WO2016039166A1 - Position sensor - Google Patents

Position sensor Download PDF

Info

Publication number
WO2016039166A1
WO2016039166A1 PCT/JP2015/074331 JP2015074331W WO2016039166A1 WO 2016039166 A1 WO2016039166 A1 WO 2016039166A1 JP 2015074331 W JP2015074331 W JP 2015074331W WO 2016039166 A1 WO2016039166 A1 WO 2016039166A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
light
optical waveguide
lattice
position sensor
Prior art date
Application number
PCT/JP2015/074331
Other languages
French (fr)
Japanese (ja)
Inventor
良真 吉岡
柴田 直樹
裕介 清水
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016039166A1 publication Critical patent/WO2016039166A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to a position sensor that optically detects a pressed position.
  • the present applicant has proposed a position sensor that optically detects the pressed position (see, for example, Patent Document 1).
  • this has a rectangular sheet-shaped optical waveguide W in which a sheet-shaped core pattern member is sandwiched between a rectangular sheet-shaped underclad layer 11 and an overclad layer 13.
  • the core pattern member includes a lattice-shaped portion 12A formed by arranging a plurality of linear optical path cores 12 vertically and horizontally, and extends from the core 12 of the lattice-shaped portion 12A to the outer periphery of the lattice-shaped portion 12A.
  • positioned in the state along is provided.
  • a light emitting element 14 is connected to one end face of the core 12 of the outer peripheral portion 12B of the core pattern member, and a light receiving element 15 is connected to the other end face of the core 12.
  • both the light emitting element 14 and the light receiving element 15 are provided at the same one end edge (lower end edge in FIG. 8) of the rectangular sheet-shaped optical waveguide W, and the light emitting element 14 is one end portion of the end edge. (The left end portion in FIG. 8), and the light receiving element 15 is disposed at the other end portion of the end edge (the right end portion in FIG. 8).
  • the surface portion of the over clad layer 13 corresponding to the lattice-shaped portion 12A of the core pattern member is an input region 13A of the position sensor. Further, a portion (a portion around the input region 13A) where the outer peripheral portion 12B of the core pattern member is sandwiched between the side edge portion of the under cladding layer 11 and the side edge portion of the over cladding layer 13 is the periphery of the optical waveguide W. It is a part (frame part) F.
  • the light emitted from the light emitting element 14 passes through the core 12 from the outer peripheral portion 12B connected to the light emitting element 14 to the opposite outer peripheral portion 12B through the lattice portion 12A.
  • the light receiving element 15 receives light.
  • the core 12 of the pressed portion is deformed, and the light propagation amount of the core 12 is reduced. Therefore, in the core 12 of the pressing portion, the light receiving level at the light receiving element 15 is lowered, so that the pressing position can be detected.
  • this type of position sensor is easy to handle a flat sensor, which has become common technical knowledge.
  • the position sensor requires a larger space than the input region 13A due to the presence of the peripheral portion F around the input region 13A.
  • the input area 13A of the position sensor is widened or the detection accuracy of the pressed position in the input area 13A is improved, it is necessary to increase the number of cores 12, and accordingly, the width of the peripheral portion F is increased. Need to be wide. For this reason, the position sensor requires a larger space. In that respect, the position sensor has room for improvement.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a position sensor capable of saving space.
  • a position sensor includes a sheet-like optical waveguide including a plurality of linear cores formed in a lattice shape and two clad layers sandwiching the lattice-like core.
  • a light-emitting element that supplies light into the lattice-like core of the optical waveguide, a light-receiving element that receives the supplied light through the core, a back surface side of the optical waveguide,
  • a position sensor including a light reflecting member that enables light propagation between the linear core, and the light emitting element or the light receiving element is connected to the linear core on the back surface side,
  • the surface area of the position sensor corresponding to the grid-shaped core is used as the input area. Pressing position in the input area, a configuration that identifies the light propagation quantity of the core that has changed by the pressing.
  • the position sensor of the present invention breaks the conventional common sense, and at least a part of the peripheral portion (frame portion) of the conventional position sensor is separated from the input region, and the input region It is in the state moved to the back side. Then, the light propagation between the core of the input region (lattice core) in the separated state and the core on the back surface side is possible by light reflection on the light reflecting member provided on the end surface of the input region. It is said.
  • the position sensor of the present invention is provided with a linear core for element connection that communicates with the lattice-shaped core on the front surface side on the back side of the optical waveguide having the lattice-shaped core, and the light emission is provided on the core.
  • the element or the light receiving element is connected.
  • a light reflecting member is provided on the sheet-like end face of the optical waveguide to reflect light and allow light propagation between the lattice-like core on the front surface side and the linear core on the back surface side. It has been. That is, the position sensor of the present invention is in a state in which at least a part of the peripheral portion (frame portion) of the conventional position sensor is separated from the input area and moved to the back side of the input area.
  • the light reflecting member enables light propagation between the lattice core on the front surface side and the linear core on the back surface side. Therefore, the position sensor of the present invention is space-saving compared with the conventional position sensor by the amount of the linear core for connecting the element provided on the back side of the optical waveguide. .
  • the light reflecting member is made of either metal or resin, and reflects the light coming from one of the front surface side of the lattice-like core and the back surface side of the linear core, thereby allowing the light to be reflected.
  • the first inclined surface passing along the thickness direction of the end face of the waveguide, or the lattice-like core on the front side and the linear core on the back side by further reflecting light along the thickness direction of the end face
  • the structure of the light reflecting member can be simplified, so that the width of the light reflecting member can be reduced. As a result, the position sensor of the present invention can be further reduced in space.
  • the width of the light reflecting member can be further reduced.
  • the sensor can further save space.
  • FIG. 6 is a plan view schematically showing second to fourth optical waveguides constituting the position sensor. It is an expanded sectional view showing typically the side edge part of other embodiments of the position sensor of the present invention. It is a top view which shows typically the optical waveguide base
  • FIG. 1 A) to (f) are enlarged plan views schematically showing a crossing form of lattice-like cores in the position sensor.
  • (A), (b) is an enlarged plan view which shows typically the course of the light in the cross
  • FIG. 1 (a) is a plan view showing an embodiment of the position sensor of the present invention
  • FIG. 1 (b) is an enlarged view of a side edge portion thereof.
  • the position sensor of this embodiment includes a first optical waveguide W1 having a substantially rectangular sheet shape having a lattice-shaped core 2 and a core 2q extending from one end of the core 2, and the first optical waveguide W1.
