WO2015151894A1 - 突合せ溶接用芯出し方法及び装置 - Google Patents

突合せ溶接用芯出し方法及び装置 Download PDF

Info

Publication number
WO2015151894A1
WO2015151894A1 PCT/JP2015/058691 JP2015058691W WO2015151894A1 WO 2015151894 A1 WO2015151894 A1 WO 2015151894A1 JP 2015058691 W JP2015058691 W JP 2015058691W WO 2015151894 A1 WO2015151894 A1 WO 2015151894A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
cup
welding
claws
shaft
Prior art date
Application number
PCT/JP2015/058691
Other languages
English (en)
French (fr)
Inventor
雄一 服部
Original Assignee
Ntn株式会社
雄一 服部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 雄一 服部 filed Critical Ntn株式会社
Publication of WO2015151894A1 publication Critical patent/WO2015151894A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/053Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work aligning cylindrical work; Clamping devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/04Electron-beam welding or cutting for welding annular seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/068Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving gluing, welding or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22326Attachments to the outer joint member, i.e. attachments to the exterior of the outer joint member or to the shaft of the outer joint member

Definitions

  • the present invention relates to a centering method and apparatus for butt welding, and is not intended to be limited, but is used for butt welding of a cup member and a shaft member that may be required in the process of manufacturing an outer joint member of a constant velocity universal joint. be able to.
  • the constant velocity universal joint is used as a power transmission system for automobiles and various industrial machines. It connects the two shafts on the drive side and the driven side so that torque can be transmitted, and even when the two shafts form an angle, etc. Torque can be transmitted at high speed.
  • Constant velocity universal joints are broadly classified into fixed type constant velocity universal joints capable of only angular displacement and sliding constant velocity universal joints capable of both angular displacement and axial displacement.
  • a sliding type constant velocity universal joint is used on the differential side (inboard side), and a fixed type constant velocity is provided on the drive wheel side (outboard side).
  • a universal joint is used.
  • a constant velocity universal joint is one of its main components, a cup part formed with a track groove on which the torque transmitting member rolls on the inner peripheral surface, and the cup part.
  • An outer joint member having a shaft portion extending in the axial direction from the bottom portion is provided.
  • This outer joint member is a case where the cup and shaft are integrally formed by subjecting a solid bar-shaped material (bar material) to forging, ironing and other plastic processing, cutting, heat treatment, grinding, etc. There are many.
  • an outer joint member called a long stem having a shaft portion longer than a standard one.
  • the drive shaft with the longer distance between the differential and the wheel is used in order to equalize the length of the left and right drive shafts.
  • the outer joint member of the inboard side constant velocity universal joint may be a long stem.
  • the length of the long stem portion varies depending on the vehicle type, but is generally about 300 to 400 mm.
  • a rolling bearing (support bearing) is attached to the long stem portion and fixed to the vehicle body side via a bracket, thereby suppressing vibration of the outer joint member.
  • Such a long stem type outer joint member has a long shaft portion, and therefore it is difficult to integrally form the cup portion and the shaft portion with high accuracy.
  • a cup part and a shaft part which are constituted by separate members, and both members are joined by friction welding (see Patent Document 1).
  • the intermediate product 71 ′ of the outer joint member includes a cup member 72 and a shaft member 73, and is joined by friction welding.
  • a burr 75 is generated on the inner and outer diameters in accordance with the pressure contact.
  • the intermediate product 71 ′ is a finished product of the outer joint member 71 by machining a spline, a retaining ring groove, and the like, through heat treatment, grinding, and the like. Therefore, although there is a difference in the shape of the details between the outer joint member 71 and the intermediate product 71 ′, the difference in the shape of the details is omitted in FIG. 16 in order to simplify the description. The same applies to the following description.
  • the burr 75 of the joint 74 generated by the friction welding is not only hardened by frictional heat and subsequent cooling, but also has a distorted shape spreading in the radial direction and the axial direction. Therefore, as shown in FIG. 16, when the outer diameter side burr 75 is removed by turning, the turning tip wears violently due to high hardness, and the turning tip tends to be chipped due to the distorted shape. For this reason, it is difficult to increase the turning speed, and the amount of cutting per one pass of the turning tip is small and the number of passes is increased. Therefore, there is a problem that the cycle time is long and the manufacturing cost is increased.
  • FIG. 18 is a schematic diagram for illustrating the problem of centering adjustment based on the outer diameter, and shows a state in which a workpiece having a diameter difference, that is, a small-diameter workpiece and a large-diameter workpiece are applied to a V-shaped nail. Show. At this time, the centers of both the workpieces have already shifted as indicated by the symbol ⁇ .
  • An object of the present invention is to eliminate such problems of the prior art. Specifically, even workpieces having different diameters can be reliably centered, and yet a simple structure is matched. It is to provide a welding centering mechanism.
  • the present invention has a pair of claws that face the diametrical direction of the first workpiece across the first workpiece and can advance and retract in synchronization with each other when butt welding the first workpiece and the second workpiece.
  • the first workpiece is held by the first parallel chuck
  • the second workpiece is held by the second parallel chuck having a pair of claws that are opposed to each other in the diameter direction of the second workpiece and can move forward and backward in synchronization with each other.
  • the first work and the second work are made coaxial.
  • the centering of the workpiece with respect to the center line can be achieved by chucking the workpiece with a pair of claws which are opposed to each other with the workpiece interposed therebetween and which can advance and retreat in synchronization with each other.
  • a parallel chuck having such a pair of claws is installed at the joining end of each workpiece to improve centering accuracy.
  • the centering device of the present invention has a simple configuration and does not require a device for detecting the center position or an actuator for adjusting the work position in response to the detection signal, so that the equipment can be downsized and cost-effective. Contributes to reduction. Furthermore, since improvement in bonding accuracy can be expected, post-processing of the bonded portion is not necessary, and the process can be shortened.
  • FIG. 2b It is a partial longitudinal cross-sectional view of a drive shaft. It is a fragmentary longitudinal cross-sectional view of the outer joint member in FIG. 2b is an enlarged view of the circled portion of FIG. 2a. It is a block diagram which shows the 1st example of the manufacturing process of an outer joint member. It is a longitudinal cross-sectional view of the cup member after ironing. It is a longitudinal cross-sectional view of the cup member after turning. It is a front view of the bar material as a raw material for shaft members. It is a partial longitudinal cross-sectional view after a forge process. It is a fragmentary longitudinal cross-sectional view of the shaft member after a turning process and a spline process.
  • FIG. It is a fragmentary longitudinal cross-sectional view of the constant velocity universal joint which uses the outer joint member shown in FIG. It is a longitudinal cross-sectional view of the outer joint member by a prior art. It is a longitudinal cross-sectional view of the outer joint member by a prior art. It is a longitudinal cross-sectional view of the outer joint member by a prior art. It is a longitudinal cross-sectional view of the outer joint member by a prior art. It is a cross-sectional schematic diagram which shows the centering apparatus of an outer diameter reference
  • FIG. 2 is a schematic view of a parallel chuck.
  • 2 is a schematic view of a parallel chuck. It is a cross-sectional schematic diagram of the parallel chuck with a drive mechanism at the time of unchucking. It is a cross-sectional schematic diagram of the parallel chuck with a drive mechanism at the time of chucking. It is the schematic which shows the state which chucked the workpiece
  • FIG. 5 is a schematic cross-sectional view showing the relationship between the outer joint member having a non-circular cross section and the claw of the parallel chuck, and in the case of a claw having a V-shaped recess on the left side of the center line, the semi-circular recess on the right side of the center line This is the case with a nail with
  • a drive shaft 1 shown in FIG. 1 includes a sliding constant velocity universal joint 10, a fixed constant velocity universal joint 20, and a half shaft 2 as main components.
  • the sliding type constant velocity universal joint 10 is disposed on the differential side (right side in the figure: hereinafter also referred to as inboard side), and the fixed type constant velocity universal joint 20 is provided on the driving wheel side (left side in the figure: hereinafter, both on the outboard side). Arranged).
  • the half shaft 2 connects both constant velocity universal joints 10 and 20 so that torque can be transmitted.
  • the illustrated sliding constant velocity universal joint 10 is a so-called double offset type constant velocity universal joint (DOJ), and includes an inner joint member 16, an outer joint member 11, a torque transmission element 41, and a cage 44. Yes.
  • DOJ double offset type constant velocity universal joint
  • the inner joint member 16 has a plurality of track grooves 40 extending in the axial direction formed on the spherical outer peripheral surface 43 at equal intervals in the circumferential direction.
  • the outer joint member 11 has a cup portion 12 and a long shaft portion (hereinafter also referred to as a long stem portion) 13 extending in the axial direction from the bottom portion of the cup portion 12, and the cylindrical inner peripheral surface 42 of the cup portion 12.
  • a plurality of track grooves 30 extending in the axial direction are formed at equal intervals in the circumferential direction.
  • the track groove 40 of the inner joint member 16 and the track groove 30 of the outer joint member 11 make a pair, and a ball 41 as a torque transmission element is incorporated between each pair of track grooves 40, 30.
  • the balls 41 are accommodated in pockets formed at predetermined intervals in the circumferential direction of the cage 44.
  • the cage 44 is interposed between the inner joint member 16 and the outer joint member 11, and the spherical inner peripheral surface 46 of the cage 44 and the spherical outer peripheral surface 43 of the inner joint member 16, and the spherical outer peripheral surface 45 of the cage 44 and the outer joint member 11.
  • the cylindrical inner peripheral surfaces 42 are in spherical contact with each other.
  • the center of curvature O 1 of the spherical outer peripheral surface 45 of the cage 44 and the center of curvature O 2 of the spherical inner peripheral surface 46 are offset from the joint center O by the same distance on the opposite side in the axial direction.
  • the inner ring of the support bearing 6 is attached to the long stem portion 13, and the outer ring of the support bearing 6 is fixed to the transmission case via a bracket (not shown). As described above, by providing the support bearing 6 and rotatably supporting the outer joint member 11, the swing of the outer joint member 11 during operation or the like is suppressed as much as possible.
  • the illustrated fixed type constant velocity universal joint 20 is a so-called Rzeppa type constant velocity universal joint.
  • An undercut-free type constant velocity universal joint may be used as the fixed type constant velocity universal joint.
  • the fixed type constant velocity universal joint 20 includes an inner joint member 22, an outer joint member 21, a torque transmission element 23, and a cage 24.
  • the inner joint member 22 has a plurality of ball grooves extending in the axial direction formed on the spherical outer peripheral surface at equal intervals in the circumferential direction.
  • the outer joint member 21 has a bottomed cylindrical cup portion 21a and a shaft portion 21b extending in the axial direction from the bottom portion of the cup portion 21a, and a plurality of axially extending inner spherical surfaces of the cup portion 21a extend in the axial direction. Are formed at equal intervals in the circumferential direction.
  • the ball groove of the inner joint member 22 and the ball groove of the outer joint member 21 make a pair, and a ball 23 as a torque transmitting element is incorporated between each pair of ball grooves.
  • the balls 23 are accommodated in pockets formed at predetermined intervals in the circumferential direction of the cage 24.
  • the cage 24 is interposed between the inner joint member 22 and the cup portion 21a of the outer joint member 21, and includes a spherical inner peripheral surface of the cage and a spherical outer peripheral surface of the inner joint member, and a spherical outer peripheral surface of the cage and a spherical shape of the outer joint member.
  • the inner peripheral surfaces are in spherical contact with each other.
  • Half shaft 2 has spline (including serrations, hereinafter the same) shafts 3 for torque transmission at both ends thereof. Then, the spline shaft 3 on the inboard side is inserted into the spline hole of the inner joint member 16 of the sliding type constant velocity universal joint 10 so that the half shaft 2 and the inner joint member 16 of the sliding type constant velocity universal joint 10 are connected. Connect to allow torque transmission. Further, the spline shaft 3 on the outboard side is inserted into the spline hole of the inner joint member 22 of the fixed type constant velocity universal joint 20 to transmit torque between the half shaft 2 and the inner joint member 22 of the fixed type constant velocity universal joint 20. Connect as possible.
  • spline including serrations, hereinafter the same
  • Grease as a lubricant is sealed inside both the constant velocity universal joints 10 and 20, and between the half shaft 2 and the outer joint members 11 and 21 in order to prevent leakage of grease and intrusion of foreign matters from the outside.
  • the bellows-like boots 4 and 5 are attached to the.
  • the illustrated half shaft 2 is an example of a solid type, but a hollow type can also be used.
  • the outer joint member 11 of the sliding type constant velocity universal joint 10 is composed of a cup portion 12 and a long stem portion 13.
  • the cup portion 12 has a bottomed cylindrical shape with one end opened, and a plurality of track grooves 30 for rolling the balls 41 (see FIG. 1) are formed at equal intervals in the circumferential direction on the cylindrical inner peripheral surface 42. It is.
  • the long stem portion 13 extends in the axial direction from the bottom portion of the cup portion 12, and a spline shaft Sp is provided at the end opposite to the cup portion 12. *
  • the outer joint member 11 is formed by welding the cup member 12a and the shaft member 13a.
  • the cup member 12a is made of medium carbon steel containing 0.40 to 0.60% by weight of carbon, such as S53C, and is an integrally molded product having a cylindrical portion 12a1 and a bottom portion 12a2.
  • the cylindrical portion 12a1 has a cylindrical inner peripheral surface 42 and a track groove 30 formed on the inner periphery, a boot mounting groove 32 formed on the outer periphery on the opening side, and a retaining ring groove 33 formed on the inner periphery. It is.
  • a convex portion 12a3 is formed on the bottom portion 12a2, and a joining end face 50 is formed on the convex portion 12a3 (see FIG. 4b).
  • the shaft member 13a is made of medium carbon steel containing 0.30 to 0.55 wt% carbon such as S40C.
  • a bearing mounting surface 14 and a retaining ring groove 15 are formed on the cup member 12a side, and a spline shaft Sp is formed on the opposite end.
  • the end surface 51 for joining is formed in the edge part by the side of the cup member 12a of the shaft member 13a (refer FIG. 5c).
  • the end face 50 for joining of the cup member 12a and the end face 51 for joining of the shaft member 13a are abutted, and the cup member 12a and the shaft member 13a are welded.
  • the outer diameter B of the joining end face 50 and the joining end face 51 is set to the same dimension for each joint size.
  • the weld 49 is irradiated with an electron beam from the outside in the radial direction of the cup member 12a to form a so-called bead. Since the welded portion 49 is formed on the cup member 12a side with respect to the bearing mounting surface 14 of the shaft member 13a, the bearing mounting surface 14 and the like can be processed in advance. Processing can be abolished. In addition, since burr does not appear in the welded part in electron beam welding, post-processing of the welded part can be omitted, and not only the manufacturing cost can be reduced, but also 100% inspection by ultrasonic flaw detection of the welded part can be performed reliably.
