WO2015151860A1 - Position sensor - Google Patents

Position sensor Download PDF

Info

Publication number
WO2015151860A1
WO2015151860A1 PCT/JP2015/058470 JP2015058470W WO2015151860A1 WO 2015151860 A1 WO2015151860 A1 WO 2015151860A1 JP 2015058470 W JP2015058470 W JP 2015058470W WO 2015151860 A1 WO2015151860 A1 WO 2015151860A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
cladding layer
optical waveguide
layer
position sensor
Prior art date
Application number
PCT/JP2015/058470
Other languages
French (fr)
Japanese (ja)
Inventor
良真 吉岡
裕介 清水
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015151860A1 publication Critical patent/WO2015151860A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3596With planar waveguide arrangement, i.e. in a substrate, regardless if actuating mechanism is outside the substrate

Definitions

  • the present invention relates to a position sensor that optically detects a pressed position.
  • a position sensor that optically detects a pressed position has been proposed (see, for example, Patent Document 1).
  • a plurality of linear cores serving as optical paths are arranged in the vertical and horizontal directions, and a sheet-like optical waveguide is formed by covering the peripheral edge portions of the cores with a clad.
  • the light that has propagated through each core is detected by the light receiving element at the other end surface of each core.
  • the pressed part is recessed in the pressing direction and the core is crushed (the cross-sectional area of the core in the pressing direction is reduced).
  • the detection level of light at the light receiving element is lowered at the core of the pressing portion, the vertical and horizontal positions (coordinates) of the pressing portion can be detected.
  • the conventional position sensor has a problem that the core or the under clad layer is plastically deformed by a strong pressure (for example, a load of 13 N) and does not return to its original shape even when the pressure is released.
  • the present invention has been made in view of such circumstances, and even when a strong pressure of 13N is applied to the optical waveguide, the core and the under cladding layer of the optical waveguide are not plastically deformed, and when the pressure is released,
  • the purpose of the present invention is to provide a position sensor that quickly recovers to its original shape.
  • a position sensor of the present invention includes a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores.
  • a position comprising: a sheet-like optical waveguide; a light emitting element connected to one end face of the core of the optical waveguide; and a light receiving element connected to the other end face of the core and emitted from the light emitting element and reaching the core through the core
  • the core is set in an elastic range of 3 to 10% tensile elongation
  • the under cladding layer supporting the core is set in an elastic range of 5 to 140% tensile elongation.
  • the surface portion of the optical waveguide corresponding to the lattice-shaped core portion is formed in the input region, and the pressed portion in the input region is used to attenuate the received light intensity in the light receiving element due to the pressing.
  • Ri adopt a configuration that is specified.
  • the inventors of the present invention are able to release the optical waveguide core and the under-cladding layer when the pressure on the optical waveguide is released.
  • the core and the undercladding layer are defined as described above, and the core and the undercladding layer are quickly restored.
  • the over clad layer is also formed on the under clad layer so as to cover the core. However, if the core and the under clad layer return to the original shape, the light propagation in the core is also restored to the original state. Therefore, even if the over clad layer remains deformed, it can be prepared for the next pressing.
  • the position sensor of the present invention has a sheet-like optical waveguide in which a lattice-like core is supported by an under-cladding layer, and the core is set in an elastic range of a tensile elongation of 3 to 10%.
  • the undercladding layer is set to have an elastic range of 5 to 140% tensile elongation. Therefore, even when a strong pressure of 13 N is applied to the optical waveguide, the core and the under cladding layer of the optical waveguide are not plastically deformed, and can be quickly restored to the original shape when the pressure is released. That is, the position sensor of the present invention can quickly prepare for the next pressing, and is excellent in continuous detection of the pressing position.
  • the core and the undercladding layer are made of epoxy resin, it is easy to set the core and the undercladding layer in the elastic range within the range of the tensile elongation.
  • the over clad layer when the over clad layer is set in an elastic range of tensile elongation of 5 to 140%, the over clad layer is not plastically deformed even when a strong pressure of 13 N is applied to the optical waveguide. When the pressure is released, the original shape can be quickly recovered. For this reason, when the pressure is released, the trace of the pressure can be quickly eliminated from the surface of the optical waveguide (the surface of the over clad layer).
  • the 1st Embodiment of the position sensor of this invention is shown typically, (a) is the top view, (b) is the expanded sectional view. It is sectional drawing which shows the use condition of the said position sensor typically, (a) is a press state, (b) is the state which canceled the press. (A)-(d) is explanatory drawing which shows the manufacturing method of an optical waveguide typically. It is an expanded sectional view showing typically a 2nd embodiment of a position sensor of the present invention. (A) to (f) are enlarged plan views schematically showing a crossing form of lattice-like cores in the position sensor. (A), (b) is an enlarged plan view which shows typically the course of the light in the cross
  • FIG. 1 (a) is a plan view showing a first embodiment of the position sensor of the present invention
  • FIG. 1 (b) is an enlarged cross-sectional view of the central portion thereof.
  • the position sensor of this embodiment includes a rectangular sheet-shaped optical waveguide W in which a lattice-shaped core 2 is supported by a rectangular sheet-shaped underclad layer 1 and covered with an overcladding layer 3, and the lattice-shaped core 2.
  • the light emitting element 4 connected to the one end surface of the linear core 2 to comprise, and the light receiving element 5 connected to the other end surface of the said linear core 2 are provided.
  • the core 2 is in the elastic region in the range of 3 to 10% tensile elongation
  • the under cladding layer 1 is in the elastic region in the range of 5 to 140% tensile elongation.
  • the over clad layer 3 is also in the elastic region in the range of 5 to 140% tensile elongation, like the under clad layer 1.
  • the light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5.
  • the surface part of the over clad layer 3 corresponding to the part of the lattice-like core 2 is an input region.
  • the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2.
  • the number of cores 2 is omitted.
  • the arrow of Fig.1 (a) has shown the direction where light travels.
  • the core 2 has a tensile elongation of 3 to 10%. It is a major feature of the present invention that the undercladding layer 1 is in the elastic region and in the elastic region in the range of 5 to 140% tensile elongation.
  • the core 2 is preferably in the elastic region in the range of 5 to 10% tensile elongation
  • the undercladding layer 1 is in the elastic region in the range of 15 to 100% tensile elongation. That is.
  • the over clad layer 3 is also in the elastic region in the range of 5 to 140% tensile elongation, like the under clad layer 1, and therefore when the pressure is released, the surface of the optical waveguide W is released. From the (surface of the over clad layer 3), it is possible to quickly eliminate a pressing mark.