  • Second to fourth optical waveguides W2 having linear cores 2r that are provided on the back surface side of the side edge portions at three locations (on the left and right sides and the lower side in FIG. 1A) and that communicate with the lattice-shaped cores 2.
  • W4 visible in the first optical waveguide W1 in FIG. 1A).
  • the light emitting element 4 is connected to the first optical waveguide W1 and the second optical waveguide W2 (the back side of the right edge portion in FIG. 1A), and the third optical waveguide W3 (the lower side in FIG. 1A).
  • the light receiving element 5 is connected to the rear surface side of the side edge portion] and the fourth optical waveguide W4 (the rear surface side of the left edge portion in FIG. 1A) (see FIGS. 1B and 3). Then, light is reflected to the outside of the side edge portion of the first optical waveguide W1 provided with the second to fourth optical waveguides W2 to W4, and the lattice-like core of the first optical waveguide W1 on the surface side is reflected.
  • a light reflecting member 6 is provided that enables light propagation between 2 and the linear cores 2r of the second to fourth optical waveguides W2 to W4 on the back side.
  • the cores 2 and 2q are indicated by chain lines, and the thickness of the chain line indicates the thickness of the cores 2 and 2q. Furthermore, the number of the lattice-like cores 2 is omitted, and the interval between the cores 2 is widened. The arrow indicates the direction in which the light travels.
  • reference numeral E denotes an electric circuit board on which the light emitting element 4 or the light receiving element 5 is mounted, and the light emitting elements connected to the second to fourth optical waveguides W2 to W4. 4 or the light receiving element 5 is provided on the back side of the first optical waveguide W1.
  • the second to fourth optical waveguides W2 to W4 having the lattice-shaped core 2 and the linear core 2r for light propagation are positioned on the back surface side of the first optical waveguide W1 having the lattice-shaped core 2. Then, light propagation between the lattice-shaped core 2 of the first optical waveguide W1 on the front surface side and the linear core 2r of the second to fourth optical waveguides W2 to W4 on the back surface side is performed on the light reflecting member. It is a great feature of the present invention that the light reflection at 6 is made possible. Due to this feature, space saving of the position sensor is achieved.
  • the first optical waveguide W1 on the front surface side is shown in a plan view in FIG. 2A and in an enlarged cross-sectional view in FIG.
  • the extended core 2q disposed along the end face of the lattice portion is formed, and the under clad layer is covered with the cores 2 and 2q.
  • the over clad layer 3 is formed on the surface of 1.
  • a surface portion of the over clad layer 3 corresponding to the lattice-like core 2 is an input region 3A.
  • the light emitting element 4 is connected to the tip of the extended core 2q.
  • the second to fourth optical waveguides W2 to W4 on the back side are formed with a plurality of linear optical path cores 2r as shown in a plan view in FIG. Similar to the optical waveguide W1 (see FIGS. 2A and 2B), it is sandwiched between the under cladding layer 1 and the over cladding layer 3.
  • the light emitting element 4 or the light receiving element 5 is connected to one end of the core 2r, and the other end 2d of the core 2r is connected to the end 2c of the lattice-like core 2 on the surface side [FIG. It is positioned at a position corresponding to (see a)] (overlapping in plan view).
  • the electric circuit board E [see FIG. 1B] on which the light emitting element 4 or the light receiving element 5 is mounted is not shown.
  • the light reflecting member 6 is made of metal, and as shown in FIGS. 1A and 1B, the light reflecting member 6 is a rod-like body along the longitudinal direction of the end face of the first optical waveguide W1.
  • a concave groove 6a is formed on the surface of the light reflecting member 6 facing the end surface of the first optical waveguide W1 along the longitudinal direction of the light reflecting member 6, and the side wall of the concave groove 6a [FIG. 1 (b), the upper wall and the lower wall] are formed on light reflecting surfaces (first and second inclined surfaces) 6b and 6c inclined by 45 °.
  • the propagation of light through such a position sensor is as follows, for example, as shown in FIG. That is, light from the light emitting element 4 connected to the first optical waveguide W1 on the surface side first passes through the extended core 2q in the first optical waveguide W1 and passes through the lattice-shaped vertical core 2 from above. Propagating downward and exiting from the lower end 2c of the core 2 as shown in FIG. Next, the emitted light is reflected by the upper light reflecting surface 6b of the light reflecting member 6 to change the optical path by 90 °, propagates along the thickness direction of the end surface of the first optical waveguide W1, and the light reflected.
  • the light is reflected again by the lower light reflecting surface 6c of the member 6 to change the optical path by 90 °, and enters the end 2d of the core 2r of the third optical waveguide W3 on the back surface side.
  • the incident light propagates through the core 2r of the third optical waveguide W3 and is received by the light receiving element 5.
  • the light from the light emitting element 4 connected to the second optical waveguide W2 on the back side first propagates through the core 2r of the second optical waveguide W2, as shown in FIG. It is emitted from 2d.
  • the emitted light is reflected by the light reflecting surface 6c on the lower side of the light reflecting member 6 as shown in FIG. 1B (however, the light travels in the opposite direction to the illustrated arrow).
  • the optical path is converted by 90 °, propagated along the thickness direction of the end surface of the first optical waveguide W1, reflected again by the light reflecting surface 6b on the upper side of the light reflecting member 6 and converted by 90 °, and the surface side
  • the first optical waveguide W1 is incident on the right end portion 2c (see FIG.
  • the incident light propagates from the right to the left in the lattice-like horizontal core 2 in the first optical waveguide W1 and is emitted from the left end 2c of the core 2.
  • the emitted light is reflected by the light reflecting member 6 in the same manner as described above (see FIG. 1B) and is incident on the end 2d of the core 2r of the fourth optical waveguide W4 on the back surface side. Then, it propagates through the core 2r of the fourth optical waveguide W4 and is received by the light receiving element 5.
  • the light emitting element 4 and the light receiving element 5 are indirectly connected to the lattice-shaped core 2 in the two vertical directions and the horizontal direction (XY direction), respectively. Therefore, the two directions can be controlled separately, and the detection accuracy of the pressed position in the input area 3A can be improved.
  • the elastic modulus of the lattice-like core 2 is set larger than the elastic modulus of the under cladding layer 1 and the over cladding layer 3. The reason is that if the elastic modulus is set in the opposite direction, the periphery of the core 2 becomes hard, so that the optical waveguide having an area considerably larger than the area of the pen tip or the like that presses the input region 3A portion of the over clad layer 3 This is because the W portion is recessed and it is difficult to accurately detect the pressed position.