  • cup member manufacturing steps that is, the cup member 12a is manufactured through the bar material cutting step S1c, the forging step S2c, the ironing step S3c, and the turning step S4c.
  • the outline of each step S1c to S4c is as follows.
  • Bar material cutting step S1c Based on the forging weight, the bar material is cut at a predetermined length to produce a billet.
  • Forming process S2c The billet obtained in the bar material cutting step S1c is forged to obtain a shaped member of the cup member 12a in which the cylindrical portion, the bottom portion, and the convex portion are integrally formed.
  • FIG. 4a shows the base material 12a ′ of the cup member 12a after the next ironing step S3c. It is integrally molded.
  • Step S3c The track groove 30 and the cylindrical inner peripheral surface 42 are ironed with respect to the shaped material obtained in the forging step S2c to finish the inner periphery of the cylindrical portion of the cup member 12a. Specifically, as shown in FIG. 4a, a track groove 30 and a cylindrical inner peripheral surface 42 are formed.
  • FIG. 4b shows the cup member 12a after the turning step S4c. That is, for the joining of the outer peripheral surface, the boot mounting groove 32, the retaining ring groove 33, and the convex portion 12a3 of the bottom portion 12a2, as shown in FIG. The end face 50 and its outer diameter B are turned.
  • a product number is assigned to the cup member 12a as an intermediate part and managed.
  • steps on the upper right side of FIG. 3 are shaft member manufacturing steps. That is, the shaft member 13a is manufactured through the bar material cutting step S1s, the turning step S2s, and the spline step S3s.
  • the outline of each step S1s to S3s is as follows.
  • Bar material cutting process S1s Based on the total length of the shaft portion, the bar material is cut into a predetermined length to produce a billet 13a '' as shown in FIG. 5a. If necessary, as shown in FIG. 5b, the upset forging process expands the shaft diameter within a predetermined range and forms the concave portion 52 at the joint side end (cup member 12a side end). Is produced.
  • spline processing step S3s In the spline processing step S3s, spline processing is performed on the opposite end of the recess 52 to form the spline shaft Sp.
  • specific spline processing it can be appropriately selected and adopted from known processing methods such as rolling, pressing, cutting and the like.
  • a part number is assigned to the shaft member 13a as an intermediate part and managed.
  • the cup member 12a and the shaft member 13a manufactured in this way are manufactured through the manufacturing process including the lower three steps of FIG. 3, that is, the welding step S6, the heat treatment step S7, and the grinding step S8. Complete.
  • the outline of each step S6 to S8 is as follows. *
  • Induction hardening and tempering is performed as a heat treatment on at least the track grooves 30, the cylindrical inner peripheral surface 42 and the outer periphery of the shaft portion 13 of the cup portion 12 after welding. The weld is not heat treated.
  • a hardened layer of about HRC 58 to 62 is formed on the track groove 30 and the cylindrical inner peripheral surface 42 of the cup portion 12. Further, a hardened layer of about HRC 50 to 62 is formed in a predetermined range on the outer periphery of the shaft portion 13.
  • this embodiment incorporates a heat treatment process after the welding process, when welding is performed after the heat treatment, the temperature of the peripheral part increases due to the heat at the time of welding and affects the hardness of the heat treatment part. Suitable for spec cup members and shaft members.
  • steps S1c to S4c, S1s to S3s, and S6 to S8 are representative examples, and can be changed or added as necessary.
  • the outer diameter B (FIG. 4b) of the joining end face 50 of the cup member 12a is set to the same dimension with one joint size.
  • the outer diameter B of the joining end surface 51 is the same as the outer diameter B of the joining end surface 50 of the cup member 12a regardless of the shaft diameter or the outer peripheral shape. Set to dimensions.
  • the joining end surface 51 of the shaft member 13a is located closer to the cup member 12a than the bearing mounting surface 14. Therefore, the cup member 12a is used in common, only the shaft member 13a is manufactured in various shaft diameters, lengths and outer peripheral shapes according to the vehicle type, and both the members 12a and 13a are welded to suit various vehicle types.
  • the outer joint member 11 can be manufactured. Details of sharing the cup member 12a will be described later.
  • FIG. 6 schematically shows a schematic configuration of the welding apparatus before welding
  • FIG. 7 shows a schematic configuration of the welding apparatus during welding.
  • the welding apparatus 100 includes an electron gun 101, a rotating device 102, a chuck 103, a center 104, a tail stock 105, a work cradle 106, a centering jig 107, a case 108, and a vacuum pump 109.
  • the work that is, the cup member 12a and the shaft member 13a are placed on the work cradle 106 in the welding apparatus 100.
  • the chuck 103 and the centering jig 107 at one end of the welding apparatus 100 are connected to the rotating device 102, and the cup member 12a is centered by the centering jig 107 and the cup member by the chuck 103.
  • a center 104 is integrally attached to a tail stock 105 at the other end (right side in FIG. 6) of the welding apparatus 100, and both are configured to advance and retreat in the axial direction (left and right direction in FIG. 6). Centering is performed by setting the center hole of the shaft member 13 a in the center 104.
  • 6 and 7 are examples in which the centering jig 107 and the center 104 are employed, instead of this, centers 124a and 124b to be referred to later with reference to FIG. 21 are employed. You can also
  • the sealed space means a space 111 formed by the case 108.
  • a vacuum pump 109 is connected to the case 108 of the welding apparatus 100.
  • An electron gun 101 is provided in the space 111. The electron gun 101 can move in the axial direction to a position corresponding to the joining end faces 50 and 51 of the cup member 12a and the shaft member 13a, and can approach and separate in the radial direction with respect to the workpiece (12a and 13a). It is configured.
  • the cup member 12a and the shaft member 13a which are workpieces are stocked at a place different from the welding apparatus 100.
  • Each workpiece is taken out by, for example, a robot, conveyed into the case 108 of the welding apparatus 100 opened to the atmosphere shown in FIG. 6, and set at a predetermined position on the workpiece cradle 106.
  • the center 104 and the tail stock 105 are retracted to the right side of the figure, and there is a gap between the joining end faces 50 and 51 of the cup member 12a and the shaft member 13a as shown in the figure.
  • the door (not shown) of the case 108 is closed, the vacuum pump 109 is activated, and the sealed space 111 formed in the case 108 is decompressed.
  • the inside of the recessed part 52 and the internal diameter part 53 (FIG. 5c) of the shaft member 13a is pressure-reduced.
  • the center 104 and the tail stock 105 move forward to the left side of the drawing, and the joining end surfaces 50 and 51 of the cup member 12a and the shaft member 13a are brought into contact with each other.
  • the cup member 12 a is fixed by the chuck 103 while being centered by the centering jig 107, and the shaft member 13 a is supported while being centered by the center 104.
  • the work cradle 106 moves away from the work.
  • the interval between the workpiece cradle 106 and the workpiece may be very small, and thus the interval is not shown in FIG.
  • the electron gun 101 is advanced to a predetermined position to approach the work, and the work is rotated to start preheating.
  • the preheating condition is set to a temperature lower than the welding temperature by bringing the electron gun 101 closer to the workpiece and increasing the spot diameter.
  • the cooling rate after welding can be slowed to prevent burning cracks.
  • the door of the case 108 is opened and opened to the atmosphere. Then, with the workpiece cradle 106 raised and supporting the workpiece, the center 104 and the tail stock 105 are retracted to the right side in the drawing to open the chuck 103. Thereafter, for example, the robot grabs the workpiece, removes it from the welding apparatus 100, and aligns it with the cooling stocker. Thereafter, the intermediate product of the outer joint member 11 performs ultrasonic flaw detection, and proceeds to a heat treatment step S7 as a post-process. In the present embodiment, since the cup member 12a and the shaft member 13a are entirely accommodated in the sealed space 111, the configuration of the sealed space 111 in the case 108 can be simplified.
  • a cup member 12a having a carbon content of 0.4 to 0.6% and a shaft member 13a having a carbon content of 0.3 to 0.55% are used.
  • the end surfaces 50 and 51 for joining of the cup member 12a and the shaft member 13a are soaked by preheating so as to be 300 to 650 ° C. Thereafter, electron beam welding was performed.
  • a welded portion having a raised height (0.5 mm or less) on the weld surface that does not affect the incorporation of the bearing 6 into the shaft portion of the outer joint member 11 was obtained.
  • the hardness of the welded portion after completion of welding can be suppressed within the range of HV200 to 500 by soaking by preheating, so that the welding strength is high and stable welding state and quality can be obtained.
  • the sealed space 111 of the welding apparatus 100 at atmospheric pressure or lower, it is possible to suppress a pressure change in the hollow cavity during welding, and to prevent the melt from being blown up or drawn into the inner diameter side. did it.
  • the shaft member 13b shown in FIGS. 8 and 9 is for a stem having a standard length on the inboard side.
  • the shaft member 13b is formed with a joining end surface 51 that abuts the joining end surface 50 (see FIG. 4b) of the cup member 12a.
  • the outer diameter B of the joining end surface 51 is the shaft member 13a for a long stem. It sets to the same dimension as the outer diameter B of the end surface 51 for joining of FIG. 5c.
  • this shaft member 13b is for a stem having a standard length on the inboard side, the shaft portion has a shorter length than that for the long stem, and has a sliding bearing surface 18 in the central portion in the axial direction.
  • a plurality of oil grooves 19 are formed in the bearing surface 18.
  • a spline shaft Sp and a retaining ring groove 48 are formed at the end opposite to the cup member 12a side.
  • the left column of the figure shows one cup member part number C001
  • the middle column is the shaft member part numbers S001 to S (n) arranged from top to bottom
  • the right column is the part number of the outer joint member.
  • A001 to A (n) are arranged from top to bottom.
  • the cup member is managed by giving a product number of C001, and is shared by a large number of shaft members having various shaft specifications for each vehicle type with one joint size.
  • the shaft member is managed by giving product numbers such as S001, S002, to S (n). For example, when the cup member of the product number C001 and the shaft member of the product number S001 are combined and welded, the outer joint member of the product number A001 can be manufactured.
  • the integration of cup member types can reduce costs and reduce the load of production management.
  • the cup member in the case of product type integration of cup members, is not limited to one type with one joint size, that is, one model number (product number C001 in the above example).
  • the cup member is not limited to one type with one joint size, that is, one model number (product number C001 in the above example).
  • the heat treatment step of the cup member in the heat treatment step S7 in FIG. 3 is incorporated before the welding step S6 to form a heat treatment step S5c, and the cup member is prepared as a finished product.
  • the outline of each process described above with reference to FIG. 3 the state in the main processing steps of the cup member and the shaft member, common use of the cup member, welding method, product type integration, configuration of the outer joint member, etc. Are the same, only the different parts will be described.
  • the cup member 12a has a shape extending from the joining end face 50 to the cylindrical portion 12a1 having a large diameter through the bottom portion 12a2, and the portion subjected to heat treatment as quenching and tempering is the track groove 30 on the inner periphery of the cylindrical portion 12a1.
  • the cylindrical inner peripheral surface 42 For this reason, normally, since there is no heat influence at the time of welding with respect to a heat treatment part, about cup member 12a, heat treatment is performed before welding and it prepares as a completed part.
  • the cup member 12a Since the cup member 12a is heat-treated as a finished product, it is managed by assigning a product number as a finished product. Therefore, the cost reduction and the production management load reduction due to the product type integration of the cup member 12a become remarkable. In addition, the cup member 12a can be manufactured independently up to a finished product that has undergone forging, turning, and heat treatment, and productivity is improved including reduction of setup.
  • FIG. 10 showing an example of product type integration of cup members
  • the part number of the cup member in the figure is only the part number as a finished product
  • the shaft member and the outer joint member are described above in relation to FIG. Since this is the same as the above, the description is omitted.
  • FIG. 12 shows a further manufacturing process different from that described with reference to FIG.
  • the heat treatment step S7c of the cup portion and the shaft portion in the heat treatment step S7 in FIG. 3 and the grinding step S8 of the shaft portion are incorporated before the welding step S6, the heat treatment step S5c of the cup member, and the heat treatment step of the shaft member.
  • This is S4s and grinding step S5s. Therefore, both the cup member and the shaft member are prepared as finished products.
  • the outline of each process described above with reference to FIG. 3 the state in the main processing steps of the cup member and the shaft member, the common use of the cup member, the welding method, the integration of the products, the configuration of the outer joint member, etc. Are the same, only the different parts will be described.
  • the shaft member is formed with a hardened layer of about HRC 50 to 62 by induction hardening in a predetermined range of the outer peripheral surface in the heat treatment step S4s after the spline processing step S3s.
  • the predetermined axial direction portion including the joining end face 51 is not subjected to heat treatment.
  • the heat treatment of the cup member, the product number assignment, and the like are the same as those described with reference to FIG.
  • the shaft member is moved to the grinding step S5s to finish the bearing mounting surface 14 and the like. Thereby, the shaft member as a finished product is obtained.
  • a product number as a finished product is assigned to the shaft member for management.
  • This embodiment is suitable for a cup member and a shaft member having a shape and specifications that do not cause a thermal effect during welding on the heat treatment part.
  • both the cup member and the shaft member can be managed by assigning product numbers as finished products. Therefore, the cost reduction and the production management load reduction due to the integration of the types of cup members become more remarkable. Further, the cup member and the shaft member can be separately manufactured up to a finished product that has undergone forging, turning, heat treatment, grinding after heat treatment, and the like, and the productivity is further improved, including reduction of setup.
  • the outer joint member is the same as that described with reference to FIG.
  • the cup member and shaft member as a finished product are not limited to those subjected to the finishing processing such as grinding processing after heat treatment and cutting processing after quenching described above, and the cup in a heat treatment completed state that leaves this finishing processing.
  • a member and a shaft member are also included.
  • the cup member is not limited to one type of joint size, that is, one model number.
  • a plurality of types (plural model numbers) of cup members may be set with a single joint size according to different specifications of the maximum operating angle, and the outer diameters B of the joining end surfaces of these cup members may be the same size.
  • multiple types (multiple model numbers) of cup members with one joint size And the outer diameter B of the joining end faces of these cup members may be the same size.
  • a sliding type constant velocity universal joint 10 shown in FIG. 14 is a tripod type constant velocity universal joint (TJ), and includes an inner joint member 16, an outer joint member 11, and an inner joint member 16 and an outer joint member 12. And a torque transmission element 19 for transmitting torque.
  • TJ tripod type constant velocity universal joint
  • the inner joint member 16 includes a boss 17 having spline holes and leg shafts arranged at equal intervals in the circumferential direction of the boss 17.
