WO2016031539A1 - Position sensor - Google Patents

Position sensor Download PDF

Info

Publication number
WO2016031539A1
WO2016031539A1 PCT/JP2015/072594 JP2015072594W WO2016031539A1 WO 2016031539 A1 WO2016031539 A1 WO 2016031539A1 JP 2015072594 W JP2015072594 W JP 2015072594W WO 2016031539 A1 WO2016031539 A1 WO 2016031539A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
cladding layer
optical waveguide
light
layer
Prior art date
Application number
PCT/JP2015/072594
Other languages
French (fr)
Japanese (ja)
Inventor
良真 吉岡
裕介 清水
柴田 直樹
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016031539A1 publication Critical patent/WO2016031539A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to a position sensor that optically detects a pressed position.
  • the present applicant has proposed a position sensor that optically detects the pressed position (see, for example, Patent Document 1).
  • this has a rectangular sheet-shaped optical waveguide W1 in which a sheet-shaped core pattern member is sandwiched between a rectangular sheet-shaped under cladding layer 11 and an over cladding layer 13.
  • the core pattern member includes a lattice-shaped portion 12A formed by arranging a plurality of linear optical path cores 12 vertically and horizontally, and extends from the core 12 of the lattice-shaped portion 12A to the outer periphery of the lattice-shaped portion 12A.
  • positioned in the state along is provided.
  • the elastic modulus of the core 12 is set larger than the elastic modulus of the under cladding layer 11 and the elastic modulus of the over cladding layer 13.
  • a light emitting element 14 is connected to one end face of the core 12 of the outer peripheral portion 12B of the core pattern member, and a light receiving element 15 is connected to the other end face of the core 12.
  • the light emitted from the light emitting element 14 passes through the core 12 from the outer peripheral portion 12B connected to the light emitting element 14 through the lattice portion 12A and the outer peripheral portion 12B on the opposite side. It is designed to receive light.
  • the surface portion of the over clad layer 13 corresponding to the lattice-like portion 12A of the core pattern member is an input region 13A of the position sensor.
  • the light propagating through the core 12 leaks to the under cladding layer 11 outside the bent core 12 (refer to the two-dot chain line arrow in FIG. 8B). Therefore, in the core 12 of the pressing portion, the light receiving level at the light receiving element 15 decreases, and the pressing position can be detected from the decrease in the light receiving level.
  • the refractive index of the core serving as the optical path is set higher than the refractive indexes of the under-cladding layer and the over-cladding layer, and light propagating through the core is difficult to leak into the under-cladding layer and the over-cladding layer. It has become. From the viewpoint of making the light propagation property as an optical waveguide uniform by making the light leakage from the core equal to both the under-cladding layer and the over-cladding layer, the refractive index of the under-cladding layer It is common technical knowledge that the refractive index of the overcladding layer is the same.
  • the position sensor is required to increase the detection sensitivity of the pressed position.
  • the position sensor includes a peripheral portion (frame portion) F1 of the optical waveguide W1 in which the outer peripheral portion 12B of the core pattern member is sandwiched between the side edge portion of the under cladding layer 11 and the side edge portion of the over cladding layer 13.
  • the position sensor requires a larger space than the input region 13A due to the presence of the peripheral edge portion F1 formed around the input region 13A.
  • the input area 13A of the position sensor is widened or the detection accuracy of the pressed position in the input area 13A is improved, it is necessary to increase the number of cores 12, and accordingly, the width of the peripheral portion F1. Need to be wide. For this reason, the position sensor requires a larger space. There is room for improvement in that respect.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a position sensor capable of improving the detection sensitivity of the pressed position and saving space.
  • the position sensor of the present invention has a lattice-shaped portion composed of a plurality of linear cores, and extends along the outer periphery of the lattice-shaped portion extending from the core of the lattice-shaped portion.
  • the emitted light is received by the light receiving element through the core of the optical waveguide, and the surface portion of the over clad layer corresponding to the lattice portion of the core pattern member is used as an input region, and the pressed position in the input region Is determined by the amount of light propagation of the core changed by the pressing.
  • the elastic modulus of the core is set to be larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, and in the pressed state of the surface of the over cladding layer, A configuration in which the deformation rate is smaller than the deformation rate of the cross section of the over clad layer and the under clad layer, and the core of the pressing portion is bent so as to sink into the under clad layer.
  • the difference between the refractive index of the core and the refractive index of the over cladding layer is set to be larger than the difference between the refractive index of the core and the refractive index of the under cladding layer.
  • Light propagating through the core is likely to leak into the undercladding layer, and the change in the amount of light propagation of the core due to pressing increases. A configuration in which propagating light is difficult to leak into the overcladding layer.
  • the “deformation rate” refers to the ratio of the amount of change of each thickness during pressing to the thickness of the core, over cladding layer and under cladding layer before pressing in the pressing direction.
  • the inventors of the present invention have repeated research focusing on light leakage from the core of the pressed portion in order to increase the detection sensitivity of the pressed position. That is, as described in the background art above, in the optical waveguide in which the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, the core of the pressing portion is almost crushed. The light that propagates through the core is leaked to the under-cladding layer outside the bent core. Accordingly, the present inventors have conceived of increasing the detection sensitivity of the pressed position by making it easier for light to leak from the core of the pressed portion and increasing the change in the amount of light propagation of the core due to the press in the course of the above research. did.
  • the difference between the refractive index of the core and the refractive index of the under cladding layer and the over cladding layer (the refractive index of the under cladding layer and the refractive index of the over cladding layer are the same) is reduced.
  • the present inventors have continued research, focusing on the fact that light in the core leaks into the under cladding layer outside the bent core at the pressed portion and leaks into the outer over cladding layer at the bent portion. .
  • the conventional technical common sense was broken, and the difference between the refractive index of the core and the refractive index of the over cladding layer was set to be larger than the difference between the refractive index of the core and the refractive index of the under cladding layer. .
  • the light in the core easily leaks to the under cladding layer, and the change in the amount of light propagation of the core due to pressing increases, and in the bent portion, the light in the core leaks to the over cladding layer. I found it difficult.
  • the difference in refractive index can increase the detection sensitivity of the pressed position, and it can be found that space saving can be achieved by bending at least a part of the peripheral portion of the optical waveguide to the back side of the optical waveguide, The present invention has been reached.
  • the core is patterned into a lattice-shaped portion and an outer peripheral portion arranged in a state along the outer periphery, and an overcladding layer corresponding to the lattice-shaped portion of the core pattern member is formed.
  • the surface portion is the input area.
  • at least a part of the peripheral portion of the optical waveguide corresponding to the outer peripheral portion of the core pattern member is bent to the back side of the optical waveguide with the under cladding layer on the inside and the over cladding layer on the outside.
  • the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer.
  • the difference between the refractive index of the core and the refractive index of the over cladding layer is set larger than the difference between the refractive index of the core and the refractive index of the under cladding layer.
  • the thickness of the position sensor can be reduced.
  • FIG. 1 It is a top view showing typically one embodiment of a position sensor of the present invention.
  • (A) is a top view which shows typically the preparation process of the said position sensor,
  • (b) is an expanded sectional view of the center part,
  • (c) is an expanded sectional view of the side edge part is there. It is an expanded sectional view showing typically the state of the above-mentioned position sensor pressed by the pen tip.
  • It is an expanded sectional view of the side edge part which shows other embodiments of the position sensor of the present invention typically.
  • (A) to (f) are enlarged plan views schematically showing the crossing form of the cores of the lattice-like portion in the position sensor.
  • (A), (b) is an enlarged plan view which shows typically the course of the light in the cross
  • (A) is a top view which shows typically the conventional position sensor,
  • (b) is an expanded sectional view which shows typically the state of the conventional position sensor pressed with the pen tip.
  • FIG. 1 is a plan view showing an embodiment of the position sensor of the present invention.
  • the position sensor of this embodiment has three peripheral portions F of the substantially rectangular sheet-shaped optical waveguide W shown in a plan view in FIG. 2A (left and right sides and lower side in FIG. 2A).
  • the optical waveguide W is bent on the back side. Thereby, space saving of the position sensor is achieved.
  • the three portions indicated by the two-dot chain line of the peripheral portion F are portions that are hidden behind the optical waveguide W by the bending and are not visible in plan view.
  • the position sensor according to this embodiment includes a substantially rectangular sheet-shaped optical waveguide W and two light emitting elements disposed at two adjacent corners of the optical waveguide W, as shown in FIG.
  • An element 4 and two light receiving elements 5 disposed at the remaining two corners of the optical waveguide W are provided.
  • a rectangular portion at the center of the surface of the optical waveguide W [a quadrangular portion indicated by a one-dot chain line in FIG. 2A] is an input region 3A, and FIG. 2B (enlarged sectional view of the central portion of the position sensor).
  • an electric circuit board E is provided on the back surface portion of the optical waveguide W corresponding to the input region 3A.
  • peripheral portions F of the optical waveguide W around the input region 3A the peripheral portions F at the three locations (the left and right sides and the lower side in FIG. 2A) are shown in FIG. 2 (c) (enlarged sectional view of the side edge portion of the position sensor), it is bent.
  • the bent front end of the peripheral portion F is brought into contact with an electric circuit forming surface of the electric circuit board E (a surface opposite to the optical waveguide W: a lower surface in FIG. 2C), and the light emitting element 4 and the light receiving element 5 are mounted on the electric circuit forming surface of the electric circuit board E.
  • the peripheral portion F at one portion that is not bent is formed narrow in advance so that it does not need to be bent.
  • the optical waveguide W includes a lattice-shaped portion 2A composed of a plurality of linear optical path cores 2 on the surface of the substantially quadrilateral sheet-like underclad layer 1, and the core 2 of the lattice-shaped portion 2A.
  • a sheet-like core pattern member is formed which includes an outer peripheral portion 2B extending from the outer periphery of the lattice-shaped portion 2A and covering the core pattern member.
  • An over clad layer 3 is formed on the surface of the layer 1. And the surface part of the over clad layer 3 corresponding to the lattice-like part 2A of the core pattern member is the input region 3A.
  • a portion where the outer peripheral portion 2B of the core pattern member is sandwiched between the side edge portion of the under cladding layer 1 and the side edge portion of the over cladding layer 3 is a peripheral portion (frame portion) F of the optical waveguide W.
  • the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2.
  • the number of cores 2 is omitted.
  • the arrows in FIGS. 1 and 2 (a) indicate the light traveling direction.
  • the elastic modulus of the core 2 is set larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3.
  • the elastic modulus of the core 2 is set in a range of 1 GPa or more and 10 GPa or less
  • the elastic modulus of the over clad layer 3 is set in a range of 0.1 GPa or more and less than 10 GPa.
  • the elastic modulus of 1 is preferably set in the range of 0.1 MPa to 1 GPa.
  • the over clad layer 3 and the under clad layer 1 having a low elastic modulus are deformed so as to be crushed, and the core 2 having a high elastic modulus. Bends so as to sink into the undercladding layer 1 along the nib 10 with almost no collapse (while maintaining the cross-sectional area). Then, the light propagating through the core 2 leaks to the under cladding layer 1 outside the bent core 2 (see the two-dot chain line arrow in FIG. 3). For this reason, in the core 2 at the pressing portion, the light receiving level at the light receiving element 5 decreases, and the pressing position can be detected from the decrease in the light receiving level.
  • the refractive index is set so as to increase in the order of the over cladding layer 3, the under cladding layer 1, and the core 2. That is, the difference between the refractive index of the core 2 and the refractive index of the over cladding layer 3 is set to be larger than the difference between the refractive index of the core 2 and the refractive index of the under cladding layer 1.
  • the refractive index of the core 2 is set in the range of 1.002 to 1.700
  • the refractive index of the over clad layer 3 is set in the range of 1.000 to 1.698
  • the refractive index of the cladding layer 1 is set within a range of 1.001 to 1.699.
  • the difference between the refractive index of the core 2 and the refractive index of the over clad layer 3 is preferably set in the range of 0.005 to 0.6.
  • the difference in refractive index due to the difference in refractive index, light propagating through the core 2 is difficult to leak into the outer overcladding layer 3 at the bent portion (curved surface portion) of the optical waveguide W. Therefore, the light from the light emitting element 4 can be reliably propagated to the lattice-like portion 2A of the core pattern member, and the light propagating through the lattice-like portion 2A can be reliably made to reach the light receiving element 5. Thereby, a press position can be detected appropriately.
  • one light emitting element 4 is connected to one end face of the core 2 of the outer peripheral portion 2B where the longitudinal core 2 of the lattice-like portion 2A of the core pattern member is extended, and the core
  • One light-receiving element 5 is connected to the other end face of 2
  • another light-emitting element 4 is attached to one end face of the core 2 of the outer peripheral part 2 ⁇ / b> B in which the transverse core 2 of the lattice-like part 2 ⁇ / b> A extends.
  • another light receiving element 5 is connected to the other end face of the core 2.
  • the light emitted from the light emitting element 4 passes through the core 2 through the outer peripheral part 2B on the opposite side from the outer peripheral part 2B connected to the light emitting element 4 through the lattice part 2A. It is designed to receive light.
  • the two directions can be controlled separately, and the input region
  • the detection accuracy of the pressed position (XY coordinate) in 3A can be improved.
  • the light emitting element 4 or the light receiving element 5 is disposed at each corner of the substantially rectangular sheet-shaped optical waveguide W, the light from the light emitting element 4 to the lattice-shaped portion 2A.
  • the propagation distance and the light propagation distance from the lattice-like portion 2A to the light receiving element 5 can be shortened, and the light propagation efficiency can be improved.
  • the electric circuit board E is provided on the back surface (the surface opposite to the core formation surface) of the under cladding layer 1 of the optical waveguide W corresponding to the input region 3A. ) Part.
  • the tip of the peripheral portion F of the bent optical waveguide W is in contact with the electric circuit forming surface of the electric circuit board E (the surface opposite to the under cladding layer 1; the lower surface in FIG. 2C).
  • the light emitting element 4 and the light receiving element 5 are mounted on the electric circuit forming surface of the electric circuit board E.
  • the thickness of the electric circuit board E is set in a range of 1 to 10 mm, for example, and the bending radius (inner diameter) R of the bent portion is set in a range of 0.5 to 5 mm, for example. . If the bending radius R is too small, the light propagation efficiency at the bent portion tends to be reduced. If it is too large, the protruding width (frame width) T of the bent portion protruding around the input region 3A is large. Therefore, the effect of space saving of the position sensor tends to be reduced.
  • the optical waveguide W and the electric circuit board E are individually manufactured.
  • the back surface portion of the under cladding layer 1 of the optical waveguide W corresponding to the input region 3A is brought into contact with the surface of the electrical circuit board E opposite to the electrical circuit formation surface.
  • the light emitting element 4 and the light receiving element 5 are connected to the end face of the core 2 of the optical waveguide W.
  • the peripheral portion F of the optical waveguide W is bent at a right angle with respect to the core 2 of the peripheral portion F, and the tip of the bent peripheral portion F is brought into contact with the electric circuit forming surface of the electric circuit board E.
  • the light emitting element 4 and the light receiving element 5 are mounted on the electric circuit forming surface. In this way, the position sensor can be obtained.
  • Examples of the material for forming the under cladding layer 1, the core 2 and the over cladding layer 3 include a photosensitive resin, a thermosetting resin, and the like, and the optical waveguide W can be manufactured by a manufacturing method corresponding to the forming material. .
  • the elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
  • the thickness of each layer is set, for example, in the range of 10 to 500 ⁇ m for the under cladding layer 1, in the range of 5 to 100 ⁇ m for the core 2, and in the range of 1 to 200 ⁇ m for the over cladding layer 3.
  • a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
  • FIG. 4 is an enlarged cross-sectional view showing a side edge portion of another embodiment of the position sensor of the present invention.
  • the bent portion of the peripheral portion F of the optical waveguide W is bent 90 ° to the back side of the optical waveguide W. It has become a thing.
  • the electric circuit board E is also bent by 90 °.
  • the other parts are the same as those of the above-described embodiment shown in FIGS. 1 and 2A to 2C, and the same reference numerals are given to the same parts.
  • the position sensor of this embodiment can be installed at a corner of a desk or the like along the inside of the portion bent by 90 °.
  • the cross-sectional structure of the optical waveguide W is shown in FIG. 2B, but may be other, for example, as shown in the cross-sectional view of FIG. It is good also as a thing of the structure which turned upside down what is shown in. That is, in the optical waveguide W, the core 2 is embedded in the surface portion of the sheet-like underclad layer 1, and the surface of the underclad layer 1 and the top surface of the core 2 are formed flush with each other. A sheet-like over clad layer 3 is formed in a state where the surface of the clad layer 1 and the top surface of the core 2 are covered.
  • three of the four peripheral portions F of the optical waveguide W are bent, but may be other, for example, all four may be bent, or two may be bent. It is good or you may bend only one place.
  • two light emitting elements 4 and two light receiving elements 5 are used.
  • other light emitting elements 4 and light receiving elements 5 may be used.
  • one light emitting element 4 or three or more light receiving elements 5 may be used.
  • the light emitting element 4 or the light receiving element 5 is disposed at each corner of the substantially rectangular sheet-shaped optical waveguide W.
  • all of the light emitting element 4 and the light receiving element 5 are provided. Alternatively, they may be disposed at the same end edge of the substantially rectangular sheet-shaped optical waveguide W.
  • each of the intersecting portions of the core 2 of the lattice-like portion is normally formed in a state in which all of the four intersecting directions are continuous as shown in an enlarged plan view in FIG. Others are acceptable.
  • FIG. 6B only one intersecting direction may be divided by the gap G and discontinuous.
  • the gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3.
  • the width d of the gap G exceeds 0 (zero), and is usually set to 20 ⁇ m or less.
  • two intersecting directions are discontinuous.
  • the three intersecting directions may be discontinuous, or as shown in FIG. 6 (f), all the four intersecting directions may be discontinuous. It may be discontinuous.
  • the light crossing loss can be reduced. That is, as shown in FIG. 7 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions (upward in FIG. 7 (a)) is noted, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and the incident angle at the wall surface is smaller than the critical angle, and thus passes through the core 2 [FIG. )) Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 7A).
  • FIG. 7B when one intersecting direction (the upward direction in FIG.
  • Example 1 [Formation material of over clad layer]
  • Component a 50 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation, YL7410).
  • Component b 50 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
  • Component c 1 part by weight of a photoacid generator (manufactured by Sun Apro, CPI101A).
  • Component d 100 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
  • Component e 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
  • Component f 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries, Ltd., solvent).
  • Component g 60 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation, YL7410).
  • Ingredient h 40 weight part of epoxy resins (the product made by Daicel, EHPE3150).
  • Component i 1 part by weight of a photoacid generator (manufactured by San Apro, CPI101A). By mixing these components g to i, a material for forming the underclad layer was prepared.
  • an under clad layer was formed by spin coating using the under clad layer forming material.
  • the thickness of the under cladding layer was 50 ⁇ m.
  • the elastic modulus was 0.25 GPa and the refractive index was 1.496.
  • the elastic modulus was measured using a viscoelasticity measuring device (TA instruments Japan Inc., RSA3).
  • a sheet-like core pattern member having a lattice-shaped portion composed of a plurality of linear cores and an outer peripheral portion is formed on the surface of the under-cladding layer by the photolithography method using the core forming material.
  • the size of the grid portion (input area) was 210 mm long ⁇ 297 mm wide.
  • the width of the core was 100 ⁇ m, the thickness was 50 ⁇ m, and the width of the gap between adjacent parallel linear cores in the lattice portion was 500 ⁇ m.
  • the elastic modulus was 1.5 GPa and the refractive index was 1.506.
  • an over clad layer was formed on the surface of the under clad layer by spin coating using the over clad layer forming material so as to cover the core pattern member.
  • the thickness of the over clad layer was 25 ⁇ m.
  • the elastic modulus was 0.25 GPa and the refractive index was 1.486. In this way, a sheet-like optical waveguide was produced.
  • the peripheral portions of the three portions of the optical waveguide were bent and brought into contact with the electric circuit forming surface of the electric circuit board, and the light emitting element and the light receiving element were mounted on the electric circuit forming surface.
  • the protruding width of the bent portion protruding around the input region was 10 mm at two positions on both sides, and 5 mm at one position between them, and the bending radius was 2 mm.
  • the widths of the peripheral portions of the three bent portions were 47.5 mm and 35.5 mm at two locations on both sides, and 60.0 mm at one location therebetween.
  • Example 2 to 4 and Comparative Examples 1 to 4 In Example 1 above, by changing the type and composition ratio of each forming material of the optical waveguide, the elastic modulus and refractive index were changed as shown in Table 1 below, and these were changed to Examples 2 to 4 and Comparative Example 1 respectively. ⁇ 4.
  • a linear optical waveguide was produced in the same manner as described above using the respective forming materials of Examples 1 to 4 and Comparative Examples 1 to 4. Then, the central portion in the longitudinal direction of the linear optical waveguide is wound once around a rod having a radius of 2 mm, and in this state, light emitted from the light emitting element is incident from one end of the optical waveguide, and the other end The light emitted from was received by the light receiving element. And loss value ((alpha)) was computed according to the following formula
  • the difference between the refractive index of the core and the refractive index of the over cladding layer is set to be larger than the difference between the refractive index of the core and the refractive index of the under cladding layer. 4 shows that the detection sensitivity of the pressed position is high and the bending loss is small. On the other hand, in Comparative Examples 1 to 4 where the difference in refractive index is not set as described above, the detection sensitivity of the pressed position is low, the bending loss is high, or both. Recognize.
  • the optical waveguide is shown in a sectional view in FIG. 2B.
  • the optical waveguide is shown in the sectional view in FIG. 5 as in the first to fourth embodiments. The result which shows the tendency of was obtained.
  • the position sensor of the present invention can be used to improve the detection sensitivity of the pressed position and save space.