  • each elastic modulus for example, the elastic modulus of the core 2 is set within a range of 1 GPa or more and 10 GPa or less, and the elastic modulus of the over clad layer 3 is set within a range of 0.1 GPa or more and less than 10 GPa,
  • the elastic modulus of the under cladding layer 1 is preferably set within a range of 0.1 MPa to 1 GPa.
  • the elastic modulus of the core 2 since the elastic modulus of the core 2 is large, the core 2 is not crushed by a small pressing force (the cross-sectional area of the core 2 is not reduced), but the first optical waveguide W1 is recessed by the pressing, so that the recessed portion Since light leakage (scattering) occurs from the bent portion of the corresponding core 2 and the light receiving level at the light receiving element 5 connected to the core 2 decreases, the pressed position can be detected.
  • the elastic modulus of the core 2r and the like of the second to fourth optical waveguides W2 to W4 may be set to be the same as that of the first optical waveguide W1, or may be set to another elastic modulus. .
  • Examples of the material for forming the under cladding layer 1, the cores 2, 2q, and 2r and the over cladding layer 3 include photosensitive resins and thermosetting resins.
  • the fourth optical waveguides W1 to W4 can be manufactured. Further, the refractive indexes of the cores 2, 2 q and 2 r are set to be larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3.
  • the refractive index and the elastic modulus can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
  • each layer is set, for example, in the range of 10 to 500 ⁇ m for the under cladding layer 1, in the range of 5 to 100 ⁇ m for the cores 2, 2 q and 2 r, and in the range of 1 to 200 ⁇ m for the over cladding layer 3. .
  • a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
  • FIG. 4 is an enlarged sectional view showing a side surface portion of another embodiment of the position sensor of the present invention.
  • the light reflecting member 7 is a resinous optical waveguide (fifth optical waveguide).
  • the light reflecting member (fifth optical waveguide) 7 has a plurality of cores 7a at positions corresponding to the end 2c of the lattice-like core 2 on the front surface side and the end 2d of the linear core 2r on the back surface side. It is formed along the thickness direction of the end face of the first optical waveguide W1, and the core 7a is sandwiched between the under cladding layer 7d and the over cladding layer 7e.
  • both end surfaces of the core 7a are formed as inclined surfaces inclined by 45 ° with respect to the axial direction of the core 7a, and the inclined surfaces reflect light and reflect light by converting the light path by 90 °, 7c.
  • the outside of the inclined surface is air, and the refractive index is smaller than that of the inner core 7a. Therefore, the inclined surface becomes the light reflecting surfaces 7b and 7c as described above.
  • the other parts are the same as those in the embodiment shown in FIGS. 1A and 1B, and the same reference numerals are given to the same parts.
  • the width of the light reflecting member 7 can be reduced, so that the position sensor can be further saved in space.
  • the first to fourth optical waveguides W1 to W4 are individually manufactured, and the second to fourth optical waveguides W2 to W4 are provided on the back surface side of the first optical waveguide W1.
  • Other methods may be used.
  • the second to fourth optical waveguides W2 to W4 are directly connected to the first optical waveguide W1 and spread on the plane in advance.
  • An optical waveguide substrate W0 is manufactured, the portion corresponding to the second to fourth optical waveguides W2 to W4 is cut from the optical waveguide substrate W0, and the remaining portion is used as the first optical waveguide W1.
  • the cut second to fourth optical waveguides W2 to W4 may be provided on the back side of the waveguide W1.
  • the linear cores (second to fourth) are arranged on the back surface side of three of the four side edge portions of the region (input region 3A) of the lattice-like core 2 on the front side.
  • (Linear cores of the optical waveguides W2 to W4) 2r are provided, but may be other, for example, may be provided on the back side of all four side edge portions, may be two locations, or may be only one location. Good.
  • the light reflecting members 6 and 7 are made of metal rods and resin optical waveguides. However, the light reflecting members 6 and 7 reflect light, and the lattice-like cores 2 on the front side and the lines on the back side are reflected. Any other material may be used as long as it allows light to propagate between the core 2r. In each of the above embodiments, the light reflecting members 6 and 7 make two reflections for converting the optical path by 90 °. However, the optical path conversion angle and the number of reflections may be other as long as the light propagation is possible. .
  • each of the intersecting portions of the lattice-like core 2 is normally formed in a state in which all four intersecting directions are continuous, as shown in an enlarged plan view in FIG.
  • the gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3.
  • the width d of the gap G exceeds 0 (zero), and is usually set to 20 ⁇ m or less.
  • two intersecting directions are discontinuous. As shown in FIG.
  • the three intersecting directions may be discontinuous, or as shown in FIG. 6 (f), all the four intersecting directions may be discontinuous. It may be discontinuous.
  • the light crossing loss can be reduced. That is, as shown in FIG. 7 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions (upward in FIG. 7 (a)) is noted, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and the incident angle at the wall surface is smaller than the critical angle, and thus passes through the core 2 [FIG. )) Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 7A).
  • FIG. 7B when one intersecting direction (the upward direction in FIG.
  • Component a 60 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation YL7410).
  • Component b 40 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
  • Component c 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI101A).
  • Component d 90 parts by weight of an epoxy resin (manufactured by Daicel Corporation, EHPE3150).
  • Component e 10 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, Epicoat 1002).
  • Component f 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
  • Component g 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries, Ltd., solvent).
  • a core forming material was prepared by mixing these components d to g.
  • an under clad layer was formed by spin coating using the under clad layer forming material.
  • the thickness of this under cladding layer was 25 ⁇ m.
  • the elastic modulus was 240 MPa and the refractive index was 1.496.
  • the elastic modulus was measured using a viscoelasticity measuring device (TA instruments Japan Inc., RSA3).
  • the core had a width of 100 ⁇ m and a thickness of 50 ⁇ m.
  • the size of the grid-shaped core region (input region) of the first optical waveguide is 210 mm long ⁇ 297 mm wide, and the width of the gap between adjacent parallel linear cores in the region is 500 ⁇ m. It was.
  • the elastic modulus was 1.58 GPa and the refractive index was 1.516.
  • an over clad layer was formed on the surface of the under clad layer by spin coating using the over clad layer forming material so as to cover the core pattern member.
  • the thickness of this over clad layer was 40 ⁇ m.
