WO2016047448A1 - Position sensor - Google Patents

Position sensor Download PDF

Info

Publication number
WO2016047448A1
WO2016047448A1 PCT/JP2015/075679 JP2015075679W WO2016047448A1 WO 2016047448 A1 WO2016047448 A1 WO 2016047448A1 JP 2015075679 W JP2015075679 W JP 2015075679W WO 2016047448 A1 WO2016047448 A1 WO 2016047448A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
cladding layer
position sensor
refractive index
lattice
Prior art date
Application number
PCT/JP2015/075679
Other languages
French (fr)
Japanese (ja)
Inventor
良真 吉岡
裕介 清水
柴田 直樹
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016047448A1 publication Critical patent/WO2016047448A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to a position sensor that optically detects a pressed position.
  • the present applicant has proposed a position sensor that optically detects the pressed position (see, for example, Patent Document 1).
  • this has a rectangular sheet-shaped optical waveguide W ⁇ b> 1 in which a sheet-shaped core pattern member is sandwiched between a rectangular sheet-shaped under cladding layer 11 and an over cladding layer 13.
  • the core pattern member includes a lattice portion 12A having a plurality of continuous lattices in which linear optical path cores 12 are arranged vertically and extending from the core 12 of the lattice portion 12A.
  • Outer peripheral portions 12B to 12E arranged along the outer periphery of the cylindrical portion 12A.
  • the light emitting element 14 is connected to the end of the core 12 of the outer peripheral portion 12B of the core pattern member, and the light receiving element 15 is connected to the end of the core 12 of the outer peripheral portions 12D and 12E.
  • the light emitted from the light-emitting element 14 passes through the core 12 of the outer peripheral portions 12B and 12C connected to the light-emitting element 14 through the core 12 of the lattice-shaped portion 12A, and the core 12 of the opposite outer peripheral portions 12D and 12E.
  • the light receiving element 15 receives the light.
  • a surface portion of the over cladding layer 13 corresponding to the lattice portion 12A (a rectangular portion indicated by a one-dot chain line in a state surrounding the lattice portion 12A in FIG. 6) is an input region 13A of the position sensor.
  • the refractive index of the core serving as the optical path is set higher than the refractive indexes of the under-cladding layer and the over-cladding layer, and the light propagating in the core is reflected in the core while reflecting in the core.
  • the under cladding layer 11 and the over cladding layer 13 covering the lattice portion 12A of the core pattern member also cover the outer peripheral portions 12B to 12E from the viewpoint of facilitating manufacture.
  • the over clad layer 13 is also the same (that is, the same refractive index), which is common technical knowledge.
  • a light emitting element and a light receiving element are mounted on an electric circuit board. From the viewpoint of reducing the manufacturing cost by making the electric circuit board as compact as possible, the light emitting element and the light receiving element are combined. It is common technical knowledge to place them close together. Actually, in the position sensor shown in FIG. 6, both the light emitting element 14 and the light receiving element 15 are provided on one side (the lower end side in FIG. 6) of the rectangular sheet-shaped optical waveguide W1. Are placed close together.
  • the light emitted from one light emitting element 14 is in the vertical direction of the lattice-shaped portion 12A.
  • the core 12 connected to the light emitting element 14 has a corner portion (in FIG. 6) along the side surface (left side surface in FIG. 6) of the lattice portion 12 ⁇ / b> A.
  • the cores 12p, 12q, and 12r on the light emitting element 14 side are thick from the light emitting element 14 to start branching into a plurality of vertical and horizontal cores 12s constituting the lattice portion 12A, and the number of branches increases from there to the tip side. It gradually gets thinner as you go. This is because the light emitted from the light emitting element 14 is sequentially branched from the side closer to the light emitting element 14, so that the core 12 near the light emitting element 14 is thicker and the core 12 far from the light emitting element 14 is thinner.
  • the two arcuate portions 12t and 12u are set to have large bending radii so that light hardly leaks and propagates gently in the two arcuate portions 12t and 12u that are the branched portions.
  • the bending radius of the core is small, light propagating through the core is likely to leak from the bent portion. Therefore, the bending radius of the two arc-shaped portions 12t and 12u of the outer peripheral portion (the outer peripheral portion on the left side in FIG. 6) 12B where the branch portion is formed is increased, and the outer peripheral portion 12B is formed.
  • the width (frame width) of the peripheral portion F1 of the optical waveguide W1 is also increased.
  • the position sensor requires a large space. In this respect, the position sensor has room for improvement.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a position sensor capable of saving space.
  • a position sensor includes a lattice portion having a plurality of lattices in which linear cores are arranged vertically and horizontally, and a core extending from the lattice portion.
  • a sheet-like core pattern member provided with a sheet-shaped core pattern member provided with an outer peripheral portion arranged in a bent state along the outer periphery of the lattice-like portion, and a core of the optical waveguide connected with a sheet-like optical waveguide coated with a clad layer
  • the refractive index of the cladding layer covering the bent portion of the core of the outer peripheral portion is set lower than the refractive index of the cladding layer, and the surface portion of the cladding layer corresponding to the lattice portion of the core pattern member is used as the input region.
  • the pressed position definitive, a configuration that identifies the light propagation quantity of the core that has changed by the pressing.
  • the portion of the clad layer that covers the bent portion of the core at the outer peripheral portion of the core pattern member means that it includes an air clad (a clad made of air). That is, the bent part of the core covered with the air clad is in a state exposed to the outside.
  • the inventors of the present invention have repeated research with a focus on reducing the bending radius of the core at the outer peripheral portion of the core pattern member in order to save the pressing position. Specifically, by reducing the refractive index of the clad layer that covers the core pattern member, the difference in refractive index with the core is increased, and even if the bending radius of the core is reduced, the light propagating through the core Researched the idea to make it difficult to leak.
  • the difference between the refractive index of the cladding layer and the refractive index of the core is increased as described above, this time, in the input region (the portion corresponding to the lattice-shaped portion of the core pattern member), light from the core of the pressing portion is also emitted. Is less likely to leak, and the difference in light intensity between the pressed portion and other portions is reduced. For this reason, a decrease in the light receiving level at the light receiving element cannot be detected, and the detection sensitivity of the pressed position decreases.
  • the present inventors are not bound by such a concept, the refractive index of the cladding layer, the portion that covers the bent portion of the core of the outer peripheral portion of the core pattern member, and the portion that covers the other core portion With the idea of providing a difference, the former refractive index was set lower. As a result, the difference in refractive index between the core and the clad layer is large in the bent portion of the core and small in the lattice-like portion (input region). Therefore, even if the bending radius of the core is reduced, light propagating through the bending portion is less likely to leak at the bent portion of the core, and light easily leaks from the core at the pressing portion at the lattice-like portion (input region). . That is, by providing a difference in the refractive index in the cladding layer, the bending radius of the core can be reduced to save space in the position sensor, and the detection sensitivity of the pressed position should be excellent.
  • the present invention has been completed.
  • the core of the outer peripheral portion where the core of the lattice portion is extended is arranged in a state bent along the outer periphery of the lattice portion, and the clad layer covering the bent portion Is set to be lower than the refractive index of the cladding layer covering the core of the other part. Therefore, even if the bending radius of the core is reduced, light propagating through the bending portion is less likely to leak at the bent portion of the core, and light easily leaks from the core at the pressing portion at the lattice-like portion (input region). . That is, the position sensor of the present invention can reduce the bending radius of the core due to the difference in the refractive index in the cladding layer, thereby saving the space of the position sensor and being excellent in detection sensitivity of the pressed position. Can be.
  • (A) is a top view which shows typically 1st Embodiment of the position sensor of this invention
  • (b) is an expanded sectional view of the center part. It is a top view which shows the modification of the said position sensor typically. It is a principal part expanded sectional view which shows typically the modification of the optical waveguide which comprises the said position sensor.
  • (A) to (f) are enlarged plan views schematically showing the crossing form of the cores of the lattice-like portion in the position sensor.
  • (B) is an enlarged plan view which shows typically the course of the light in the cross
  • FIG. 1 (a) is a plan view showing a first embodiment of the position sensor of the present invention
  • FIG. 1 (b) is an enlarged cross-sectional view of the central portion thereof.
  • the position sensor of this embodiment is the same as that of the conventional position sensor shown in FIG. 6, but two arc-shaped portions 2p and 2q branched from the core 2 connected to the light emitting element 4 [the upper left corner portion in FIG. Is not covered with the overcladding layer 3 but is exposed and formed with a small bending radius. Then, by reducing the bending radius, the width of the left side shown in the figure is made narrower than that of the conventional one (see FIG. 6), and the position sensor is saved in space (miniaturized).
  • the other parts are the same as those of the conventional position sensor shown in FIG.
  • the two arc-shaped portions 2p and 2q of the core 2 in the position sensor of this embodiment are covered with an air clad that is a clad made of air.
  • the refractive index of the core 2 is about 1.51
  • the under cladding layer 1 and the over cladding layer 3 are about 1.50
  • the air cladding is about 1.00.
  • the difference in refractive index (about 0.51) between the two arc-shaped portions 2p, 2q of the core 2 and the air clad is the two arc-shaped portions of the core 12 in the conventional position sensor shown in FIG.
  • the difference in refractive index between 12t and 12u and the overcladding layer 13 (about 0.01) is much larger.
  • the space of the position sensor is reduced by reducing the bending radii of the two arcuate portions 2p and 2q of the core 2.
  • the difference in refractive index between the core 2, the under cladding layer 1 and the over cladding layer 3 is as shown in FIG.
  • the core 2 of the pressing portion is deformed and light is likely to leak from the core 2 as in the conventional position sensor shown in FIG.
  • the light reception level in the said light receiving element 5 falls appropriately.
  • the position sensor has excellent detection sensitivity of the pressed position without being lowered.
  • the number of the cores 2 of the lattice-like portion 2A is omitted, and the interval between the cores 2 is increased.
  • the position sensor according to this embodiment is manufactured by, for example, a photolithography method. That is, first, after forming the under-cladding layer 1, the core 2 is patterned on the core pattern member on the surface of the under-cladding layer 1. Next, an over clad layer 3 is patterned on the surface of the under clad layer 1 so as to cover the core pattern member excluding the two arc-shaped portions 2p and 2q of the core 2.
  • the light emitting element 4 is connected to one end face of the core 2 of the outer peripheral portion 2B of the core pattern member, and the light receiving element 5 is connected to the other end face of the core 2 (end face of the core 2 of the outer peripheral portions 2D and 2E). To do. In this way, the position sensor can be manufactured.
  • the thickness of each of the above layers is set, for example, in the range of 10 to 500 ⁇ m for the under cladding layer 1, in the range of 5 to 100 ⁇ m for the core 2, and in the range of 1 to 200 ⁇ m for the over cladding layer 3.
  • a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
  • the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under cladding layer 1 and the over cladding layer 3. The reason is that if the elastic modulus is set in the opposite direction, the periphery of the core 2 becomes hard, so that the optical waveguide having an area considerably larger than the area of the pen tip or the like that presses the input region 3A portion of the over clad layer 3 This is because the W portion is recessed and it is difficult to accurately detect the pressed position.
  • each elastic modulus for example, the elastic modulus of the core 2 is set within a range of 1 GPa or more and 10 GPa or less, and the elastic modulus of the over clad layer 3 is set within a range of 0.1 GPa or more and less than 10 GPa
  • the elastic modulus of the under cladding layer 1 is preferably set within a range of 0.1 MPa to 1 GPa.
  • the elastic modulus of the core 2 is large, the core 2 is not crushed by a small pressing force (the cross-sectional area of the core 2 is not reduced), but the optical waveguide W is recessed by the pressing, and therefore corresponds to the recessed portion.
  • Light leakage (scattering) occurs from the bent portion of the core 2, and in the core 2, the light receiving level at the light receiving element 5 decreases, so that the pressed position can be detected.
  • the second embodiment of the position sensor of the present invention is the same as the first embodiment shown in FIGS. 1 (a) and 1 (b), in which the air cladding portion has a refractive index (1) of the over cladding layer 3. ..50)) and a second over clad layer having a lower refractive index (about 1.48). Other parts are the same as those in the first embodiment.
  • the two arc-shaped portions 2p and 2q branched from the core 2 connected to the light emitting element 4 are covered with the second over clad layer.
  • the difference in refractive index (about 0.03) between the two arc-shaped portions 2p, 2q of the core 2 and the second over clad layer is the difference between the two cores 2 in the first embodiment.
  • Two arc-shaped portions 12t and 12u of the core 12 and the over-cladding layer in the conventional position sensor shown in FIG. 6 are smaller than the difference in refractive index (approximately 0.51) between the arc-shaped portions 2p and 2q and the air cladding. This is larger than the difference in refractive index from 13 (about 0.01). Therefore, also in the second embodiment, the position sensor can be saved in space by reducing the bending radii of the two arc-shaped portions 2p and 2q of the core 2 as in the first embodiment. be able to.
  • two arc-shaped portions 2p and 2q of the core 2 are formed in the first embodiment shown in FIGS.
  • the portion of the underclad layer that is present is a second underclad layer having a lower refractive index (about 1.48) than the refractive index of other underclad layers 1 (about 1.50).
  • Other parts are the same as those in the first embodiment.
  • the two arc-shaped portions 2p and 2q branched from the core 2 connected to the light emitting element 4 are formed on the surface of the second under cladding layer and exposed. (Covered with air clad).
  • the difference in refractive index (about 0.03) between the second undercladding layer and the two arc-shaped portions 2p and 2q of the core 2 is the same as that of the undercladding layer 1 in the first embodiment and the above. It is larger than the difference in refractive index (about 0.01) between the two arcuate portions 2p and 2q of the core 2.
  • the position sensor can be saved in space by reducing the bending radii of the two arcuate portions 2p and 2q of the core 2. be able to.
  • the two arc-shaped portions 2p and 2q branching the core 2 connected to the light emitting element 4 are The second over clad layer having a low refractive index in the embodiment is covered.
  • the other parts are the same as in the third embodiment.
  • the two arc-shaped portions 2p and 2q branching the core 2 connected to the light emitting element 4 are the second refractive index second under cladding layer in the third embodiment. And is covered with the second over-cladding layer having a low refractive index in the second embodiment.
  • the difference in refractive index (about 0.03) between the two arc-shaped portions 2p and 2q of the core 2 and the second under cladding layer and the second over cladding layer is the same as the conventional one shown in FIG. This is larger than the difference in refractive index (about 0.01) between the two arc-shaped portions 12t and 12u of the core 12 and the under cladding layer 11 and the over cladding layer 13 in the position sensor.
  • the position sensor can be saved in space by reducing the bending radii of the two arc-shaped portions 2p and 2q of the core 2. be able to.
  • the fifth embodiment of the position sensor according to the present invention is different from the first embodiment shown in FIGS. 1A and 1B in that the two arc-shaped portions 2p and 2q of the core 2 from the light emitting element 4 are used. Up to, it is not covered with the over clad layer 3 but exposed (covered with air clad). Other parts are the same as those in the first embodiment.
  • the position sensor can be saved in space by reducing the bending radii of the two arc-shaped portions 2p, 2q of the core 2. be able to.
  • the sixth embodiment of the position sensor according to the present invention is the portion of the under cladding layer in which the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q is formed in the fifth embodiment.
  • this is the second under-cladding layer having a low refractive index in the third embodiment.
  • the other parts are the same as those in the fifth embodiment.
  • the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q is formed on the surface of the second under cladding layer having a low refractive index in the third embodiment. It is formed and exposed (covered with air cladding).
  • the difference in refractive index (about 0.03) between the second under-cladding layer and the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q is the same as in the fifth embodiment. This is larger than the difference in refractive index (about 0.01) between the undercladding layer 1 and the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q.
  • the space radius of the position sensor is reduced by reducing the bending radii of the two arc-shaped portions 2p and 2q of the core 2. be able to.
  • the cladding layer covering a part including the bent part of the core of the outer peripheral part of the core pattern member has been described, but the cladding layer covering the entire outer peripheral part of the core pattern member is also described. You may make it the same as that of each said embodiment.
  • one light emitting element 4 and one light receiving element 5 are used and arranged on one side of the rectangular shape of the optical waveguide W, but may be other, for example, shown in a plan view in FIG. As described above, two light emitting elements 4 and two light receiving elements 5 may be used and arranged on one side of the optical waveguide W (the lower end side in FIG. 2).
  • FIG. 2 shows a form corresponding to the first embodiment (FIG. 1A).
  • the core 2 connected to one of the two light emitting elements 4 is connected to the lattice along one side surface (the left side surface in FIG. 2) of the lattice portion 2A. Extends to one corner (upper left corner in FIG. 2), is bent in an inverted U shape (reference numeral 2r) from the tip, and is branched to each core 2 in the lateral direction of the lattice-shaped portion 2A. . Then, the core 2 reaches one of the two light receiving elements 5 (right side in FIG. 2) through the lattice-shaped portion 2A.
  • the core 2 connected to the remaining one (right end in FIG. 2) of light emitting elements 4 is connected to the other corners of the grid portion 2A along the other side surface (right side surface in FIG. 2) of the grid portion 2A. 2 (upper right corner in FIG. 2), bent 90 ° (90 ° to the left in FIG. 2) and extended (sign 2s), and branched to each core 2 in the longitudinal direction of the lattice-shaped portion 2A. Yes. Then, the core 2 reaches the remaining one (left side in FIG. 2) light receiving element 5 through the lattice-like portion 2A.
  • the clad layer covering the inverted U-shaped bent portion 2r and the 90 ° bent portion 2s of the core 2 may be the same as in the above embodiments. Thereby, the bending radius of the inverted U-shaped bent portion 2r and the 90 ° bent portion 2s can be reduced, and the position sensor can be saved in space.
  • the cross-sectional structure of the optical waveguide W is shown in FIG. 1B, but may be other, for example, as shown in FIG. It is good also as a thing of the structure which turned upside down what is shown in. That is, in the optical waveguide W, the core 2 is embedded in the surface portion of the sheet-like underclad layer 1, and the surface of the underclad layer 1 and the top surface of the core 2 are formed flush with each other. A sheet-like over clad layer 3 is formed in a state where the surface of the clad layer 1 and the top surface of the core 2 are covered.
  • the clad layer that covers the bent portion of the core at the outer peripheral portion of the core pattern member may be the same as in the above embodiments.
  • each crossing portion of the core 2 of the lattice-like portion 2A is usually formed in a state in which all four intersecting directions are continuous as shown in an enlarged plan view in FIG. Others are acceptable.
  • FIG. 4B only one intersecting direction may be divided by the gap G and discontinuous.
  • the gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3.
  • the width d of the gap G exceeds 0 (zero), and is usually set to 20 ⁇ m or less.
  • FIGS. 4C and 4D two intersecting directions [FIG. 4C is two opposing directions, and FIG. 4D is two adjacent directions] are discontinuous.
  • the three intersecting directions may be discontinuous, or as shown in FIG. 4 (f), all the four intersecting directions may be discontinuous. It may be discontinuous.
  • a lattice shape having two or more kinds of intersections among the intersections shown in FIGS. 4 (a) to 4 (f) may be used. That is, in the present invention, the “lattice shape” formed by the plurality of linear cores 2 means that a part or all of the intersections are formed as described above.
  • the light crossing loss can be reduced. That is, as shown in FIG. 5 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 5 (a)] is noted, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and the incident angle at the wall surface 2a is smaller than the critical angle, and thus passes through the core 2 [FIG. a) (See the two-dot chain line arrow). Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 5A). On the other hand, as shown in FIG.
  • Example 1 [Formation material of under clad layer and over clad layer]
  • Component a 60 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation YL7410).
  • Component b 40 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
  • Component c 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI101A).
  • Component d 90 parts by weight of an epoxy resin (manufactured by Daicel Corporation, EHPE3150).
  • Component e 10 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, Epicoat 1002).
  • Component f 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
  • Component g 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries, Ltd., solvent).
  • a core forming material was prepared by mixing these components d to g.
  • a substantially rectangular undercladding layer was formed by spin coating using the undercladding layer forming material.
  • the thickness of this under cladding layer was 25 ⁇ m.
  • the elastic modulus was 240 MPa and the refractive index was 1.50.
  • the elastic modulus was measured using a viscoelasticity measuring device (TA instruments Japan Inc., RSA3).
  • a sheet-like core pattern member having a lattice-shaped portion composed of a plurality of linear cores and an outer peripheral portion is formed on the surface of the under-cladding layer by the photolithography method using the core forming material.
  • the two arc-shaped portions that are the branched portions of the core connected to the light emitting element have a bending radius of 5 mm.
  • the size of the grid portion (input area) was 210 mm long ⁇ 297 mm wide.
  • the width of the core was 100 ⁇ m, the thickness was 50 ⁇ m, and the width of the gap between adjacent parallel linear cores in the lattice portion was 500 ⁇ m.
  • the elastic modulus was 1.58 GPa and the refractive index was 1.51.
  • an over clad layer is formed on the surface of the under clad layer by a photolithography method on the surface of the under clad layer so as to cover the core pattern member excluding the two arc-shaped portions of the core. Formed.
  • the thickness of this over clad layer was 40 ⁇ m.
  • the two arc-shaped portions of the core were exposed [covered with air clad (refractive index 1.00)].
  • the elastic modulus was 240 MPa and the refractive index was 1.50. In this way, a substantially rectangular sheet-shaped optical waveguide was produced.
  • a light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of the outer periphery of the core pattern member, and a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the core. did.
  • Example 2 In Example 1, the air clad portion was formed of the second over clad layer having a refractive index (1.48) lower than the refractive index (1.50) of the over clad layer.
  • the material for forming the second overcladding layer is shown below. The other parts were the same as in Example 1 above.
  • Component h 80 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation, YL7410).
  • Component i 20 weight part of epoxy resins (Daicel, 2021P).
  • Component j 4 parts by weight of a photoacid generator (manufactured by San Apro, CPI101A).
  • a material for forming the second overcladding layer was prepared by mixing these components h to j.
  • Example 1 the bending radius of the two arc-shaped portions, which are the branched portions of the core connected to the light emitting element, was 10 mm. Then, the surface of the under cladding layer was covered with the over cladding layer so as to cover the entire core pattern member (see FIG. 6). The other parts were the same as in Example 1 above.
  • the position sensors of Examples 1 and 2 can reduce the bending radius of the two arc-shaped portions of the core and can save space as compared with the position sensor of the comparative example.
  • the difference in refractive index is smaller in Example 2 (difference in refractive index 0.03) than in Example 1 (difference in refractive index 0.51)
  • the bending radius may be 5 mm.
  • it can be bent. That is, in the first embodiment, it is possible to further reduce the bending radius.
  • the optical waveguide is shown in a sectional view in FIG. 1B.
  • the optical waveguide is shown in the sectional view in FIG. 3 as in the first and second embodiments. The result which shows the tendency of was obtained.
  • the position sensor of the present invention can be used for space saving.