Abstract

This invention provides a position sensor that makes it possible to save space and improve the sensitivity with which pressure positions are detected. Said position sensor contains a sheet-shaped optical waveguide W, and said optical waveguide W comprises a sheet-shaped core-pattern member sandwiched between a lower cladding layer 1 and an upper cladding layer 3. The core-pattern member has a grid section 2A and periphery sections 2B. The grid section 2A comprises a plurality of linear cores 2, and the periphery sections 2B extend from the cores 2 in the grid section 2A and are laid out along the perimeter of the grid section 2A. The section of the surface of the upper cladding layer 3 corresponding to the grid section 2A of the core-pattern member serves as an input region 3A, and at least parts of edge sections F of the optical waveguide W, which correspond to the periphery sections 2B of the core-pattern member, are folded over to the back of the optical waveguide W. The indices of refraction of the upper cladding layer 3, the lower cladding layer 1, and the core 2 are set such that the core 2 has the highest index of refraction, followed by the lower cladding layer 1 and then the upper cladding layer 3.

Description

位置センサPosition sensor
 本発明は、押圧位置を光学的に検知する位置センサに関するものである。 The present invention relates to a position sensor that optically detects a pressed position.
 本出願人は、これまでに、押圧位置を光学的に検知する位置センサを提案している(例えば、特許文献1参照)。このものは、図8(a)に示すように、シート状のコアパターン部材を四角形シート状のアンダークラッド層11とオーバークラッド層13とで挟持した四角形シート状の光導波路W1を有している。上記コアパターン部材は、複数の線状の光路用のコア12を縦横に配置してなる格子状部分12Aと、この格子状部分12Aのコア12から延設されてその格子状部分12Aの外周に沿った状態で配置された外周部分12Bとを備えている。そして、上記コア12の弾性率が、上記アンダークラッド層11の弾性率および上記オーバークラッド層13の弾性率よりも大きく設定されている。また、上記コアパターン部材の外周部分12Bのコア12の一端面に、発光素子14が接続され、そのコア12の他端面に、受光素子15が接続されている。そして、上記発光素子14から発光された光は、コア12の中を、その発光素子14に接続された外周部分12Bから格子状部分12Aを経て反対側の外周部分12Bを通り、上記受光素子15で受光されるようになっている。また、上記コアパターン部材の格子状部分12Aに対応するオーバークラッド層13の表面部分〔図8(a)の中央に一点鎖線で示す長方形部分〕が、位置センサの入力領域13Aとなっている。 The present applicant has proposed a position sensor that optically detects the pressed position (see, for example, Patent Document 1). As shown in FIG. 8 (a), this has a rectangular sheet-shaped optical waveguide W1 in which a sheet-shaped core pattern member is sandwiched between a rectangular sheet-shaped under cladding layer 11 and an over cladding layer 13. . The core pattern member includes a lattice-shaped portion 12A formed by arranging a plurality of linear optical path cores 12 vertically and horizontally, and extends from the core 12 of the lattice-shaped portion 12A to the outer periphery of the lattice-shaped portion 12A. The outer peripheral part 12B arrange | positioned in the state along is provided. The elastic modulus of the core 12 is set larger than the elastic modulus of the under cladding layer 11 and the elastic modulus of the over cladding layer 13. A light emitting element 14 is connected to one end face of the core 12 of the outer peripheral portion 12B of the core pattern member, and a light receiving element 15 is connected to the other end face of the core 12. The light emitted from the light emitting element 14 passes through the core 12 from the outer peripheral portion 12B connected to the light emitting element 14 through the lattice portion 12A and the outer peripheral portion 12B on the opposite side. It is designed to receive light. Further, the surface portion of the over clad layer 13 corresponding to the lattice-like portion 12A of the core pattern member [rectangular portion indicated by a one-dot chain line in the center of FIG. 8A] is an input region 13A of the position sensor.
 そして、入力する際には、図8(b)に示すように、上記位置センサを、例えばテーブル等の平面台30の上に載置した状態で、上記格子状部分12Aに対応する上記入力領域13Aを、入力用のペン先10で押圧することが行われる。それにより、その押圧方向の断面では、弾性率の小さいオーバークラッド層13とアンダークラッド層11とがつぶれるように変形し、弾性率の大きいコア12は、殆どつぶれることなく(断面積を保持したまま)、上記ペン先10に沿って、アンダークラッド層11に沈むように曲がる。そして、そのコア12の中を伝播する光は、曲がったコア12の外側にあるアンダークラッド層11に漏れる〔図8(b)の二点鎖線の矢印参照〕。そのため、上記押圧部分のコア12では、受光素子15での受光レベルが低下し、その受光レベルの低下から、上記押圧位置を検知できるようになっている。 When inputting, as shown in FIG. 8B, the input area corresponding to the grid-like portion 12A in a state where the position sensor is placed on a flat table 30 such as a table, for example. Pressing 13A with the pen point 10 for input is performed. Thereby, in the cross section in the pressing direction, the over-cladding layer 13 and the under-cladding layer 11 having a small elastic modulus are deformed so as to be crushed, and the core 12 having a large elastic modulus is hardly crushed (while maintaining the cross-sectional area). ), Bent along the pen tip 10 so as to sink into the underclad layer 11. Then, the light propagating through the core 12 leaks to the under cladding layer 11 outside the bent core 12 (refer to the two-dot chain line arrow in FIG. 8B). Therefore, in the core 12 of the pressing portion, the light receiving level at the light receiving element 15 decreases, and the pressing position can be detected from the decrease in the light receiving level.
 なお、一般に、光導波路では、光路となるコアの屈折率がアンダークラッド層およびオーバークラッド層の屈折率よりも高く設定され、コアの中を伝播する光がアンダークラッド層およびオーバークラッド層に漏れ難くなっている。そして、コアからの光の漏れ難さがアンダークラッド層に対してもオーバークラッド層に対しても等しくなるようにして光導波路としての光伝播性を均一にする観点から、アンダークラッド層の屈折率とオーバークラッド層の屈折率とを同じにすることが技術常識となっている。 In general, in the optical waveguide, the refractive index of the core serving as the optical path is set higher than the refractive indexes of the under-cladding layer and the over-cladding layer, and light propagating through the core is difficult to leak into the under-cladding layer and the over-cladding layer. It has become. From the viewpoint of making the light propagation property as an optical waveguide uniform by making the light leakage from the core equal to both the under-cladding layer and the over-cladding layer, the refractive index of the under-cladding layer It is common technical knowledge that the refractive index of the overcladding layer is the same.
特許第5513656号公報Japanese Patent No. 5513656
 上記位置センサでは、押圧位置の検知感度を高めることが求められている。 The position sensor is required to increase the detection sensitivity of the pressed position.
 また、上記位置センサは、上記コアパターン部材の外周部分12Bをアンダークラッド層11の側縁部とオーバークラッド層13の側縁部とで挟持した、光導波路W1の周縁部分(額縁部分)F1を有している。すなわち、上記位置センサは、上記入力領域13Aの周りに形成されている上記周縁部分F1の存在により、入力領域13Aよりも広いスペースを要するものとなっている。そして、上記位置センサの入力領域13Aを広くしたり、入力領域13Aにおける押圧位置の検知精度を向上させたりする場合、コア12の本数を多くする必要があり、その分、上記周縁部分F1の幅も広くする必要がある。そのため、上記位置センサは、さらに広いスペースを要するものとなる。その点で改良の余地がある。 The position sensor includes a peripheral portion (frame portion) F1 of the optical waveguide W1 in which the outer peripheral portion 12B of the core pattern member is sandwiched between the side edge portion of the under cladding layer 11 and the side edge portion of the over cladding layer 13. Have. That is, the position sensor requires a larger space than the input region 13A due to the presence of the peripheral edge portion F1 formed around the input region 13A. When the input area 13A of the position sensor is widened or the detection accuracy of the pressed position in the input area 13A is improved, it is necessary to increase the number of cores 12, and accordingly, the width of the peripheral portion F1. Need to be wide. For this reason, the position sensor requires a larger space. There is room for improvement in that respect.
 本発明は、このような事情に鑑みなされたもので、押圧位置の検知感度の向上および省スペース化を図ることができる位置センサの提供をその目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a position sensor capable of improving the detection sensitivity of the pressed position and saving space.
 上記の目的を達成するため、本発明の位置センサは、複数の線状のコアからなる格子状部分と、この格子状部分のコアから延設されてその格子状部分の外周に沿った状態で配置された外周部分とを備えたシート状のコアパターン部材を、アンダークラッド層とオーバークラッド層とで挟持したシート状の光導波路と、上記外周部分のコアの一端面に接続された発光素子と、上記外周部分のコアの他端面に接続された受光素子とを備えた位置センサであって、上記コアパターン部材の外周部分に対応する光導波路の周縁部分の少なくとも一部が、上記アンダークラッド層を内側にし、上記オーバークラッド層を外側にした状態で、光導波路の裏面側に折り曲げられており、かつ、下記の(A)および(B)の構成を有しており、上記発光素子で発光された光が、上記光導波路のコアを経て、上記受光素子で受光され、上記コアパターン部材の格子状部分に対応する上記オーバークラッド層の表面部分を入力領域とし、その入力領域における押圧位置を、その押圧により変化したコアの光伝播量によって特定するという構成をとる。
(A)上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記オーバークラッド層の表面の押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっているとともに、上記押圧部分のコアが上記アンダークラッド層に沈むように曲がるようになっている構成。
(B)上記コアの屈折率と上記オーバークラッド層の屈折率との差の方が、上記コアの屈折率と上記アンダークラッド層の屈折率との差よりも大きく設定され、上記押圧部分では、上記コアの中を伝播する光が上記アンダークラッド層に漏れ易くなっていて、押圧による上記コアの光伝播量の変化が増加するようになっているとともに、上記折り曲げ部分では、上記コアの中を伝播する光がオーバークラッド層に漏れ難くなっている構成。
In order to achieve the above object, the position sensor of the present invention has a lattice-shaped portion composed of a plurality of linear cores, and extends along the outer periphery of the lattice-shaped portion extending from the core of the lattice-shaped portion. A sheet-like optical waveguide sandwiched between an under-cladding layer and an over-cladding layer, and a light-emitting element connected to one end face of the core of the outer-peripheral portion; And a light receiving element connected to the other end face of the core of the outer peripheral portion, wherein at least a part of the peripheral portion of the optical waveguide corresponding to the outer peripheral portion of the core pattern member is the under cladding layer With the over clad layer on the outside and bent on the back side of the optical waveguide, and has the following configurations (A) and (B). The emitted light is received by the light receiving element through the core of the optical waveguide, and the surface portion of the over clad layer corresponding to the lattice portion of the core pattern member is used as an input region, and the pressed position in the input region Is determined by the amount of light propagation of the core changed by the pressing.
(A) The elastic modulus of the core is set to be larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, and in the pressed state of the surface of the over cladding layer, A configuration in which the deformation rate is smaller than the deformation rate of the cross section of the over clad layer and the under clad layer, and the core of the pressing portion is bent so as to sink into the under clad layer.