  • the outer joint member 11 includes a cup portion 12 and a long stem portion 13, and the cup portion 12 has a bottomed cylindrical shape with one end opened, and the inner circumferential surface 31 has a third circumferential direction. Three track grooves 30 extending in the axial direction are formed at the minute positions.
  • the long stem portion 13 extends in the axial direction from the bottom portion of the cup portion 12, and a spline shaft Sp serving as a torque transmission connecting portion is provided at the end opposite to the cup portion 12 side.
  • the roller as the torque transmission element 19 is rotatably supported by the leg shaft of the inner joint member 16 and can roll along the track groove of the outer joint member 11.
  • the inner ring of the support bearing 6 is attached to the outer peripheral surface of the long stem portion 13, and the outer ring of the support bearing 6 is fixed to the transmission case via a bracket (not shown).
  • a bracket not shown
  • the outer joint member 11 is formed by welding the cup member 12a and the shaft member 13a.
  • the cup member 12a is an integrally molded product including a cylindrical portion 12a1 and a bottom portion 12a2.
  • a convex portion 12a3 is formed on the bottom portion 12a2 of the cup member 12a, and a boot mounting groove 32 is formed on the outer periphery of the cup member 12a on the opening side.
  • the shaft member 13a has a bearing mounting surface 14 and a retaining ring groove 15 formed on the outer periphery on the cup member 12a side.
  • the cup portion 12 has the inner peripheral surface 31 and the track groove 30, and the shaft member 13a has the spline shaft Sp at the end opposite to the cup member 12a side.
  • the joining end surface 50 formed on the convex portion 12a3 of the bottom portion 12a2 of the cup member 12a and the joining end surface 51 at the end of the shaft member 13a on the cup member 12a side are abutted, and an electron beam is irradiated from the outside in the radial direction. Weld.
  • the bead is formed in the welding part 49 by irradiating an electron beam from the radial direction outer side of the cup member 12a. Since the welded portion 49 is formed on the end surface 51 for joining closer to the cup member 12a than the bearing mounting surface 14 of the shaft member 13a, the bearing mounting surface 14 and the like can be processed in advance. Post-processing can be abolished. Moreover, since it is an electron beam welding, a burr
  • the centering means that the workpieces to be butt welded are aligned coaxially.
  • the case where the above-described cup member 12a and the shaft member 13a are butt-welded is taken as an example. Therefore, the cup member 12a and the shaft member 13a are workpieces to be centered. Even if there is a slight difference, the same code (12a, 13a) is used.
  • the workpieces 12 a and 13 a are placed on the workpiece cradle 106. Then, with the cup member 12 a held by the chuck 103 and the center hole of the shaft member 13 a supported by the center 104, the tail stock 105 is advanced to abut the workpiece end faces 50 and 51. After the workpiece cradle 106 is retracted, the rotating device 102 is activated, and welding is performed by irradiating an electron beam from the electron gun 101 while rotating the workpieces 12a and 13a.
  • misalignment may occur as shown in FIG.
  • misalignment when the workpiece is in an axially horizontal posture, misalignment as shown in the figure is likely to occur due to the weight of the workpiece, external force, or any other reason.
  • the workpiece posture in the machining process of the constant velocity universal joint is often horizontal and grips both centers, this is also taken as an example here, but it is not intended to exclude other workpiece postures. For example, it may be held vertically.
  • sensors 120a and 120b for detecting the position of the workpiece and actuators 122a and 122b for controlling the position of the workpiece in response to the output of the sensor By providing this, an improvement in the accuracy of centering can be expected. However, an increase in the size and cost of the apparatus is inevitable. In addition, depending on the usage environment (such as electron beam welding performed in a vacuum), the sensors may not be used, so the field of use is limited.
  • a centering device that can perform reliable centering with a simpler configuration is proposed.
  • a centering device having a pair of centers 124a and 124b and two sets of parallel chucks 126a and 126b is provided in the case 108 of the welding apparatus 100 shown in FIGS.
  • the pair of centers 124a and 124b are disposed so as to face each other in the axial direction, the center 124a on the left side in FIG. 21 corresponds to the center hole formed in the bottom of the cup member 12a, and the center 124b on the right side in FIG. It corresponds to the center hole formed in the end face of the member 13a.
  • the center 124b is preferably a rotation center. Then, a work, that is, a cup member 12a and a shaft member 13a are arranged between the centers 124a and 124b and pushed from both sides in the axial direction.
  • the heel center 124a can be used in combination with the rotating device 102 and the chuck 103 in the embodiment shown in FIGS.
  • the center 124b the center 104 and the tail stock 105 in the embodiment shown in FIGS. 6 and 7 may be used as they are.
  • the center 124b may be fixed in the axial direction, and a rotational drive device and a forward / backward drive device for the center 124a may be provided.
  • the parallel chuck 126a is disposed corresponding to the end of the cup member 12a on the joining end face 50 side, and the parallel chuck 126b is the end of the shaft member 13a on the joining end face 51 side. It arranges corresponding to.
  • the parallel chuck 126a and the parallel chuck 126b have the same configuration. That is, as shown in FIG. 22a, the parallel chuck 126a has a pair of claws 128a that can advance and retract in the mutual direction, and the parallel chuck 126b has a pair of claws 128b that can advance and retract in the mutual direction as shown in FIG. 22b.
  • FIG. 22a and 22b show a cross section perpendicular to the center line of the workpieces 12a and 13a, and the center line of the workpiece extends perpendicular to the paper surface.
  • the dashed-dotted line extending in the vertical direction in FIG. 22a represents the advance / retreat axis of the pair of claws 128a
  • the dashed-dotted line extending in the vertical direction in FIG. 22b represents the advance / retreat axis of the pair of claws 128b.
  • the pair of claws 128a and 128b are arranged so as to face each other in the diameter direction of the workpiece with the workpieces 12a and 13a interposed therebetween, so that the advancing and retreating axis lines of the pair of claws 128a and 128b are orthogonal to the center line of the workpiece. To do.
  • the outer diameters B of the joining end faces 50 and 51 are the same so that one cup member 12a can be shared by a plurality of shaft members 13a.
  • This is an example of setting. Therefore, as a matter of course, the outer diameter B of the end portion on the side of the joining end faces 50 and 51 is the same.
  • butt welding is not always performed only on workpieces having the same diameter, and butt welding may be performed on workpieces having different diameters. Even if the same outer diameter is used, it is not always guaranteed to be accurately and coaxially matched in consideration of machining errors, operator skill, and the like.
  • FIG. 18 shows that when centering a workpiece having a diameter difference, that is, a large-diameter workpiece and a small-diameter workpiece on the basis of the outer diameter, the center is shifted as indicated by the symbol ⁇ , and thus accurate centering cannot be performed. Yes.
  • a diameter difference that is, a large-diameter workpiece and a small-diameter workpiece on the basis of the outer diameter
  • the center is shifted as indicated by the symbol ⁇ , and thus accurate centering cannot be performed.
  • the centering accuracy For example, even if the nominal diameter is the same, if the black skin remains or there is a processing error, the accuracy of centering decreases.
  • the centering accuracy is improved by using the center line reference instead of the outer diameter reference. Specifically, centering on the basis of the center line becomes possible by allowing the pair of claws of the parallel chuck to advance and retract in synchronization with each other. And by providing such a parallel chuck separately for one of the workpieces to be butt welded and one corresponding to the other, the outer diameter of the workpiece is different, that is, there is a difference in diameter. Even when workpieces are butt welded, accurate centering can be performed.
  • the claws 128a and 128b of the parallel chucks 126a and 126b have V-shaped recesses 130a and 130b facing each other.
  • These recesses 130a and 130b are portions that contact the outer diameter of the workpiece, that is, workpiece contact portions. That is, as indicated by the white arrow, when the pair of claws 128a or 128b move in a direction approaching each other, the recess 130a or 130b comes into contact with the outer diameter of the workpiece.
  • Fig. 23a and Fig. 23b show an example of a drive mechanism for causing the pair of claws 128a or 128b to advance and retract in synchronization. Since the pair of claws 128a and the pair of claws 128b have the same configuration, description will be made using reference numerals without suffixes.
  • a tapered surface 132 that narrows from the outside toward the inside is formed on the pair of claws 128, and a wedge-shaped cam 134 having a corresponding cam surface is disposed on the tapered surface 132.
  • a spring 138 is provided that acts to elastically pull the pair of claws 128 toward each other.
  • the recess 130 of the claw 128 of the parallel chuck may be V-shaped, but there is also a workpiece having a non-circular cross section.
  • the outer joint member in the embodiment shown in FIGS. 13 and 14 is not cylindrical in outer diameter, and has a cross-sectional shape like a three-valve clover as shown in FIG. For this reason, when chucking the outer periphery of the outer joint member, a pawl having a V-shaped depression as shown on the left side of the center line in FIG. Therefore, it is desirable to employ a claw 128 'having a semicircular or U-shaped depression 130' as shown on the right side of the center line of FIG.
  • the center 104 of the tail stock 105 is advanced to join the joining end face 50 of the cup member 12a and the joining end face 51 of the shaft member 13a. Match.
  • the workpiece (cup member) 12a is chucked by the parallel chuck 126a, and similarly, the workpiece (shaft member) 13a is chucked by the parallel chuck 126b. Thereby, centering of the cup member 12a and the shaft member 13a is performed. As described above, the centering in this case becomes the center line reference (see FIGS. 22a and 22b).
  • the electron gun 101 is irradiated with an electron beam, and the joining end faces 50 and 51 are temporarily welded.
  • the rotating device 102 is activated to start welding by irradiating an electron beam from the electron gun 101 while rotating the workpieces 12a and 13a (see FIG. 7).
  • the outer joint member of a sliding type constant velocity universal joint such as a double offset type constant velocity universal joint or a tripod type constant velocity universal joint
  • the present invention can also be applied to an outer joint member of a universal joint.
  • the present invention can be applied to a cross groove type constant velocity universal joint and other sliding type constant velocity universal joints, and also to an outer joint member of a fixed type constant velocity universal joint.
  • this invention is applicable also to the outer joint member of the constant velocity universal joint which comprises a propeller shaft.
  • the cup part which formed the track part which the torque transmission element engages in the inner periphery, and the axial part formed in the bottom part of this cup part are constituted by another member, and the cup member and the axial part which form the cup part
  • the cup member and the shaft member are formed of medium carbon steel, and the cylindrical portion and the bottom portion are formed as the cup member.
  • a cup member having a joining end face formed on the outer surface of the bottom in a machining process is prepared, and as the shaft member, joined to the bottom of the cup member in a machining process
  • a shaft member having an end face is prepared, the end face for joining of the cup member and the end face for joining of the shaft member are butted, and a beam is irradiated from the outside of the cup member in the radial direction to be welded.
  • the cup part which formed the track part which the torque transmission element engages in the inner periphery, and the axial part formed in the bottom part of this cup part are constituted by another member, and the cup member and the axial part which form the cup part
  • the cup member and the shaft member are made of medium carbon steel, and the cylindrical portion and the bottom portion of the cup member are integrally formed by forging.
  • a joining end face is formed on the outer surface of the bottom, and the shaft member is formed with a joining end face at an end joined to the bottom, and abuts both the joining end faces.
  • the cup member and the shaft member are welded, and the welded portion is formed by a bead irradiated in the radial direction from the outside of the cup member, and the outer diameter of the joining end surface is the same for each joint size.
  • making the outer diameter of the joining end face the same for each joint size is not limited to one kind of cup member, that is, one product number.
  • a plurality of types (plural product numbers) of cup members having a single joint size according to specifications having different maximum operating angles are set, and the outer diameters of the end surfaces for joining of these cup members are the same.
  • setting a plurality of types (a plurality of product numbers) of cup members with one joint size and setting the outer diameters of the end surfaces for joining of these cup members to the same dimension is also included. This is useful for managing the cup member in a plurality of forms including an intermediate part before heat treatment and a finished part subjected to heat treatment in consideration of, for example, the joint function, the actual situation at the manufacturing site, and productivity.
  • making the outer diameter of the joining end face the same for each joint size includes cases where the types of constant velocity universal joints are different. For example, on the inboard side, it is included that the outer diameters of the joining end surfaces of the tripod type constant velocity universal joint and the double offset type constant velocity universal joint are the same. Further, on the outboard side, it is included that the outer diameters of the joining end faces of the Rzeppa type constant velocity universal joint and the undercut free type constant velocity universal joint are made the same size. Furthermore, it is also possible to make the outer diameters of the joint end faces of the constant velocity universal joints on the inboard side and the outboard side the same.
  • outer joints that can improve the strength and quality of welds, reduce welding costs, improve the productivity of cup members and shaft members, reduce costs by integrating product types of cup members, and reduce production management.
  • a member manufacturing method and an outer joint member can be realized.
  • At least one of the cup member and the shaft member before welding can be an intermediate part that is not subjected to heat treatment.
  • finish processing such as heat treatment and grinding, or post-quenching cutting is performed. It is suitable for cup members and shaft members having shapes and specifications that affect the hardness of the heat-treated portion because the temperature at the periphery increases due to the heat during welding. Part numbers are assigned to the above intermediate parts for management.
  • cup member and the shaft member before welding can be a finished part subjected to heat treatment.
  • Cup parts as finished parts shared by joint size and various shaft parts for each vehicle type by making finished parts such as grinding and post-quenching grinding and post-quenching cutting.
  • a shaft member with specifications is obtained.
  • Each product is assigned a product number and managed.
  • cost reduction and product management load reduction due to the integration of cup member types become significant.
  • common cup members and shaft members with various shaft specifications can be used for finished parts such as forging, turning, heat treatment, and finishing processing such as grinding and quenching. They can be manufactured separately, improving productivity, including reduction of setup.
  • cup member and the shaft member as a finished part are not limited to those subjected to the finishing process such as the grinding process after the heat treatment and the post-quenching cutting process described above, but the cup in the heat treatment completed state that leaves this finishing process.
  • a member and a shaft member are also included.
  • the hardness of the welded portion between the cup member and the shaft member is preferably in the range of HV200 to 500. If it is less than HV200, it is difficult to ensure the strength required for the product function, which is not desirable. On the other hand, if it exceeds HV500, there is a risk of cracking, which is not desirable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