Abstract

 The present invention provides a position sensor with which it is possible to reduce a space. This position sensor is provided with a sheet-shaped optical waveguide W in which a sheet-shaped core pattern member provided with a lattice-shaped portion 2A comprising a plurality of linear cores 2 and an outer peripheral portion 2B extended from the core 2 of the lattice-shaped portion 2A and arranged in bent form so as to be along the outer periphery of the lattice-shaped portion 2A is covered with an under-cladding layer 1 and an over-cladding layer 3. The refractive index of the clad layer covering circular arc portions 2p, 2q in which the core 2 of the outer peripheral portion 2B is bent is set to be lower than the refractive indices of the under-cladding layer 1 and over-cladding layer 3 covering the other portions of the core 2. The light propagating through the circular arc portions 2p, 2q is thereby made less susceptible to leakage even when the bend radii of the circular arc portions 2p, 2q are reduced.

Description

位置センサPosition sensor
 本発明は、押圧位置を光学的に検知する位置センサに関するものである。 The present invention relates to a position sensor that optically detects a pressed position.
 本出願人は、これまでに、押圧位置を光学的に検知する位置センサを提案している(例えば、特許文献1参照)。このものは、図6に示すように、シート状のコアパターン部材を四角形シート状のアンダークラッド層11とオーバークラッド層13とで挟持した四角形シート状の光導波路W1を有している。上記コアパターン部材は、線状の光路用のコア12を縦横に配置してなる格子を複数個連続状態で有する格子状部分12Aと、この格子状部分12Aのコア12から延設されてその格子状部分12Aの外周に沿った状態で配置された外周部分12B~12Eとを備えている。また、上記コアパターン部材の外周部分12Bのコア12の端部に、発光素子14が接続され、外周部分12D,12Eのコア12の端部に、受光素子15が接続されている。そして、上記発光素子14から発光された光は、その発光素子14に接続された外周部分12B,12Cのコア12から格子状部分12Aのコア12を経て反対側の外周部分12D,12Eのコア12を通り、受光素子15で受光されるようになっている。上記格子状部分12Aに対応するオーバークラッド層13の表面部分(図6において格子状部分12Aを囲んだ状態の一点鎖線で示す長方形部分)が、位置センサの入力領域13Aとなっている。 The present applicant has proposed a position sensor that optically detects the pressed position (see, for example, Patent Document 1). As shown in FIG. 6, this has a rectangular sheet-shaped optical waveguide W <b> 1 in which a sheet-shaped core pattern member is sandwiched between a rectangular sheet-shaped under cladding layer 11 and an over cladding layer 13. The core pattern member includes a lattice portion 12A having a plurality of continuous lattices in which linear optical path cores 12 are arranged vertically and extending from the core 12 of the lattice portion 12A. Outer peripheral portions 12B to 12E arranged along the outer periphery of the cylindrical portion 12A. The light emitting element 14 is connected to the end of the core 12 of the outer peripheral portion 12B of the core pattern member, and the light receiving element 15 is connected to the end of the core 12 of the outer peripheral portions 12D and 12E. The light emitted from the light-emitting element 14 passes through the core 12 of the outer peripheral portions 12B and 12C connected to the light-emitting element 14 through the core 12 of the lattice-shaped portion 12A, and the core 12 of the opposite outer peripheral portions 12D and 12E. And the light receiving element 15 receives the light. A surface portion of the over cladding layer 13 corresponding to the lattice portion 12A (a rectangular portion indicated by a one-dot chain line in a state surrounding the lattice portion 12A in FIG. 6) is an input region 13A of the position sensor.
 そして、入力する際には、上記入力領域13Aの任意の部分を、例えば入力用のペン先で押圧することが行われる。それにより、その押圧部分のコア12が変形し、その変形した部分を有するコア12の光伝播量が低下する。そのため、上記押圧部分のコア12では、上記受光素子15での受光レベルが低下することから、その受光レベルの低下をコンピュータにより処理し、上記押圧位置を検知できるようになっている。 When inputting, an arbitrary portion of the input area 13A is pressed with, for example, an input pen tip. Thereby, the core 12 of the pressing portion is deformed, and the light propagation amount of the core 12 having the deformed portion is reduced. For this reason, in the core 12 of the pressing portion, the light receiving level at the light receiving element 15 decreases, so that the decrease in the light receiving level can be processed by a computer and the pressed position can be detected.
 なお、一般に、光導波路では、光路となるコアの屈折率がアンダークラッド層およびオーバークラッド層の屈折率よりも高く設定され、コアの中を伝播する光が、コア内で反射しながらコア内を伝播し、アンダークラッド層およびオーバークラッド層に漏れにくくなっている。そして、上記光導波路W1では、作製を容易にする観点から、コアパターン部材の格子状部分12Aを被覆するアンダークラッド層11およびオーバークラッド層13も、外周部分12B~12Eを被覆するアンダークラッド層11およびオーバークラッド層13も、同じもの(すなわち同じ屈折率)となっており、それが技術常識となっている。 In general, in the optical waveguide, the refractive index of the core serving as the optical path is set higher than the refractive indexes of the under-cladding layer and the over-cladding layer, and the light propagating in the core is reflected in the core while reflecting in the core. Propagated and less likely to leak into the under-cladding layer and over-cladding layer In the optical waveguide W1, the under cladding layer 11 and the over cladding layer 13 covering the lattice portion 12A of the core pattern member also cover the outer peripheral portions 12B to 12E from the viewpoint of facilitating manufacture. And the over clad layer 13 is also the same (that is, the same refractive index), which is common technical knowledge.
特許第5513656号公報Japanese Patent No. 5513656
 一般に、この種の位置センサでは、発光素子および受光素子が電気回路基板に実装されており、その電気回路基板をできる限りコンパクト化して製造コストの低減を図る観点から、発光素子と受光素子とを近づけて配置することが技術常識となっている。実際、図6に示す上記位置センサでは、発光素子14も受光素子15も、四角形シート状の光導波路W1の四角形状の一辺(図6では下端辺)に設けられており、両素子14,15を近づけた配置にしている。 Generally, in this type of position sensor, a light emitting element and a light receiving element are mounted on an electric circuit board. From the viewpoint of reducing the manufacturing cost by making the electric circuit board as compact as possible, the light emitting element and the light receiving element are combined. It is common technical knowledge to place them close together. Actually, in the position sensor shown in FIG. 6, both the light emitting element 14 and the light receiving element 15 are provided on one side (the lower end side in FIG. 6) of the rectangular sheet-shaped optical waveguide W1. Are placed close together.
 また、一般に、この種の位置センサでは、製造コストの観点から、発光素子および受光素子の個数をできる限り少なくすることが技術常識となっている。現実に、図6に示す上記位置センサでは、それぞれ1個ずつ用いられている。 In general, in this type of position sensor, it is common technical knowledge to reduce the number of light emitting elements and light receiving elements as much as possible from the viewpoint of manufacturing cost. Actually, one position sensor is used in each of the position sensors shown in FIG.
 上記のように、製造コストの点で、発光素子14および受光素子15の配置および個数に制限があることから、1個の発光素子14から出射された光は、格子状部分12Aの縦方向と横方向の2方向(XY方向)のコア12に伝播されるよう、一旦、格子状部分12Aの縦横の側面に沿って90°分岐させる必要がある。そのため、図6に示す上記位置センサでは、発光素子14に接続するコア12は、格子状部分12Aの側面(図6では左側面)に沿って、その格子状部分12Aの一角部(図6では左上角部)まで延び(符号12p)、その先端から円弧状に90°曲げられて(符号12t)延びる線状部分(符号12q)と、上記先端から円弧状に180°(逆U字状に)曲げられて(符号12u)延びる線状部分(符号12r)とに分岐されている。発光素子14側のコア12p,12q,12rは、その発光素子14から、格子状部分12Aを構成する複数の縦横のコア12sに分岐開始するまでが太く、そこから先端側にかけて分岐数が多くなるにつれて徐々に細くなっている。これは、発光素子14から出射された光が、発光素子14に近い方から順次分岐されてゆくため、発光素子14に近いコア12が太く、発光素子14から遠いコア12は細くなるのである。 As described above, since the arrangement and the number of the light emitting elements 14 and the light receiving elements 15 are limited in terms of manufacturing cost, the light emitted from one light emitting element 14 is in the vertical direction of the lattice-shaped portion 12A. In order to be propagated to the core 12 in the two horizontal directions (XY directions), it is necessary to branch once by 90 ° along the vertical and horizontal side surfaces of the lattice-shaped portion 12A. Therefore, in the position sensor shown in FIG. 6, the core 12 connected to the light emitting element 14 has a corner portion (in FIG. 6) along the side surface (left side surface in FIG. 6) of the lattice portion 12 </ b> A. A linear portion (reference numeral 12q) that extends to the upper left corner (reference numeral 12p), is bent 90 ° in an arc shape from the tip (reference numeral 12t), and is 180 ° (inverted U-shape) in an arc shape from the tip. ) Branched into a linear part (reference numeral 12r) which is bent (reference numeral 12u) and extends. The cores 12p, 12q, and 12r on the light emitting element 14 side are thick from the light emitting element 14 to start branching into a plurality of vertical and horizontal cores 12s constituting the lattice portion 12A, and the number of branches increases from there to the tip side. It gradually gets thinner as you go. This is because the light emitted from the light emitting element 14 is sequentially branched from the side closer to the light emitting element 14, so that the core 12 near the light emitting element 14 is thicker and the core 12 far from the light emitting element 14 is thinner.
 ところが、上記分岐部分である二つの円弧状部分12t,12uにおいて、光が漏れにくく、なだらかに伝播するよう、上記二つの円弧状部分12t,12uは、曲げ半径が大きく設定されている。一般に、コアの曲げ半径が小さいと、その中を伝播する光が、その曲げ部分から漏れやすくなるからである。そのため、上記分岐部分が形成されている外周部分(図6では左側の外周部分)12Bの上記二つの円弧状部分12t,12uの曲げ半径が大きくなっており、その外周部分12Bが形成されている光導波路W1の周縁部分F1の幅(額縁幅)も大きくなっている。その結果、上記位置センサは、広いスペースを要するものとなっている。この点で上記位置センサは改良の余地がある。 However, the two arcuate portions 12t and 12u are set to have large bending radii so that light hardly leaks and propagates gently in the two arcuate portions 12t and 12u that are the branched portions. In general, when the bending radius of the core is small, light propagating through the core is likely to leak from the bent portion. Therefore, the bending radius of the two arc- shaped portions 12t and 12u of the outer peripheral portion (the outer peripheral portion on the left side in FIG. 6) 12B where the branch portion is formed is increased, and the outer peripheral portion 12B is formed. The width (frame width) of the peripheral portion F1 of the optical waveguide W1 is also increased. As a result, the position sensor requires a large space. In this respect, the position sensor has room for improvement.
 本発明は、このような事情に鑑みなされたもので、省スペース化を図ることができる位置センサの提供をその目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a position sensor capable of saving space.