  • the position sensor detects the pressed position so that the back surface of the under clad layer 1 is in contact with the surface of a hard object such as a desk 30.
  • the pressing position is detected.
  • the core 2 and the under cladding layer 1 are recessed while maintaining elasticity.
  • the position sensor when the pressing is released, the optical waveguide W is caused by the specific elastic regions of the core 2, the under cladding layer 1 and the over cladding layer 3 as described above. Since the position sensor quickly recovers to the original flat shape, the position sensor can be quickly prepared for the next pressing, and is excellent in continuous detection of the pressing position.
  • the pressing position may be detected on the surface of the input area via a resin film, paper, or the like.
  • Examples of the material for forming the core 2, the under cladding layer 1 and the over cladding layer 3 having the above characteristics include, for example, an epoxy resin from the viewpoint of ease of setting the elastic region. From the viewpoint of ease of manufacturing the optical waveguide W, the epoxy resin or the like is preferably a photosensitive resin.
  • the refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3.
  • the refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
  • a lattice-like core 2 is embedded in the surface portion of the sheet-like underclad layer 1, and the surface of the underclad layer 1 and the top surface of the core 2 face each other.
  • the sheet-like over clad layer 3 is formed in a state where the surface of the under clad layer 1 and the top surface of the core 2 are covered. Since the optical waveguide W having such a structure can make the over clad layer 3 have a uniform thickness, it is easy to detect the pressing position in the input region.
  • the thickness of each layer is set, for example, in the range of 10 to 500 ⁇ m for the under cladding layer 1, in the range of 5 to 100 ⁇ m for the core 2, and in the range of 1 to 200 ⁇ m for the over cladding layer 3.
  • the elastic modulus of the core 2 is preferably set to be equal to or higher than the elastic modulus of the under cladding layer 1 and the over cladding layer 3. The reason is that if the elastic modulus is set in the opposite direction, the periphery of the core 2 becomes hard, so that the optical waveguide W having a considerably larger area than the area of the pen tip or the like that presses the input region portion of the over clad layer 3. This is because the above-mentioned portion is recessed and it is difficult to accurately detect the pressed position.
  • each elastic modulus for example, the elastic modulus of the core 2 is set within a range of 1 to 10 GPa, and the elastic modulus of the over cladding layer 3 is set within a range of 0.1 to 10 GPa.
  • the elastic modulus of the layer 1 is preferably set within a range of 0.1 to 1 GPa.
  • the over clad layer 3 is formed into a sheet having a uniform thickness.
  • the core 2 is formed in a predetermined pattern on the upper surface of the over clad layer 3 in a protruding state.
  • the under cladding layer 1 is formed on the upper surface of the over cladding layer 3 so as to cover the core 2.
  • the obtained structure is turned upside down so that the under cladding layer 1 is on the lower side and the over cladding layer 3 is on the upper side. In this way, the optical waveguide W is obtained.
  • the under cladding layer 1, the core 2 and the over cladding layer 3 are produced by a manufacturing method corresponding to each forming material.
  • FIG. 4 is an enlarged view of the cross section of the central portion of the second embodiment of the position sensor of the present invention.
  • the structure of the optical waveguide W is upside down with respect to the first embodiment shown in FIG. That is, the surface of the under-cladding layer 1 having a uniform thickness is formed in a predetermined pattern with the core 2 protruding, and the over-cladding layer is formed on the surface of the under-cladding layer 1 with the core 2 covered. 3 is formed.
  • the other parts are the same as those of the first embodiment shown in FIG. 1B, and the same reference numerals are given to the same parts.
  • the position sensor of this embodiment also has the same operations and effects as those of the first embodiment shown in FIG.
  • each intersection of the lattice-like core 2 is normally formed in a state where all four intersecting directions are continuous, as shown in an enlarged plan view in FIG.
  • the gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3.
  • the width d of the gap G exceeds 0 (it is sufficient if the gap G is formed) and is usually set to 20 ⁇ m or less.
  • two intersecting directions are discontinuous. As shown in FIG.
  • the three intersecting directions may be discontinuous, or as shown in FIG. 5 (f), all the four intersecting directions may be discontinuous. It may be discontinuous.
  • the light crossing loss can be reduced. That is, as shown in FIG. 6 (a), in an intersection where all four intersecting directions are continuous, when light is focused on one intersecting direction (upward in FIG. 6 (a)), light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle at the wall surface is large [two points in FIG. (See chain line arrow). Such light transmission also occurs in the direction opposite to the above (downward in FIG. 6A). On the other hand, as shown in FIG. 6 (b), when one intersecting direction (upward in FIG.
  • the over clad layer 3 is also in the elastic region in the range of tensile elongation of 5 to 140%, similar to the under clad layer 1, but the over clad layer 3 has other elastic characteristics. May be used.
  • an elastic layer such as a rubber layer may be provided on the lower surface of the under cladding layer 1.
  • the under-cladding layer 1, the core 2 and the over-cladding layer 3 recover not only to their own restoring force but also to the original shape by utilizing the elastic force of the elastic layer. be able to.
  • the under clad layer 1 may be made of the same material as that of the elastic layer, and a laminate including the under clad layer 1 and the elastic layer may be handled as one layer.
  • an over clad layer was formed on the surface of a glass substrate by spin coating using the above clad forming material.
  • the over cladding layer had a thickness of 25 ⁇ m.
  • a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material.
  • the core had a width of 30 ⁇ m and a thickness of 50 ⁇ m. Note that the core could not be patterned with a material having a tensile elongation exceeding 10%.
  • an under clad layer was formed on the upper surface of the over clad layer by spin coating using the clad forming material so as to cover the core.
  • the thickness of this under cladding layer was 500 ⁇ m.
  • the over clad layer was peeled off from the glass substrate.
  • the under cladding layer was bonded to the surface of the aluminum plate via an adhesive.
  • the optical waveguide was produced on the surface of the aluminum plate via the adhesive.
  • a light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of the optical waveguide, and a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the core.
  • a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the core.
  • CMOS scan speed CMOS scan speed
  • CMOS scan speed CMOS scan speed
  • results were evaluated as inferior to continuous detection (shape recoverability) of the position sensor, and x was shown in Table 1 below.
  • plastic deformation was caused by applying the above load, and the shape did not recover even when the load was released.
  • the optical waveguide is shown in a sectional view in FIG. 1B.
  • the optical waveguide is shown in the sectional view in FIG. 4 as in the first to fifth embodiments.
  • An evaluation result showing the tendency was obtained.
  • the position sensor of the present invention can be used to quickly eliminate a pressing mark when detecting a pressing position and to improve continuous detection.