(B) The difference between the refractive index of the core and the refractive index of the over cladding layer is set to be larger than the difference between the refractive index of the core and the refractive index of the under cladding layer. Light propagating through the core is likely to leak into the undercladding layer, and the change in the amount of light propagation of the core due to pressing increases. A configuration in which propagating light is difficult to leak into the overcladding layer.
 なお、本発明において、「変形率」とは、押圧方向における、コア,オーバークラッド層およびアンダークラッド層の押圧前の各厚みに対する、押圧時の各厚みの変化量の割合をいう。 In the present invention, the “deformation rate” refers to the ratio of the amount of change of each thickness during pressing to the thickness of the core, over cladding layer and under cladding layer before pressing in the pressing direction.
 本発明者らは、押圧位置の検知感度を高めるべく、押圧部分のコアからの光の漏れに着目し、研究を重ねた。すなわち、先の背景技術で述べたように、コアの弾性率がアンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定されている光導波路では、押圧部分のコアは、殆どつぶれることなく(断面積を保持したまま)、アンダークラッド層に沈むように曲がり、そのコアの中を伝播する光は、曲がったコアの外側にあるアンダークラッド層に漏れる。そこで、本発明者らは、上記研究の過程で、押圧部分のコアから光を漏れ易くし、押圧によるコアの光伝播量の変化を増加させることにより、押圧位置の検知感度を高めることを着想した。そのために、コアの屈折率とアンダークラッド層およびオーバークラッド層の屈折率(アンダークラッド層の屈折率とオーバークラッド層の屈折率は同じ)との差を小さくした。 The inventors of the present invention have repeated research focusing on light leakage from the core of the pressed portion in order to increase the detection sensitivity of the pressed position. That is, as described in the background art above, in the optical waveguide in which the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, the core of the pressing portion is almost crushed. The light that propagates through the core is leaked to the under-cladding layer outside the bent core. Accordingly, the present inventors have conceived of increasing the detection sensitivity of the pressed position by making it easier for light to leak from the core of the pressed portion and increasing the change in the amount of light propagation of the core due to the press in the course of the above research. did. Therefore, the difference between the refractive index of the core and the refractive index of the under cladding layer and the over cladding layer (the refractive index of the under cladding layer and the refractive index of the over cladding layer are the same) is reduced.
 しかしながら、省スペース化を図るために、光導波路の周縁部分の少なくとも一部を、アンダークラッド層を内側にし、オーバークラッド層を外側にした状態で、光導波路の裏面側に折り曲げると、今度は、その折り曲げ部分(曲面部分)のコアから光が外側のオーバークラッド層に漏れ易くなる。そのため、コアの光伝播量が減少し、受光素子での伝播光の受光が困難となる。 However, in order to save space, if at least part of the peripheral portion of the optical waveguide is bent to the back side of the optical waveguide with the under cladding layer inside and the over cladding layer outside, this time, Light easily leaks from the bent portion (curved surface) core to the outer overcladding layer. Therefore, the light propagation amount of the core is reduced, and it is difficult to receive the propagation light by the light receiving element.
 逆に、上記屈折率の差を大きくし、折り曲げ部分のコアから光が漏れ難くすると、今度は、押圧部分のコアからも光が漏れ難くなり、押圧位置の検知感度が低下する。 Conversely, if the difference in refractive index is increased and light does not easily leak from the folded core, light will also hardly leak from the pressed core, and the detection sensitivity of the pressed position will be reduced.
 そこで、本発明者らは、コアの中の光が、押圧部分では曲がったコアの外側にあるアンダークラッド層に漏れ、折り曲げ部分では外側のオーバークラッド層に漏れることに着目し、研究を続けた。そして、従来の技術常識を打破し、コアの屈折率とオーバークラッド層の屈折率との差の方が、コアの屈折率とアンダークラッド層の屈折率との差よりも大きくなるように設定した。すると、押圧部分では、コアの中の光がアンダークラッド層に漏れ易くなって、押圧によるコアの光伝播量の変化が増加するとともに、折り曲げ部分では、コアの中の光がオーバークラッド層に漏れ難くなることを突き止めた。すなわち、上記屈折率の差により、押圧位置の検知感度を高めることができるとともに、光導波路の周縁部分の少なくとも一部を光導波路の裏面側に折り曲げて省スペース化を図ることができることを見出し、本発明に到達した。 Therefore, the present inventors have continued research, focusing on the fact that light in the core leaks into the under cladding layer outside the bent core at the pressed portion and leaks into the outer over cladding layer at the bent portion. . And the conventional technical common sense was broken, and the difference between the refractive index of the core and the refractive index of the over cladding layer was set to be larger than the difference between the refractive index of the core and the refractive index of the under cladding layer. . Then, in the pressed portion, the light in the core easily leaks to the under cladding layer, and the change in the amount of light propagation of the core due to pressing increases, and in the bent portion, the light in the core leaks to the over cladding layer. I found it difficult. That is, the difference in refractive index can increase the detection sensitivity of the pressed position, and it can be found that space saving can be achieved by bending at least a part of the peripheral portion of the optical waveguide to the back side of the optical waveguide, The present invention has been reached.
 本発明の位置センサは、コアが、格子状部分と、その外周に沿った状態で配置された外周部分とにパターン形成されており、そのコアパターン部材の格子状部分に対応するオーバークラッド層の表面部分が入力領域となっている。また、上記コアパターン部材の外周部分に対応する光導波路の周縁部分の少なくとも一部が、アンダークラッド層を内側にし、オーバークラッド層を外側にした状態で、光導波路の裏面側に折り曲げられている。さらに、上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定されている。そして、コアの屈折率とオーバークラッド層の屈折率との差の方が、コアの屈折率とアンダークラッド層の屈折率との差よりも大きく設定されている。それにより、押圧部分では、コアの中を伝播する光がアンダークラッド層に漏れ易くなっていて、押圧によるコアの光伝播量の変化が増加するとともに、上記折り曲げ部分では、コアの中を伝播する光がオーバークラッド層に漏れ難くなっている。そのため、本発明の位置センサは、押圧位置の検知感度を向上させることができるとともに、上記折り曲げられた周縁部分の分だけ、省スペース化を図ることができる。 In the position sensor of the present invention, the core is patterned into a lattice-shaped portion and an outer peripheral portion arranged in a state along the outer periphery, and an overcladding layer corresponding to the lattice-shaped portion of the core pattern member is formed. The surface portion is the input area. Further, at least a part of the peripheral portion of the optical waveguide corresponding to the outer peripheral portion of the core pattern member is bent to the back side of the optical waveguide with the under cladding layer on the inside and the over cladding layer on the outside. . Further, the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer. The difference between the refractive index of the core and the refractive index of the over cladding layer is set larger than the difference between the refractive index of the core and the refractive index of the under cladding layer. As a result, light propagating in the core easily leaks to the under cladding layer at the pressing portion, and the change in the amount of light propagation of the core due to pressing increases, and at the bent portion, the light propagates through the core. It is difficult for light to leak into the overcladding layer. Therefore, the position sensor of the present invention can improve the detection sensitivity of the pressed position, and can save space by the amount of the bent peripheral portion.
 特に、上記折り曲げられた部分の先端が、上記入力領域に対応する光導波路の裏面側に位置決めされている場合には、位置センサの厚みを薄くすることができる。 Particularly, when the tip of the bent portion is positioned on the back side of the optical waveguide corresponding to the input region, the thickness of the position sensor can be reduced.
本発明の位置センサの一実施の形態を模式的に示す平面図である。It is a top view showing typically one embodiment of a position sensor of the present invention. (a)は、上記位置センサの作製過程を模式的に示す平面図であり、(b)は、その中央部分の拡大断面図であり、(c)は、その側縁部分の拡大断面図である。(A) is a top view which shows typically the preparation process of the said position sensor, (b) is an expanded sectional view of the center part, (c) is an expanded sectional view of the side edge part is there. ペン先により押圧された上記位置センサの状態を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the state of the above-mentioned position sensor pressed by the pen tip. 本発明の位置センサの他の実施の形態を模式的に示す側縁部分の拡大断面図である。It is an expanded sectional view of the side edge part which shows other embodiments of the position sensor of the present invention typically. 上記位置センサを構成する光導波路の変形例を模式的に示す要部拡大断面図である。It is a principal part expanded sectional view which shows typically the modification of the optical waveguide which comprises the said position sensor. (a)~(f)は、上記位置センサにおける格子状部分のコアの交差形態を模式的に示す拡大平面図である。(A) to (f) are enlarged plan views schematically showing the crossing form of the cores of the lattice-like portion in the position sensor. (a),(b)は、上記格子状部分のコアの交差部における光の進路を模式的に示す拡大平面図である。(A), (b) is an enlarged plan view which shows typically the course of the light in the cross | intersection part of the core of the said lattice-shaped part. (a)は、従来の位置センサを模式的に示す平面図であり、(b)は、ペン先により押圧された従来の位置センサの状態を模式的に示す拡大断面図である。(A) is a top view which shows typically the conventional position sensor, (b) is an expanded sectional view which shows typically the state of the conventional position sensor pressed with the pen tip.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の位置センサの一実施の形態を示す平面図である。この実施の形態の位置センサは、図2(a)に平面図で示す略四角形シート状の光導波路Wの3個所〔図2(a)では左右両側と下側〕の周縁部分Fを、その光導波路Wの裏面側に折り曲げたものとなっている。それにより、上記位置センサの省スペース化を図っている。なお、図2(a)において、上記周縁部分Fの二点鎖線で示す3個所の部分が、上記折り曲げにより、上記光導波路Wの裏面側に隠れ、平面視で見えなくなった部分である。 FIG. 1 is a plan view showing an embodiment of the position sensor of the present invention. The position sensor of this embodiment has three peripheral portions F of the substantially rectangular sheet-shaped optical waveguide W shown in a plan view in FIG. 2A (left and right sides and lower side in FIG. 2A). The optical waveguide W is bent on the back side. Thereby, space saving of the position sensor is achieved. In FIG. 2A, the three portions indicated by the two-dot chain line of the peripheral portion F are portions that are hidden behind the optical waveguide W by the bending and are not visible in plan view.