 上記の目的を達成するため、本発明の位置センサは、線状のコアを縦横に配置してなる格子を複数個連続状態で有する格子状部分と、この格子状部分のコアから延設されてその格子状部分の外周に沿うよう曲げられた状態で配置された外周部分とを備えたシート状のコアパターン部材を、クラッド層で被覆したシート状の光導波路と、この光導波路のコアに接続された発光素子および受光素子とを備えた位置センサであって、上記外周部分のコアの曲げ部分を被覆する上記クラッド層の屈折率が、その曲げ部分を伝播する光の漏れを少なくするために、それ以外の部分のコアを被覆する上記クラッド層の屈折率よりも低く設定されており、上記コアパターン部材の格子状部分に対応するクラッド層の表面部分を入力領域とし、その入力領域における押圧位置を、その押圧により変化したコアの光伝播量によって特定するという構成をとる。 In order to achieve the above object, a position sensor according to the present invention includes a lattice portion having a plurality of lattices in which linear cores are arranged vertically and horizontally, and a core extending from the lattice portion. A sheet-like core pattern member provided with a sheet-shaped core pattern member provided with an outer peripheral portion arranged in a bent state along the outer periphery of the lattice-like portion, and a core of the optical waveguide connected with a sheet-like optical waveguide coated with a clad layer In order to reduce the leakage of light propagating through the bent portion, the refractive index of the cladding layer covering the bent portion of the core of the outer peripheral portion The refractive index of the cladding layer covering the core of the other portion is set lower than the refractive index of the cladding layer, and the surface portion of the cladding layer corresponding to the lattice portion of the core pattern member is used as the input region. The pressed position definitive, a configuration that identifies the light propagation quantity of the core that has changed by the pressing.
 なお、本発明において、コアパターン部材の外周部分のコアの曲げ部分を被覆するクラッド層の部分は、エアークラッド(空気からなるクラッド)を含む意味である。すなわち、そのエアークラッドで被覆されたコアの曲げ部分は、外部に露呈した状態にある。 In the present invention, the portion of the clad layer that covers the bent portion of the core at the outer peripheral portion of the core pattern member means that it includes an air clad (a clad made of air). That is, the bent part of the core covered with the air clad is in a state exposed to the outside.
 本発明者らは、押圧位置の省スペース化を図るべく、コアパターン部材の外周部分のコアの曲げ半径を小さくすることに着目し、研究を重ねた。具体的には、コアパターン部材を被覆するクラッド層の屈折率を小さくすることにより、コアとの屈折率差を大きくし、コアの曲げ半径を小さくしても、そのコアの中を伝播する光が漏れにくくなるようにすることを着想し研究を重ねた。 The inventors of the present invention have repeated research with a focus on reducing the bending radius of the core at the outer peripheral portion of the core pattern member in order to save the pressing position. Specifically, by reducing the refractive index of the clad layer that covers the core pattern member, the difference in refractive index with the core is increased, and even if the bending radius of the core is reduced, the light propagating through the core Researched the idea to make it difficult to leak.
 しかしながら、上記のようにクラッド層の屈折率とコアの屈折率との差を大きくすると、今度は、入力領域(コアパターン部材の格子状部分に対応する部分)において、押圧部分のコアからも光が漏れにくくなり、押圧部分と他の部分との光の強度の差が小さくなる。そのため、受光素子での受光レベルの低下を感知できず、押圧位置の検知感度が低下する。 However, if the difference between the refractive index of the cladding layer and the refractive index of the core is increased as described above, this time, in the input region (the portion corresponding to the lattice-shaped portion of the core pattern member), light from the core of the pressing portion is also emitted. Is less likely to leak, and the difference in light intensity between the pressed portion and other portions is reduced. For this reason, a decrease in the light receiving level at the light receiving element cannot be detected, and the detection sensitivity of the pressed position decreases.
 そこで、本発明者らは、このような考え方にとらわれず、クラッド層の屈折率を、コアパターン部材の外周部分のコアの曲げ部分を被覆する部分と、それ以外のコア部分を被覆する部分とで、差を設けることを着想し、前者の屈折率の方を低く設定してみた。その結果、コアとクラッド層との屈折率の差は、上記コアの曲げ部分では大きく、格子状部分(入力領域)では小さくなる。そのため、上記コアの曲げ部分では、コアの曲げ半径を小さくしても、その曲げ部分を伝播する光が漏れにくくなり、格子状部分(入力領域)では、押圧部分のコアから光が漏れやすくなる。すなわち、上記クラッド層における屈折率に差を設けることにより、上記コアの曲げ半径を小さくして、位置センサの省スペース化を図ることができるとともに、押圧位置の検知感度も優れたものとすることができるようになり、本発明を完成させた。 Therefore, the present inventors are not bound by such a concept, the refractive index of the cladding layer, the portion that covers the bent portion of the core of the outer peripheral portion of the core pattern member, and the portion that covers the other core portion With the idea of providing a difference, the former refractive index was set lower. As a result, the difference in refractive index between the core and the clad layer is large in the bent portion of the core and small in the lattice-like portion (input region). Therefore, even if the bending radius of the core is reduced, light propagating through the bending portion is less likely to leak at the bent portion of the core, and light easily leaks from the core at the pressing portion at the lattice-like portion (input region). . That is, by providing a difference in the refractive index in the cladding layer, the bending radius of the core can be reduced to save space in the position sensor, and the detection sensitivity of the pressed position should be excellent. The present invention has been completed.
 本発明の位置センサは、格子状部分のコアが延設された外周部分のコアが、その格子状部分の外周に沿うよう曲げられた状態で配置されており、その曲げ部分を被覆するクラッド層の屈折率が、それ以外の部分のコアを被覆するクラッド層の屈折率よりも低く設定されている。そのため、上記コアの曲げ部分では、コアの曲げ半径を小さくしても、その曲げ部分を伝播する光が漏れにくくなり、格子状部分(入力領域)では、押圧部分のコアから光が漏れやすくなる。すなわち、本発明の位置センサは、上記クラッド層における屈折率の差により、上記コアの曲げ半径を小さくして、位置センサの省スペース化を図ることができるとともに、押圧位置の検知感度に優れたものとすることができる。 In the position sensor of the present invention, the core of the outer peripheral portion where the core of the lattice portion is extended is arranged in a state bent along the outer periphery of the lattice portion, and the clad layer covering the bent portion Is set to be lower than the refractive index of the cladding layer covering the core of the other part. Therefore, even if the bending radius of the core is reduced, light propagating through the bending portion is less likely to leak at the bent portion of the core, and light easily leaks from the core at the pressing portion at the lattice-like portion (input region). . That is, the position sensor of the present invention can reduce the bending radius of the core due to the difference in the refractive index in the cladding layer, thereby saving the space of the position sensor and being excellent in detection sensitivity of the pressed position. Can be.
(a)は、本発明の位置センサの第1の実施の形態を模式的に示す平面図であり、(b)は、その中央部分の拡大断面図である。(A) is a top view which shows typically 1st Embodiment of the position sensor of this invention, (b) is an expanded sectional view of the center part. 上記位置センサの変形例を模式的に示す平面図である。It is a top view which shows the modification of the said position sensor typically. 上記位置センサを構成する光導波路の変形例を模式的に示す要部拡大断面図である。It is a principal part expanded sectional view which shows typically the modification of the optical waveguide which comprises the said position sensor. (a)~(f)は、上記位置センサにおける格子状部分のコアの交差形態を模式的に示す拡大平面図である。(A) to (f) are enlarged plan views schematically showing the crossing form of the cores of the lattice-like portion in the position sensor. (a),(b)は、上記格子状部分のコアの交差部における光の進路を模式的に示す拡大平面図である。(A), (b) is an enlarged plan view which shows typically the course of the light in the cross | intersection part of the core of the said lattice-shaped part. 従来の位置センサを模式的に示す平面図である。It is a top view which shows the conventional position sensor typically.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1(a)は、本発明の位置センサの第1の実施の形態を示す平面図であり、図1(b)は、その中央部の断面を拡大した図である。この実施の形態の位置センサは、図6に示す従来の位置センサにおいて、発光素子4に接続されるコア2を分岐させた二つの円弧状部分2p,2q〔図1(a)では左上角部分〕が、オーバークラッド層3で被覆されておらず、露呈しているとともに、曲げ半径を小さくして形成されている。そして、その曲げ半径を小さくすることにより、図示の左側部の幅を、従来のもの(図6参照)よりも狭くして、位置センサの省スペース化(小形化)を図っている。それ以外の部分は、図6に示す従来の位置センサと同様である。 FIG. 1 (a) is a plan view showing a first embodiment of the position sensor of the present invention, and FIG. 1 (b) is an enlarged cross-sectional view of the central portion thereof. The position sensor of this embodiment is the same as that of the conventional position sensor shown in FIG. 6, but two arc-shaped portions 2p and 2q branched from the core 2 connected to the light emitting element 4 [the upper left corner portion in FIG. Is not covered with the overcladding layer 3 but is exposed and formed with a small bending radius. Then, by reducing the bending radius, the width of the left side shown in the figure is made narrower than that of the conventional one (see FIG. 6), and the position sensor is saved in space (miniaturized). The other parts are the same as those of the conventional position sensor shown in FIG.
 すなわち、この実施の形態の位置センサにおける上記コア2の二つの円弧状部分2p,2qは、空気からなるクラッドであるエアークラッドで被覆されている。ここで、屈折率は、例えば、コア2が1.51程度、アンダークラッド層1およびオーバークラッド層3が1.50程度、エアークラッドが1.00程度である。このことから、上記コア2の二つの円弧状部分2p,2qとエアークラッドとの屈折率の差(0.51程度)は、図6に示す従来の位置センサにおけるコア12の二つの円弧状部分12t,12uとオーバークラッド層13との屈折率の差(0.01程度)よりも非常に大きくなっている。そのため、上記コア2の二つの円弧状部分2p,2qの曲げ半径を小さくしても、その円弧状部分2p,2qを伝播する光が漏れにくくなっており、適正な光伝播が可能となっている。そこで、先に述べたように、上記コア2の二つの円弧状部分2p,2qの曲げ半径を小さくすることにより、位置センサの省スペース化を図っている。 That is, the two arc-shaped portions 2p and 2q of the core 2 in the position sensor of this embodiment are covered with an air clad that is a clad made of air. Here, for example, the refractive index of the core 2 is about 1.51, the under cladding layer 1 and the over cladding layer 3 are about 1.50, and the air cladding is about 1.00. From this, the difference in refractive index (about 0.51) between the two arc-shaped portions 2p, 2q of the core 2 and the air clad is the two arc-shaped portions of the core 12 in the conventional position sensor shown in FIG. The difference in refractive index between 12t and 12u and the overcladding layer 13 (about 0.01) is much larger. For this reason, even if the bending radii of the two arc-shaped portions 2p and 2q of the core 2 are reduced, light propagating through the arc-shaped portions 2p and 2q is difficult to leak, and proper light propagation is possible. Yes. Therefore, as described above, the space of the position sensor is reduced by reducing the bending radii of the two arcuate portions 2p and 2q of the core 2.