Abstract

This invention provides a position sensor whereby even if forceful contact exhibiting a load of 13 N is applied to an optical waveguide, cores in said optical waveguide and an under-cladding layer do not undergo plastic deformation but rather quickly return to the original shapes thereof. Said position sensor comprises the following: a quadrangular sheet-shaped optical waveguide (W) in which a lattice of cores (2) is supported by a quadrangular sheet-shaped under-cladding layer (1) and covered by an over-cladding layer (3); a light-emitting element (4) connected to one end face of each linear core (2) constituting the lattice of cores (2); and a light-receiving element (5) connected to the other end face of each linear core (2). The cores (2) are set so as to have an elastic region over the tensile-elongation range from 3% to 10%, and the under-cladding layer (1) is set so as to have an elastic region over the tensile-elongation range from 5% to 140%.

Description

位置センサPosition sensor
 本発明は、押圧位置を光学的に検知する位置センサに関するものである。 The present invention relates to a position sensor that optically detects a pressed position.
 従来より、押圧位置を光学的に検知する位置センサが提案されている(例えば、特許文献1参照)。このものは、光路となる複数の線状のコアを縦横方向に配置し、それらコアの周縁部をクラッドで覆うことによりシート状の光導波路を形成し、上記各コアの一端面に発光素子からの光を入射させ、各コア内を伝播してきた光を、各コアの他端面で受光素子により検出するようになっている。そして、上記コアの縦横配置部分に対応する、光導波路の表面の一部をペン先等で押圧すると、その押圧部分が押圧方向に凹んでコアがつぶれ(押圧方向のコアの断面積が小さくなり)、その押圧部分のコアでは、上記受光素子での光の検出レベルが低下することから、上記押圧部分の縦横位置(座標)を検知できるようになっている。 Conventionally, a position sensor that optically detects a pressed position has been proposed (see, for example, Patent Document 1). In this structure, a plurality of linear cores serving as optical paths are arranged in the vertical and horizontal directions, and a sheet-like optical waveguide is formed by covering the peripheral edge portions of the cores with a clad. The light that has propagated through each core is detected by the light receiving element at the other end surface of each core. When a part of the surface of the optical waveguide corresponding to the vertical and horizontal arrangement parts of the core is pressed with a pen tip or the like, the pressed part is recessed in the pressing direction and the core is crushed (the cross-sectional area of the core in the pressing direction is reduced). ) Since the detection level of light at the light receiving element is lowered at the core of the pressing portion, the vertical and horizontal positions (coordinates) of the pressing portion can be detected.
特開平8-234895号公報JP-A-8-234895
 しかしながら、上記コアの変形により、押圧位置を検知できたとしても、押圧が解除された後、コアが素早く元の形状に戻り、コア内の光の伝播も元の状態に戻らなければ、つぎの押圧に備えることができない。上記従来の位置センサでは、強い押圧(例えば荷重13N)により、コアまたはアンダークラッド層が塑性変形し、その押圧を解除しても、元の形状に戻らないという問題がある。 However, even if the pressing position can be detected by the deformation of the core, after the pressing is released, the core quickly returns to the original shape, and the light propagation in the core does not return to the original state. Can't prepare for pressing. The conventional position sensor has a problem that the core or the under clad layer is plastically deformed by a strong pressure (for example, a load of 13 N) and does not return to its original shape even when the pressure is released.
 本発明は、このような事情に鑑みなされたもので、光導波路に対して荷重13Nの強い押圧をかけても、光導波路のコアおよびアンダークラッド層が塑性変形せず、その押圧を解除すると、素早く元の形状に回復するようになっている位置センサの提供をその目的とする。 The present invention has been made in view of such circumstances, and even when a strong pressure of 13N is applied to the optical waveguide, the core and the under cladding layer of the optical waveguide are not plastically deformed, and when the pressure is released, The purpose of the present invention is to provide a position sensor that quickly recovers to its original shape.
 上記の目的を達成するため、本発明の位置センサは、格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状の光導波路と、この光導波路のコアの一端面に接続された発光素子と、上記コアの他端面に接続され上記発光素子から発せられコアを経て到達する光の受光素子とを備える位置センサであって、上記コアが、引張伸び3~10%の範囲の弾性域に設定されているとともに、上記コアを支持するアンダークラッド層が、引張伸び5~140%の範囲の弾性域に設定されており、上記格子状のコア部分に対応する光導波路の表面部分が入力領域に形成され、その入力領域における押圧個所がその押圧による上記受光素子での受光強度の減衰により特定されるという構成をとる。 In order to achieve the above object, a position sensor of the present invention includes a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores. A position comprising: a sheet-like optical waveguide; a light emitting element connected to one end face of the core of the optical waveguide; and a light receiving element connected to the other end face of the core and emitted from the light emitting element and reaching the core through the core In the sensor, the core is set in an elastic range of 3 to 10% tensile elongation, and the under cladding layer supporting the core is set in an elastic range of 5 to 140% tensile elongation. The surface portion of the optical waveguide corresponding to the lattice-shaped core portion is formed in the input region, and the pressed portion in the input region is used to attenuate the received light intensity in the light receiving element due to the pressing. Ri adopt a configuration that is specified.
 本発明者らは、格子状のコアがアンダークラッド層に支持されたシート状の光導波路を有する位置センサにおいて、その光導波路に対する押圧が解除されると、その光導波路のコアおよびアンダークラッド層が素早く元の形状に回復するようにすべく、上記コアおよびアンダークラッド層の引張伸びに着目し、研究を重ねた。その結果、上記コアが、引張伸び3~10%の範囲の弾性域に設定されているともに、上記アンダークラッド層が、引張伸び5~140%の範囲の弾性域に設定されていると、光導波路に対して荷重13Nの強い押圧をかけても、光導波路のコアおよびアンダークラッド層が塑性変形せず、その押圧を解除した際に、素早く元の形状に回復することを見出し、本発明に到達した。 In a position sensor having a sheet-like optical waveguide in which a lattice-shaped core is supported by an under-cladding layer, the inventors of the present invention are able to release the optical waveguide core and the under-cladding layer when the pressure on the optical waveguide is released. In order to quickly recover to the original shape, we focused on the tensile elongation of the core and underclad layer and repeated research. As a result, when the core is set in an elastic region in the range of 3 to 10% tensile elongation and the undercladding layer is set in the elastic region in the range of 5 to 140% tensile elongation, Even when a strong pressure of 13N is applied to the waveguide, the core and the under cladding layer of the optical waveguide are not plastically deformed, and when the pressure is released, it is quickly recovered to the original shape, and the present invention Reached.