  • the elastic modulus was 240 MPa and the refractive index was 1.496. In this way, sheet-like first to fourth optical waveguides [see FIGS. 2A, 2B and 3] were produced.
  • Light emitting elements (Optowell, XH85-S0603-2s) are connected to the first optical waveguide and the second optical waveguide, respectively, and light receiving elements (Hamamatsu Photonics) are connected to the third optical waveguide and the fourth optical waveguide, respectively. S10226) manufactured by the company was connected. Then, the second to fourth optical waveguides are provided on the back surface side of the three side edge portions of the first optical waveguide [see FIG. 1B], and the light reflecting member is provided on the end surfaces of the three locations. Provided.
  • a comparative example is as if the second to fourth optical waveguides were directly connected to the first optical waveguide and spread on a plane (see FIG. 5).
  • the outer width of the three side edge portions of the first optical waveguide where the second to fourth optical waveguides are provided is the width of the light reflecting member in the embodiment, Was 5 mm, and one portion in between was 10 mm.
  • the width is the width of the second to fourth optical waveguides, and the two places on both sides are 47.5 mm and 35.5 mm, and one place between them is 60.0 mm. From this, it can be seen that the above embodiment is space-saving.
  • the position sensor of the present invention can be used for space saving.
  • W1 1st optical waveguide W2 2nd optical waveguide W3 3rd optical waveguide W4 4th optical waveguide 2, 2r Core 4 Light emitting element 5 Light receiving element 6 Light reflecting member

Abstract

The invention provides a position sensor with which it is possible to achieve space savings. In the position sensor, second to fourth optical waveguides W2 to W4 having linear cores 2r communicating with a lattice-shaped core 2 are positioned on a reverse surface side of a first optical waveguide W1 having the lattice-shaped core 2. A light-emitting element 4 is connected to the first optical waveguide W1 and the second optical waveguide W2, and a light-receiving element 5 is connected to the third optical waveguide W3 and the fourth optical waveguide W4. Propagation of light between the lattice-shaped core 2 of the first optical waveguide W1 on the obverse surface side and the linear cores 2r of the second to fourth optical waveguides W2 to W4 on the reverse surface side is made possible by employing light reflection from a light-reflecting member 6.

Description

位置センサPosition sensor
 本発明は、押圧位置を光学的に検知する位置センサに関するものである。 The present invention relates to a position sensor that optically detects a pressed position.
 本出願人は、これまでに、押圧位置を光学的に検知する位置センサを提案している(例えば、特許文献1参照)。このものは、図8に示すように、シート状のコアパターン部材を四角形シート状のアンダークラッド層11とオーバークラッド層13とで挟持した四角形シート状の光導波路Wを有している。上記コアパターン部材は、複数の線状の光路用のコア12を縦横に配置してなる格子状部分12Aと、この格子状部分12Aのコア12から延設されてその格子状部分12Aの外周に沿った状態で配置された外周部分12Bとを備えている。また、上記コアパターン部材の外周部分12Bのコア12の一端面に、発光素子14が接続され、そのコア12の他端面に、受光素子15が接続されている。上記位置センサでは、上記発光素子14も受光素子15も、上記四角形シート状の光導波路Wの同じ一端縁(図8では下端縁)に設けられ、そのうち発光素子14が、その端縁の一端部(図8では左端部)に配置され、受光素子15が、その端縁の他端部(図8では右端部)に配置されている。 The present applicant has proposed a position sensor that optically detects the pressed position (see, for example, Patent Document 1). As shown in FIG. 8, this has a rectangular sheet-shaped optical waveguide W in which a sheet-shaped core pattern member is sandwiched between a rectangular sheet-shaped underclad layer 11 and an overclad layer 13. The core pattern member includes a lattice-shaped portion 12A formed by arranging a plurality of linear optical path cores 12 vertically and horizontally, and extends from the core 12 of the lattice-shaped portion 12A to the outer periphery of the lattice-shaped portion 12A. The outer peripheral part 12B arrange | positioned in the state along is provided. A light emitting element 14 is connected to one end face of the core 12 of the outer peripheral portion 12B of the core pattern member, and a light receiving element 15 is connected to the other end face of the core 12. In the position sensor, both the light emitting element 14 and the light receiving element 15 are provided at the same one end edge (lower end edge in FIG. 8) of the rectangular sheet-shaped optical waveguide W, and the light emitting element 14 is one end portion of the end edge. (The left end portion in FIG. 8), and the light receiving element 15 is disposed at the other end portion of the end edge (the right end portion in FIG. 8).
 上記位置センサでは、上記コアパターン部材の格子状部分12Aに対応するオーバークラッド層13の表面部分(図8の中央に一点鎖線で示す長方形部分)が、位置センサの入力領域13Aとなっている。また、上記コアパターン部材の外周部分12Bをアンダークラッド層11の側縁部とオーバークラッド層13の側縁部とで挟持した部分(上記入力領域13Aの周りの部分)が、光導波路Wの周縁部分(額縁部分)Fとなっている。 In the position sensor, the surface portion of the over clad layer 13 corresponding to the lattice-shaped portion 12A of the core pattern member (a rectangular portion indicated by a one-dot chain line in the center of FIG. 8) is an input region 13A of the position sensor. Further, a portion (a portion around the input region 13A) where the outer peripheral portion 12B of the core pattern member is sandwiched between the side edge portion of the under cladding layer 11 and the side edge portion of the over cladding layer 13 is the periphery of the optical waveguide W. It is a part (frame part) F.
 上記位置センサでは、上記発光素子14から発光された光は、コア12の中を、その発光素子14に接続された外周部分12Bから格子状部分12Aを経て反対側の外周部分12Bを通り、上記受光素子15で受光されるようになっている。そして、その格子状部分12Aに対応する上記入力領域13Aをペン先等で押圧すると、その押圧部分のコア12が変形し、そのコア12の光伝播量が低下する。そのため、上記押圧部分のコア12では、上記受光素子15での受光レベルが低下することから、上記押圧位置を検知できるようになっている。 In the position sensor, the light emitted from the light emitting element 14 passes through the core 12 from the outer peripheral portion 12B connected to the light emitting element 14 to the opposite outer peripheral portion 12B through the lattice portion 12A. The light receiving element 15 receives light. When the input area 13A corresponding to the grid portion 12A is pressed with a pen tip or the like, the core 12 of the pressed portion is deformed, and the light propagation amount of the core 12 is reduced. Therefore, in the core 12 of the pressing portion, the light receiving level at the light receiving element 15 is lowered, so that the pressing position can be detected.