 また、上記コア2の二つの円弧状部分2p,2q以外の格子状部分2A(入力領域3A)等では、コア2とアンダークラッド層1およびオーバークラッド層3との屈折率の差は、図6に示す従来の位置センサと同様に小さくなっている。そのため、入力領域3Aでは、図6に示す従来の位置センサと同様、押圧部分のコア2が変形し、そのコア2から光が漏れやすくなっている。そして、上記押圧部分のコア2では、上記受光素子5での受光レベルが適正に低下する。このことから、上記位置センサは、上記押圧位置の検知感度は、低くなることなく、優れたものとなっている。なお、図1(a)では、格子状部分2Aのコア2の数を略しコア2同士の間隔を広げて図示している。 Further, in the lattice portion 2A (input region 3A) other than the two arc-shaped portions 2p and 2q of the core 2, the difference in refractive index between the core 2, the under cladding layer 1 and the over cladding layer 3 is as shown in FIG. As with the conventional position sensor shown in FIG. Therefore, in the input region 3A, the core 2 of the pressing portion is deformed and light is likely to leak from the core 2 as in the conventional position sensor shown in FIG. And in the core 2 of the said press part, the light reception level in the said light receiving element 5 falls appropriately. For this reason, the position sensor has excellent detection sensitivity of the pressed position without being lowered. In FIG. 1A, the number of the cores 2 of the lattice-like portion 2A is omitted, and the interval between the cores 2 is increased.
 この実施の形態の位置センサの作製は、例えばフォトリソグラフィ法によりなされる。すなわち、まず、アンダークラッド層1を形成した後、そのアンダークラッド層1の表面に、コア2をコアパターン部材にパターン形成する。ついで、上記コア2の二つの円弧状部分2p,2qを除くコアパターン部材を被覆するよう、上記アンダークラッド層1の表面に、オーバークラッド層3をパターン形成する。そして、上記コアパターン部材の外周部分2Bのコア2の一端面に、発光素子4を接続し、そのコア2の他端面(外周部分2D,2Eのコア2の端面)に、受光素子5を接続する。このようにして、上記位置センサを作製することができる。 The position sensor according to this embodiment is manufactured by, for example, a photolithography method. That is, first, after forming the under-cladding layer 1, the core 2 is patterned on the core pattern member on the surface of the under-cladding layer 1. Next, an over clad layer 3 is patterned on the surface of the under clad layer 1 so as to cover the core pattern member excluding the two arc-shaped portions 2p and 2q of the core 2. The light emitting element 4 is connected to one end face of the core 2 of the outer peripheral portion 2B of the core pattern member, and the light receiving element 5 is connected to the other end face of the core 2 (end face of the core 2 of the outer peripheral portions 2D and 2E). To do. In this way, the position sensor can be manufactured.
 ここで、上記各層の厚みは、例えば、アンダークラッド層1が10~500μmの範囲内、コア2が5~100μmの範囲内、オーバークラッド層3が1~200μmの範囲内に設定される。なお、上記アンダークラッド層1として、ゴムシートを用い、そのゴムシート上にコア2を格子状に形成するようにしてもよい。 Here, the thickness of each of the above layers is set, for example, in the range of 10 to 500 μm for the under cladding layer 1, in the range of 5 to 100 μm for the core 2, and in the range of 1 to 200 μm for the over cladding layer 3. Note that a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
 また、上記位置センサでは、コア2の弾性率がアンダークラッド層1およびオーバークラッド層3の弾性率よりも大きく設定されていることが好ましい。その理由は、弾性率の設定がその逆であると、コア2の周辺が硬くなるため、オーバークラッド層3の入力領域3Aの部分を押圧するペン先等の面積よりもかなり広い面積の光導波路Wの部分が凹み、押圧位置を正確に検知しにくくなる傾向にあるからである。そこで、各弾性率としては、例えば、コア2の弾性率は、1GPa以上10GPa以下の範囲内に設定され、オーバークラッド層3の弾性率は、0.1GPa以上10GPa未満の範囲内に設定され、アンダークラッド層1の弾性率は、0.1MPa以上1GPa以下の範囲内に設定されることが好ましい。この場合、コア2の弾性率が大きいため、小さな押圧力では、コア2はつぶれない(コア2の断面積は小さくならない)ものの、押圧により光導波路Wが凹むため、その凹んだ部分に対応するコア2の曲がった部分から光の漏れ(散乱)が発生し、そのコア2では、受光素子5での受光レベルが低下することから、押圧位置を検知することができる。 In the position sensor, it is preferable that the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under cladding layer 1 and the over cladding layer 3. The reason is that if the elastic modulus is set in the opposite direction, the periphery of the core 2 becomes hard, so that the optical waveguide having an area considerably larger than the area of the pen tip or the like that presses the input region 3A portion of the over clad layer 3 This is because the W portion is recessed and it is difficult to accurately detect the pressed position. Therefore, as each elastic modulus, for example, the elastic modulus of the core 2 is set within a range of 1 GPa or more and 10 GPa or less, and the elastic modulus of the over clad layer 3 is set within a range of 0.1 GPa or more and less than 10 GPa, The elastic modulus of the under cladding layer 1 is preferably set within a range of 0.1 MPa to 1 GPa. In this case, since the elastic modulus of the core 2 is large, the core 2 is not crushed by a small pressing force (the cross-sectional area of the core 2 is not reduced), but the optical waveguide W is recessed by the pressing, and therefore corresponds to the recessed portion. Light leakage (scattering) occurs from the bent portion of the core 2, and in the core 2, the light receiving level at the light receiving element 5 decreases, so that the pressed position can be detected.
 本発明の位置センサの第2の実施の形態は、図1(a),(b)に示す上記第1の実施の形態において、エアークラッドの部分が、上記オーバークラッド層3の屈折率(1.50程度)よりも低い屈折率(1.48程度)を有する第2のオーバークラッド層で形成されている。それ以外の部分は、上記第1の実施の形態と同様である。 The second embodiment of the position sensor of the present invention is the same as the first embodiment shown in FIGS. 1 (a) and 1 (b), in which the air cladding portion has a refractive index (1) of the over cladding layer 3. ..50)) and a second over clad layer having a lower refractive index (about 1.48). Other parts are the same as those in the first embodiment.
 この第2の実施の形態では、発光素子4に接続されるコア2を分岐させた二つの円弧状部分2p,2qが、上記第2のオーバークラッド層で被覆されている。そして、上記コア2の二つの円弧状部分2p,2qと上記第2のオーバークラッド層との屈折率の差(0.03程度)は、上記第1の実施の形態における上記コア2の二つの円弧状部分2p,2qとエアークラッドとの屈折率の差(0.51程度)よりも小さいものの、図6に示す従来の位置センサにおけるコア12の二つの円弧状部分12t,12uとオーバークラッド層13との屈折率の差(0.01程度)よりも大きくなっている。そのため、この第2の実施の形態でも、上記第1の実施の形態と同様、上記コア2の二つの円弧状部分2p,2qの曲げ半径を小さくすることにより、位置センサの省スペース化を図ることができる。 In the second embodiment, the two arc-shaped portions 2p and 2q branched from the core 2 connected to the light emitting element 4 are covered with the second over clad layer. The difference in refractive index (about 0.03) between the two arc-shaped portions 2p, 2q of the core 2 and the second over clad layer is the difference between the two cores 2 in the first embodiment. Two arc-shaped portions 12t and 12u of the core 12 and the over-cladding layer in the conventional position sensor shown in FIG. 6 are smaller than the difference in refractive index (approximately 0.51) between the arc-shaped portions 2p and 2q and the air cladding. This is larger than the difference in refractive index from 13 (about 0.01). Therefore, also in the second embodiment, the position sensor can be saved in space by reducing the bending radii of the two arc-shaped portions 2p and 2q of the core 2 as in the first embodiment. be able to.
 本発明の位置センサの第3の実施の形態は、図1(a),(b)に示す上記第1の実施の形態において、上記コア2の二つの円弧状部分2p,2qが形成されているアンダークラッド層の部分が、それ以外のアンダークラッド層1の屈折率(1.50程度)よりも低い屈折率(1.48程度)を有する第2のアンダークラッド層となっている。それ以外の部分は、上記第1の実施の形態と同様である。 In the third embodiment of the position sensor of the present invention, two arc-shaped portions 2p and 2q of the core 2 are formed in the first embodiment shown in FIGS. The portion of the underclad layer that is present is a second underclad layer having a lower refractive index (about 1.48) than the refractive index of other underclad layers 1 (about 1.50). Other parts are the same as those in the first embodiment.
 この第3の実施の形態では、発光素子4に接続されるコア2を分岐させた二つの円弧状部分2p,2qが、上記第2のアンダークラッド層の表面に形成されているとともに、露呈している(エアークラッドで被覆されている)。そして、その第2のアンダークラッド層と上記コア2の二つの円弧状部分2p,2qとの屈折率の差(0.03程度)は、上記第1の実施の形態におけるアンダークラッド層1と上記コア2の二つの円弧状部分2p,2qとの屈折率の差(0.01程度)よりも大きくなっている。それにより、この第3の実施の形態では、上記コア2の二つの円弧状部分2p,2qを伝播する光がより一層漏れにくくなっている。そのため、この第3の実施の形態でも、上記第1の実施の形態と同様、上記コア2の二つの円弧状部分2p,2qの曲げ半径を小さくすることにより、位置センサの省スペース化を図ることができる。 In the third embodiment, the two arc-shaped portions 2p and 2q branched from the core 2 connected to the light emitting element 4 are formed on the surface of the second under cladding layer and exposed. (Covered with air clad). The difference in refractive index (about 0.03) between the second undercladding layer and the two arc-shaped portions 2p and 2q of the core 2 is the same as that of the undercladding layer 1 in the first embodiment and the above. It is larger than the difference in refractive index (about 0.01) between the two arcuate portions 2p and 2q of the core 2. Thereby, in the third embodiment, the light propagating through the two arc-shaped portions 2p and 2q of the core 2 is more difficult to leak. Therefore, also in the third embodiment, as in the first embodiment, the position sensor can be saved in space by reducing the bending radii of the two arcuate portions 2p and 2q of the core 2. be able to.
 本発明の位置センサの第4の実施の形態は、上記第3の実施の形態において、発光素子4に接続されるコア2を分岐させた二つの円弧状部分2p,2qが、上記第2の実施の形態における低屈折率の第2のオーバークラッド層で被覆されている。それ以外の部分は、上記第3の実施の形態と同様である。 In the fourth embodiment of the position sensor according to the present invention, in the third embodiment, the two arc-shaped portions 2p and 2q branching the core 2 connected to the light emitting element 4 are The second over clad layer having a low refractive index in the embodiment is covered. The other parts are the same as in the third embodiment.
 この第4の実施の形態では、発光素子4に接続されるコア2を分岐させた二つの円弧状部分2p,2qが、上記第3の実施の形態における低屈折率の第2のアンダークラッド層の表面に形成されているとともに、上記第2の実施の形態における低屈折率の第2のオーバークラッド層で被覆されている。そして、上記コア2の二つの円弧状部分2p,2qと上記第2のアンダークラッド層および上記第2のオーバークラッド層との屈折率の差(0.03程度)は、図6に示す従来の位置センサにおけるコア12の二つの円弧状部分12t,12uとアンダークラッド層11およびオーバークラッド層13との屈折率の差(0.01程度)よりも大きくなっている。それにより、この第4の実施の形態では、上記コア2の二つの円弧状部分2p,2qを伝播する光がより一層漏れにくくなっている。そのため、この第4の実施の形態でも、上記第3の実施の形態と同様、上記コア2の二つの円弧状部分2p,2qの曲げ半径を小さくすることにより、位置センサの省スペース化を図ることができる。 In the fourth embodiment, the two arc-shaped portions 2p and 2q branching the core 2 connected to the light emitting element 4 are the second refractive index second under cladding layer in the third embodiment. And is covered with the second over-cladding layer having a low refractive index in the second embodiment. The difference in refractive index (about 0.03) between the two arc-shaped portions 2p and 2q of the core 2 and the second under cladding layer and the second over cladding layer is the same as the conventional one shown in FIG. This is larger than the difference in refractive index (about 0.01) between the two arc-shaped portions 12t and 12u of the core 12 and the under cladding layer 11 and the over cladding layer 13 in the position sensor. Thereby, in the fourth embodiment, light propagating through the two arc-shaped portions 2p and 2q of the core 2 is further less likely to leak. Therefore, also in the fourth embodiment, as in the third embodiment, the position sensor can be saved in space by reducing the bending radii of the two arc-shaped portions 2p and 2q of the core 2. be able to.