 すなわち、この実施の形態の位置センサは、図2(a)に示すように、略四角形シート状の光導波路Wと、この光導波路Wの隣り合う二つの角部に配置された2個の発光素子4と、その光導波路Wの残りの二つの角部に配置された2個の受光素子5とを備えている。上記光導波路Wの表面中央の長方形部分〔図2(a)において一点鎖線で示す四角形部分〕は、入力領域3Aとなっており、図2(b)(位置センサの中央部分の拡大断面図)に示すように、その入力領域3Aに対応する光導波路Wの裏面部分に、電気回路基板Eが設けられている。そして、上記入力領域3Aの周りの、光導波路Wの4個所の周縁部分(額縁部分)Fのうち、上記3個所〔図2(a)の左右両側と下側〕の周縁部分Fが、図2(c)(位置センサの側縁部分の拡大断面図)に示すように、折り曲げられている。その折り曲げられた上記周縁部分Fの先端部は、上記電気回路基板Eの電気回路形成面〔上記光導波路Wと反対側の面:図2(c)では下面〕に当接され、上記発光素子4および受光素子5は、上記電気回路基板Eの電気回路形成面に実装されている。なお、この実施の形態では、折り曲げられていない1個所〔図1,図2(a)では上側〕の周縁部分Fは、予め幅を狭く形成し、折り曲げる必要がないようにしている。 That is, the position sensor according to this embodiment includes a substantially rectangular sheet-shaped optical waveguide W and two light emitting elements disposed at two adjacent corners of the optical waveguide W, as shown in FIG. An element 4 and two light receiving elements 5 disposed at the remaining two corners of the optical waveguide W are provided. A rectangular portion at the center of the surface of the optical waveguide W [a quadrangular portion indicated by a one-dot chain line in FIG. 2A] is an input region 3A, and FIG. 2B (enlarged sectional view of the central portion of the position sensor). As shown in FIG. 3, an electric circuit board E is provided on the back surface portion of the optical waveguide W corresponding to the input region 3A. Of the four peripheral portions (frame portions) F of the optical waveguide W around the input region 3A, the peripheral portions F at the three locations (the left and right sides and the lower side in FIG. 2A) are shown in FIG. 2 (c) (enlarged sectional view of the side edge portion of the position sensor), it is bent. The bent front end of the peripheral portion F is brought into contact with an electric circuit forming surface of the electric circuit board E (a surface opposite to the optical waveguide W: a lower surface in FIG. 2C), and the light emitting element 4 and the light receiving element 5 are mounted on the electric circuit forming surface of the electric circuit board E. In this embodiment, the peripheral portion F at one portion that is not bent (the upper side in FIGS. 1 and 2A) is formed narrow in advance so that it does not need to be bent.
 より詳しく説明すると、上記光導波路Wは、略四角形シート状のアンダークラッド層1の表面に、複数の線状の光路用のコア2からなる格子状部分2Aと、この格子状部分2Aのコア2から延設されてその格子状部分2Aの外周に沿った状態で配置された外周部分2Bとを備えたシート状のコアパターン部材が形成され、そのコアパターン部材を被覆した状態で、上記アンダークラッド層1の表面に、オーバークラッド層3が形成されたものとなっている。そして、上記コアパターン部材の格子状部分2Aに対応するオーバークラッド層3の表面部分が、上記入力領域3Aとなっている。また、上記コアパターン部材の外周部分2Bをアンダークラッド層1の側縁部とオーバークラッド層3の側縁部とで挟持した部分が、上記光導波路Wの周縁部分(額縁部分)Fとなっている。なお、図1,図2(a)では、コア2を鎖線で示しており、鎖線の太さがコア2の太さを示している。また、図1,図2(a)では、コア2の数を略して図示している。そして、図1,図2(a)の矢印は、光の進む方向を示している。 More specifically, the optical waveguide W includes a lattice-shaped portion 2A composed of a plurality of linear optical path cores 2 on the surface of the substantially quadrilateral sheet-like underclad layer 1, and the core 2 of the lattice-shaped portion 2A. A sheet-like core pattern member is formed which includes an outer peripheral portion 2B extending from the outer periphery of the lattice-shaped portion 2A and covering the core pattern member. An over clad layer 3 is formed on the surface of the layer 1. And the surface part of the over clad layer 3 corresponding to the lattice-like part 2A of the core pattern member is the input region 3A. Further, a portion where the outer peripheral portion 2B of the core pattern member is sandwiched between the side edge portion of the under cladding layer 1 and the side edge portion of the over cladding layer 3 is a peripheral portion (frame portion) F of the optical waveguide W. Yes. In FIG. 1 and FIG. 2A, the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2. In FIG. 1 and FIG. 2A, the number of cores 2 is omitted. The arrows in FIGS. 1 and 2 (a) indicate the light traveling direction.
 また、上記光導波路Wでは、上記コア2の弾性率が、上記アンダークラッド層1の弾性率および上記オーバークラッド層3の弾性率よりも大きく設定されている。各弾性率は、例えば、コア2の弾性率が、1GPa以上10GPa以下の範囲内に設定され、オーバークラッド層3の弾性率が、0.1GPa以上10GPa未満の範囲内に設定され、アンダークラッド層1の弾性率が、0.1MPa以上1GPa以下の範囲内に設定されることが好ましい。 In the optical waveguide W, the elastic modulus of the core 2 is set larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3. For example, the elastic modulus of the core 2 is set in a range of 1 GPa or more and 10 GPa or less, and the elastic modulus of the over clad layer 3 is set in a range of 0.1 GPa or more and less than 10 GPa. The elastic modulus of 1 is preferably set in the range of 0.1 MPa to 1 GPa.
 上記弾性率の大小関係により、入力の際に、上記入力領域3Aに、直接または樹脂フィルムや紙等を介して、例えば入力用のペンで文字等を書くと、先の背景技術で述べたが、図3に断面図で示すように、そのペン先10による押圧の方向の断面では、弾性率の小さいオーバークラッド層3とアンダークラッド層1とがつぶれるように変形し、弾性率の大きいコア2は、殆どつぶれることなく(断面積を保持したまま)、ペン先10に沿って、アンダークラッド層1に沈むように曲がる。そして、そのコア2の中を伝播する光は、曲がったコア2の外側にあるアンダークラッド層1に漏れる(図3の二点鎖線の矢印参照)。そのため、押圧部分のコア2では、受光素子5での受光レベルが低下し、その受光レベルの低下から、押圧位置を検知できるようになっている。 Due to the magnitude relationship of the elastic modulus, when inputting, for example, characters or the like are written in the input area 3A directly or through a resin film, paper or the like, for example, with an input pen, as described in the background art above. 3, in the cross section in the direction of pressing by the pen tip 10, the over clad layer 3 and the under clad layer 1 having a low elastic modulus are deformed so as to be crushed, and the core 2 having a high elastic modulus. Bends so as to sink into the undercladding layer 1 along the nib 10 with almost no collapse (while maintaining the cross-sectional area). Then, the light propagating through the core 2 leaks to the under cladding layer 1 outside the bent core 2 (see the two-dot chain line arrow in FIG. 3). For this reason, in the core 2 at the pressing portion, the light receiving level at the light receiving element 5 decreases, and the pressing position can be detected from the decrease in the light receiving level.
 ここで、この実施の形態では、屈折率が、オーバークラッド層3,アンダークラッド層1,コア2の順で大きくなるように設定されている。すなわち、上記コア2の屈折率と上記オーバークラッド層3の屈折率との差の方が、上記コア2の屈折率と上記アンダークラッド層1の屈折率との差よりも大きく設定されている。例えば、上記コア2の屈折率は、1.002~1.700の範囲内に設定され、上記オーバークラッド層3の屈折率は、1.000~1.698の範囲内に設定され、上記アンダークラッド層1の屈折率は、1.001~1.699の範囲内に設定される。そして、上記コア2の屈折率と上記オーバークラッド層3の屈折率との差は、0.005以上0.6以下の範囲内に設定されることが好ましい。 Here, in this embodiment, the refractive index is set so as to increase in the order of the over cladding layer 3, the under cladding layer 1, and the core 2. That is, the difference between the refractive index of the core 2 and the refractive index of the over cladding layer 3 is set to be larger than the difference between the refractive index of the core 2 and the refractive index of the under cladding layer 1. For example, the refractive index of the core 2 is set in the range of 1.002 to 1.700, the refractive index of the over clad layer 3 is set in the range of 1.000 to 1.698, and The refractive index of the cladding layer 1 is set within a range of 1.001 to 1.699. The difference between the refractive index of the core 2 and the refractive index of the over clad layer 3 is preferably set in the range of 0.005 to 0.6.
 上記屈折率の差により、上記押圧部分では、上記コア2の中を伝播する光が上記アンダークラッド層1に漏れ易くなり、受光素子5での受光レベルがより低下することから、その低下度合いがより明確になり、押圧位置の検知感度を高めることができる。 Due to the difference in refractive index, light propagating through the core 2 is likely to leak into the under cladding layer 1 in the pressed portion, and the light receiving level at the light receiving element 5 is further reduced. It becomes clearer and the detection sensitivity of the pressed position can be increased.
 さらに、上記屈折率の差により、上記光導波路Wの折り曲げ部分(曲面部分)では、上記コア2の中を伝播する光が外側の上記オーバークラッド層3に漏れ難くなっている。そのため、発光素子4からの光を確実にコアパターン部材の格子状部分2Aに伝播させることができるとともに、その格子状部分2Aを伝播する光を確実に受光素子5に到達させることができる。それにより、押圧位置を適正に検知することができる。 Furthermore, due to the difference in refractive index, light propagating through the core 2 is difficult to leak into the outer overcladding layer 3 at the bent portion (curved surface portion) of the optical waveguide W. Therefore, the light from the light emitting element 4 can be reliably propagated to the lattice-like portion 2A of the core pattern member, and the light propagating through the lattice-like portion 2A can be reliably made to reach the light receiving element 5. Thereby, a press position can be detected appropriately.
 また、この実施の形態では、上記コアパターン部材の格子状部分2Aの縦方向のコア2が延設された外周部分2Bのコア2の一端面に、一つの発光素子4が接続され、そのコア2の他端面に、一つの受光素子5が接続されており、上記格子状部分2Aの横方向のコア2が延設された外周部分2Bのコア2の一端面に、もう一つの発光素子4が接続され、そのコア2の他端面に、もう一つの受光素子5が接続されている。そして、上記発光素子4から発光された光は、コア2の中を、その発光素子4に接続された外周部分2Bから格子状部分2Aを経て反対側の外周部分2Bを通り、上記受光素子5で受光されるようになっている。 Further, in this embodiment, one light emitting element 4 is connected to one end face of the core 2 of the outer peripheral portion 2B where the longitudinal core 2 of the lattice-like portion 2A of the core pattern member is extended, and the core One light-receiving element 5 is connected to the other end face of 2, and another light-emitting element 4 is attached to one end face of the core 2 of the outer peripheral part 2 </ b> B in which the transverse core 2 of the lattice-like part 2 </ b> A extends. Is connected, and another light receiving element 5 is connected to the other end face of the core 2. The light emitted from the light emitting element 4 passes through the core 2 through the outer peripheral part 2B on the opposite side from the outer peripheral part 2B connected to the light emitting element 4 through the lattice part 2A. It is designed to receive light.
 このように、格子状部分2Aの縦方向と横方向の2方向(XY方向)それぞれに発光素子4および受光素子5を接続することにより、それら2方向を別々に制御することができ、入力領域3Aにおける押圧位置(XY座標)の検知精度を向上させることができる。さらに、先に述べたように、上記略四角形シート状の光導波路Wの各角部に、上記発光素子4または受光素子5が配置されているため、発光素子4から格子状部分2Aまでの光伝播距離、および格子状部分2Aからの受光素子5までの光伝播距離を短くすることができ、光伝播効率を向上させることができる。 In this way, by connecting the light emitting element 4 and the light receiving element 5 in the vertical direction and the horizontal direction (XY direction) of the grid-like portion 2A, the two directions can be controlled separately, and the input region The detection accuracy of the pressed position (XY coordinate) in 3A can be improved. Furthermore, as described above, since the light emitting element 4 or the light receiving element 5 is disposed at each corner of the substantially rectangular sheet-shaped optical waveguide W, the light from the light emitting element 4 to the lattice-shaped portion 2A. The propagation distance and the light propagation distance from the lattice-like portion 2A to the light receiving element 5 can be shortened, and the light propagation efficiency can be improved.