 すなわち、光導波路では、コアがアンダークラッド層に支持された状態で形成されていることから、アンダークラッド層が変形していると、コアも変形した状態になるため、コアを元の形状に戻るようにしても足りず、コアだけでなく、アンダークラッド層も、元の形状に戻る必要がある。そのため、本発明では、コアとアンダークラッド層とを上記のように規定し、コアとアンダークラッド層とが迅速に復元するようにしている。なお、アンダークラッド層上には、オーバークラッド層も、コアを被覆した状態で形成されているが、コアとアンダークラッド層が元の形状に戻れば、コア内の光の伝播も元の状態に戻るため、仮にオーバークラッド層は変形したままでも、つぎの押圧に備えることができる。 That is, in the optical waveguide, since the core is formed in a state supported by the under cladding layer, if the under cladding layer is deformed, the core is also deformed, so that the core returns to its original shape. Even so, not only the core but also the undercladding layer needs to return to its original shape. Therefore, in the present invention, the core and the undercladding layer are defined as described above, and the core and the undercladding layer are quickly restored. The over clad layer is also formed on the under clad layer so as to cover the core. However, if the core and the under clad layer return to the original shape, the light propagation in the core is also restored to the original state. Therefore, even if the over clad layer remains deformed, it can be prepared for the next pressing.
 本発明の位置センサは、格子状のコアがアンダークラッド層に支持されたシート状の光導波路を有し、上記コアが、引張伸び3~10%の範囲の弾性域に設定されているとともに、上記アンダークラッド層が、引張伸び5~140%の範囲の弾性域に設定されている。そのため、光導波路に対して荷重13Nの強い押圧をかけても、光導波路のコアおよびアンダークラッド層が塑性変形せず、その押圧を解除した際に、素早く元の形状に回復することができる。すなわち、本発明の位置センサは、つぎの押圧に迅速に備えることができ、押圧位置の連続的検知に優れている。 The position sensor of the present invention has a sheet-like optical waveguide in which a lattice-like core is supported by an under-cladding layer, and the core is set in an elastic range of a tensile elongation of 3 to 10%. The undercladding layer is set to have an elastic range of 5 to 140% tensile elongation. Therefore, even when a strong pressure of 13 N is applied to the optical waveguide, the core and the under cladding layer of the optical waveguide are not plastically deformed, and can be quickly restored to the original shape when the pressure is released. That is, the position sensor of the present invention can quickly prepare for the next pressing, and is excellent in continuous detection of the pressing position.
 特に、上記コアおよびアンダークラッド層が、エポキシ樹脂製である場合には、それらコアおよびアンダークラッド層を、それぞれ上記引張伸びの範囲で弾性域に設定することが、容易にできる。 In particular, when the core and the undercladding layer are made of epoxy resin, it is easy to set the core and the undercladding layer in the elastic range within the range of the tensile elongation.
 また、上記オーバークラッド層が、引張伸び5~140%の範囲の弾性域に設定されている場合は、光導波路に対して荷重13Nの強い押圧をかけても、オーバークラッド層が塑性変形せず、その押圧を解除した際に、素早く元の形状に回復することができる。そのため、上記押圧を解除した際に、光導波路の表面(オーバークラッド層の表面)から、素早く押圧跡を無くすことができる。 Further, when the over clad layer is set in an elastic range of tensile elongation of 5 to 140%, the over clad layer is not plastically deformed even when a strong pressure of 13 N is applied to the optical waveguide. When the pressure is released, the original shape can be quickly recovered. For this reason, when the pressure is released, the trace of the pressure can be quickly eliminated from the surface of the optical waveguide (the surface of the over clad layer).
本発明の位置センサの第1の実施の形態を模式的に示し、(a)はその平面図であり、(b)はその拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The 1st Embodiment of the position sensor of this invention is shown typically, (a) is the top view, (b) is the expanded sectional view. 上記位置センサの使用状態を模式的に示す断面図であり、(a)は押圧状態であり、(b)は押圧を解除した状態である。It is sectional drawing which shows the use condition of the said position sensor typically, (a) is a press state, (b) is the state which canceled the press. (a)~(d)は、光導波路の製法を模式的に示す説明図である。(A)-(d) is explanatory drawing which shows the manufacturing method of an optical waveguide typically. 本発明の位置センサの第2の実施の形態を模式的に示す拡大断面図である。It is an expanded sectional view showing typically a 2nd embodiment of a position sensor of the present invention. (a)~(f)は、上記位置センサにおける格子状のコアの交差形態を模式的に示す拡大平面図である。(A) to (f) are enlarged plan views schematically showing a crossing form of lattice-like cores in the position sensor. (a),(b)は、上記格子状のコアの交差部における光の進路を模式的に示す拡大平面図である。(A), (b) is an enlarged plan view which shows typically the course of the light in the cross | intersection part of the said grid | lattice-like core.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1(a)は、本発明の位置センサの第1の実施の形態を示す平面図であり、図1(b)は、その中央部の断面を拡大した図である。この実施の形態の位置センサは、格子状のコア2が四角形シート状のアンダークラッド層1に支持されオーバークラッド層3で被覆された四角形シート状の光導波路Wと、上記格子状のコア2を構成する線状のコア2の一端面に接続された発光素子4と、上記線状のコア2の他端面に接続された受光素子5とを備えている。そして、上記コア2が、引張伸び3~10%の範囲で弾性域にあるとともに、上記アンダークラッド層1が、引張伸び5~140%の範囲で弾性域にある。なお、この実施の形態では、オーバークラッド層3も、上記アンダークラッド層1と同様、引張伸び5~140%の範囲で弾性域にある。 FIG. 1 (a) is a plan view showing a first embodiment of the position sensor of the present invention, and FIG. 1 (b) is an enlarged cross-sectional view of the central portion thereof. The position sensor of this embodiment includes a rectangular sheet-shaped optical waveguide W in which a lattice-shaped core 2 is supported by a rectangular sheet-shaped underclad layer 1 and covered with an overcladding layer 3, and the lattice-shaped core 2. The light emitting element 4 connected to the one end surface of the linear core 2 to comprise, and the light receiving element 5 connected to the other end surface of the said linear core 2 are provided. The core 2 is in the elastic region in the range of 3 to 10% tensile elongation, and the under cladding layer 1 is in the elastic region in the range of 5 to 140% tensile elongation. In this embodiment, the over clad layer 3 is also in the elastic region in the range of 5 to 140% tensile elongation, like the under clad layer 1.
 また、上記発光素子4から発光された光は、上記コア2の中を通り、上記受光素子5で受光されるようになっている。そして、格子状のコア2の部分に対応するオーバークラッド層3の表面部分が、入力領域となっている。なお、図1(a)では、コア2を鎖線で示しており、鎖線の太さがコア2の太さを示している。また、図1(a)では、コア2の数を略して図示している。そして、図1(a)の矢印は、光の進む方向を示している。 Further, the light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5. And the surface part of the over clad layer 3 corresponding to the part of the lattice-like core 2 is an input region. In FIG. 1A, the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2. In FIG. 1A, the number of cores 2 is omitted. And the arrow of Fig.1 (a) has shown the direction where light travels.
 上記のように、格子状のコア2がアンダークラッド層1およびオーバークラッド層3で挟持されたシート状の光導波路Wを有する位置センサにおいて、上記コア2が、引張伸び3~10%の範囲で弾性域にあるとともに、上記アンダークラッド層1が、引張伸び5~140%の範囲で弾性域にあることが、本発明の大きな特徴である。このような光導波路Wを有することにより、上記入力領域の部分に13Nの強い押圧荷重をかけても、上記コア2およびアンダークラッド層1は、弾性を維持した状態で変形し、上記押圧を解除すると、それ自体の復元力により、素早く元の形状に回復することができる。その形状回復性の観点から、好ましくは、上記コア2が、引張伸び5~10%の範囲で弾性域にあり、上記アンダークラッド層1が、引張伸び15~100%の範囲で弾性域にあることである。また、この実施の形態では、オーバークラッド層3も、上記アンダークラッド層1と同様、引張伸び5~140%の範囲で弾性域にあるため、上記押圧を解除した際に、光導波路Wの表面(オーバークラッド層3の表面)から、素早く押圧跡を無くすことができる。 As described above, in the position sensor having the sheet-like optical waveguide W in which the lattice-like core 2 is sandwiched between the under-cladding layer 1 and the over-cladding layer 3, the core 2 has a tensile elongation of 3 to 10%. It is a major feature of the present invention that the undercladding layer 1 is in the elastic region and in the elastic region in the range of 5 to 140% tensile elongation. By having such an optical waveguide W, the core 2 and the under-cladding layer 1 are deformed while maintaining elasticity even when a strong pressing load of 13N is applied to the input region, and the pressing is released. Then, the original shape can be quickly restored by its own restoring force. From the viewpoint of shape recovery, the core 2 is preferably in the elastic region in the range of 5 to 10% tensile elongation, and the undercladding layer 1 is in the elastic region in the range of 15 to 100% tensile elongation. That is. In this embodiment, the over clad layer 3 is also in the elastic region in the range of 5 to 140% tensile elongation, like the under clad layer 1, and therefore when the pressure is released, the surface of the optical waveguide W is released. From the (surface of the over clad layer 3), it is possible to quickly eliminate a pressing mark.