特許第5513656号公報Japanese Patent No. 5513656
 一般に、この種の位置センサは、平面状に広げたものが扱い易いとされていて、それが技術常識化している。しかしながら、上記位置センサは、入力領域13Aの周りの周縁部分Fの存在により、入力領域13Aよりも広いスペースを要するものとなっている。また、上記位置センサの入力領域13Aを広くしたり、入力領域13Aにおける押圧位置の検知精度を向上させたりする場合、コア12の本数を多くする必要があり、その分、上記周縁部分Fの幅も広くする必要がある。そのため、上記位置センサは、さらに広いスペースを要するものとなる。その点で上記位置センサは改良の余地がある。 Generally, it is said that this type of position sensor is easy to handle a flat sensor, which has become common technical knowledge. However, the position sensor requires a larger space than the input region 13A due to the presence of the peripheral portion F around the input region 13A. Further, when the input area 13A of the position sensor is widened or the detection accuracy of the pressed position in the input area 13A is improved, it is necessary to increase the number of cores 12, and accordingly, the width of the peripheral portion F is increased. Need to be wide. For this reason, the position sensor requires a larger space. In that respect, the position sensor has room for improvement.
 本発明は、このような事情に鑑みなされたもので、省スペース化を図ることができる位置センサの提供をその目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a position sensor capable of saving space.
 上記の目的を達成するため、本発明の位置センサは、格子状に形成された複数の線状のコアと、その格子状のコアを挟む2層のクラッド層とを備えたシート状の光導波路と、この光導波路の格子状のコア内に光を供給する発光素子と、その供給された光を上記コアを介して受光する受光素子と、上記光導波路の裏面側に設けられ、表面側の上記格子状のコアに連絡する、素子接続用の線状のコアと、上記光導波路のシート状の端面に設けられ、光を反射して、上記表面側の格子状のコアと上記裏面側の線状のコアとの間の光伝播を可能にする光反射部材とを備えた位置センサであって、上記裏面側の線状のコアに、上記発光素子または上記受光素子が接続されており、上記格子状のコアに対応する上記位置センサの表面部分を入力領域とし、その入力領域における押圧位置を、その押圧により変化したコアの光伝播量によって特定するという構成をとる。 In order to achieve the above object, a position sensor according to the present invention includes a sheet-like optical waveguide including a plurality of linear cores formed in a lattice shape and two clad layers sandwiching the lattice-like core. A light-emitting element that supplies light into the lattice-like core of the optical waveguide, a light-receiving element that receives the supplied light through the core, a back surface side of the optical waveguide, A linear core for connecting elements connected to the lattice-shaped core, and a sheet-shaped end surface of the optical waveguide, which reflects light and reflects the light on the front surface side of the lattice-shaped core and the back surface side. A position sensor including a light reflecting member that enables light propagation between the linear core, and the light emitting element or the light receiving element is connected to the linear core on the back surface side, The surface area of the position sensor corresponding to the grid-shaped core is used as the input area. Pressing position in the input area, a configuration that identifies the light propagation quantity of the core that has changed by the pressing.
 すなわち、本発明の位置センサは、従来の技術常識を打破したものであり、従来の位置センサの周縁部分(額縁部分)のうちの少なくとも一部を、あたかも、入力領域から切り離し、その入力領域の裏面側に移動させた状態となっている。そして、その切り離された状態にある、入力領域のコア(格子状のコア)と、上記裏面側のコアとの光伝播は、上記入力領域の端面に設けた光反射部材での光反射により可能としている。 That is, the position sensor of the present invention breaks the conventional common sense, and at least a part of the peripheral portion (frame portion) of the conventional position sensor is separated from the input region, and the input region It is in the state moved to the back side. Then, the light propagation between the core of the input region (lattice core) in the separated state and the core on the back surface side is possible by light reflection on the light reflecting member provided on the end surface of the input region. It is said.
 本発明の位置センサは、格子状のコアを有する光導波路の裏面側に、表面側の上記格子状のコアに連絡する、素子接続用の線状のコアが設けられ、そのコアに、上記発光素子または上記受光素子が接続されている。そして、上記光導波路のシート状の端面に、光を反射して、上記表面側の格子状のコアと上記裏面側の線状のコアとの間の光伝播を可能にする光反射部材が設けられている。すなわち、本発明の位置センサは、従来の位置センサの周縁部分(額縁部分)のうちの少なくとも一部を、あたかも、入力領域から切り離し、その入力領域の裏面側に移動させた状態にあり、上記光反射部材により、上記表面側の格子状のコアと上記裏面側の線状のコアとの間の光伝播を可能にしている。そのため、本発明の位置センサは、従来の位置センサと比較して、上記光導波路の裏面側に設けた上記素子接続用の線状のコアの分だけ、省スペース化されたものとなっている。 The position sensor of the present invention is provided with a linear core for element connection that communicates with the lattice-shaped core on the front surface side on the back side of the optical waveguide having the lattice-shaped core, and the light emission is provided on the core. The element or the light receiving element is connected. A light reflecting member is provided on the sheet-like end face of the optical waveguide to reflect light and allow light propagation between the lattice-like core on the front surface side and the linear core on the back surface side. It has been. That is, the position sensor of the present invention is in a state in which at least a part of the peripheral portion (frame portion) of the conventional position sensor is separated from the input area and moved to the back side of the input area. The light reflecting member enables light propagation between the lattice core on the front surface side and the linear core on the back surface side. Therefore, the position sensor of the present invention is space-saving compared with the conventional position sensor by the amount of the linear core for connecting the element provided on the back side of the optical waveguide. .
 特に、上記光反射部材が、金属および樹脂のいずれかからなり、上記表面側の格子状のコアおよび裏面側の線状のコアのいずれか一面側のコアから到来する光を反射させて上記光導波路の端面の厚み方向に沿って通す第1の傾斜面と、その端面の厚み方向に沿った光をさらに反射させて上記表面側の格子状のコアおよび裏面側の線状のコアのいずれか他面側のコアに導く第2の傾斜面を有している場合には、上記光反射部材の構造を簡素化することができるため、その光反射部材の幅を小さくすることができる。その結果、本発明の位置センサを、より省スペース化することができる。 In particular, the light reflecting member is made of either metal or resin, and reflects the light coming from one of the front surface side of the lattice-like core and the back surface side of the linear core, thereby allowing the light to be reflected. Either the first inclined surface passing along the thickness direction of the end face of the waveguide, or the lattice-like core on the front side and the linear core on the back side by further reflecting light along the thickness direction of the end face In the case where the second inclined surface leading to the core on the other surface side is provided, the structure of the light reflecting member can be simplified, so that the width of the light reflecting member can be reduced. As a result, the position sensor of the present invention can be further reduced in space.