 また、先に述べたように〔図2(c)参照〕、前記電気回路基板Eは、上記入力領域3Aに対応する光導波路Wのアンダークラッド層1の裏面(コア形成面と反対側の面)部分に設けられている。そして、上記折り曲げられた光導波路Wの周縁部分Fの先端部は、上記電気回路基板Eの電気回路形成面〔上記アンダークラッド層1と反対側の面:図2(c)では下面〕に当接され、上記発光素子4および受光素子5は、上記電気回路基板Eの電気回路形成面に実装されている。ここで、上記電気回路基板Eの厚みは、例えば、1~10mmの範囲内に設定され、上記折り曲げ部分の折り曲げ半径(内径)Rは、例えば、0.5~5mmの範囲内に設定される。この折り曲げ半径Rが小さ過ぎると、その折り曲げ部分での光伝播効率が低下する傾向にあり、大き過ぎると、上記入力領域3Aの周りに突出する上記折り曲げ部分の突出幅(額縁幅)Tが大きくなり、位置センサの省スペース化の効果が低下する傾向にある。 As described above [see FIG. 2 (c)], the electric circuit board E is provided on the back surface (the surface opposite to the core formation surface) of the under cladding layer 1 of the optical waveguide W corresponding to the input region 3A. ) Part. The tip of the peripheral portion F of the bent optical waveguide W is in contact with the electric circuit forming surface of the electric circuit board E (the surface opposite to the under cladding layer 1; the lower surface in FIG. 2C). The light emitting element 4 and the light receiving element 5 are mounted on the electric circuit forming surface of the electric circuit board E. Here, the thickness of the electric circuit board E is set in a range of 1 to 10 mm, for example, and the bending radius (inner diameter) R of the bent portion is set in a range of 0.5 to 5 mm, for example. . If the bending radius R is too small, the light propagation efficiency at the bent portion tends to be reduced. If it is too large, the protruding width (frame width) T of the bent portion protruding around the input region 3A is large. Therefore, the effect of space saving of the position sensor tends to be reduced.
 上記位置センサの製法は、まず、光導波路Wと電気回路基板Eとを個別に作製する。ついで、上記電気回路基板Eの電気回路形成面と反対側の面に、上記入力領域3Aに対応する光導波路Wのアンダークラッド層1の裏面部分を当接させる。つぎに、上記光導波路Wのコア2の端面に、上記発光素子4および受光素子5を接続する。そして、上記光導波路Wの周縁部分Fを、その周縁部分Fのコア2に対して直角に折り曲げ、その折り曲げた上記周縁部分Fの先端部を上記電気回路基板Eの電気回路形成面に当接させるとともに、上記発光素子4および受光素子5を上記電気回路形成面に実装する。このようにして、上記位置センサを得ることができる。 In the manufacturing method of the position sensor, first, the optical waveguide W and the electric circuit board E are individually manufactured. Next, the back surface portion of the under cladding layer 1 of the optical waveguide W corresponding to the input region 3A is brought into contact with the surface of the electrical circuit board E opposite to the electrical circuit formation surface. Next, the light emitting element 4 and the light receiving element 5 are connected to the end face of the core 2 of the optical waveguide W. The peripheral portion F of the optical waveguide W is bent at a right angle with respect to the core 2 of the peripheral portion F, and the tip of the bent peripheral portion F is brought into contact with the electric circuit forming surface of the electric circuit board E. The light emitting element 4 and the light receiving element 5 are mounted on the electric circuit forming surface. In this way, the position sensor can be obtained.
 上記アンダークラッド層1,コア2およびオーバークラッド層3の形成材料としては、感光性樹脂,熱硬化性樹脂等があげられ、その形成材料に応じた製法により、光導波路Wを作製することができる。上記弾性率および屈折率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。また、各層の厚みは、例えば、アンダークラッド層1が10~500μmの範囲内、コア2が5~100μmの範囲内、オーバークラッド層3が1~200μmの範囲内に設定される。なお、上記アンダークラッド層1として、ゴムシートを用い、そのゴムシート上にコア2を格子状に形成するようにしてもよい。 Examples of the material for forming the under cladding layer 1, the core 2 and the over cladding layer 3 include a photosensitive resin, a thermosetting resin, and the like, and the optical waveguide W can be manufactured by a manufacturing method corresponding to the forming material. . The elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio. The thickness of each layer is set, for example, in the range of 10 to 500 μm for the under cladding layer 1, in the range of 5 to 100 μm for the core 2, and in the range of 1 to 200 μm for the over cladding layer 3. Note that a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
 図4は、本発明の位置センサの他の実施の形態の側縁部分を拡大して示す断面図である。この実施の形態では、図1,図2(a)~(c)に示す上記実施の形態において、光導波路Wの周縁部分Fの折り曲げ部分が、光導波路Wの裏面側に90°折り曲げられたものとなっている。それに対応して、電気回路基板Eも90°折り曲げたものを用いている。それ以外の部分は、図1,図2(a)~(c)に示す上記実施の形態と同様であり、同様の部分には、同じ符号を付している。 FIG. 4 is an enlarged cross-sectional view showing a side edge portion of another embodiment of the position sensor of the present invention. In this embodiment, in the above-described embodiment shown in FIGS. 1 and 2A to 2C, the bent portion of the peripheral portion F of the optical waveguide W is bent 90 ° to the back side of the optical waveguide W. It has become a thing. Correspondingly, the electric circuit board E is also bent by 90 °. The other parts are the same as those of the above-described embodiment shown in FIGS. 1 and 2A to 2C, and the same reference numerals are given to the same parts.
 この実施の形態でも、図1,図2(a)~(c)に示す上記実施の形態と同様、押圧位置の検知感度を高めることができるとともに、位置センサの平面視での省スペース化を図ることができる。また、この実施の形態の位置センサは、上記90°折り曲げた部分の内側に沿う、机等の角部に設置することができる。 In this embodiment as well, as in the above-described embodiment shown in FIGS. 1 and 2A to 2C, it is possible to increase the detection sensitivity of the pressed position, and to save space in the plan view of the position sensor. Can be planned. Further, the position sensor of this embodiment can be installed at a corner of a desk or the like along the inside of the portion bent by 90 °.
 なお、上記各実施の形態では、光導波路Wの断面構造を、図2(b)に示すものとしたが、他でもよく、例えば、図5に断面図で示すように、図2(b)に示すものを上下逆さまにした構造のものとしてもよい。すなわち、その光導波路Wは、シート状のアンダークラッド層1の表面部分に、コア2が埋設されて、上記アンダークラッド層1の表面とコア2の頂面とが面一に形成され、それらアンダークラッド層1の表面とコア2の頂面とを被覆した状態で、シート状のオーバークラッド層3が形成されたものとなっている。 In each of the above embodiments, the cross-sectional structure of the optical waveguide W is shown in FIG. 2B, but may be other, for example, as shown in the cross-sectional view of FIG. It is good also as a thing of the structure which turned upside down what is shown in. That is, in the optical waveguide W, the core 2 is embedded in the surface portion of the sheet-like underclad layer 1, and the surface of the underclad layer 1 and the top surface of the core 2 are formed flush with each other. A sheet-like over clad layer 3 is formed in a state where the surface of the clad layer 1 and the top surface of the core 2 are covered.
 また、上記各実施の形態では、光導波路Wの4個所の周縁部分Fのうち3個所を折り曲げたが、他でもよく、例えば、4個所全てを折り曲げてもよいし、2個所を折り曲げてもよいし、1個所だけを折り曲げてもよい。 Further, in each of the above embodiments, three of the four peripheral portions F of the optical waveguide W are bent, but may be other, for example, all four may be bent, or two may be bent. It is good or you may bend only one place.
 さらに、上記各実施の形態では、発光素子4および受光素子5をそれぞれ2個用いたが、他でもよく、例えば、それぞれ1個用いてもよいし、それぞれ3個以上用いてもよい。そして、上記実施の形態では、上記発光素子4または受光素子5を、略四角形シート状の光導波路Wの各角部に配置したが、他でもよく、例えば、発光素子4および受光素子5を全て、略四角形シート状の光導波路Wの同じ一端縁に配置してもよい。 Furthermore, in each of the above-described embodiments, two light emitting elements 4 and two light receiving elements 5 are used. However, other light emitting elements 4 and light receiving elements 5 may be used. For example, one light emitting element 4 or three or more light receiving elements 5 may be used. In the above embodiment, the light emitting element 4 or the light receiving element 5 is disposed at each corner of the substantially rectangular sheet-shaped optical waveguide W. However, for example, all of the light emitting element 4 and the light receiving element 5 are provided. Alternatively, they may be disposed at the same end edge of the substantially rectangular sheet-shaped optical waveguide W.
 また、上記各実施の形態において、格子状部分のコア2の各交差部は、通常、図6(a)に拡大平面図で示すように、交差する4方向の全てが連続した状態に形成されているが、他でもよい。例えば、図6(b)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよい。上記隙間Gは、アンダークラッド層1またはオーバークラッド層3の形成材料で形成されている。その隙間Gの幅dは、0(零)を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。それと同様に、図6(c),(d)に示すように、交差する2方向〔図6(c)は対向する2方向、図6(d)は隣り合う2方向〕が不連続になっているものでもよいし、図6(e)に示すように、交差する3方向が不連続になっているものでもよいし、図6(f)に示すように、交差する4方向の全てが不連続になっているものでもよい。さらに、図6(a)~(f)に示す上記交差部のうちの2種類以上の交差部を備えた格子状としてもよい。すなわち、本発明において、複数の線状のコア2により形成される「格子状」とは、一部ないし全部の交差部が上記のように形成されているものを含む意味である。 Further, in each of the above embodiments, each of the intersecting portions of the core 2 of the lattice-like portion is normally formed in a state in which all of the four intersecting directions are continuous as shown in an enlarged plan view in FIG. Others are acceptable. For example, as shown in FIG. 6B, only one intersecting direction may be divided by the gap G and discontinuous. The gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3. The width d of the gap G exceeds 0 (zero), and is usually set to 20 μm or less. Similarly, as shown in FIGS. 6C and 6D, two intersecting directions (two directions facing each other in FIG. 6C and two adjacent directions in FIG. 6D) are discontinuous. As shown in FIG. 6 (e), the three intersecting directions may be discontinuous, or as shown in FIG. 6 (f), all the four intersecting directions may be discontinuous. It may be discontinuous. Furthermore, a lattice shape including two or more kinds of intersections among the intersections shown in FIGS. That is, in the present invention, the “lattice shape” formed by the plurality of linear cores 2 means that a part or all of the intersections are formed as described above.
 なかでも、図6(b)~(f)に示すように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができる。すなわち、図7(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図7(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面での入射角が臨界角よりも小さいことから、コア2を透過する〔図7(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図7(a)では下方向〕でも発生する。これに対し、図7(b)に示すように、交差する1方向〔図7(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図7(a)においてコア2を透過する光の一部は、上記界面での入射角が臨界角よりも大きくなることから、その界面を透過することなく、その界面で反射し、コア2を進み続ける〔図7(b)の二点鎖線の矢印参照〕。このことから、先に述べたように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができるのである。その結果、ペン先等による押圧位置の検知感度を高めることができる。 In particular, as shown in FIGS. 6B to 6F, if at least one crossing direction is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 7 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions (upward in FIG. 7 (a)) is noted, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and the incident angle at the wall surface is smaller than the critical angle, and thus passes through the core 2 [FIG. )) Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 7A). On the other hand, as shown in FIG. 7B, when one intersecting direction (the upward direction in FIG. 7B) is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light formed and transmitted through the core 2 in FIG. 7A is reflected at the interface without transmitting through the interface because the incident angle at the interface is larger than the critical angle. Continue to advance the core 2 (see the two-dot chain arrow in FIG. 7B). From this, as described above, if at least one intersecting direction is discontinuous, the light crossing loss can be reduced. As a result, it is possible to increase the detection sensitivity of the pressed position by the pen tip or the like.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