 本発明の位置センサの第5の実施の形態は、図1(a),(b)に示す上記第1の実施の形態において、発光素子4から上記コア2の二つの円弧状部分2p,2qまでが、オーバークラッド層3で被覆されておらず、露呈している(エアークラッドで被覆されている)。それ以外の部分は、上記第1の実施の形態と同様である。 The fifth embodiment of the position sensor according to the present invention is different from the first embodiment shown in FIGS. 1A and 1B in that the two arc-shaped portions 2p and 2q of the core 2 from the light emitting element 4 are used. Up to, it is not covered with the over clad layer 3 but exposed (covered with air clad). Other parts are the same as those in the first embodiment.
 この第5の実施の形態では、発光素子4から上記コア2の二つの円弧状部分2p,2qを伝播する光が漏れにくくなっている。そのため、この第5の実施の形態でも、上記第1の実施の形態と同様、上記コア2の二つの円弧状部分2p,2qの曲げ半径を小さくすることにより、位置センサの省スペース化を図ることができる。 In the fifth embodiment, light propagating from the light emitting element 4 through the two arc-shaped portions 2p and 2q of the core 2 is less likely to leak. Therefore, also in the fifth embodiment, as in the first embodiment, the position sensor can be saved in space by reducing the bending radii of the two arc-shaped portions 2p, 2q of the core 2. be able to.
 本発明の位置センサの第6の実施の形態は、上記第5の実施の形態において、発光素子4から上記二つの円弧状部分2p,2qまでのコア2が形成されているアンダークラッド層の部分が、上記第3の実施の形態における低屈折率の第2のアンダークラッド層となっている。それ以外の部分は、上記第5の実施の形態と同様である。 The sixth embodiment of the position sensor according to the present invention is the portion of the under cladding layer in which the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q is formed in the fifth embodiment. However, this is the second under-cladding layer having a low refractive index in the third embodiment. The other parts are the same as those in the fifth embodiment.
 この第6の実施の形態では、発光素子4から上記二つの円弧状部分2p,2qまでのコア2が、上記第3の実施の形態における低屈折率の上記第2のアンダークラッド層の表面に形成されているとともに、露呈している(エアークラッドで被覆されている)。そして、その第2のアンダークラッド層と上記発光素子4から上記二つの円弧状部分2p,2qまでのコア2との屈折率の差(0.03程度)は、上記第5の実施の形態におけるアンダークラッド層1と上記発光素子4から上記二つの円弧状部分2p,2qまでのコア2との屈折率の差(0.01程度)よりも大きくなっている。それにより、この第6の実施の形態では、上記発光素子4から上記二つの円弧状部分2p,2qまでのコア2を伝播する光がより一層漏れにくくなっている。そのため、この第6の実施の形態でも、上記第5の実施の形態と同様、上記コア2の二つの円弧状部分2p,2qの曲げ半径を小さくすることにより、位置センサの省スペース化を図ることができる。 In the sixth embodiment, the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q is formed on the surface of the second under cladding layer having a low refractive index in the third embodiment. It is formed and exposed (covered with air cladding). The difference in refractive index (about 0.03) between the second under-cladding layer and the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q is the same as in the fifth embodiment. This is larger than the difference in refractive index (about 0.01) between the undercladding layer 1 and the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q. Thereby, in the sixth embodiment, light propagating through the core 2 from the light emitting element 4 to the two arcuate portions 2p and 2q is more difficult to leak. Therefore, in the sixth embodiment as well, as in the fifth embodiment, the space radius of the position sensor is reduced by reducing the bending radii of the two arc-shaped portions 2p and 2q of the core 2. be able to.
 なお、上記各実施の形態では、コアパターン部材の外周部分のうち、コアの曲げ部分を含む一部分を被覆するクラッド層について述べたが、コアパターン部材の外周部分全体を被覆するクラッド層についても、上記各実施の形態と同様にしてもよい。 In each of the above embodiments, the cladding layer covering a part including the bent part of the core of the outer peripheral part of the core pattern member has been described, but the cladding layer covering the entire outer peripheral part of the core pattern member is also described. You may make it the same as that of each said embodiment.
 また、上記各実施の形態では、発光素子4および受光素子5を1個ずつ用い、それらを光導波路Wの四角形状の一辺に配置したが、他でもよく、例えば、図2に平面図で示すように、発光素子4および受光素子5を2個ずつ用い、それらを光導波路Wの四角形状の一辺(図2では下端辺)に配置してもよい。なお、図2は、第1の実施の形態〔図1(a)〕に相当する形態を図示している。 Further, in each of the above embodiments, one light emitting element 4 and one light receiving element 5 are used and arranged on one side of the rectangular shape of the optical waveguide W, but may be other, for example, shown in a plan view in FIG. As described above, two light emitting elements 4 and two light receiving elements 5 may be used and arranged on one side of the optical waveguide W (the lower end side in FIG. 2). FIG. 2 shows a form corresponding to the first embodiment (FIG. 1A).
 すなわち、2個の発光素子4のうち1個(図2では左端)の発光素子4に接続されるコア2は、格子状部分2Aの一側面(図2では左側面)に沿って、その格子状部分2Aの一角部(図2では左上角部)まで延び、その先端から逆U字状に曲げられて(符号2r)延び、格子状部分2Aの横方向の各コア2に分岐されている。そして、そのコア2は、格子状部分2Aを経て、2個の受光素子5のうち1個(図2では右側)の受光素子5に至っている。 In other words, the core 2 connected to one of the two light emitting elements 4 (the left end in FIG. 2) is connected to the lattice along one side surface (the left side surface in FIG. 2) of the lattice portion 2A. Extends to one corner (upper left corner in FIG. 2), is bent in an inverted U shape (reference numeral 2r) from the tip, and is branched to each core 2 in the lateral direction of the lattice-shaped portion 2A. . Then, the core 2 reaches one of the two light receiving elements 5 (right side in FIG. 2) through the lattice-shaped portion 2A.
 残りの1個(図2では右端)の発光素子4に接続されるコア2は、格子状部分2Aの他の側面(図2では右側面)に沿って、その格子状部分2Aの他の角部(図2では右上角部)まで延び、その先端から90°(図2では左に90°)曲げられて(符号2s)延び、格子状部分2Aの縦方向の各コア2に分岐されている。そして、そのコア2は、格子状部分2Aを経て、残りの1個(図2では左側)の受光素子5に至っている。 The core 2 connected to the remaining one (right end in FIG. 2) of light emitting elements 4 is connected to the other corners of the grid portion 2A along the other side surface (right side surface in FIG. 2) of the grid portion 2A. 2 (upper right corner in FIG. 2), bent 90 ° (90 ° to the left in FIG. 2) and extended (sign 2s), and branched to each core 2 in the longitudinal direction of the lattice-shaped portion 2A. Yes. Then, the core 2 reaches the remaining one (left side in FIG. 2) light receiving element 5 through the lattice-like portion 2A.
 そして、上記コア2の逆U字状の曲げ部分2rおよび90°の曲げ部分2sを被覆するクラッド層について、上記各実施の形態と同様にしてもよい。それにより、上記逆U字状の曲げ部分2rおよび90°の曲げ部分2sの曲げ半径を小さくし、位置センサの省スペース化を図ることができる。 The clad layer covering the inverted U-shaped bent portion 2r and the 90 ° bent portion 2s of the core 2 may be the same as in the above embodiments. Thereby, the bending radius of the inverted U-shaped bent portion 2r and the 90 ° bent portion 2s can be reduced, and the position sensor can be saved in space.
 また、上記各実施の形態では、光導波路Wの断面構造を、図1(b)に示すものとしたが、他でもよく、例えば、図3に断面図で示すように、図1(b)に示すものを上下逆さまにした構造のものとしてもよい。すなわち、その光導波路Wは、シート状のアンダークラッド層1の表面部分に、コア2が埋設されて、上記アンダークラッド層1の表面とコア2の頂面とが面一に形成され、それらアンダークラッド層1の表面とコア2の頂面とを被覆した状態で、シート状のオーバークラッド層3が形成されたものとなっている。そして、コアパターン部材の外周部分のコアの曲げ部分を被覆するクラッド層について、上記各実施の形態と同様にしてもよい。 Further, in each of the above embodiments, the cross-sectional structure of the optical waveguide W is shown in FIG. 1B, but may be other, for example, as shown in FIG. It is good also as a thing of the structure which turned upside down what is shown in. That is, in the optical waveguide W, the core 2 is embedded in the surface portion of the sheet-like underclad layer 1, and the surface of the underclad layer 1 and the top surface of the core 2 are formed flush with each other. A sheet-like over clad layer 3 is formed in a state where the surface of the clad layer 1 and the top surface of the core 2 are covered. The clad layer that covers the bent portion of the core at the outer peripheral portion of the core pattern member may be the same as in the above embodiments.
 さらに、上記各実施の形態において、格子状部分2Aのコア2の各交差部は、通常、図4(a)に拡大平面図で示すように、交差する4方向の全てが連続した状態に形成されているが、他でもよい。例えば、図4(b)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよい。上記隙間Gは、アンダークラッド層1またはオーバークラッド層3の形成材料で形成されている。その隙間Gの幅dは、0(零)を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。それと同様に、図4(c),(d)に示すように、交差する2方向〔図4(c)は対向する2方向、図4(d)は隣り合う2方向〕が不連続になっているものでもよいし、図4(e)に示すように、交差する3方向が不連続になっているものでもよいし、図4(f)に示すように、交差する4方向の全てが不連続になっているものでもよい。さらに、図4(a)~(f)に示す上記交差部のうちの2種類以上の交差部を備えた格子状としてもよい。すなわち、本発明において、複数の線状のコア2により形成される「格子状」とは、一部ないし全部の交差部が上記のように形成されているものを含む意味である。 Further, in each of the above-described embodiments, each crossing portion of the core 2 of the lattice-like portion 2A is usually formed in a state in which all four intersecting directions are continuous as shown in an enlarged plan view in FIG. Others are acceptable. For example, as shown in FIG. 4B, only one intersecting direction may be divided by the gap G and discontinuous. The gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3. The width d of the gap G exceeds 0 (zero), and is usually set to 20 μm or less. Similarly, as shown in FIGS. 4C and 4D, two intersecting directions [FIG. 4C is two opposing directions, and FIG. 4D is two adjacent directions] are discontinuous. As shown in FIG. 4 (e), the three intersecting directions may be discontinuous, or as shown in FIG. 4 (f), all the four intersecting directions may be discontinuous. It may be discontinuous. Furthermore, a lattice shape having two or more kinds of intersections among the intersections shown in FIGS. 4 (a) to 4 (f) may be used. That is, in the present invention, the “lattice shape” formed by the plurality of linear cores 2 means that a part or all of the intersections are formed as described above.