 さらに、上記第1および第2の傾斜面が、光路を90°変換する光反射面となっている場合には、上記光反射部材の幅を、より小さくすることができるため、本発明の位置センサを、さらに省スペース化することができる。 Furthermore, when the first and second inclined surfaces are light reflecting surfaces that convert the optical path by 90 °, the width of the light reflecting member can be further reduced. The sensor can further save space.
本発明の位置センサの一実施の形態を模式的に示し、(a)は、その平面図であり、(b)は、その側縁部分の拡大断面図である。One embodiment of the position sensor of the present invention is shown typically, (a) is the top view, and (b) is the expanded sectional view of the side edge portion. 上記位置センサを構成する第1光導波路を模式的に示し、(a)は、その平面図であり、(b)は、その中央部分の拡大断面図である。The 1st optical waveguide which constitutes the above-mentioned position sensor is shown typically, (a) is the top view, and (b) is the expanded sectional view of the central part. 上記位置センサを構成する第2~第4光導波路を模式的に示す平面図である。FIG. 6 is a plan view schematically showing second to fourth optical waveguides constituting the position sensor. 本発明の位置センサの他の実施の形態の側縁部分を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the side edge part of other embodiments of the position sensor of the present invention. 本発明の位置センサの他の製法において作製される光導波路基体を模式的に示す平面図である。It is a top view which shows typically the optical waveguide base | substrate produced in the other manufacturing method of the position sensor of this invention. (a)~(f)は、上記位置センサにおける格子状のコアの交差形態を模式的に示す拡大平面図である。(A) to (f) are enlarged plan views schematically showing a crossing form of lattice-like cores in the position sensor. (a),(b)は、上記格子状のコアの交差部における光の進路を模式的に示す拡大平面図である。(A), (b) is an enlarged plan view which shows typically the course of the light in the cross | intersection part of the said grid | lattice-like core. 従来の位置センサを模式的に示す平面図である。It is a top view which shows the conventional position sensor typically.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1(a)は、本発明の位置センサの一実施の形態を示す平面図であり、図1(b)は、その側縁部分の断面を拡大した図である。この実施の形態の位置センサは、格子状のコア2と、このコア2の一端から延設されたコア2qとを有する略四角形シート状の第1光導波路W1と、その第1光導波路W1の3個所〔図1(a)では左右両側と下側〕の側縁部分の裏面側に設けられ、上記格子状のコア2と連絡する線状のコア2rを有する第2~第4光導波路W2~W4〔図1(a)では第1光導波路W1に隠れて見えない〕とを備えている。また、上記第1光導波路W1および第2光導波路W2〔図1(a)では右側縁部分の裏面側〕に、発光素子4が接続され、第3光導波路W3〔図1(a)では下側縁部分の裏面側〕および第4光導波路W4〔図1(a)では左側縁部分の裏面側〕に、受光素子5が接続されている〔図1(b),図3参照〕。そして、上記第2~第4光導波路W2~W4が設けられた第1光導波路W1の側縁部分の外側に、光を反射して、上記表面側の第1光導波路W1の格子状のコア2と上記裏面側の第2~第4光導波路W2~W4の線状のコア2rとの間の光伝播を可能にする光反射部材6が設けられている。 FIG. 1 (a) is a plan view showing an embodiment of the position sensor of the present invention, and FIG. 1 (b) is an enlarged view of a side edge portion thereof. The position sensor of this embodiment includes a first optical waveguide W1 having a substantially rectangular sheet shape having a lattice-shaped core 2 and a core 2q extending from one end of the core 2, and the first optical waveguide W1. Second to fourth optical waveguides W2 having linear cores 2r that are provided on the back surface side of the side edge portions at three locations (on the left and right sides and the lower side in FIG. 1A) and that communicate with the lattice-shaped cores 2. To W4 (invisible in the first optical waveguide W1 in FIG. 1A). Further, the light emitting element 4 is connected to the first optical waveguide W1 and the second optical waveguide W2 (the back side of the right edge portion in FIG. 1A), and the third optical waveguide W3 (the lower side in FIG. 1A). The light receiving element 5 is connected to the rear surface side of the side edge portion] and the fourth optical waveguide W4 (the rear surface side of the left edge portion in FIG. 1A) (see FIGS. 1B and 3). Then, light is reflected to the outside of the side edge portion of the first optical waveguide W1 provided with the second to fourth optical waveguides W2 to W4, and the lattice-like core of the first optical waveguide W1 on the surface side is reflected. A light reflecting member 6 is provided that enables light propagation between 2 and the linear cores 2r of the second to fourth optical waveguides W2 to W4 on the back side.
 なお、図1(a)では、コア2,2qを鎖線で示しており、鎖線の太さがコア2,2qの太さを示している。さらに、格子状のコア2の数を略しコア2同士の間隔を広げて図示している。そして、矢印は、光の進む方向を示している。また、図1(b)において、符号Eは、上記発光素子4または受光素子5が実装されている電気回路基板であり、上記第2~第4光導波路W2~W4に接続されている発光素子4または受光素子5とともに、上記第1光導波路W1の裏面側に設けられている。 In FIG. 1A, the cores 2 and 2q are indicated by chain lines, and the thickness of the chain line indicates the thickness of the cores 2 and 2q. Furthermore, the number of the lattice-like cores 2 is omitted, and the interval between the cores 2 is widened. The arrow indicates the direction in which the light travels. In FIG. 1B, reference numeral E denotes an electric circuit board on which the light emitting element 4 or the light receiving element 5 is mounted, and the light emitting elements connected to the second to fourth optical waveguides W2 to W4. 4 or the light receiving element 5 is provided on the back side of the first optical waveguide W1.