〔実施例1〕
〔オーバークラッド層の形成材料〕
 成分a:エポキシ樹脂(三菱化学社製、YL7410)50重量部。
 成分b:エポキシ樹脂(ダイセル社製、EHPE3150)50重量部。
 成分c:光酸発生剤(サンアプロ社製、CPI101A)1重量部。
 これら成分a~cを混合することにより、オーバークラッド層の形成材料を調製した。
[Example 1]
[Formation material of over clad layer]
Component a: 50 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation, YL7410).
Component b: 50 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
Component c: 1 part by weight of a photoacid generator (manufactured by Sun Apro, CPI101A).
By mixing these components a to c, an over clad layer forming material was prepared.
〔コアの形成材料〕
 成分d:エポキシ樹脂(ダイセル社製、EHPE3150)100重量部。
 成分e:光酸発生剤(ADEKA社製、SP170)1重量部。
 成分f:乳酸エチル(和光純薬工業社製、溶剤)50重量部。
 これら成分d~fを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component d: 100 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
Component e: 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
Component f: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries, Ltd., solvent).
By mixing these components d to f, a core forming material was prepared.
〔アンダークラッド層の形成材料〕
 成分g:エポキシ樹脂(三菱化学社製、YL7410)60重量部。
 成分h:エポキシ樹脂(ダイセル社製、EHPE3150)40重量部。
 成分i:光酸発生剤(サンアプロ社製、CPI101A)1重量部。
 これら成分g~iを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component g: 60 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation, YL7410).
Ingredient h: 40 weight part of epoxy resins (the product made by Daicel, EHPE3150).
Component i: 1 part by weight of a photoacid generator (manufactured by San Apro, CPI101A).
By mixing these components g to i, a material for forming the underclad layer was prepared.
〔光導波路の作製〕
 まず、上記アンダークラッド層の形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。このアンダークラッド層の厚みは50μmとした。弾性率は0.25GPa、屈折率は1.496であった。なお、弾性率の測定は、粘弾性測定装置(TA instruments Japan Inc. 社製、RSA3)を用いた。
[Production of optical waveguide]
First, an under clad layer was formed by spin coating using the under clad layer forming material. The thickness of the under cladding layer was 50 μm. The elastic modulus was 0.25 GPa and the refractive index was 1.496. The elastic modulus was measured using a viscoelasticity measuring device (TA instruments Japan Inc., RSA3).
 ついで、上記アンダークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、複数の線状のコアからなる格子状部分と外周部分とを備えたシート状のコアパターン部材を形成した。上記格子状部分(入力領域)の寸法は、縦210mm×横297mmとした。また、上記コアの幅は100μm、厚みは50μm、格子状部分における隣り合う平行な線状のコアとコアとの間の隙間の幅は500μmとした。弾性率は1.5GPa、屈折率は1.506であった。 Next, a sheet-like core pattern member having a lattice-shaped portion composed of a plurality of linear cores and an outer peripheral portion is formed on the surface of the under-cladding layer by the photolithography method using the core forming material. did. The size of the grid portion (input area) was 210 mm long × 297 mm wide. The width of the core was 100 μm, the thickness was 50 μm, and the width of the gap between adjacent parallel linear cores in the lattice portion was 500 μm. The elastic modulus was 1.5 GPa and the refractive index was 1.506.
 つぎに、上記コアパターン部材を被覆するように、上記アンダークラッド層の表面に、上記オーバークラッド層の形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。このオーバークラッド層の厚み(コアの表面からの厚み)は25μmとした。弾性率は0.25GPa、屈折率は1.486であった。このようにして、シート状の光導波路を作製した。 Next, an over clad layer was formed on the surface of the under clad layer by spin coating using the over clad layer forming material so as to cover the core pattern member. The thickness of the over clad layer (thickness from the core surface) was 25 μm. The elastic modulus was 0.25 GPa and the refractive index was 1.486. In this way, a sheet-like optical waveguide was produced.
〔位置センサの作製〕
 片面に電気回路が形成された、上記入力領域と同寸法の電気回路基板を準備し、その電気回路基板の電気回路形成面と反対側の面に、上記入力領域に対応する光導波路のアンダークラッド層の裏面部分を当接させた。つぎに、上記外周部分のコアの一端面に、発光素子(Optowell社製、XH85-S0603-2s )を接続し、上記外周部分のコアの他端面に、受光素子(浜松ホトニクス社製、s10226)を接続した。そして、光導波路の3個所の周縁部分を折り曲げ、上記電気回路基板の電気回路形成面に当接させるとともに、上記発光素子および受光素子を上記電気回路形成面に実装した。上記折り曲げは、入力領域の周りに突出する折り曲げ部分の突出幅が、両側の2個所で10mm、その間の1個所で5mmとなるようにし、また、折り曲げ半径が2mmとなるようにした。この場合、折り曲げた上記3個所の周縁部分の幅は、両側の2個所が47.5mm,35.5mm、その間の1個所が60.0mmであった。
[Production of position sensor]
Prepare an electric circuit board having the same dimensions as the input area, with an electric circuit formed on one side, and an underclad of an optical waveguide corresponding to the input area on the opposite side of the electric circuit forming surface of the electric circuit board The back side of the layer was brought into contact. Next, a light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the outer peripheral core, and a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the outer peripheral core. Connected. Then, the peripheral portions of the three portions of the optical waveguide were bent and brought into contact with the electric circuit forming surface of the electric circuit board, and the light emitting element and the light receiving element were mounted on the electric circuit forming surface. In the bending, the protruding width of the bent portion protruding around the input region was 10 mm at two positions on both sides, and 5 mm at one position between them, and the bending radius was 2 mm. In this case, the widths of the peripheral portions of the three bent portions were 47.5 mm and 35.5 mm at two locations on both sides, and 60.0 mm at one location therebetween.
〔実施例2~4および比較例1~4〕
 上記実施例1において、光導波路の各形成材料の種類や組成比率を変えることにより、下記の表1に示すように、弾性率および屈折率を変え、それらを実施例2~4および比較例1~4とした。
[Examples 2 to 4 and Comparative Examples 1 to 4]
In Example 1 above, by changing the type and composition ratio of each forming material of the optical waveguide, the elastic modulus and refractive index were changed as shown in Table 1 below, and these were changed to Examples 2 to 4 and Comparative Example 1 respectively. ~ 4.
〔押圧位置の検知感度(減衰率)〕
 上記各位置センサの入力領域の表面に、ボールペンのペン先(直径0.7mm)を荷重0.25Nで押圧した。そして、上記受光素子での受光レベル(受光強度)を、上記荷重をかけない場合と、かけた場合とで測定し、その減衰率を下記の式(1)にしたがって算出した。その結果を下記の表1に示した。上記減衰率が大きいほど、押圧位置の検知感度が高いことを示している。
[Pressing position detection sensitivity (attenuation rate)]
The tip of the ballpoint pen (diameter 0.7 mm) was pressed against the surface of the input area of each position sensor with a load of 0.25 N. And the light reception level (light reception intensity | strength) in the said light receiving element was measured by the case where the said load was not applied, and the case where it applied, and the attenuation factor was computed according to following formula (1). The results are shown in Table 1 below. It shows that the detection sensitivity of the pressed position is higher as the attenuation rate is larger.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
〔折り曲げ損失〕
 上記実施例1~4および比較例1~4の各形成材料で、上記と同様にして線状の光導波路を作製した。そして、その線状の光導波路の長手方向中央部を、半径2mmの棒体に1周巻き付け、その状態で、上記光導波路の一端から、上記発光素子から発光された光を入射させ、他端から出射し光を上記受光素子で受光した。そして、上記発光素子の発光強度(A)と上記受光素子での受光強度(B)から、下記の式(2)にしたがって、損失値(α)を算出した。また、上記線状の光導波路を直線状にした状態で、上記と同様にして、受光強度(C)を測定し、下記の式(3)にしたがって、損失値(β)を算出した。そして、下記の式(4)にしたがって、折り曲げ損失(D)を算出した。その結果を下記の表1に示した。
[Bending loss]
A linear optical waveguide was produced in the same manner as described above using the respective forming materials of Examples 1 to 4 and Comparative Examples 1 to 4. Then, the central portion in the longitudinal direction of the linear optical waveguide is wound once around a rod having a radius of 2 mm, and in this state, light emitted from the light emitting element is incident from one end of the optical waveguide, and the other end The light emitted from was received by the light receiving element. And loss value ((alpha)) was computed according to the following formula | equation (2) from the emitted light intensity (A) of the said light emitting element, and the received light intensity (B) in the said light receiving element. Further, the light receiving intensity (C) was measured in the same manner as described above with the linear optical waveguide being linear, and the loss value (β) was calculated according to the following equation (3). And bending loss (D) was computed according to following formula (4). The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表1の結果から、コアの屈折率とオーバークラッド層の屈折率との差の方が、コアの屈折率とアンダークラッド層の屈折率との差よりも大きく設定されている実施例1~4では、押圧位置の検知感度が高くなっているとともに、折り曲げ損失が小さくなっていることがわかる。それに対し、上記のような屈折率の差に設定されていない比較例1~4では、押圧位置の検知感度が低くなっているか、折り曲げ損失が大きくなっているか、その両方になっていることがわかる。 From the results of Table 1 above, the difference between the refractive index of the core and the refractive index of the over cladding layer is set to be larger than the difference between the refractive index of the core and the refractive index of the under cladding layer. 4 shows that the detection sensitivity of the pressed position is high and the bending loss is small. On the other hand, in Comparative Examples 1 to 4 where the difference in refractive index is not set as described above, the detection sensitivity of the pressed position is low, the bending loss is high, or both. Recognize.
 また、上記実施例1~4では、光導波路を図2(b)に断面図で示すものとしたが、光導波路を図5に断面図で示すものとしても、上記実施例1~4と同様の傾向を示す結果が得られた。 In the first to fourth embodiments, the optical waveguide is shown in a sectional view in FIG. 2B. However, the optical waveguide is shown in the sectional view in FIG. 5 as in the first to fourth embodiments. The result which shows the tendency of was obtained.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の位置センサは、押圧位置の検知感度の向上および省スペース化を図る場合に利用可能である。 The position sensor of the present invention can be used to improve the detection sensitivity of the pressed position and save space.
 W 光導波路
 F 周縁部分
 1 アンダークラッド層
 2 コア
 2A 格子状部分
 2B 外周部分
 3 オーバークラッド層
 3A 入力領域
W Optical waveguide F Peripheral part 1 Under clad layer 2 Core 2A Grid-like part 2B Peripheral part 3 Over clad layer 3A Input region