 第一ワーク(12a)と第二ワーク(13a)を突合せ溶接するにあたり、第一ワーク(12a)をはさんで第一ワーク(12a)の直径方向に対向し相互方向に同期して進退可能な一対の爪をもった第一平行チャック(126a)により第一ワーク(12a)を保持し、第二ワーク(13a)をはさんで第二ワーク(13a)の直径方向に対向し相互方向に同期して進退可能な一対の爪をもった第二平行チャック(126b)により第二ワーク(13a)を保持することにより、第一ワーク(12a)と第二ワーク(13a)を同軸状となすことにより、径差のあるワーク同士であっても確実に芯出しができる簡易な構造の突合せ溶接用芯出し方法及び装置を提供する。

Description

突合せ溶接用芯出し方法及び装置
 この発明は突合せ溶接用芯出し方法及び装置に関し、限定する趣旨ではないが、等速自在継手の外側継手部材を製造する過程で必要となることがあるカップ部材と軸部材の突合せ溶接に利用することができる。
 等速自在継手は自動車や各種産業機械の動力伝達系を構成するものとして使用され、駆動側と従動側の二軸をトルク伝達可能に連結すると共に、前記二軸が角度をなした状態でも等速でトルクを伝達することができる。等速自在継手は、角度変位のみ可能な固定式等速自在継手と、角度変位及び軸方向変位の両方が可能なしゅう動式等速自在継手とに大別される。例えば、自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトの場合、デフ側(インボード側)にしゅう動式等速自在継手が使用され、駆動車輪側(アウトボード側)に固定式等速自在継手が使用される。
 等速自在継手は、しゅう動式又は固定式を問わず、その主要な構成要素の一つとして、トルク伝達部材が転動するトラック溝を内周面に形成したカップ部と、このカップ部の底部から軸方向に延びた軸部とを有する外側継手部材を備えている。この外側継手部材は、中実の棒状素材(バー材)を鍛造加工やしごき加工その他の塑性加工、切削加工、熱処理、研削加工等を施すことによって、カップ部と軸部とを一体成形する場合が多い。
 ところで、外側継手部材には、軸部の長さが標準のものよりも長いロングステムと呼ばれるものがある。例えば、FF車では、デフと駆動前輪との間の距離が車体の左右で異なる場合、左右のドライブシャフトの長さを等しくするために、デフと車輪との間の距離が長い方のドライブシャフトのインボード側等速自在継手の外側継手部材をロングステムにすることがある。ロングステム部分の長さは、車種により異なるが、おおむね300~400mm程度である。ロングステム部分に転がり軸受(サポートベアリング)を取り付けて、ブラケットを介して車体側に固定することにより、外側継手部材の振動を抑制するようにしている。
 このようなロングステムタイプの外側継手部材は、軸部が長寸であるために、カップ部と軸部を精度良く一体成形することが困難である。そこで、カップ部と軸部を別部材で構成し、両部材を摩擦圧接によって接合するようにしたものがある(特許文献1参照)。
 特許文献1に記載された外側継手部材の摩擦圧接技術の概要を図15及び図16に基づいて説明する。図15に示すように、外側継手部材の中間製品71’は、カップ部材72及び軸部材73からなり、摩擦圧接によって接合されている。接合部74は、圧接に伴って内外径にバリ75が生じる。中間製品71’の軸部に転がり軸受(図1参照)を装着するために、図16に示すように、接合部74の外径側のバリ75を旋削等の加工により取り除く必要がある。図示は省略するが、中間製品71’はスプラインや止め輪溝等を機械加工し、熱処理、研削加工等を経て外側継手部材71の完成品となる。したがって、外側継手部材71と中間製品71’とでは細部の形状に異なるところがあるが、図16では、説明を簡略化するため細部の形状の相違点は省略してある。以降の説明においても同様とする。
 摩擦圧接によって生じた接合部74のバリ75は、摩擦熱とその後の冷却によって焼入れされて高い硬度を有するばかりでなく、半径方向と軸方向とに広がったゆがんだ形状をしている。したがって、図16に示すように、外径側のバリ75を旋削加工で除去する際、高い硬度によって旋削チップが激しく摩耗し、また、ゆがんだ形状によって旋削チップに欠けが生じやすい。そのため、旋削速度を上げることが難しく、旋削チップの一つのパス当たりの切削量が少なくパス数が増大するので、サイクルタイムが長く製造コストが上がるという問題がある。
 また、外側継手部材71の接合部74の接合状態を検査するために、高速探傷が可能な超音波探傷を行おうとしても、接合部74の内径側に残るバリ75によって超音波が散乱するため接合状態を確認できない。したがって、接合直後では超音波探傷による全数検査ができないという問題もある。
 上記問題に鑑み、接合にレーザ溶接あるいは電子ビーム溶接を採用することによって、摩擦圧接のような接合部表面の盛り上がりを抑えることが考えられる。しかし、図17に示すようなカップ部材72と軸部材73を突き合わせて溶接した場合、溶接中の加工熱により、中空空洞部76内の気体圧力が上昇し、溶接終了後は圧力の減少が生じる。この中空空洞部76の内圧の変化により、溶融物の吹き上がりが発生し、溶接部の外表面のくぼみや溶接深さ不良の原因となったり、溶接内部に気泡が生じたりして、溶接品質が悪化する。その結果、溶接部の強度が安定せず、製品の品質や信頼性に悪影響を及ぼすことになる。
 ところで、従来、配管やシャフト等の突合せ溶接を行う場合、突合せ部の芯出しは、一方のワークの外径面を基準として、もう一方のワークの外径位置を調整することにより行うのが一般的である(特許文献2参照)。また、位置検出及び位置制御機構を設けることで自動溶接装置の芯出し精度を向上させようにした例もある(特許文献3参照)。
特開2012-57696号公報 特開平11-267888号公報 特開平10-94889号公報
 特許文献1に記載された従来の技術のように、外径面を基準とした芯出し調整では、外径許容差に応じて芯出し精度が悪化するばかりでなく、人手調整が基本となるため自動化することが困難である。図18は、外径基準の芯出し調整の問題点を図示するために作図した模式図であって、径差のあるワークすなわち小径ワークと大径ワークをV字形状の爪に当てた状態を示している。このときすでに両ワークの中心は符号δで示すようにずれている。したがって、もう一方のV字形状の爪を当てようにも、大径ワークに当たった時点で、小径ワークの外径との間には大きなすきまが残ってしまう。このように、外径基準では、径差のあるワークを同軸状になすことは不可能である。
 また、特許文献2に記載された従来の技術のように、位置検出及び位置制御機構を設けて自動芯出しを行う場合(図19参照)、装置の大型化やコスト高が不可避である。何よりも、使用環境(真空下で行う電子ビーム溶接等)によってはセンサ類が使用できない場合があるため、利用分野が限られるという問題がある。
 本発明の目的は、このような従来の技術の問題点を除去することにあり、具体的には、径差のあるワーク同士であっても確実に芯出しができ、それでいて簡易な構造の突合せ溶接用芯出し機構を提供することにある。
 かかる目的は、本発明によれば、中心基準の芯出しとすることによって達成することができる。すなわち、本発明は、第一ワークと第二ワークを突合せ溶接するにあたり、第一ワークをはさんで第一ワークの直径方向に対向し相互方向に同期して進退可能な一対の爪をもった第一平行チャックにより第一ワークを保持し、第二ワークをはさんで第二ワークの直径方向に対向し相互方向に同期して進退可能な一対の爪をもった第二平行チャックにより第二ワークを保持することにより、第一ワークと第二ワークを同軸状となすようにしたことを特徴とする。
 接合前のワーク位置決め時に、接合部付近を中心線基準でチャックすることにより、径差のあるワーク同士を突合せ溶接する際にも高精度な芯出しが可能となる。ワークの中心線基準の芯出しは、ワークをはさんで対向し、相互方向に同期して進退可能な一対の爪によってワークをチャックすることによって達成できる。このような一対の爪をもった平行チャックを各ワークの接合端部に設置して、芯出し精度を向上させる。
 本発明によれば、従来人手によって実施していた接合部の芯出し調整が自動化できる。したがって、接合工程全体の自動化も可能となる。また、本発明の芯出し装置は構成が簡易で、芯位置を検出するための装置や、検出信号に応答してワーク位置を調整するためのアクチュエータも不要であるため、設備の小型化及びコスト低減に寄与する。さらに、接合精度の向上が期待できるため、接合部の後加工も不要となり、工程短縮が期待できる。
ドライブシャフトの部分縦断面図である。 図1における外側継手部材の部分縦断面図である。 図2aの丸囲み部分の拡大図である。 外側継手部材の製造工程の第一の例を示すブロック線図である。 しごき加工後のカップ部材の縦断面図である。 旋削加工後のカップ部材の縦断面図である。 軸部材用素材としてのバー材の正面図である。 鍛造加工後の部分縦断面図である。 旋削加工及びスプライン加工後の軸部材の部分縦断面図ある。 溶接装置の概略断面図であって溶接前の状態を示す。 溶接装置の概略断面図であって溶接過程を示す。 品番の異なる軸部材の部分縦断面図である。 図8の軸部材を用いた外側継手部材の部分縦断面図である。 カップ部材の品種統合の例を示すブロック線図である。 外側継手部材の製造工程の第二の例を示すブロック線図である。 外側継手部材の製造工程の第三の例を示すブロック線図である。 外側継手部材の第二の例を示す部分縦断面図である。 図13に示す外側継手部材を使用した等速自在継手の部分縦断面図である。 従来の技術による外側継手部材の縦断面図である。 従来の技術による外側継手部材の縦断面図である。 従来の技術による外側継手部材の縦断面図である。 外径基準の芯出し装置を示す横断面略図である。 センサとアクチュエータを使用した芯出し装置を示す縦断面略図である。 芯ずれを説明するための縦断面略図である。 中心線基準の芯出し装置を示す縦断面略図である。 平行チャックの略図である。 平行チャックの略図である。 アンチャック時の駆動機構付き平行チャックの横断面略図である。 チャック時の駆動機構付き平行チャックの横断面略図である。 円形断面のワークをV字形状の爪でチャックした状態を示す略図である。 非円形断面の外側継手部材と平行チャックの爪との関係を示す横断面略図であって、中心線より左側はV字形状のくぼみをもった爪の場合、中心線より右側は半円形のくぼみをもった爪の場合である。
 以下、等速自在継手の外側継手部材の製造過程に適用した場合を例にとり、本発明の実施の形態を図面に基づいて詳細に説明する。
 はじめに、図1を参照してドライブシャフトの全体構成について述べ、続いて、図2aおよび図2bを参照して等速自在継手の外側継手部材について述べ、次に、図3~10を参照して外側継手部材の製造方法について述べる。
 図1に示すドライブシャフト1は、しゅう動式等速自在継手10と、固定式等速自在継手20と、ハーフシャフト2とを主要な構成要素としている。しゅう動式等速自在継手10はデフ側(図中右側:以下、インボード側ともいう)に配置され、固定式等速自在継手20は駆動車輪側(図中左側:以下、アウトボード側ともいう)に配置される。ハーフシャフト2は両等速自在継手10、20をトルク伝達可能に連結する。
 図示したしゅう動式等速自在継手10はいわゆるダブルオフセット型等速自在継手(DOJ)であって、内側継手部材16と、外側継手部材11と、トルク伝達要素41と、ケージ44とを備えている。
 内側継手部材16は、球状外周面43に、軸方向に延びる複数のトラック溝40が円周方向に等間隔に形成してある。
 外側継手部材11は、カップ部12と、カップ部12の底部から軸方向に延びた長軸部(以下、ロングステム部ともいう)13とを有し、カップ部12の筒状内周面42に、軸方向に延びる複数のトラック溝30が円周方向に等間隔に形成してある。
 内側継手部材16のトラック溝40と外側継手部材11のトラック溝30は対をなし、各対のトラック溝40、30間にトルク伝達要素としてのボール41が組み込んである。 
 ボール41は、ケージ44の円周方向に所定間隔で形成したポケットに収容されている。ケージ44は内側継手部材16と外側継手部材11の間に介在し、ケージ44の球状内周面46と内側継手部材16の球状外周面43、ケージ44の球状外周面45と外側継手部材11の筒状内周面42が、それぞれ、球面接触する。保持器44の球状外周面45の曲率中心Oと球状内周面46の曲率中心Oは、継手中心Oに対して、軸方向に反対側に等距離オフセットしている。
 ロングステム部13にはサポートベアリング6の内輪が取り付けられ、サポートベアリング6の外輪は、図示しないブラケットを介してトランスミッションケースに固定される。このように、サポートベアリング6を設けて外側継手部材11を回転自在に支持することにより、運転時等における外側継手部材11の振れが可及的に抑制される。
 図示した固定式等速自在継手20はいわゆるツェッパ型等速自在継手である。なお、固定式等速自在継手としてアンダーカットフリー型等速自在継手を用いる場合もある。固定式等速自在継手20は、内側継手部材22と、外側継手部材21と、トルク伝達要素23と、ケージ24とを備えている。
 内側継手部材22は、球状外周面に、軸方向に延びる複数のボール溝が円周方向に等間隔に形成してある。
 外側継手部材21は、有底筒状のカップ部21aと、カップ部21aの底部から軸方向に延びた軸部21bとを有し、カップ部21aの球状内周面に、軸方向に延びる複数のボール溝が円周方向に等間隔に形成してある。
 内側継手部材22のボール溝と外側継手部材21のボール溝は対をなし、各対のボール溝間にトルク伝達要素としてのボール23が組み込んである。
 ボール23は、ケージ24の円周方向に所定間隔で形成したポケットに収容されている。ケージ24は、内側継手部材22と外側継手部材21のカップ部21aとの間に介在し、ケージの球状内周面と内側継手部材の球状外周面、ケージの球状外周面と外側継手部材の球状内周面は、それぞれ、球面接触する。