 このように、格子状のコア2を有する第1光導波路W1の裏面側に、その格子状のコア2と光伝播する線状のコア2rを有する第2~第4光導波路W2~W4を位置決めし、上記表面側の第1光導波路W1の格子状のコア2と上記裏面側の第2~第4光導波路W2~W4の線状のコア2rとの間の光伝播を、上記光反射部材6での光反射を利用して可能にしていることが、本発明の大きな特徴である。その特徴により、上記位置センサの省スペース化を図っている。 In this way, the second to fourth optical waveguides W2 to W4 having the lattice-shaped core 2 and the linear core 2r for light propagation are positioned on the back surface side of the first optical waveguide W1 having the lattice-shaped core 2. Then, light propagation between the lattice-shaped core 2 of the first optical waveguide W1 on the front surface side and the linear core 2r of the second to fourth optical waveguides W2 to W4 on the back surface side is performed on the light reflecting member. It is a great feature of the present invention that the light reflection at 6 is made possible. Due to this feature, space saving of the position sensor is achieved.
 より詳しく説明すると、上記表面側の第1光導波路W1は、図2(a)に平面図で示し、図2(b)に拡大断面図で示すように、略四角形シート状のアンダークラッド層1の表面に、格子状に形成された複数の線状の光路用のコア2と、格子状の一方向のコア2の一端〔図2(a)では縦方向のコア2の上端〕から延設されてその格子状部分の端面〔図2(a)では上端面〕に沿った状態で配置された延設コア2qとが形成され、それらコア2,2qを被覆した状態で、上記アンダークラッド層1の表面に、オーバークラッド層3が形成されたものとなっている。そして、上記格子状のコア2に対応するオーバークラッド層3の表面部分が、入力領域3Aとなっている。また、上記延設コア2qの先端部に、上記発光素子4が接続されている。 More specifically, the first optical waveguide W1 on the front surface side is shown in a plan view in FIG. 2A and in an enlarged cross-sectional view in FIG. Are extended from a plurality of linear optical path cores 2 formed in a lattice shape and one end of the lattice-shaped core 2 (the upper end of the longitudinal core 2 in FIG. 2A). And the extended core 2q disposed along the end face of the lattice portion (the upper end face in FIG. 2A) is formed, and the under clad layer is covered with the cores 2 and 2q. The over clad layer 3 is formed on the surface of 1. A surface portion of the over clad layer 3 corresponding to the lattice-like core 2 is an input region 3A. Further, the light emitting element 4 is connected to the tip of the extended core 2q.
 一方、上記裏面側の第2~第4光導波路W2~W4は、図3に平面図で示すように、複数の線状の光路用のコア2rが形成され、それらコア2rが、上記第1光導波路W1〔図2(a),(b)参照〕と同様、アンダークラッド層1とオーバークラッド層3とで挟持されている。そして、上記コア2rの一端部に、発光素子4または受光素子5が接続されており、上記コア2rの他端部2dは、上記表面側の格子状のコア2の端部2c〔図2(a)参照〕と対応する(平面視で重なる)位置に、位置決めされている。なお、図3では、理解を容易にするために、発光素子4または受光素子5が実装される電気回路基板E〔図1(b)参照〕は、図示していない。 On the other hand, the second to fourth optical waveguides W2 to W4 on the back side are formed with a plurality of linear optical path cores 2r as shown in a plan view in FIG. Similar to the optical waveguide W1 (see FIGS. 2A and 2B), it is sandwiched between the under cladding layer 1 and the over cladding layer 3. The light emitting element 4 or the light receiving element 5 is connected to one end of the core 2r, and the other end 2d of the core 2r is connected to the end 2c of the lattice-like core 2 on the surface side [FIG. It is positioned at a position corresponding to (see a)] (overlapping in plan view). In FIG. 3, for ease of understanding, the electric circuit board E [see FIG. 1B] on which the light emitting element 4 or the light receiving element 5 is mounted is not shown.
 上記光反射部材6は、この実施の形態では、金属製であり、図1(a),(b)に示すように、第1光導波路W1の端面の長手方向に沿った棒状体となっている。その光反射部材6の、第1光導波路W1の端面に対面する面には、その光反射部材6の長手方向に沿って、凹溝6aが形成されており、その凹溝6aの側壁〔図1(b)では上側の壁と下側の壁〕は、45°傾斜した光反射面(第1および第2傾斜面)6b,6cに形成されている。 In this embodiment, the light reflecting member 6 is made of metal, and as shown in FIGS. 1A and 1B, the light reflecting member 6 is a rod-like body along the longitudinal direction of the end face of the first optical waveguide W1. Yes. A concave groove 6a is formed on the surface of the light reflecting member 6 facing the end surface of the first optical waveguide W1 along the longitudinal direction of the light reflecting member 6, and the side wall of the concave groove 6a [FIG. 1 (b), the upper wall and the lower wall] are formed on light reflecting surfaces (first and second inclined surfaces) 6b and 6c inclined by 45 °.
 このような位置センサでの光の伝播は、例えば図1(a)で示すと、つぎのようになる。すなわち、表面側の第1光導波路W1に接続された発光素子4からの光は、まず、その第1光導波路W1において、延設コア2qを経て、格子状の縦方向のコア2を上から下に伝播し、図1(b)に示すように、そのコア2の下端部2cから出射される。ついで、その出射された光は、光反射部材6の上側の光反射面6bで反射して光路を90°変換し、第1光導波路W1の端面の厚み方向に沿って伝播し、上記光反射部材6の下側の光反射面6cで再度反射して光路を90°変換し、裏面側の第3光導波路W3のコア2rの端部2dに入射する。そして、その入射した光は、上記第3光導波路W3のコア2rを伝播し、受光素子5で受光される。 The propagation of light through such a position sensor is as follows, for example, as shown in FIG. That is, light from the light emitting element 4 connected to the first optical waveguide W1 on the surface side first passes through the extended core 2q in the first optical waveguide W1 and passes through the lattice-shaped vertical core 2 from above. Propagating downward and exiting from the lower end 2c of the core 2 as shown in FIG. Next, the emitted light is reflected by the upper light reflecting surface 6b of the light reflecting member 6 to change the optical path by 90 °, propagates along the thickness direction of the end surface of the first optical waveguide W1, and the light reflected. The light is reflected again by the lower light reflecting surface 6c of the member 6 to change the optical path by 90 °, and enters the end 2d of the core 2r of the third optical waveguide W3 on the back surface side. The incident light propagates through the core 2r of the third optical waveguide W3 and is received by the light receiving element 5.