 なかでも、図4(b)~(f)に示すように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができる。すなわち、図5(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図5(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面2aでの入射角が臨界角よりも小さいことから、コア2を透過する〔図5(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図5(a)では下方向〕でも発生する。これに対し、図5(b)に示すように、交差する1方向〔図5(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図5(a)においてコア2を透過する光の一部は、上記界面での入射角が臨界角よりも大きくなることから、その界面を透過することなく、その界面で反射し、コア2を進み続ける〔図5(b)の二点鎖線の矢印参照〕。このことから、先に述べたように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができるのである。その結果、ペン先等による押圧位置の検知感度を高めることができる。 In particular, as shown in FIGS. 4B to 4F, if at least one intersecting direction is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 5 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 5 (a)] is noted, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and the incident angle at the wall surface 2a is smaller than the critical angle, and thus passes through the core 2 [FIG. a) (See the two-dot chain line arrow). Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 5A). On the other hand, as shown in FIG. 5B, when the intersecting one direction [upward in FIG. 5B] is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light formed and transmitted through the core 2 in FIG. 5 (a) is reflected at the interface without passing through the interface because the incident angle at the interface is larger than the critical angle. Continue to advance the core 2 (see the two-dot chain arrow in FIG. 5B). From this, as described above, if at least one intersecting direction is discontinuous, the light crossing loss can be reduced. As a result, it is possible to increase the detection sensitivity of the pressed position by the pen tip or the like.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
〔実施例1〕
〔アンダークラッド層およびオーバークラッド層の形成材料〕
 成分a:エポキシ樹脂(三菱化学社製、YL7410)60重量部。
 成分b:エポキシ樹脂(ダイセル社製、EHPE3150)40重量部。
 成分c:光酸発生剤(サンアプロ社製、CPI101A)4重量部。
 これら成分a~cを混合することにより、アンダークラッド層およびオーバークラッド層の形成材料を調製した。
[Example 1]
[Formation material of under clad layer and over clad layer]
Component a: 60 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation YL7410).
Component b: 40 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
Component c: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI101A).
By mixing these components a to c, materials for forming the under cladding layer and the over cladding layer were prepared.
〔コアの形成材料〕
 成分d:エポキシ樹脂(ダイセル社製、EHPE3150)90重量部。
 成分e:エポキシ樹脂(三菱化学社製、エピコート1002)10重量部。
 成分f:光酸発生剤(ADEKA社製、SP170)1重量部。
 成分g:乳酸エチル(和光純薬工業社製、溶剤)50重量部。
 これら成分d~gを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component d: 90 parts by weight of an epoxy resin (manufactured by Daicel Corporation, EHPE3150).
Component e: 10 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, Epicoat 1002).
Component f: 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
Component g: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries, Ltd., solvent).
A core forming material was prepared by mixing these components d to g.
〔光導波路の作製〕
 まず、上記アンダークラッド層の形成材料を用いて、スピンコート法により、略四角形状のアンダークラッド層を形成した。このアンダークラッド層の厚みは25μmとした。弾性率は240MPa、屈折率は1.50であった。なお、弾性率の測定は、粘弾性測定装置(TA instruments Japan Inc. 社製、RSA3)を用いた。
[Production of optical waveguide]
First, a substantially rectangular undercladding layer was formed by spin coating using the undercladding layer forming material. The thickness of this under cladding layer was 25 μm. The elastic modulus was 240 MPa and the refractive index was 1.50. The elastic modulus was measured using a viscoelasticity measuring device (TA instruments Japan Inc., RSA3).
 ついで、上記アンダークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、複数の線状のコアからなる格子状部分と外周部分とを備えたシート状のコアパターン部材を形成した〔図1(a)参照〕。このコアパターン部材の外周部分において、発光素子に接続するコアの分岐部分である二つの円弧状部分は、曲げ半径を5mmとした。上記格子状部分(入力領域)の寸法は、縦210mm×横297mmとした。また、上記コアの幅は100μm、厚みは50μm、格子状部分における隣り合う平行な線状のコアとコアとの間の隙間の幅は500μmとした。弾性率は1.58GPa、屈折率は1.51であった。 Next, a sheet-like core pattern member having a lattice-shaped portion composed of a plurality of linear cores and an outer peripheral portion is formed on the surface of the under-cladding layer by the photolithography method using the core forming material. [See FIG. 1 (a)]. In the outer peripheral portion of the core pattern member, the two arc-shaped portions that are the branched portions of the core connected to the light emitting element have a bending radius of 5 mm. The size of the grid portion (input area) was 210 mm long × 297 mm wide. The width of the core was 100 μm, the thickness was 50 μm, and the width of the gap between adjacent parallel linear cores in the lattice portion was 500 μm. The elastic modulus was 1.58 GPa and the refractive index was 1.51.
 つぎに、上記コアの二つの円弧状部分を除くコアパターン部材を被覆するように、上記アンダークラッド層の表面に、上記オーバークラッド層の形成材料を用いて、フォトリソグラフィ法により、オーバークラッド層を形成した。このオーバークラッド層の厚み(コアの表面からの厚み)は40μmとした。上記コアの二つの円弧状部分は、露呈させた〔エアークラッド(屈折率1.00)で被覆した〕。弾性率は240MPa、屈折率は1.50であった。このようにして、略四角形シート状の光導波路を作製した。 Next, an over clad layer is formed on the surface of the under clad layer by a photolithography method on the surface of the under clad layer so as to cover the core pattern member excluding the two arc-shaped portions of the core. Formed. The thickness of this over clad layer (thickness from the surface of the core) was 40 μm. The two arc-shaped portions of the core were exposed [covered with air clad (refractive index 1.00)]. The elastic modulus was 240 MPa and the refractive index was 1.50. In this way, a substantially rectangular sheet-shaped optical waveguide was produced.
〔位置センサの作製〕
 上記コアパターン部材の外周部分のコアの一端面に、発光素子(Optowell社製、XH85-S0603-2s )を接続し、そのコアの他端面に、受光素子(浜松ホトニクス社製、s10226)を接続した。
[Production of position sensor]
A light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of the outer periphery of the core pattern member, and a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the core. did.
〔実施例2〕
 上記実施例1において、エアークラッドの部分を、上記オーバークラッド層の屈折率(1.50)よりも低い屈折率(1.48)を有する第2のオーバークラッド層で形成した。その第2のオーバークラッド層の形成材料を下記に示す。それ以外の部分は、上記実施例1と同様とした。
[Example 2]
In Example 1, the air clad portion was formed of the second over clad layer having a refractive index (1.48) lower than the refractive index (1.50) of the over clad layer. The material for forming the second overcladding layer is shown below. The other parts were the same as in Example 1 above.
〔第2のオーバークラッド層の形成材料〕
 成分h:エポキシ樹脂(三菱化学社製、YL7410)80重量部。
 成分i:エポキシ樹脂(ダイセル社製、2021P)20重量部。
 成分j:光酸発生剤(サンアプロ社製、CPI101A)4重量部。
 これら成分h~jを混合することにより、第2のオーバークラッド層の形成材料を調製した。
[Material for forming second overclad layer]
Component h: 80 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation, YL7410).
Component i: 20 weight part of epoxy resins (Daicel, 2021P).
Component j: 4 parts by weight of a photoacid generator (manufactured by San Apro, CPI101A).
A material for forming the second overcladding layer was prepared by mixing these components h to j.
〔比較例〕
 上記実施例1において、発光素子に接続するコアの分岐部分である二つの円弧状部分の曲げ半径を10mmとした。そして、コアパターン部材の全体を被覆するように、上記アンダークラッド層の表面に、上記オーバークラッド層で被覆した(図6参照)。それ以外の部分は、上記実施例1と同様とした。
[Comparative Example]
In Example 1 described above, the bending radius of the two arc-shaped portions, which are the branched portions of the core connected to the light emitting element, was 10 mm. Then, the surface of the under cladding layer was covered with the over cladding layer so as to cover the entire core pattern member (see FIG. 6). The other parts were the same as in Example 1 above.
 上記実施例1,2および比較例では、いずれも、適正な光伝播がなされ、押圧位置を検知することができた。しかし、上記比較例において、コアの二つの円弧状部分の曲げ半径を上記10mmよりも小さくすると、適正な光伝播がなされず、押圧位置を適正に検知することができなかった。その原因は、上記コアの二つの円弧状部分での光の漏れであることがわかった。 In each of Examples 1 and 2 and the comparative example, proper light propagation was performed and the pressed position could be detected. However, in the comparative example, when the bending radius of the two arc-shaped portions of the core is smaller than 10 mm, proper light propagation is not performed, and the pressed position cannot be detected properly. The cause was found to be leakage of light at the two arc-shaped portions of the core.
 上記結果から、実施例1,2の位置センサは、比較例の位置センサと比較して、上記コアの二つの円弧状部分の曲げ半径を小さくでき、省スペース化を図れることがわかる。 From the above results, it can be seen that the position sensors of Examples 1 and 2 can reduce the bending radius of the two arc-shaped portions of the core and can save space as compared with the position sensor of the comparative example.
 なお、一般的には、コアとクラッドとの屈折率の差が大きいほど、コアの曲げ半径を小さくすることができる。しかし、上記実施例2(上記屈折率の差0.03)では、上記実施例1(上記屈折率の差0.51)よりも、上記屈折率の差が小さいものの、上記曲げ半径5mmであれば、その曲げを可能としている。すなわち、上記実施例1では、上記曲げ半径をさらに小さくすることも可能である。 In general, the larger the difference in refractive index between the core and the clad, the smaller the bending radius of the core. However, although the difference in refractive index is smaller in Example 2 (difference in refractive index 0.03) than in Example 1 (difference in refractive index 0.51), the bending radius may be 5 mm. For example, it can be bent. That is, in the first embodiment, it is possible to further reduce the bending radius.
 また、上記実施例1,2では、発光素子および受光素子を1個ずつ用いたが、図2に示すように、2個ずつ用いたものでも、上記実施例1,2と同様の傾向を示す結果が得られた。 Further, in Examples 1 and 2, one light emitting element and one light receiving element are used, but as shown in FIG. 2, even when two elements are used, the same tendency as in Examples 1 and 2 is shown. Results were obtained.
 さらに、上記実施例1,2では、光導波路を図1(b)に断面図で示すものとしたが、光導波路を図3に断面図で示すものとしても、上記実施例1,2と同様の傾向を示す結果が得られた。 Further, in the first and second embodiments, the optical waveguide is shown in a sectional view in FIG. 1B. However, the optical waveguide is shown in the sectional view in FIG. 3 as in the first and second embodiments. The result which shows the tendency of was obtained.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の位置センサは、省スペース化を図る場合に利用可能である。 The position sensor of the present invention can be used for space saving.
 W 光導波路
 1 アンダークラッド層
 2 コア
 2A 格子状部分
 2B 外周部分
 2p,2q 円弧状部分
 3 オーバークラッド層
W optical waveguide 1 under clad layer 2 core 2A lattice portion 2B outer peripheral portion 2p, 2q arc-shaped portion 3 over clad layer