Claims (2)

  1.  複数の線状のコアからなる格子状部分と、この格子状部分のコアから延設されてその格子状部分の外周に沿った状態で配置された外周部分とを備えたシート状のコアパターン部材を、アンダークラッド層とオーバークラッド層とで挟持したシート状の光導波路と、
     上記外周部分のコアの一端面に接続された発光素子と、
     上記外周部分のコアの他端面に接続された受光素子と
    を備えた位置センサであって、
     上記コアパターン部材の外周部分に対応する光導波路の周縁部分の少なくとも一部が、上記アンダークラッド層を内側にし、上記オーバークラッド層を外側にした状態で、光導波路の裏面側に折り曲げられており、
     かつ、下記の(A)および(B)の構成を有しており、
     上記発光素子で発光された光が、上記光導波路のコアを経て、上記受光素子で受光され、上記コアパターン部材の格子状部分に対応する上記オーバークラッド層の表面部分を入力領域とし、その入力領域における押圧位置を、その押圧により変化したコアの光伝播量によって特定することを特徴とする位置センサ。
    (A)上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記オーバークラッド層の表面の押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっているとともに、上記押圧部分のコアが上記アンダークラッド層に沈むように曲がるようになっている構成。
    (B)上記コアの屈折率と上記オーバークラッド層の屈折率との差の方が、上記コアの屈折率と上記アンダークラッド層の屈折率との差よりも大きく設定され、上記押圧部分では、上記コアの中を伝播する光が上記アンダークラッド層に漏れ易くなっていて、押圧による上記コアの光伝播量の変化が増加するようになっているとともに、上記折り曲げ部分では、上記コアの中を伝播する光がオーバークラッド層に漏れ難くなっている構成。
    A sheet-like core pattern member comprising a lattice-shaped portion composed of a plurality of linear cores and an outer peripheral portion that extends from the core of the lattice-shaped portion and is arranged along the outer periphery of the lattice-shaped portion A sheet-like optical waveguide sandwiched between the under cladding layer and the over cladding layer,
    A light emitting element connected to one end face of the core of the outer peripheral portion;
    A position sensor comprising a light receiving element connected to the other end surface of the core of the outer peripheral portion,
    At least a part of the peripheral portion of the optical waveguide corresponding to the outer peripheral portion of the core pattern member is bent to the back side of the optical waveguide with the under cladding layer on the inside and the over cladding layer on the outside. ,
    And it has the structure of the following (A) and (B),
    The light emitted from the light emitting element is received by the light receiving element through the core of the optical waveguide, and the surface portion of the over clad layer corresponding to the lattice portion of the core pattern member is used as an input region. A position sensor characterized in that a pressing position in a region is specified by a light propagation amount of a core changed by the pressing.
    (A) The elastic modulus of the core is set to be larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, and in the pressed state of the surface of the over cladding layer, A configuration in which the deformation rate is smaller than the deformation rate of the cross section of the over clad layer and the under clad layer, and the core of the pressing portion is bent so as to sink into the under clad layer.
    (B) The difference between the refractive index of the core and the refractive index of the over cladding layer is set to be larger than the difference between the refractive index of the core and the refractive index of the under cladding layer. Light propagating through the core is likely to leak into the undercladding layer, and the change in the amount of light propagation of the core due to pressing increases. A configuration in which propagating light is difficult to leak into the overcladding layer.
  2.  上記折り曲げられた部分の先端が、上記入力領域に対応する光導波路の裏面側に位置決めされている請求項1記載の位置センサ。 The position sensor according to claim 1, wherein a tip of the bent portion is positioned on a back surface side of the optical waveguide corresponding to the input region.
PCT/JP2015/072594 2014-08-25 2015-08-10 Position sensor WO2016031539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170527A JP2016045772A (en) 2014-08-25 2014-08-25 Position sensor
JP2014-170527 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031539A1 true WO2016031539A1 (en) 2016-03-03