 すなわち、上記位置センサによる押圧位置の検知は、例えば、図2(a)に断面図で示すように、位置センサを、アンダークラッド層1の裏面が机30等の硬い物の表面に接するようにして載置した状態で、オーバークラッド層3の入力領域の部分を、ペン先10a等で押圧したときに、その押圧位置を検知することでなされる。このとき、上記のように、コア2,アンダークラッド層1およびオーバークラッド層3の特定の弾性域により、それらコア2およびアンダークラッド層1は、弾性を維持した状態で凹む。そして、図2(b)に断面図で示すように、上記押圧を解除したとき、上記のように、コア2,アンダークラッド層1およびオーバークラッド層3の特定の弾性域により、光導波路Wが素早く元の平坦な形状に回復するようになっているため、上記位置センサは、つぎの押圧に迅速に備えることができ、押圧位置の連続的検知に優れたものとなっている。なお、上記押圧位置の検知は、上記入力領域の表面に、樹脂フィルム,紙等を介して行ってもよい。 That is, for example, as shown in the sectional view of FIG. 2A, the position sensor detects the pressed position so that the back surface of the under clad layer 1 is in contact with the surface of a hard object such as a desk 30. When the portion of the input region of the over clad layer 3 is pressed with the pen tip 10a or the like in the state of being placed in place, the pressing position is detected. At this time, as described above, due to the specific elastic regions of the core 2, the under cladding layer 1 and the over cladding layer 3, the core 2 and the under cladding layer 1 are recessed while maintaining elasticity. Then, as shown in the cross-sectional view of FIG. 2B, when the pressing is released, the optical waveguide W is caused by the specific elastic regions of the core 2, the under cladding layer 1 and the over cladding layer 3 as described above. Since the position sensor quickly recovers to the original flat shape, the position sensor can be quickly prepared for the next pressing, and is excellent in continuous detection of the pressing position. The pressing position may be detected on the surface of the input area via a resin film, paper, or the like.
 上記のような特性を有するコア2,アンダークラッド層1およびオーバークラッド層3の形成材料としては、上記弾性域の設定容易性の観点から、例えば、エポキシ樹脂等があげられる。そして、光導波路Wの作製容易性の観点から、上記エポキシ樹脂等は、感光性樹脂とすることが好ましい。コア2の屈折率は、アンダークラッド層1およびオーバークラッド層3の屈折率よりも大きく設定されている。その屈折率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。 Examples of the material for forming the core 2, the under cladding layer 1 and the over cladding layer 3 having the above characteristics include, for example, an epoxy resin from the viewpoint of ease of setting the elastic region. From the viewpoint of ease of manufacturing the optical waveguide W, the epoxy resin or the like is preferably a photosensitive resin. The refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3. The refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
 また、この実施の形態の光導波路Wは、シート状のアンダークラッド層1の表面部分に、格子状のコア2が埋設されて、上記アンダークラッド層1の表面とコア2の頂面とが面一に形成され、それらアンダークラッド層1の表面とコア2の頂面とを被覆した状態で、シート状のオーバークラッド層3が形成されたものとなっている。このような構造の光導波路Wは、オーバークラッド層3を均一厚みにすることができることから、上記入力領域における押圧位置を検知し易くなっている。各層の厚みは、例えば、アンダークラッド層1が10~500μmの範囲内、コア2が5~100μmの範囲内、オーバークラッド層3が1~200μmの範囲内に設定される。 In the optical waveguide W of this embodiment, a lattice-like core 2 is embedded in the surface portion of the sheet-like underclad layer 1, and the surface of the underclad layer 1 and the top surface of the core 2 face each other. The sheet-like over clad layer 3 is formed in a state where the surface of the under clad layer 1 and the top surface of the core 2 are covered. Since the optical waveguide W having such a structure can make the over clad layer 3 have a uniform thickness, it is easy to detect the pressing position in the input region. The thickness of each layer is set, for example, in the range of 10 to 500 μm for the under cladding layer 1, in the range of 5 to 100 μm for the core 2, and in the range of 1 to 200 μm for the over cladding layer 3.
 また、コア2の弾性率は、アンダークラッド層1およびオーバークラッド層3の弾性率以上に設定されていることが好ましい。その理由は、弾性率の設定がその逆であると、コア2の周辺が硬くなるため、オーバークラッド層3の入力領域の部分を押圧するペン先等の面積よりもかなり広い面積の光導波路Wの部分が凹み、押圧位置を正確に検知し難くなる傾向にあるからである。そこで、各弾性率としては、例えば、コア2の弾性率は、1~10GPaの範囲内に設定され、オーバークラッド層3の弾性率は、0.1~10GPaの範囲内に設定され、アンダークラッド層1の弾性率は、0.1~1GPaの範囲内に設定されることが好ましい。この場合、コア2の弾性率が大きいため、小さな押圧力では、コア2はつぶれない(コア2の断面積は小さくならない)ものの、押圧によりコア2がアンダークラッド層1に沈み込むように凹むため〔図2(a)参照〕、その凹んだ部分に対応するコア2の曲がった部分から光の漏れ(散乱)が発生し、そのコア2では、受光素子5〔図1(a)参照〕での光の検出レベルが低下することから、押圧位置を検知することができる。 Further, the elastic modulus of the core 2 is preferably set to be equal to or higher than the elastic modulus of the under cladding layer 1 and the over cladding layer 3. The reason is that if the elastic modulus is set in the opposite direction, the periphery of the core 2 becomes hard, so that the optical waveguide W having a considerably larger area than the area of the pen tip or the like that presses the input region portion of the over clad layer 3. This is because the above-mentioned portion is recessed and it is difficult to accurately detect the pressed position. Therefore, as each elastic modulus, for example, the elastic modulus of the core 2 is set within a range of 1 to 10 GPa, and the elastic modulus of the over cladding layer 3 is set within a range of 0.1 to 10 GPa. The elastic modulus of the layer 1 is preferably set within a range of 0.1 to 1 GPa. In this case, since the elastic modulus of the core 2 is large, the core 2 is not crushed by a small pressing force (the cross-sectional area of the core 2 does not become small), but the core 2 is depressed so as to sink into the under cladding layer 1 by the pressing. [Refer to FIG. 2 (a)], light leakage (scattering) occurs from the bent portion of the core 2 corresponding to the recessed portion, and in the core 2, the light receiving element 5 [refer to FIG. 1 (a)]. Since the detection level of the light decreases, the pressed position can be detected.
 つぎに、上記光導波路Wの製法の一例について説明する。まず、図3(a)に示すように、オーバークラッド層3を均一厚みのシート状に形成する。ついで、図3(b)に示すように、そのオーバークラッド層3の上面に、コア2を、突出した状態で所定パターンに形成する。つぎに、図3(c)に示すように、そのコア2を被覆するように、上記オーバークラッド層3の上面に、アンダークラッド層1を形成する。そして、図3(d)に示すように、その得られた構造体を上下逆にし、アンダークラッド層1を下側、オーバークラッド層3を上側にする。このようにして、上記光導波路Wが得られる。なお、上記アンダークラッド層1,コア2およびオーバークラッド層3は、それぞれの形成材料に応じた製法により作製される。 Next, an example of a method for manufacturing the optical waveguide W will be described. First, as shown in FIG. 3A, the over clad layer 3 is formed into a sheet having a uniform thickness. Next, as shown in FIG. 3B, the core 2 is formed in a predetermined pattern on the upper surface of the over clad layer 3 in a protruding state. Next, as shown in FIG. 3C, the under cladding layer 1 is formed on the upper surface of the over cladding layer 3 so as to cover the core 2. Then, as shown in FIG. 3D, the obtained structure is turned upside down so that the under cladding layer 1 is on the lower side and the over cladding layer 3 is on the upper side. In this way, the optical waveguide W is obtained. The under cladding layer 1, the core 2 and the over cladding layer 3 are produced by a manufacturing method corresponding to each forming material.