Claims (1)

  1.  線状のコアを縦横に配置してなる格子を複数個連続状態で有する格子状部分と、この格子状部分のコアから延設されてその格子状部分の外周に沿うよう曲げられた状態で配置された外周部分とを備えたシート状のコアパターン部材を、クラッド層で被覆したシート状の光導波路と、
     この光導波路のコアに接続された発光素子および受光素子と
    を備えた位置センサであって、
     上記外周部分のコアの曲げ部分を被覆する上記クラッド層の屈折率が、その曲げ部分を伝播する光の漏れを少なくするために、それ以外の部分のコアを被覆する上記クラッド層の屈折率よりも低く設定されており、
     上記コアパターン部材の格子状部分に対応するクラッド層の表面部分を入力領域とし、その入力領域における押圧位置を、その押圧により変化したコアの光伝播量によって特定することを特徴とする位置センサ。
    A grid-like portion having a plurality of grids in which linear cores are arranged vertically and horizontally and a grid-like portion extending from the core of the grid-like portion and bent along the outer periphery of the grid-like portion A sheet-like core pattern member provided with an outer peripheral portion, a sheet-like optical waveguide coated with a clad layer, and
    A position sensor comprising a light emitting element and a light receiving element connected to the core of the optical waveguide,
    The refractive index of the cladding layer covering the bent portion of the core of the outer peripheral portion is smaller than the refractive index of the cladding layer covering the core of the other portion in order to reduce leakage of light propagating through the bent portion. Is set low,
    A position sensor characterized in that a surface portion of a clad layer corresponding to a lattice-like portion of the core pattern member is used as an input region, and a pressing position in the input region is specified by a light propagation amount of a core changed by the pressing.
PCT/JP2015/075679 2014-09-24 2015-09-10 Position sensor WO2016047448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014193811A JP2016066176A (en) 2014-09-24 2014-09-24 Position sensor
JP2014-193811 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047448A1 true WO2016047448A1 (en) 2016-03-31