 ハーフシャフト2は、その両端部にトルク伝達用のスプライン(セレーションを含む。以下、同じ)軸3を有する。そして、インボード側のスプライン軸3をしゅう動式等速自在継手10の内側継手部材16のスプライン孔に挿入して、ハーフシャフト2としゅう動式等速自在継手10の内側継手部材16とをトルク伝達可能に連結する。また、アウトボード側のスプライン軸3を固定式等速自在継手20の内側継手部材22のスプライン孔に挿入して、ハーフシャフト2と固定式等速自在継手20の内側継手部材22とをトルク伝達可能に連結する。
 両等速自在継手10、20の内部には潤滑剤としてのグリースを封入し、グリースのもれや外部からの異物の侵入を防止するため、ハーフシャフト2と外側継手部材11、21との間に蛇腹状のブーツ4、5を装着する。なお、図示したハーフシャフト2は中実タイプの例であるが、中空タイプを用いることもできる。
 図2aに示すように、しゅう動式等速自在継手10の外側継手部材11は、外側継手部材11はカップ部12とロングステム部13とからなる。カップ部12は、一端が開口した有底筒状で、筒状内周面42に、ボール41(図1参照)が転動するための複数のトラック溝30が円周方向に等間隔に形成してある。ロングステム部13は、カップ部12の底部から軸方向に延び、カップ部12とは反対側の端部にスプライン軸Spが設けてある。 
 外側継手部材11は、カップ部材12aと軸部材13aを溶接することによって形成される。
 カップ部材12aは、S53C等の0.40~0.60重量%の炭素を含む中炭素鋼からなり、筒状部12a1と、底部12a2とからなる一体成形品である。筒状部12a1は、内周に筒状内周面42とトラック溝30が形成してあり、開口側の外周にはブーツ取付溝32が形成され、内周には止め輪溝33が形成してある。底部12a2には凸部12a3が形成してあり、その凸部12a3に接合用端面50が形成してある(図4b参照)。
 軸部材13aはS40C等の0.30~0.55重量%の炭素を含む中炭素鋼からなる。軸部材13aの外周には、カップ部材12a側寄りに軸受装着面14と止め輪溝15が形成してあり、反対側の端部にスプライン軸Spが形成してある。また、軸部材13aのカップ部材12a側の端部には接合用端面51が形成してある(図5c参照)。
 カップ部材12aの接合用端面50と、軸部材13aの接合用端面51とを突き合わせ、カップ部材12aと軸部材13aとを溶接する。詳細は後述するが、接合用端面50と接合用端面51の外径Bはジョイントサイズごとに同一寸法に設定する。
 図2aおよび図2bから分かるとおり、溶接部49は、カップ部材12aの半径方向外側から電子ビームを照射することによって、いわゆるビードが形成される。溶接部49は、軸部材13aの軸受装着面14よりもカップ部材12a側に形成されるため、軸受装着面14などはあらかじめ加工しておくことが可能であり、そうすることによって溶接後の後加工が廃止できる。また、電子ビーム溶接では溶接部にバリが出ないため、溶接部の後加工も省略でき、製造コストが削減できるばかりでなく、溶接部の超音波探傷による全数検査が確実に実施できる。
 外側継手部材11の製造方法を図3の工程図に従って説明すると次のとおりである。
 図3の上部左側の4工程はカップ部材製造工程である。すなわち、バー材切断工程S1c、鍛造加工工程S2c、しごき加工工程S3c及び旋削加工工程S4cを経て、カップ部材12aが製造される。各工程S1c~S4cの概要は次のとおりである。
[バー材切断工程S1c]
 鍛造重量に基づいてバー材を所定長さで切断し、ビレットを製作する。
[鍛造加工工程S2c]
 バー材切断工程S1cで得たビレットに鍛造加工を施すことにより、筒状部、底部及び凸部を一体成形したカップ部材12aの素形材を得る。図4aは次のしごき加工工程S3c後のカップ部材12aの素形材12a’を示すが、素形材12a’の筒状部12a1’、底部12a2’及び凸部12a3’は鍛造加工工程S2cにおいて一体成形される。
[しごき加工工程S3c]
 鍛造加工工程S2cで得た素形材に対し、トラック溝30及び筒状内周面42をしごき加工して、カップ部材12aの筒状部の内周を仕上げる。具体的には、図4aに示すように、トラック溝30と筒状内周面42が形成される。
[旋削加工工程S4c]
 図4bは旋削加工工程S4c後のカップ部材12aを示す。すなわち、しごき加工工程S3cを終えた素形材12a’に旋削加工を施して、図4bに示すように、外周面、ブーツ取付溝32、止め輪溝33、底部12a2の凸部12a3の接合用端面50及びその外径Bを旋削加工する。
 本実施の形態では、旋削加工工程S4cを終えた後、中間部品としてのカップ部材12aに品番を付与して管理する。
 図3の上部右側の3工程は軸部材製造工程である。すなわち、バー材切断工程S1s、旋削加工工程S2s及びスプライン加工工程S3sを経て、軸部材13aが製造される。各工程S1s~S3sの概要は次のとおりである。
[バー材切断工程S1s]
 軸部全長に基づいてバー材を所定長さに切断し、図5aに示すように、ビレット13a’’を製作する。必要に応じて、アプセット鍛造加工により、図5bに示すように、所定範囲の軸径を拡径させると共に接合側端部(カップ部材12a側端部)に凹部52を形成した素形材13a’を製作する。
[旋削加工工程S2s]
 旋削加工工程S2sでは、バー材切断工程S1sで得たビレット13a’’又は素形材13a’を旋削加工して、図5cに示すように、軸部材13aの外径、軸受装着面14、止め輪溝15、凹部52の内径部53、接合用端面51及びその外径Bを形成する。
[スプライン加工工程S3s]
 スプライン加工工程S3sでは、凹部52の反対側端部にスプライン加工を施し、スプライン軸Spを形成する。具体的なスプライン加工としては、転造、プレス、切削その他の知られている加工方法のなかから適宜選択して採用することができる。
 本実施の形態では、スプライン加工工程S3sを終えた後、中間部品としての軸部材13aに品番を付与して管理する。
 このようにして製造されたカップ部材12aと軸部材13aが、図3の下部の3工程からなる製造工程すなわち、溶接工程S6、熱処理工程S7及び研削加工工程S8を経ることによって外側継手部材11が完成する。各工程S6~S8の概要は次のとおりである。 
[溶接工程S6]
 カップ部材12aの接合用端面50と軸部材13aの接合用端面51を突き合わせて溶接する。
[熱処理工程S7]
 溶接後のカップ部12の少なくともトラック溝30、筒状内周面42及び軸部13の外周の必要範囲に熱処理として高周波焼入れ焼もどしを行う。溶接部は熱処理を施さない。カップ部12のトラック溝30や筒状内周面42はHRC58~62程度の硬化層が形成される。また、軸部13の外周の所定範囲にHRC50~62程度の硬化層が形成される。
[研削加工工程S8]
 熱処理後、軸部13の軸受装着面14等を研削加工して仕上げる。これにより、外側継手部材11が完成する。
 本実施の形態は、溶接工程後に熱処理工程を組み入れたものであるため、熱処理後に溶接を行うと溶接時の熱で周辺部の温度が上昇して熱処理部の硬度に影響を与えるような形状や仕様のカップ部材及び軸部材に適する。
 上記各工程S1c~S4c、S1s~S3s、S6~S8は、代表的な例を示すものであって、必要に応じて適宜変更や追加を行うことができる。
 カップ部材12aの接合用端面50の外径B(図4b)は、一つのジョイントサイズで同一寸法に設定する。また、図5cに示す軸部材13aはロングステム用であるが、接合用端面51の外径Bは、軸径や外周形状に関係なく、カップ部材12aの接合用端面50の外径Bと同一寸法に設定する。そして、軸部材13aの接合用端面51は、軸受装着面14よりもカップ部材12a側に位置している。したがって、カップ部材12aを共用化しておき、軸部材13aのみを車種に応じた種々の軸径、長さや外周形状に製作し、両部材12a、13aを溶接することにより、種々の車種に適合する外側継手部材11を製作することができる。カップ部材12aの共用化についての詳細は後述する。
 次に、カップ部材12aと軸部材13aの溶接に用いる溶接装置を図6及び図7に基づいて説明する。
 図6は溶接前、図7は溶接中の、溶接装置の概略構成をそれぞれ模式的に示したものである。溶接装置100は、電子銃101、回転装置102、チャック103、センタ104、テールストック105、ワーク受け台106、芯出し治具107、ケース108及び真空ポンプ109を備えている。
 溶接装置100内のワーク受け台106に、ワークすなわちカップ部材12aと軸部材13aを載置する。溶接装置100の一端(図6の左側)にあるチャック103及び芯出し治具107は回転装置102に連結されており、芯出し治具107によりカップ部材12aをセンタリングした状態でチャック103によりカップ部材12aをつかみ、回転運動を与える。溶接装置100の他端(図6の右側)にあるテールストック105にセンタ104が一体に取り付けてあり、両者は軸方向(図6の左右方向)に進退可能に構成されている。センタ104に軸部材13aのセンタ穴をセットすることによりセンタリングがなされる。なお、芯出し装置に関して、図6及び図7は芯出し治具107とセンタ104を採用した例であるが、これに代えて、後に図21を参照して言及するセンタ124a、124bを採用することもできる。
 本実施の形態では、カップ部材12a及び軸部材13aの全体が密閉空間111に収容されている。本明細書において、密閉空間とは、ケース108により形成される空間111を意味する。溶接装置100のケース108には真空ポンプ109が接続されている。空間111内に電子銃101が設けてある。電子銃101は、カップ部材12a及び軸部材13aの接合用端面50、51に対応する位置まで軸方向に移動可能で、また、ワーク(12a、13a)に対してその半径方向で接近及び離反可能に構成されている。
 ワークであるカップ部材12aと軸部材13aは、溶接装置100とは別の場所にストックされている。各ワークを、例えばロボットにより取り出し、図6に示す大気に開放された溶接装置100のケース108内に搬送し、ワーク受け台106の所定位置にセットする。この時点では、センタ104及びテールストック105は図の右側に後退して、図示するようにカップ部材12a及び軸部材13aの接合用端面50、51の間に隙間がある。その後、ケース108の扉(図示省略)を閉め、真空ポンプ109を起動してケース108内に形成される密閉空間111を減圧する。これにより、軸部材13aの凹部52、内径部53(図5c)内も減圧される。
 密閉空間111が所定の圧力に減圧されたら、図7に示すように、センタ104及びテールストック105が図の左側に前進して、カップ部材12aと軸部材13aの接合用端面50、51を突き合わせる。これにより、カップ部材12aは芯出し治具107によりセンタリングされた状態でチャック103により固定され、軸部材13aはセンタ104によりセンタリングされた状態で支持される。この後、ワーク受け台106がワークから離れる。このときのワーク受け台106とワークとの間隔は微小なものでよいので、図7では、上記間隔は図示を省略する。もちろん、ワーク受け台106が下方に大きく退避する構造にすることも可能である。
 その後、図示するように電子銃101を所定位置まで進出させてワークに接近させ、かつ、ワークを回転させて、予熱を開始する。予熱条件は、溶接条件とは異なり、電子銃101をワークに接近させてスポット径を大きくすることにより、溶接温度よりも低い温度とする。予熱することにより、溶接後の冷却速度を遅くして焼き割れを防止することができる。所定の予熱時間に達したら、溶接を開始する。すなわち、電子銃101が所定の位置に後退し、ワークの外側から半径方向に電子ビームを照射する。溶接が終了すると、電子銃101が退避し、ワークの回転が停止する。
 その後、図示は省略するが、ケース108の扉を開き大気に開放する。そして、ワーク受け台106が上昇し、ワークを支持した状態で、センタ104及びテールストック105が図の右側に後退し、チャック103を開放する。その後、例えば、ロボットがワークをつかみ、溶接装置100から外し、冷却ストッカに整列させる。その後、外側継手部材11の中間製品は、超音波探傷を行い、後工程としての熱処置工程S7へと進む。本実施の形態では、カップ部材12a及び軸部材13aの全体が密閉空間111に収容されているので、ケース108内の密閉空間111の構成を簡素化することができる。
 具体的には、炭素量0.4~0.6%のカップ部材12aと、炭素量0.3~0.55%の軸部材13aを用い、溶接装置100で、ケース108内の密閉空間111の圧力を6.7Pa以下に設定した。溶接後の急冷を防止して溶接部硬度の高硬度化を抑制するために、カップ部材12a、軸部材13aの接合用端面50、51が300~650℃になるように予熱により均熱化した後、電子ビーム溶接を行った。
 この結果、外側継手部材11の軸部へのベアリング6の組込みに影響のない溶接表面の盛り上がり高さ(0.5mm以下)の溶接部が得られた。また、予熱による均熱化で溶接完了後の溶接部硬度をHV200~500の範囲内に抑えることができ、溶接強度が高く、かつ、安定した溶接状態、品質を得ることができた。さらに、溶接装置100の密閉空間111を大気圧以下にして溶接することにより、溶接中の中空空洞部内の圧力変化を抑えることができ、溶融物の吹き上がりや内径側への引き込みを防ぐことができた。
 次に、カップ部材の品種統合について、ロングステム用の軸部材13a(図5c)とは異なる品番の軸部材を例示して補足説明する。
 図8及び図9に示す軸部材13bは、インボード側の標準的な長さのステム用である。軸部材13bには、カップ部材12aの接合用端面50(図4b参照)と突き合わせる接合用端面51が形成してあり、この接合用端面51の外径Bは、ロングステム用の軸部材13a(図5c)の接合用端面51の外径Bと同一寸法に設定する。