 図4は、本発明の位置センサの第2の実施の形態の中央部の断面を拡大した図である。この実施の形態では、光導波路Wの構造が、図1(b)に示す第1の実施の形態と上下逆になっている。すなわち、均一厚みのシート状のアンダークラッド層1の表面に、コア2が突出した状態で所定パターンに形成され、そのコア2を被覆した状態で、上記アンダークラッド層1の表面に、オーバークラッド層3が形成されたものとなっている。それ以外の部分は、図1(b)に示す第1の実施の形態と同様であり、同様の部分には同じ符号を付している。そして、この実施の形態の位置センサも、図1(b)に示す第1の実施の形態と同様の作用・効果を奏する。 FIG. 4 is an enlarged view of the cross section of the central portion of the second embodiment of the position sensor of the present invention. In this embodiment, the structure of the optical waveguide W is upside down with respect to the first embodiment shown in FIG. That is, the surface of the under-cladding layer 1 having a uniform thickness is formed in a predetermined pattern with the core 2 protruding, and the over-cladding layer is formed on the surface of the under-cladding layer 1 with the core 2 covered. 3 is formed. The other parts are the same as those of the first embodiment shown in FIG. 1B, and the same reference numerals are given to the same parts. The position sensor of this embodiment also has the same operations and effects as those of the first embodiment shown in FIG.
 なお、上記各実施の形態において、格子状のコア2の各交差部は、通常、図5(a)に拡大平面図で示すように、交差する4方向の全てが連続した状態に形成されているが、他でもよい。例えば、図5(b)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよい。上記隙間Gは、アンダークラッド層1またはオーバークラッド層3の形成材料で形成されている。その隙間Gの幅dは、0を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。それと同様に、図5(c),(d)に示すように、交差する2方向〔図5(c)は対向する2方向、図5(d)は隣り合う2方向〕が不連続になっているものでもよいし、図5(e)に示すように、交差する3方向が不連続になっているものでもよいし、図5(f)に示すように、交差する4方向の全てが不連続になっているものでもよい。さらに、図5(a)~(f)に示す上記交差部のうちの2種類以上の交差部を備えた格子状としてもよい。すなわち、本発明において、複数の線状のコア2により形成される「格子状」とは、一部ないし全部の交差部が上記のように形成されているものを含む意味である。 In each of the above embodiments, each intersection of the lattice-like core 2 is normally formed in a state where all four intersecting directions are continuous, as shown in an enlarged plan view in FIG. There are others. For example, as shown in FIG. 5B, only one intersecting direction may be divided by the gap G and discontinuous. The gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3. The width d of the gap G exceeds 0 (it is sufficient if the gap G is formed) and is usually set to 20 μm or less. Similarly, as shown in FIGS. 5C and 5D, two intersecting directions (two directions facing each other in FIG. 5C and two adjacent directions in FIG. 5D) are discontinuous. As shown in FIG. 5 (e), the three intersecting directions may be discontinuous, or as shown in FIG. 5 (f), all the four intersecting directions may be discontinuous. It may be discontinuous. Further, a lattice shape having two or more types of intersections among the intersections shown in FIGS. That is, in the present invention, the “lattice shape” formed by the plurality of linear cores 2 means that a part or all of the intersections are formed as described above.
 なかでも、図5(b)~(f)に示すように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができる。すなわち、図6(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図6(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面での反射角度が大きいことから、コア2を透過する〔図6(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図6(a)では下方向〕でも発生する。これに対し、図6(b)に示すように、交差する1方向〔図6(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図6(a)においてコア2を透過する光の一部は、上記界面での反射角度が小さくなることから、透過することなく、その界面で反射し、コア2を進み続ける〔図6(b)の二点鎖線の矢印参照〕。このことから、先に述べたように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができるのである。 In particular, as shown in FIGS. 5B to 5F, if at least one intersecting direction is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 6 (a), in an intersection where all four intersecting directions are continuous, when light is focused on one intersecting direction (upward in FIG. 6 (a)), light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle at the wall surface is large [two points in FIG. (See chain line arrow). Such light transmission also occurs in the direction opposite to the above (downward in FIG. 6A). On the other hand, as shown in FIG. 6 (b), when one intersecting direction (upward in FIG. 6 (b)) is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light that is formed and passes through the core 2 in FIG. 6A is reflected at the interface without passing through the core 2 because the reflection angle at the interface is small, and continues to travel through the core 2 [FIG. 6 (b), see the two-dot chain line arrow]. From this, as described above, if at least one intersecting direction is discontinuous, the light crossing loss can be reduced.
 また、上記各実施の形態では、オーバークラッド層3も、上記アンダークラッド層1と同様、引張伸び5~140%の範囲で弾性域にあるとしたが、オーバークラッド層3は、他の弾性特性を示すものでもよい。 Further, in each of the above embodiments, the over clad layer 3 is also in the elastic region in the range of tensile elongation of 5 to 140%, similar to the under clad layer 1, but the over clad layer 3 has other elastic characteristics. May be used.
 さらに、上記各実施の形態において、アンダークラッド層1の下面に、ゴム層等の弾性層を設けてもよい。この場合、押圧を解除した後、アンダークラッド層1,コア2およびオーバークラッド層3は、それ自体の復元力だけでなく、上記弾性層の弾性力をも利用して、元の形状に回復することができる。また、アンダークラッド層1を上記弾性層と同じ形成材料からなるものとし、それらアンダークラッド層1と弾性層とからなる積層体を一つの層として扱ってもよい。 Further, in each of the above embodiments, an elastic layer such as a rubber layer may be provided on the lower surface of the under cladding layer 1. In this case, after releasing the pressure, the under-cladding layer 1, the core 2 and the over-cladding layer 3 recover not only to their own restoring force but also to the original shape by utilizing the elastic force of the elastic layer. be able to. Further, the under clad layer 1 may be made of the same material as that of the elastic layer, and a laminate including the under clad layer 1 and the elastic layer may be handled as one layer.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
〔コア,アンダークラッド層およびオーバークラッド層の形成材料〕
 後記の表1に示すように、コア形成用に4種類のエポキシ樹脂を準備するとともに、クラッド(アンダークラッド層およびオーバークラッド層)形成用に3種類のエポキシ樹脂を準備した。そして、これらエポキシ樹脂のうち少なくとも1種類を用い、実施例1~5および比較例1~3に用いる、コアおよびクラッドの形成材料をそれぞれ調製した。その調製には、光酸発生剤,乳酸エチル(溶剤)等を適宜用いた。
[Material for forming core, under clad layer and over clad layer]
As shown in Table 1 below, four types of epoxy resins were prepared for forming the core, and three types of epoxy resins were prepared for forming the clad (under clad layer and over clad layer). At least one of these epoxy resins was used to prepare core and clad forming materials used in Examples 1 to 5 and Comparative Examples 1 to 3, respectively. For the preparation, a photoacid generator, ethyl lactate (solvent), or the like was appropriately used.
〔コアおよびクラッドの引張伸び〕
 上記各形成材料を用い、コアおよびクラッドの板状試験片〔0.5mm×20mm×0.05mm(厚み)〕を作製した。そして、各試験片の引張伸びを、引張圧縮試験機(TECHNO GRAPH TG-1kN )を用いて測定した。その結果を後記の表1に示した。
[Tensile elongation of core and cladding]