Family

ID=55399436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072594 WO2016031539A1 (en) 2014-08-25 2015-08-10 Position sensor

Country Status (3)

Country Link
JP (1) JP2016045772A (en)
TW (1) TW201610790A (en)
WO (1) WO2016031539A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545828A (en) * 2006-08-03 2009-12-24 パーセプティブ ピクセル,インク. Multi-contact detection display device with total reflection interference
JP2014016939A (en) * 2012-07-11 2014-01-30 Shin Etsu Polymer Co Ltd Light guide unit, optical touch panel including light guide unit, and electronic equipment including optical touch panel
JP5513656B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Electronic underlay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545828A (en) * 2006-08-03 2009-12-24 パーセプティブ ピクセル,インク. Multi-contact detection display device with total reflection interference
JP2014016939A (en) * 2012-07-11 2014-01-30 Shin Etsu Polymer Co Ltd Light guide unit, optical touch panel including light guide unit, and electronic equipment including optical touch panel
JP5513656B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Electronic underlay

Also Published As

Publication number Publication date
TW201610790A (en) 2016-03-16
JP2016045772A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
TWI688795B (en) Optical waveguide, position sensor and optical circuit board using the optical waveguide
WO2016031539A1 (en) Position sensor
WO2016031538A1 (en) Position sensor
KR102452784B1 (en) Optical waveguide and position sensor using same
WO2015151858A1 (en) Position sensor
WO2016031601A1 (en) Location sensor
WO2016039166A1 (en) Position sensor
WO2015151859A1 (en) Position sensor
WO2016047448A1 (en) Position sensor
WO2016043047A1 (en) Position sensor
WO2017043570A1 (en) Optical waveguide, and position sensor and optical circuit board using optical waveguide
WO2016056393A1 (en) Position sensor
WO2015151861A1 (en) Position sensor
WO2015045571A1 (en) Input device
WO2015156111A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2014196390A1 (en) Electronic underlay
WO2016043048A1 (en) Position sensor
JP2017004199A (en) Position sensor
WO2015049908A1 (en) Input apparatus
WO2015156112A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2015170608A1 (en) Position sensor
WO2015045570A1 (en) Input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835449

Country of ref document: EP

Kind code of ref document: A1