 この軸部材13bはインボード側の標準的な長さのステム用であるため、ロングステム用に比べて軸部の長さが短く、軸方向中央部に滑り軸受面18を有し、その滑り軸受面18には複数の油溝19が形成してある。カップ部材12a側とは反対側の端部にはスプライン軸Spと止め輪溝48が形成してある。このように、標準的な長さのステムと既述のロングステムといったタイプの違いや、車種ごとの種々の軸径や外周形状が異なっても、軸部材13a、13bの接合用端面51の直径Bは同一寸法に設定する。
 カップ部材12aと軸部材13a、13bの接合用端面50、51の外径Bをジョイントサイズごとに同一寸法に設定することには次のような技術的意義がある。すなわち、ジョイントサイズごとに共用化されたカップ部材と、車種ごとに種々の軸部仕様を備えた軸部材が、熱処理前の状態で準備することができ、カップ部材12aと軸部材13a、13bの中間部品のそれぞれに品番を付与して管理することができる。そして、カップ部材12aを品種統合しても、車種ごとに種々の軸部仕様を備えた軸部材13a、13bと組み合わせて、要求に応じた種々の外側継手部材11を迅速に製作することができる。したがって、カップ部材12aの品種統合によるコスト低減、生産管理の負荷軽減を図ることができる。
 上では、理解しやすいように、標準的な長さのステムとロングステムというタイプの違いを例にとってカップ部材の品種統合の説明を行ったが、これに限られるものではない。例えば、標準的な長さのステム間での車種ごとの種々の軸部仕様を備えた軸部材や、ロングステム間での車種ごとの種々の軸部仕様を備えた軸部材に対するカップ部材の品種統合も同様に可能である。
 カップ部材の品種統合についての理解を容易にするため、図10を参照して具体的に説明するならば次のとおりである。同図の左欄はカップ部材の品番C001が一つ挙げてあり、中欄は軸部材の品番S001~S(n)を上から下へ並べたものであり、右欄は外側継手部材の品番A001~A(n)を上から下へ並べたものである。
 このように、この例の場合、カップ部材は、C001という品番を付与して管理され、一つのジョイントサイズで車種ごとに種々の軸部仕様を備えた多数の軸部材に共用するようになっている。軸部材はS001、S002、~S(n)といった品番を付与して管理される。そして、例えば、品番C001のカップ部材と品番S001の軸部材を組み合わせて溶接すると、品番A001の外側継手部材を製作することができる。
 上記具体例から分かるように、カップ部材の品種統合により、コスト低減、生産管理の負荷軽減を図ることができる。なお、カップ部材の品種統合という場合、カップ部材を一つのジョイントサイズで1種類、すなわち、1型番(上の例の品番C001)にするということには限定されない。例えば、最大作動角の異なる仕様により1つのジョイントサイズで複数の種類(複数型番)のカップ部材を設定し、これらのカップ部材の上記接合用端面の外径Bを同一寸法にすることによってもカップ部材の品種統合が可能である。
 図11を参照して、外側継手部材の製造工程について、図3を参照して述べたのとは別の実施の形態を説明する。この実施の形態は、図3における熱処理工程S7中のカップ部材の熱処理工程を溶接工程S6の前に組み入れて熱処理工程S5cとし、カップ部材については完成品として準備するようにしたものである。これ以外の、図3に関連して上で述べた各工程の概要、カップ部材及び軸部材の主な加工工程における状態、カップ部材の共用化、溶接方法、品種統合や外側継手部材の構成などは同様であるため、相違する部分のみ説明する。
 カップ部材12aは、接合用端面50から底部12a2を経て径の大きな筒状部12a1に至る形状であり、かつ、焼入れ焼もどしとしての熱処理を施す部位が筒状部12a1の内周のトラック溝30、筒状内周面42である。このため、通常、熱処理部に対して溶接時の熱影響がないので、カップ部材12aについては溶接前に熱処理を施し、完成部品として準備する。
 カップ部材12aについては完成品としての熱処理が施されているので、完成品としての品番を付与して管理する。したがって、カップ部材12aの品種統合によるコスト低減、生産管理の負荷軽減が顕著になる。また、カップ部材12aは、鍛造加工、旋削加工、熱処理を経た完成品まで、単独で製造でき、段取り削減等も含めて生産性が向上する。
 カップ部材の品種統合の例を示す図10については、図中のカップ部材の品番が完成品としての品番となるだけで、軸部材と外側継手部材については、図3に関連して上で述べたところと同様であるため、説明を省略する。
 図12に、図3を参照して述べたのとはさらに別の製造工程を示す。この製造工程は、図3における熱処理工程S7のカップ部と軸部の熱処理工程および軸部の研削加工工程S8を溶接工程S6の前に組み入れて、カップ部材の熱処理工程S5c、軸部材の熱処理工程S4s及び研削加工工程S5sとしたものである。したがって、カップ部材と軸部材を共に完成品として準備するものである。これ以外の、図3に関連して上で述べた各工程の概要、カップ部材および軸部材の主な加工工程における状態、カップ部材の共用化、溶接方法、品種統合や外側継手部材の構成などは同様であるため、相違する部分のみ説明する。
 軸部材は、スプライン加工工程S3sの後、熱処理工程S4sで外周面の所定範囲に高周波焼入れによりHRC50~62程度の硬化層が形成される。接合用端面51を含む所定の軸方向部位は熱処理を施さない。カップ部材の熱処理、品番付与等については、図11に関連して述べたところと同様であるため、説明を省略する。
 熱処理工程S4s後、軸部材は研削加工工程S5sに移され、軸受装着面14などを仕上げ加工する。これにより、完成品としての軸部材が得られる。この軸部材に完成品としての品番を付与して管理する。本実施の形態は、熱処理部に対して溶接時の熱影響が生じない形状、仕様を有するカップ部材及び軸部材の場合に適する。
 本実施の形態では、カップ部材と軸部材の両方が、完成品としての品番を付与して管理することができる。したがって、カップ部材の品種統合によるコスト低減、生産管理の負荷軽減が一層顕著になる。また、カップ部材および軸部材は、鍛造加工、旋削加工、熱処理および熱処理後の研削加工等を経た完成品まで、それぞれ、別々に製造でき、段取り削減等も含めて生産性が一層向上する。
 カップ部材の品種統合の例を示す図10に関しては、本実施の形態の場合、同図中のカップ部材及び軸部材の品番が完成品の品番となる。外側継手部材については、図10に関連して述べたのと同様であるため、説明を省略する。ただし、完成品としてのカップ部材や軸部材には、前述した熱処理後の研削加工や焼入れ後切削加工等の仕上げ加工が施されたものに限らず、この仕上げ加工を残した熱処理完了状態のカップ部材や軸部材も含まれる。
 品種統合に関連してすでに述べたように、カップ部材は、一つのジョイントサイズで1種類、すなわち、1型番ということに限定されるものではない。例えば、最大作動角の異なる仕様により一つのジョイントサイズで複数の種類(複数型番)のカップ部材を設定し、これらのカップ部材の上記接合用端面の外径Bを同一寸法にしてもよい。継手機能や製造現場の実情、生産性等を考慮して、カップ部材を熱処理前の中間部品と完成部品の複数形態で管理するために一つのジョイントサイズで複数の種類(複数型番)のカップ部材を設定し、これらのカップ部材の接合用端面の外径Bを同一寸法にしてもよい。
 次に、図13及び図14を参照して、外側継手部材の別の実施の形態を説明する。すでに述べた外側継手部材と同様の機能を有する箇所には同一の符号を付して、要点のみを説明する。
 図14に示すしゅう動式等速自在継手10はトリポード型等速自在継手(TJ)であって、内側継手部材16と、外側継手部材11と、内側継手部材16と外側継手部材12との間でトルクを伝達するトルク伝達要素19とを備える。
 内側継手部材16は、スプライン孔をもったボス17と、ボス17の円周方向に等間隔に配置した脚軸とからなる。
 外側継手部材11は、図13に示すように、カップ部12とロングステム部13とからなり、カップ部12は、一端が開口した有底筒状で、内周面31の円周方向三等分位置に、軸方向に延びる3本のトラック溝30が形成してある。ロングステム部13はカップ部12の底部から軸方向に延び、カップ部12側とは反対側の端部にトルク伝達用連結部としてのスプライン軸Spが設けてある。
 トルク伝達要素19としてのローラは内側継手部材16の脚軸に回転可能に支持され、外側継手部材11のトラック溝に沿って転動可能である。
 ロングステム部13の外周面にはサポートベアリング6の内輪が取り付けてあり、サポートベアリング6の外輪は、図示しないブラケットを介してトランスミッションケースに固定される。このように、サポートベアリング6を設けて外側継手部材11を回転自在に支持することにより、運転時等における外側継手部材11の振れが可及的に抑制される。 
 外側継手部材11は、カップ部材12aと軸部材13aを溶接することによって形成される。
 カップ部材12aは、筒状部12a1と底部12a2からなる一体成形品である。カップ部材12aの底部12a2には凸部12a3が形成してあり、カップ部材12aの開口側の外周にはブーツ取付溝32が形成してある。
 軸部材13aは、カップ部材12a側の外周に軸受装着面14及び止め輪溝15が形成してある。すでに述べたとおり、カップ部12は内周面31とトラック溝30を有し、軸部材13aはカップ部材12a側とは反対側の端部にスプライン軸Spを有する。
 カップ部材12aの底部12a2の凸部12a3に形成した接合用端面50と軸部材13aのカップ部材12a側端部の接合用端面51とを突き合わせ、半径方向の外側から電子ビームを照射して電子ビーム溶接をする。
 溶接部49は、カップ部材12aの半径方向外側から電子ビームを照射することによってビードが形成されている。溶接部49は軸部材13aの軸受装着面14よりもカップ部材12a側の接合用端面51に形成されているため、軸受装着面14などはあらかじめ加工しておくことが可能であり、そのため溶接後の後加工を廃止できる。また、電子ビーム溶接であるため溶接部にバリが生じず、したがって溶接部の後加工を省略でき、製造コストが削減できるばかりでなく、溶接部の超音波探傷による全数検査を確実に実施できる。 
  図6及び図7を参照して、カップ部材12aと軸部材13aを突合せ溶接する際の、ワーク投入から溶接を経てワーク搬出に至る一連の作業の概略を述べたが、次に、そのうちのワークの芯出しについて述べる。ここで、芯出しとは、突合せ溶接すべきワーク同士を同軸状に整列させることを意味する。なお、説明の便宜上、既述のカップ部材12aと軸部材13aを突合せ溶接する場合を例にとり、したがって、これらのカップ部材12aと軸部材13aが芯出しの対象たるワークであるが、図面の細部に多少の異同があっても同一の符号(12a、13a)を用いることとする。
  図6及び図7を参照して述べたところによれば、ワーク受け台106上にワーク12a、13aを載せる。そして、カップ部材12aをチャック103でつかみ、軸部材13aのセンタ穴をセンタ104で支持した状態で、テールストック105を進出させてワークの接合用端面50、51を突き合わせるようにしている。ワーク受け台106を後退させた後、回転装置102を起動させ、ワーク12a、13aを回転させながら電子銃101から電子ビームを照射して溶接を行う。
  ところで、ワーク受け台106を後退させたとき、図20に示すように、芯ずれが起こることがある。とりわけワークが軸水平の姿勢である場合には、ワークの自重や外力その他の何らかの理由で図示するような芯ずれが生じやすいと考えられる。なお、一般に等速自在継手の加工工程におけるワーク姿勢は軸水平で両センタを把持することが多いため、ここでもこれを例とするが、その他のワーク姿勢を排除する趣旨ではない。例えば垂直に保持するようにしてもよい。
  従来の技術に関連してすでに述べたとおり(図19参照)、ワークの位置を検出するためのセンサ120a、120bと、センサの出力に応答してワークの位置を制御するためのアクチュエータ122a、122bを設けることにより、芯出しの精度向上が期待できる。しかしながら、装置の大型化やコスト高が不可避となる。しかも、使用環境(真空下で行う電子ビーム溶接等)によってはセンサ類が使用できない場合があるため、利用分野が限られる。
  そこで、より簡易な構成で、確実な芯出しが行える芯出し装置を提案する。図6及び図7に示した溶接装置100のケース108内に、図21に示すように、一対のセンタ124a、124bと、2組の平行チャック126a、126bを備えた芯出し装置を設ける。
  一対のセンタ124a、124bは、軸方向に対向させて配置してあり、図21の左側のセンタ124aはカップ部材12aの底に形成したセンタ穴に対応し、図21の右側のセンタ124bは軸部材13aの端面に形成したセンタ穴に対応している。センタ124bは回転センタとするのが好ましい。そして、これらのセンタ124a、124b間に、ワークすなわちカップ部材12aと軸部材13aを配置して、軸方向両側から押す。
  センタ124aに関しては、図6及び図7に示した実施の形態における回転装置102及びチャック103と組み合わせて使用することもできる。また、センタ124bに関しては、図6及び図7に示した実施の形態におけるセンタ104及びテールストック105をそのまま利用してもよい。あるいは、センタ124bは軸方向に固定とし、センタ124aのための回転駆動装置及び進退駆動装置を設けてもよい。
  2組の平行チャック126a、126bのうち、平行チャック126aはカップ部材12aの接合用端面50側の端部に対応させて配置し、平行チャック126bは軸部材13aの接合用端面51側の端部に対応させて配置する。平行チャック126aも平行チャック126bも、構成は同じである。すなわち、平行チャック126aは、図22aに示すように、相互方向に進退可能な一対の爪128aを有し、平行チャック126bは、図22bに示すように、相互方向に進退可能な一対の爪128bを有する。