Using each of the above forming materials, core and clad plate specimens [0.5 mm × 20 mm × 0.05 mm (thickness)] were prepared. And the tensile elongation of each test piece was measured using the tension compression testing machine (TECHNO GRAPH TG-1kN). The results are shown in Table 1 below.
〔光導波路の作製〕
 まず、ガラス製基材の表面に、上記クラッドの形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。このオーバークラッド層の厚みは25μmであった。
[Production of optical waveguide]
First, an over clad layer was formed on the surface of a glass substrate by spin coating using the above clad forming material. The over cladding layer had a thickness of 25 μm.
 ついで、上記オーバークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、格子状のコアを形成した。このコアの幅は30μm、厚みは50μmであった。なお、引張伸びが10%を超える材料では、コアをパターン形成できなかった。 Next, a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material. The core had a width of 30 μm and a thickness of 50 μm. Note that the core could not be patterned with a material having a tensile elongation exceeding 10%.
 つぎに、上記コアを被覆するように、上記オーバークラッド層の上面に、上記クラッドの形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。このアンダークラッド層の厚みは500μmであった。 Next, an under clad layer was formed on the upper surface of the over clad layer by spin coating using the clad forming material so as to cover the core. The thickness of this under cladding layer was 500 μm.
 そして、上記オーバークラッド層を上記ガラス製基材から剥離した。ついで、接着剤を介して、アルミニウム板の表面に、上記アンダークラッド層を接着した。このようにして、アルミニウム板の表面に、接着剤を介して、光導波路を作製した。 Then, the over clad layer was peeled off from the glass substrate. Next, the under cladding layer was bonded to the surface of the aluminum plate via an adhesive. Thus, the optical waveguide was produced on the surface of the aluminum plate via the adhesive.
〔位置センサの作製〕
 上記光導波路のコアの一端面に、発光素子(Optowell社製、XH85-S0603-2s )を接続し、コアの他端面に、受光素子(浜松ホトニクス社製、s10226)を接続し、実施例1~5および比較例1~3の位置センサを作製した。
[Production of position sensor]
A light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of the optical waveguide, and a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the core. To 5 and Comparative Examples 1 to 3 were produced.
〔位置センサの評価:連続的検知(形状回復性)〕
 上記各位置センサの入力領域の表面に、PETフィルム(厚み50μm)を介して紙(厚み80μm)を載置した。そして、その紙の表面に荷重をかけない状態で、上記受光素子にて受光スペクトルを観測した。ついで、上記紙の表面に、先端直径0.5mmのボールペン先で9.8Nの荷重をかけ、上記受光素子にて受光スペクトルを観測した。つぎに、上記ボールペン先による荷重を解除し、その直後から上記受光スペクトルが無荷重状態での受光スペクトルに回復するまでの時間を測定した。そして、その回復時間が7.1ms(CMOSスキャン速度)未満のものを、位置センサの連続的検知(形状回復性)に優れていると評価し○を、回復時間が7.1ms以上のものを、位置センサの連続的検知(形状回復性)に劣ると評価し×を、下記の表1に示した。なお、比較例1~3では、上記荷重をかけることにより、塑性変形し、その荷重を解除しても、形状が回復しなかった。
[Evaluation of position sensor: continuous detection (shape recovery)]
Paper (thickness 80 μm) was placed on the surface of the input region of each position sensor via a PET film (thickness 50 μm). And the light reception spectrum was observed with the said light receiving element in the state which did not apply a load to the surface of the paper. Next, a load of 9.8 N was applied to the surface of the paper with a ballpoint pen tip having a diameter of 0.5 mm, and a light reception spectrum was observed with the light receiving element. Next, the load from the ballpoint pen tip was released, and the time from immediately after that until the light reception spectrum recovered to the light reception spectrum in the no-load state was measured. And those whose recovery time is less than 7.1 ms (CMOS scan speed) are evaluated as being excellent in continuous detection (shape recovery) of the position sensor, and those whose recovery time is 7.1 ms or more. The results were evaluated as inferior to continuous detection (shape recoverability) of the position sensor, and x was shown in Table 1 below. In Comparative Examples 1 to 3, plastic deformation was caused by applying the above load, and the shape did not recover even when the load was released.
〔位置センサの評価:弾性維持性〕
 上記各位置センサの入力領域の表面に、PETフィルム(厚み50μm)を介して紙(厚み80μm)を載置した。そして、その紙の表面の一カ所に、先端直径0.5mmのボールペン先で9.8Nの荷重を30回(1回につき1秒間の荷重)かけた後、その荷重をかけた表面部分を、光学顕微鏡(KEYENCE 社製、WH-Z75)を用いて観察した。そして、表面に荷重跡がないものを、弾性維持性に優れていると評価し○を、表面に荷重跡があるものを、弾性維持性に劣ると評価し×を、下記の表1に示した。
[Evaluation of position sensor: elasticity maintenance]
Paper (thickness 80 μm) was placed on the surface of the input region of each position sensor via a PET film (thickness 50 μm). Then, after applying a load of 9.8 N with a ballpoint pen with a tip diameter of 0.5 mm to one place on the surface of the paper 30 times (1 second load at a time), It observed using the optical microscope (the KEYENCE company make, WH-Z75). Table 1 below shows that the surface having no load trace is evaluated as being excellent in elasticity sustainability, and the surface having a load trace is evaluated as being inferior in elasticity retention. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から、実施例1~5の位置センサは、比較例1~3の位置センサと比較すると、連続的検知(形状回復性)および弾性維持性に優れていることがわかる。そして、その結果の違いは、コアおよびクラッドの弾性域にある引張伸びに依存していることがわかる。 From the results of Table 1 above, it can be seen that the position sensors of Examples 1 to 5 are superior in continuous detection (shape recovery) and elasticity maintenance as compared with the position sensors of Comparative Examples 1 to 3. And it turns out that the difference of the result is dependent on the tensile elongation in the elastic region of a core and a clad.
 また、上記実施例1~5において、オーバークラッド層の弾性特性を変えても、上記実施例1~5と同様の傾向を示す連続的検知(形状回復性)の評価結果が得られた。このことから、その評価結果は、コアおよびアンダークラッド層の弾性域にある引張伸びに依存していることがわかる。 Also, in Examples 1 to 5, continuous detection (shape recoverability) showing the same tendency as in Examples 1 to 5 was obtained even if the elastic characteristics of the overclad layer were changed. This shows that the evaluation result depends on the tensile elongation in the elastic region of the core and the under cladding layer.
 さらに、上記実施例1~5では、位置センサの入力領域の表面に、PETフィルムを介して紙を載置した状態で、連続的検知(形状回復性)および弾性維持性を評価したが、それらPETフィルムおよび紙を載置しない状態でも、上記実施例1~5と同様の傾向を示す評価結果が得られた。 Furthermore, in Examples 1 to 5 above, continuous detection (shape recovery) and elasticity maintenance were evaluated with paper placed on the surface of the input region of the position sensor via a PET film. Evaluation results showing the same tendency as in Examples 1 to 5 were obtained even when the PET film and paper were not placed.
 また、上記実施例1~5では、光導波路を図1(b)に断面図で示すものとしたが、光導波路を図4に断面図で示すものとしても、上記実施例1~5と同様の傾向を示す評価結果が得られた。 In the first to fifth embodiments, the optical waveguide is shown in a sectional view in FIG. 1B. However, the optical waveguide is shown in the sectional view in FIG. 4 as in the first to fifth embodiments. An evaluation result showing the tendency was obtained.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の位置センサは、押圧位置を検知する際に、押圧跡を素早く無くし、連続的検知を良好にする場合に利用可能である。 The position sensor of the present invention can be used to quickly eliminate a pressing mark when detecting a pressing position and to improve continuous detection.
 W 光導波路
 1 アンダークラッド層
 2 コア
 3 オーバークラッド層
 4 発光素子
 5 受光素子
 