Family

ID=55580975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075679 WO2016047448A1 (en) 2014-09-24 2015-09-10 Position sensor

Country Status (3)

Country Link
JP (1) JP2016066176A (en)
TW (1) TW201614459A (en)
WO (1) WO2016047448A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509372A (en) * 2003-10-27 2007-04-12 アールピーオー・ピーティワイ・リミテッド Planar waveguide having patterned clad and manufacturing method thereof
JP5513656B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Electronic underlay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509372A (en) * 2003-10-27 2007-04-12 アールピーオー・ピーティワイ・リミテッド Planar waveguide having patterned clad and manufacturing method thereof
JP5513656B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Electronic underlay

Also Published As

Publication number Publication date
TW201614459A (en) 2016-04-16
JP2016066176A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
KR20180051507A (en) Optical waveguide, position sensor using it and optical circuit board
WO2016047448A1 (en) Position sensor
WO2016031601A1 (en) Location sensor
WO2016043047A1 (en) Position sensor
WO2016039166A1 (en) Position sensor
TWI673526B (en) Optical waveguide and position sensor using the same
WO2016031538A1 (en) Position sensor
WO2015151858A1 (en) Position sensor
WO2015151859A1 (en) Position sensor
WO2016031539A1 (en) Position sensor
WO2016056393A1 (en) Position sensor
KR20160074453A (en) Method for producing position sensor and position sensor obtained by means of same
WO2015045571A1 (en) Input device
WO2015151861A1 (en) Position sensor
KR101048812B1 (en) Touch sensing device having 2-layer structure
WO2014175298A1 (en) Position sensor
WO2015156111A1 (en) Position sensor and sheet-shaped optical waveguide used in same
KR20160065808A (en) Input apparatus
WO2016043048A1 (en) Position sensor
JP2017004199A (en) Position sensor
JP2015015016A (en) Electronic underlay
WO2015156112A1 (en) Position sensor and sheet-shaped optical waveguide used in same
KR20160061321A (en) Input device
KR20160061314A (en) Electronic underlay
JP2015062104A (en) Input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845244

Country of ref document: EP

Kind code of ref document: A1