  なお、図22aと図22bとではワークに径差がある点で、図21における平行チャック126a、126bのチャック位置の径が同一であるのと一見矛盾する。しかし、これは、外径基準の場合を示した図18と対比して中心線基準の場合を図示するための便宜上のことである。
  図22aおよび図22bはワーク12a、13aの中心線に対して垂直な断面を示し、ワークの中心線は紙面に垂直に延びている。図22aの上下方向に延びる一点鎖線は、一対の爪128aの進退軸線を表し、図22bの上下方向に延びる一点鎖線は、一対の爪128bの進退軸線を表す。そして、一対の爪128a、128bを、ワーク12a、13aをはさんでワークの直径方向に対向させて配置し、そうすることにより、一対の爪128a、128bの進退軸線がワークの中心線と直交する。
  図1~図14を参照して説明した実施の形態は、一つのカップ部材12aを多数の軸部材13aに対して共用できるように、両者の接合用端面50、51の外径Bを同一に設定することを例示したものである。したがって、当然に、接合用端面50、51側の端部の外径Bは同一になっている。しかし、常に同径のワークのみの突合せ溶接をするわけではなく、径差のあるワーク同士を突合せ溶接する場合もあり得る。また、同一外径といっても、加工誤差や、操作者の熟練度等を勘案すると、必ずしも精確に同軸状に突き合わせることが常に保証されるわけでもない。
  図18は、径差のあるワークすなわち大径ワークと小径ワークを外径基準で芯出ししようとすると、符号δで示すように中心がずれてしまうため、正確な芯出しができないことを表している。図18に例示するように顕著な径差がある場合に限らず、径差がわずかな場合であっても、芯出しの精度の面では問題となり得る。例えば、呼び径は同じでも、黒皮のままであったり、加工誤差があったりすると、芯出しの精度は低下する。
  外径基準ではなく、中心線基準とすることによって、芯出しの精度が向上する。具体的には、平行チャックの一対の爪を相互方向に同期して進退可能とすることにより、中心線基準の芯出しが可能となる。そして、このような平行チャックを、突合せ溶接するワークの一方に対応するものと、もう一方に対応するものとを各別に設けることにより、ワークの外径が相違しても、つまり径差のあるワーク同士を突合せ溶接する場合でも、正確な芯出しをすることができる。
  図22aおよび図22bに示すように、平行チャック126a、126bの爪128a、128bは、互いに向かい合ったV字形状のくぼみ130a、130bを有する。これらのくぼみ130a、130bはワークの外径と接触する部分すなわちワーク接触部である。つまり、白抜き矢印で示すように、一対の爪128a又は128bが互いに接近する向きに移動すると、くぼみ130a又は130bがワークの外径と接触するに至る。
  図23aおよび図23bに、一対の爪128a又は128bの進退動作を同期して行わせるための駆動機構の一例を示す。一対の爪128aも一対の爪128bも構成は同じであるため、ここでは添え字のない符号を用いて説明する。一対の爪128に外側から内側に向かって狭くなったテーパ面132を形成し、そのテーパ面132に、対応するカム面をもったくさび状のカム134を配置する。また、一対の爪128を互いに接近する向きに弾性的に引っ張る作用をするスプリング138を設ける。
  図23aに示すように、アクチュエータ136によってカム134をテーパ面132に進出させると、カム作用により、一対の爪128はスプリング138の力に抗して互いに離反する向きに移動する。逆に、図23bに示すように、アクチュエータ136によってカム134をテーパ面132から後退させると、スプリング138の作用で一対の爪128は互いに接近する向きに移動する。このとき爪128が円滑に移動できるように、爪128をリニアスライドを介して静止部材に支持させることもできる。また、アクチュエータ136としては、図示するような空気圧又は油圧を利用したシリンダ・ピストン機構のほか、ボールねじ機構を採用することもできる。
  図23aおよび図23bに示すようなくさび型カム駆動方式を用いることで、中心基準のワーク位置決め精度を向上させることができる。もっとも、平行チャック間の位置精度、繰り返し精度及びワーク外径面のセンタに対する振れ精度が良好であることが前提条件である。
  図24に示すように、横断面が円形のワークの場合は、平行チャックの爪128のくぼみ130はV字形状でよいが、断面が非円形のワークもある。例えば、図13及び図14に示した実施の形態における外側継手部材は外径が円筒形ではなく、横断面が図25に示すような3弁のクローバのような形状を呈している。そのため、この外側継手部材の外周をチャックする場合、図25の中心線より左側に示すようなV字形状のくぼみをもった爪では片当たりとなって安定したチャックができない。そこで、図25の中心線より右側に示すような半円形又はU字形状のくぼみ130’をもった爪128’を採用するのが望ましい。
  上述の構成からなる芯出し装置を用いて、ワークの芯出しから溶接開始までの概略を説明すると次のとおりである。
  図21に示すように、ワーク12a、13aをセンタ124a、124b間にセットした状態で、テールストック105のセンタ104を進出させてカップ部材12aの接合用端面50と軸部材13aの接合用端面51を突き合わせる。
  次に、平行チャック126aによりワーク(カップ部材)12aをチャックし、同様に、平行チャック126bによりワーク(軸部材)13aをチャックする。これにより、カップ部材12aと軸部材13aの芯出しを行う。この場合の芯出しが中心線基準(図22aおよび図22b参照)となることは述べたとおりである。
  次に、芯出ししたままの状態で、電子銃101から電子ビームを照射して接合用端面50、51の仮溶接を行う。
  仮溶接の後、平行チャック126a、126bをアンチャックする。
  その後、回転装置102を起動させてワーク12a、13aを回転させながら電子銃101から電子ビームを照射して溶接を開始する(図7参照)。
 以上、添付図面に基づいて実施の形態を説明したが、本発明は、ここに述べ、かつ、図示した実施の形態に限定されるものではなく、特許請求の範囲を逸脱しない限り、種々の改変を加えて実施をすることができる。
 例えば、溶接に電子ビーム溶接を採用した場合を例にとって説明したが、本発明は、その他の例えばレーザ溶接を採用した場合でも同様に適用することができる。
 また、突合せ溶接をするワークの例として、ダブルオフセット型等速自在継手やトリポード型等速自在継手といったしゅう動式等速自在継手の外側継手部材について述べたが、本発明は、その他の等速自在継手の外側継手部材にも適用することができる。例えば、クロスグルーブ型等速自在継手その他のしゅう動式等速自在継手にも、さらに固定式等速自在継手の外側継手部材にも、適用することができる。また、ドライブシャフトを構成する等速自在継手の外側継手部材に適用した場合について述べたが、本発明は、プロペラシャフトを構成する等速自在継手の外側継手部材にも適用することができる。
 本明細書中に開示した発明の主要な実施の形態のうち、特許請求の範囲に記載しなかったものを要約して列記するならば次のとおりである。
 トルク伝達要素が係合するトラック溝を内周に形成したカップ部と、このカップ部の底部に形成された軸部とを別部材で構成し、前記カップ部を形成するカップ部材と前記軸部を形成する軸部材とを溶接してなる等速自在継手の外側継手部材の製造方法において、前記カップ部材と軸部材を中炭素鋼で形成し、前記カップ部材として、その筒状部と底部を鍛造加工により一体に形成した後、機械加工工程において前記底部の外面に接合用端面を形成したカップ部材を準備し、前記軸部材として、機械加工工程において前記カップ部材の底部と接合される接合用端面を形成した軸部材を準備し、前記カップ部材の接合用端面と軸部材の接合用端面を突き合わせて、この突合せ部に前記カップ部材の外側から半径方向にビームを照射して溶接するものであって、前記接合用端面の外径をジョイントサイズごとに同一寸法にしたことを特徴とする等速自在継手の外側継手部材の製造方法。
 トルク伝達要素が係合するトラック溝を内周に形成したカップ部と、このカップ部の底部に形成された軸部とを別部材で構成し、前記カップ部を形成するカップ部材と前記軸部を形成する軸部材とを溶接してなる等速自在継手の外側継手部材において、前記カップ部材と軸部材が中炭素鋼からなり、前記カップ部材は、鍛造加工により筒状部と底部が一体成形され、この底部の外面に接合用端面が形成されたものであり、前記軸部材は、前記底部に接合される端部に接合用端面が形成されたものであり、前記両接合用端面を突き合わせて前記カップ部材と軸部材が溶接されており、この溶接部が前記カップ部材の外側から半径方向に照射されたビードで形成されていると共に、前記接合用端面の外径がジョイントサイズごとに同一寸法に設定されていることを特徴とする等速自在継手の外側継手部材。
 ここで、接合用端面の外径をジョイントサイズごとに同一寸法にするとは、カップ部材が一つのジョイントサイズで1種類、すなわち、1品番ということに限定されない。例えば、最大作動角の異なる仕様により一つのジョイントサイズで複数の種類(複数品番)のカップ部材を設定し、これらのカップ部材の上記接合用端面の外径を同一寸法にしたものも含まれる。また、一つのジョイントサイズで複数の種類(複数品番)のカップ部材を設定し、これらのカップ部材の上記接合用端面の外径を同一寸法にすることも含まれる。これは、例えば、継手機能や製造現場の実情、生産性等を考慮して、カップ部材を熱処理前の中間部品と熱処理を施した完成部品の複数形態で管理するために役立つ。
 さらに、接合用端面の外径をジョイントサイズ毎に同一寸法にするとは、等速自在継手の形式が異なる場合も含まれる。例えば、インボード側では、トリポード型等速自在継手とダブルオフセット型等速自在継手の上記接合用端面の外径を同一寸法にすることも含まれる。また、アウトボード側では、ツェッパ型等速自在継手とアンダーカットフリー型等速自在継手の上記接合用端面の外径を同一寸法にすることも含まれる。さらに、インボード側とアウトボード側の等速自在継手の上記接合用端面の外径を同一寸法にすることも可能である。
 上記の構成により、溶接部の強度、品質の向上、溶接コストの削減と共に、カップ部材および軸部材の生産性の向上、並びにカップ部材の品種統合によるコスト低減、生産管理の軽減が可能な外側継手部材の製造方法および外側継手部材を実現することができる。
 具体的には、上記の溶接前のカップ部材と軸部材の少なくとも一方を、熱処理を施さない中間部品とすることができる。この場合は、溶接後、熱処理と研削加工や焼入れ後切削加工等の仕上げ加工を施す。溶接時の熱で周辺部の温度が上昇し、熱処理部の硬度に影響がある形状や仕様のカップ部材および軸部材に適する。上記の中間部品に品番を付与して管理する。
 また、上記の溶接前のカップ部材と軸部材の少なくとも一方を、熱処理を施した完成部品とすることができる。熱処理及び熱処理後の研削加工や焼入れ後の切削加工等の仕上げ加工が施された完成部品とすることにより、ジョイントサイズごとに共用化された完成部品としてのカップ部材と車種ごとに種々の軸部仕様を備えた軸部材が得られる。これらにそれぞれ品番を付与して管理する。これにより、カップ部材の品種統合によるコスト低減、生産管理の負荷軽減が顕著になる。また、共用化されたカップ部材と種々の軸部仕様を備えた軸部材は、鍛造加工、旋削加工、熱処理、さらには研削加工や焼入れ後の切削加工等の仕上げ加工を経た完成部品まで、それぞれ別々に製造でき、段取り削減等も含めて生産性が向上する。ただし、完成部品としてのカップ部材や軸部材とは、前述した熱処理後の研削加工や焼入れ後切削加工等の仕上げ加工が施されたものに限らず、この仕上げ加工を残した熱処理完了状態のカップ部材や軸部材も含まれる。
 上記の溶接を電子ビーム溶接とすることにより、接合部にバリが生じることがない。接合部の後加工の省略による製造コスト削減、さらには、接合部の超音波探傷による全数検査が確実に実施できる。また、電子ビーム溶接により、深い溶け込みが得られるので溶接強度が高く、かつ熱歪を小さくできる。
 上記のカップ部材と軸部材を密閉空間に設置して大気圧以下の状態で溶接することが望ましい。これにより、溶融物の吹き上がりや気泡の発生が抑えられ、溶接部の強度や品質が向上する。
 上記のカップ部材と軸部材の溶接部の硬度はHV200~500の範囲が好ましい。HV200未満では製品機能上必要な強度の確保が困難であり望ましくない。一方、HV500を超えると割れが発生する恐れが生じるため望ましくない。
 1    ドライブシャフト
 2    ハーフシャフト
 10   しゅう動式等速自在継手
 11   外側継手部材
 12   カップ部
 12a  カップ部材(ワーク)
 12a1 筒状部
 12a2 底部
 13   長寸軸部
 13a  軸部材(ワーク)
 14   軸受装着面
 30   トラック溝
 49   溶接部(ビード)
 50   カップ部材の接合用端面
 51   軸部材の接合用端面
 52   凹部
 100  溶接装置
 101  電子銃
 102  回転装置
 103  チャック
 104  センタ
 105  テールストック
 106  ワーク受け台
 107  芯出し治具
 108  ケース
 109  真空ポンプ
 111  密閉空間
 120a、102b  センサ
 122a、102b  アクチュエータ
 124a、124b  センタ
 126a、126b  平行チャック
 128、128a、128b、128’  爪
 130、130’ くぼみ(ワーク接触部)
 132 テーパ面
 134 カム
 136 アクチュエータ
 138 スプリング

