2014-03-31 2015-03-27 Gas barrier laminate body, electronic device member, and electronic device

Country Status (3)

Country Link
JP (1) JP6544832B2 (en)
TW (1) TWI667135B (en)
WO (1) WO2015152075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474155A (en) * 2018-12-06 2021-10-01 凸版印刷株式会社 Gas barrier film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102554238B1 (en) * 2017-09-28 2023-07-10 니폰 제온 가부시키가이샤 Resin composition and resin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082581A1 (en) * 2009-01-17 2010-07-22 コニカミノルタホールディングス株式会社 Heat insulating article, method for producing heat insulating article, and building member
JP2011000723A (en) * 2009-06-16 2011-01-06 Konica Minolta Holdings Inc Heat shielding article, method for manufacturing heat shielding article, and outdoor building member
JP2012148560A (en) * 2010-12-28 2012-08-09 Mitsubishi Plastics Inc Laminated moisture-proof film
WO2013161785A1 (en) * 2012-04-26 2013-10-31 コニカミノルタ株式会社 Transparent gas barrier film and electronic device
JP2014024216A (en) * 2012-07-25 2014-02-06 Toppan Printing Co Ltd Power generating element protective transparent film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624152B2 (en) * 2005-03-24 2011-02-02 富士フイルム株式会社 Plastic film, gas barrier film, and image display element using the same
TWI625241B (en) * 2011-08-22 2018-06-01 Mitsubishi Chem Corp Transparent laminated film
CN104114287A (en) * 2011-11-30 2014-10-22 琳得科株式会社 Manufacturing method for gas barrier film, and electronic member or optical member provided with gas barrier film
JP6251970B2 (en) * 2012-03-30 2017-12-27 三菱ケミカル株式会社 GAS BARRIER FILM, PROCESS FOR PRODUCING THE SAME, AND GAS BARRIER LAMINATE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082581A1 (en) * 2009-01-17 2010-07-22 コニカミノルタホールディングス株式会社 Heat insulating article, method for producing heat insulating article, and building member
JP2011000723A (en) * 2009-06-16 2011-01-06 Konica Minolta Holdings Inc Heat shielding article, method for manufacturing heat shielding article, and outdoor building member
JP2012148560A (en) * 2010-12-28 2012-08-09 Mitsubishi Plastics Inc Laminated moisture-proof film
WO2013161785A1 (en) * 2012-04-26 2013-10-31 コニカミノルタ株式会社 Transparent gas barrier film and electronic device
JP2014024216A (en) * 2012-07-25 2014-02-06 Toppan Printing Co Ltd Power generating element protective transparent film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474155A (en) * 2018-12-06 2021-10-01 凸版印刷株式会社 Gas barrier film
CN113474155B (en) * 2018-12-06 2023-07-11 凸版印刷株式会社 Gas barrier film

Also Published As

Publication number Publication date
TW201544315A (en) 2015-12-01
TWI667135B (en) 2019-08-01
JP6544832B2 (en) 2019-07-17
JPWO2015152075A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6883127B2 (en) Long gas barrier laminate and its manufacturing method
US10323317B2 (en) Gas barrier laminate, member for electronic device, and electronic device
US10967618B2 (en) Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
JP6402093B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, ELECTRONIC DEVICE MEMBER, AND ELECTRONIC DEVICE
JP6993962B2 (en) Long gas barrier laminate
WO2015152076A1 (en) Elongated gas barrier laminate, method for producing same, electronic device member, and electronic device
JP6544832B2 (en) Gas barrier laminate, member for electronic device and electronic device
WO2013175910A1 (en) Gas barrier layered product, and production method for gas barrier layered product
JP6694380B2 (en) Gas barrier laminate, electronic device member, and electronic device
EP3437855B1 (en) Gas barrier laminated body, member for electronic device, and electronic device
JPWO2017208770A1 (en) LAMINATE, ELECTRONIC DEVICE MEMBER, AND ELECTRONIC DEVICE
WO2016158613A1 (en) Gas barrier laminate, member for electronic devices, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773787

Country of ref document: EP

Kind code of ref document: A1