W Optical waveguide 1 Under clad layer 2 Core 3 Over clad layer 4 Light emitting element 5 Light receiving element

Claims (3)

  1.  格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状の光導波路と、
     この光導波路のコアの一端面に接続された発光素子と、
     上記コアの他端面に接続され上記発光素子から発せられコアを経て到達する光の受光素子と
    を備える位置センサであって、
     上記コアが、引張伸び3~10%の範囲の弾性域に設定されているとともに、上記コアを支持するアンダークラッド層が、引張伸び5~140%の範囲の弾性域に設定されており、
     上記格子状のコア部分に対応する光導波路の表面部分が入力領域に形成され、その入力領域における押圧個所がその押圧による上記受光素子での受光強度の減衰により特定されることを特徴とする位置センサ。
    A sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores;
    A light emitting element connected to one end face of the core of the optical waveguide;
    A position sensor comprising a light receiving element connected to the other end face of the core and emitted from the light emitting element and reaching through the core;
    The core is set in an elastic range of 3 to 10% tensile elongation, and the undercladding layer supporting the core is set in an elastic range of 5 to 140% tensile elongation.
    A position characterized in that a surface portion of an optical waveguide corresponding to the lattice-shaped core portion is formed in an input region, and a pressing position in the input region is specified by attenuation of received light intensity in the light receiving element due to the pressing Sensor.
  2.  上記コアおよびアンダークラッド層が、エポキシ樹脂製である請求項1記載の位置センサ。 The position sensor according to claim 1, wherein the core and the under cladding layer are made of epoxy resin.
  3.  上記オーバークラッド層が、引張伸び5~140%の範囲の弾性域に設定されている請求項1または2記載の位置センサ。
     
    The position sensor according to claim 1 or 2, wherein the over clad layer is set in an elastic range of 5 to 140% in tensile elongation.
PCT/JP2015/058470 2014-04-03 2015-03-20 Position sensor WO2015151860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-076893 2014-04-03
JP2014076893A JP2015197878A (en) 2014-04-03 2014-04-03 position sensor

Publications (1)

Publication Number Publication Date
WO2015151860A1 true WO2015151860A1 (en) 2015-10-08

Family

ID=54240190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058470 WO2015151860A1 (en) 2014-04-03 2015-03-20 Position sensor

Country Status (3)

Country Link
JP (1) JP2015197878A (en)
TW (1) TW201543309A (en)
WO (1) WO2015151860A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107804A (en) * 2003-09-30 2005-04-21 Japan Aviation Electronics Industry Ltd Optical waveguide type touch panel
JP2013015736A (en) * 2011-07-05 2013-01-24 Hitachi Chem Co Ltd Flexible optical waveguide and flexible optoelectrical composite substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107804A (en) * 2003-09-30 2005-04-21 Japan Aviation Electronics Industry Ltd Optical waveguide type touch panel
JP2013015736A (en) * 2011-07-05 2013-01-24 Hitachi Chem Co Ltd Flexible optical waveguide and flexible optoelectrical composite substrate

Also Published As

Publication number Publication date
JP2015197878A (en) 2015-11-09
TW201543309A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
WO2015151858A1 (en) Position sensor
WO2015151860A1 (en) Position sensor
WO2015151861A1 (en) Position sensor
WO2015151859A1 (en) Position sensor
KR102452784B1 (en) Optical waveguide and position sensor using same
WO2015045571A1 (en) Input device
WO2016031601A1 (en) Location sensor
WO2015049908A1 (en) Input apparatus
WO2014196390A1 (en) Electronic underlay
WO2016039166A1 (en) Position sensor
WO2016031538A1 (en) Position sensor
WO2015156111A1 (en) Position sensor and sheet-shaped optical waveguide used in same
JP2017010296A (en) Position sensor
WO2015159754A1 (en) Position sensor
WO2016056393A1 (en) Position sensor
WO2015045570A1 (en) Input device
JP2014225246A (en) Position sensor
WO2016043048A1 (en) Position sensor
WO2015156112A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2016031539A1 (en) Position sensor
WO2015170608A1 (en) Position sensor
JP2017004199A (en) Position sensor
JP2015201138A (en) information management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15774291

Country of ref document: EP

Kind code of ref document: A1