Claims (11)

  1.  第一ワークと第二ワークを突合せ溶接するにあたり、第一ワークをはさんで第一ワークの直径方向に対向し相互方向に同期して進退可能な一対の爪をもった第一平行チャックにより第一ワークを保持し、第二ワークをはさんで第二ワークの直径方向に対向し相互方向に同期して進退可能な一対の爪をもった第二平行チャックにより第二ワークを保持することにより、第一ワークと第二ワークを同軸状となすことを特徴とする突合せ溶接用芯出し方法。
  2.  第一平行チャックの爪及び第二平行チャックの爪がV字形状のワーク接触部を有する請求項1の突合せ溶接用芯出し方法。
  3.  第一平行チャックの爪及び第二平行チャックの爪が半円形状のワーク接触部を有する請求項1の突合せ溶接用芯出し方法。
  4.  第一ワークは等速自在継手の外側継手部材を構成するカップ部材であり、第二ワークは前記外側継手部材を構成する軸部材である請求項1、2又は3の突合せ溶接用芯出し方法。
  5.  前記溶接は電子ビーム溶接又はレーザ溶接である請求項1から4のいずれか1項の突合せ溶接用芯出し方法。
  6.  第一ワークと第二ワークを突合せ溶接するにあたり両者の中心線を同軸状となすための装置であって、第一ワークをはさんで第一ワークの直径方向に対向し相互方向に同期して進退可能な一対の爪をもった第一平行チャックと、第二ワークをはさんで第二ワークの直径方向に対向し相互方向に同期して進退可能な一対の爪をもった第二平行チャックとを備えたことを特徴とする突合せ溶接用芯出し装置。
  7.  第一平行チャックの爪及び第二平行チャックの爪がV字形状のワーク接触部を有する請求項6の突合せ溶接用芯出し装置。
  8.  第一平行チャックの爪及び第二平行チャックの爪が半円形状のワーク接触部を有する請求項6の突合せ溶接用芯出し装置。
  9.  第一ワークは等速自在継手の外側継手部材を構成するカップ部材であり、第二ワークは前記外側継手部材を構成する軸部材である請求項6、7又は8の突合せ溶接用芯出し装置。
  10.  前記溶接は電子ビーム溶接又はレーザ溶接である請求項6から9のいずれか1項の突合せ溶接用芯出し装置。
  11.  筒状部と底部をもった有底筒状のカップ部と、前記カップ部の底部から軸方向に延びたステム部とからなる等速自在継手の外側継手部材を、前記カップ部を形成するためのカップ部材と前記ステム部を形成するためのステム部材とを突合せ溶接することによって製造するようにしたものであって、
     前記カップ部材として、前記筒状部と前記底部を鍛造加工により一体に形成した後、機械加工により前記底部の外面に接合用端面を形成したカップ部材を準備し、
     前記ステム部材として、機械加工により前記カップ部材の前記底部と接合する接合用端面を形成したステム部材を準備し、
     前記カップ部の前記接合用端面側の外周面を直径方向に対向して相互方向に同期して進退可能な一対の爪をもった第一治具で把持し、
     前記ステム部材の前記接合用端面側の外周面を直径方向に対向して相互方向に同期して進退可能な一対の爪をもった第二治具で把持し、
     前記カップ部材の接合用端面と前記ステム部材の接合用端面を突き合わせて溶接することを特徴とする等速自在継手の外側継手部材の製造方法。
PCT/JP2015/058691 2014-03-31 2015-03-23 突合せ溶接用芯出し方法及び装置 WO2015151894A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-072026 2014-03-31
JP2014072026A JP6338912B2 (ja) 2014-03-31 2014-03-31 突合せ溶接用芯出し方法及び装置

Publications (1)

Publication Number Publication Date
WO2015151894A1 true WO2015151894A1 (ja) 2015-10-08

Family

ID=54240223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058691 WO2015151894A1 (ja) 2014-03-31 2015-03-23 突合せ溶接用芯出し方法及び装置

Country Status (2)

Country Link
JP (1) JP6338912B2 (ja)
WO (1) WO2015151894A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108422113A (zh) * 2017-02-14 2018-08-21 武汉楚天工业激光设备有限公司 一种圆形分油管焊接夹具
CN109604801A (zh) * 2019-01-04 2019-04-12 合肥聚能电物理高技术开发有限公司 高温超导电流引线电子束焊接夹具及工艺
CN111571095A (zh) * 2020-05-30 2020-08-25 阜阳市棋剑节能环保设备有限公司 一种吸盘式立杆焊接机的花盘定位夹具
CN117139820A (zh) * 2023-10-27 2023-12-01 万向钱潮股份公司 一种用于球笼总成的定位夹紧装置及装配方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7564008B2 (ja) 2021-02-10 2024-10-08 アズビル株式会社 軸合わせ用治具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2108077A (en) * 1935-12-02 1938-02-15 Van K Robinson Pipe joint welding clamp
US5118024A (en) * 1991-08-01 1992-06-02 Mcclure Gary W Remote pipe fitting tool
JPH1094889A (ja) * 1996-09-24 1998-04-14 Mitsubishi Heavy Ind Ltd 配管レーザ溶接装置
JP2003046009A (ja) * 2001-07-27 2003-02-14 Origin Electric Co Ltd 抵抗溶接装置
JP2010017731A (ja) * 2008-07-09 2010-01-28 Kawasaki Heavy Ind Ltd 溶接装置及び溶接方法
JP2010194940A (ja) * 2009-02-26 2010-09-09 Canon Chemicals Inc ローラの成形装置および成形方法
JP2013245806A (ja) * 2012-05-29 2013-12-09 Ntn Corp 等速自在継手の外側継手部材及びこれを備える等速自在継手

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169178A (ja) * 1985-01-22 1986-07-30 Honda Motor Co Ltd 自動圧入・溶接装置
JPH0661620B2 (ja) * 1987-08-21 1994-08-17 株式会社日立製作所 配管溶接方法およびその装置
JPH0423899Y2 (ja) * 1987-12-28 1992-06-04
JP2674908B2 (ja) * 1991-09-06 1997-11-12 株式会社クボタ 管接合装置
JP2688134B2 (ja) * 1991-11-22 1997-12-08 株式会社クボタ 管接合装置
JP2003001490A (ja) * 2001-06-13 2003-01-08 Denso Corp 突合わせ溶接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2108077A (en) * 1935-12-02 1938-02-15 Van K Robinson Pipe joint welding clamp
US5118024A (en) * 1991-08-01 1992-06-02 Mcclure Gary W Remote pipe fitting tool
JPH1094889A (ja) * 1996-09-24 1998-04-14 Mitsubishi Heavy Ind Ltd 配管レーザ溶接装置
JP2003046009A (ja) * 2001-07-27 2003-02-14 Origin Electric Co Ltd 抵抗溶接装置
JP2010017731A (ja) * 2008-07-09 2010-01-28 Kawasaki Heavy Ind Ltd 溶接装置及び溶接方法
JP2010194940A (ja) * 2009-02-26 2010-09-09 Canon Chemicals Inc ローラの成形装置および成形方法
JP2013245806A (ja) * 2012-05-29 2013-12-09 Ntn Corp 等速自在継手の外側継手部材及びこれを備える等速自在継手

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108422113A (zh) * 2017-02-14 2018-08-21 武汉楚天工业激光设备有限公司 一种圆形分油管焊接夹具
CN109604801A (zh) * 2019-01-04 2019-04-12 合肥聚能电物理高技术开发有限公司 高温超导电流引线电子束焊接夹具及工艺
CN111571095A (zh) * 2020-05-30 2020-08-25 阜阳市棋剑节能环保设备有限公司 一种吸盘式立杆焊接机的花盘定位夹具
CN111571095B (zh) * 2020-05-30 2022-01-28 阜阳市棋剑节能环保设备有限公司 一种吸盘式立杆焊接机的花盘定位夹具
CN117139820A (zh) * 2023-10-27 2023-12-01 万向钱潮股份公司 一种用于球笼总成的定位夹紧装置及装配方法
CN117139820B (zh) * 2023-10-27 2024-02-20 万向钱潮股份公司 一种用于球笼总成的定位夹紧装置及装配方法

Also Published As

Publication number Publication date
JP2015193023A (ja) 2015-11-05
JP6338912B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6316659B2 (ja) 等速自在継手の外側継手部材の製造方法および外側継手部材
JP5901940B2 (ja) 等速自在継手の外側継手部材の溶接方法
WO2015151894A1 (ja) 突合せ溶接用芯出し方法及び装置
CN106062400B (zh) 等速万向联轴器的外侧联轴器构件的制造方法以及外侧联轴器构件、轴构件及杯状构件
US10280984B2 (en) Constant velocity universal joint outer joint member and manufacturing method for same
CN107614910B (zh) 等速万向联轴器的外侧联轴器构件
US10478914B2 (en) Method for butt welding, butt welded joint, and outside joint member for constant velocity universal joint
WO2015194305A1 (ja) 等速自在継手の外側継手部材の製造方法および外側継手部材
WO2015194304A1 (ja) 等速自在継手の外側継手部材の製造方法および外側継手部材
CN106062399B (zh) 等速万向联轴器的外侧联轴器构件的制造方法及外侧联轴器构件
WO2015194303A1 (ja) 等速自在継手の外側継手部材の製造方法および外側継手部材
JP6719895B2 (ja) 等速自在継手の外側継手部材
JP2020148281A (ja) 等速自在継手の製造方法
JP2017106487A (ja) 等速自在継手の外側継手部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772683

Country of ref document: EP

Kind code of ref document: A1