 一方、裏面側の第2光導波路W2に接続された発光素子4からの光は、まず、図3に示すように、その第2光導波路W2のコア2rを伝播し、そのコア2の右端部2dから出射される。ついで、その出射された光は、図1(b)に示すように(ただし、光の進む方向は、図示の矢印と逆方向)、光反射部材6の下側の光反射面6cで反射して光路を90°変換し、第1光導波路W1の端面の厚み方向に沿って伝播し、上記光反射部材6の上側の光反射面6bで再度反射して光路を90°変換し、表面側の第1光導波路W1の格子状の横方向のコア2の右端部2c〔図2(a)参照〕に入射する。つぎに、その入射した光は、上記第1光導波路W1において、格子状の横方向のコア2を右から左に伝播し、そのコア2の左端部2cから出射される。そして、その出射された光は、光反射部材6により、上記と同様にして反射し〔図1(b)参照〕、裏面側の第4光導波路W4のコア2rの端部2dに入射した後、その第4光導波路W4のコア2rを伝播し、受光素子5で受光される。 On the other hand, the light from the light emitting element 4 connected to the second optical waveguide W2 on the back side first propagates through the core 2r of the second optical waveguide W2, as shown in FIG. It is emitted from 2d. Next, the emitted light is reflected by the light reflecting surface 6c on the lower side of the light reflecting member 6 as shown in FIG. 1B (however, the light travels in the opposite direction to the illustrated arrow). The optical path is converted by 90 °, propagated along the thickness direction of the end surface of the first optical waveguide W1, reflected again by the light reflecting surface 6b on the upper side of the light reflecting member 6 and converted by 90 °, and the surface side The first optical waveguide W1 is incident on the right end portion 2c (see FIG. 2A) of the lattice-like lateral core 2 in the lattice direction. Next, the incident light propagates from the right to the left in the lattice-like horizontal core 2 in the first optical waveguide W1 and is emitted from the left end 2c of the core 2. Then, the emitted light is reflected by the light reflecting member 6 in the same manner as described above (see FIG. 1B) and is incident on the end 2d of the core 2r of the fourth optical waveguide W4 on the back surface side. Then, it propagates through the core 2r of the fourth optical waveguide W4 and is received by the light receiving element 5.
 このようにして、上記格子状の縦方向と横方向の2方向(XY方向)のコア2に光が伝播する。そして、上記位置センサへの文字等の入力は、前記入力領域(上記格子状のコア2に対応するオーバークラッド層3の表面部分)3Aに、直接または樹脂フィルムや紙等を介して、ペン等の入力体で文字等を書くことにより行われる。このとき、上記入力領域3Aがペン先等で押圧され、その押圧部分のコア2が変形し、そのコア2の光伝播量が低下する。そのため、上記押圧部分のコア2に連絡する上記受光素子5での受光レベルが低下することから、上記押圧位置(XY座標)を検知できるようになっている。 In this way, light propagates to the core 2 in the above-mentioned lattice-like vertical direction and horizontal direction (XY direction). Input of characters and the like to the position sensor is performed on the input region (surface portion of the over clad layer 3 corresponding to the lattice-like core 2) 3A directly or via a resin film or paper. This is done by writing characters etc. in the input field. At this time, the input area 3A is pressed with a pen tip or the like, the core 2 of the pressed portion is deformed, and the light propagation amount of the core 2 is reduced. For this reason, the light receiving level at the light receiving element 5 connected to the core 2 of the pressed portion is lowered, so that the pressed position (XY coordinate) can be detected.
 また、この実施の形態では、格子状のコア2の縦方向と横方向の2方向(XY方向)それぞれに発光素子4および受光素子5が間接的に接続されている。そのため、上記2方向を別々に制御することができ、入力領域3Aにおける押圧位置の検知精度を向上させることができる。 Further, in this embodiment, the light emitting element 4 and the light receiving element 5 are indirectly connected to the lattice-shaped core 2 in the two vertical directions and the horizontal direction (XY direction), respectively. Therefore, the two directions can be controlled separately, and the detection accuracy of the pressed position in the input area 3A can be improved.
 さらに、上記第1光導波路W1では、格子状のコア2の弾性率がアンダークラッド層1およびオーバークラッド層3の弾性率よりも大きく設定されていることが好ましい。その理由は、弾性率の設定がその逆であると、コア2の周辺が硬くなるため、オーバークラッド層3の入力領域3Aの部分を押圧するペン先等の面積よりもかなり広い面積の光導波路Wの部分が凹み、押圧位置を正確に検知し難くなる傾向にあるからである。そこで、各弾性率としては、例えば、コア2の弾性率は、1GPa以上10GPa以下の範囲内に設定され、オーバークラッド層3の弾性率は、0.1GPa以上10GPa未満の範囲内に設定され、アンダークラッド層1の弾性率は、0.1MPa以上1GPa以下の範囲内に設定されることが好ましい。この場合、コア2の弾性率が大きいため、小さな押圧力では、コア2はつぶれない(コア2の断面積は小さくならない)ものの、押圧により第1光導波路W1が凹むため、その凹んだ部分に対応するコア2の曲がった部分から光の漏れ(散乱)が発生し、そのコア2に連絡する受光素子5での受光レベルが低下することから、押圧位置を検知することができる。なお、上記第2~第4光導波路W2~W4の上記コア2r等の弾性率については、上記第1光導波路W1と同じに設定されてもよいし、他の弾性率に設定されてもよい。 Furthermore, in the first optical waveguide W1, it is preferable that the elastic modulus of the lattice-like core 2 is set larger than the elastic modulus of the under cladding layer 1 and the over cladding layer 3. The reason is that if the elastic modulus is set in the opposite direction, the periphery of the core 2 becomes hard, so that the optical waveguide having an area considerably larger than the area of the pen tip or the like that presses the input region 3A portion of the over clad layer 3 This is because the W portion is recessed and it is difficult to accurately detect the pressed position. Therefore, as each elastic modulus, for example, the elastic modulus of the core 2 is set within a range of 1 GPa or more and 10 GPa or less, and the elastic modulus of the over clad layer 3 is set within a range of 0.1 GPa or more and less than 10 GPa, The elastic modulus of the under cladding layer 1 is preferably set within a range of 0.1 MPa to 1 GPa. In this case, since the elastic modulus of the core 2 is large, the core 2 is not crushed by a small pressing force (the cross-sectional area of the core 2 is not reduced), but the first optical waveguide W1 is recessed by the pressing, so that the recessed portion Since light leakage (scattering) occurs from the bent portion of the corresponding core 2 and the light receiving level at the light receiving element 5 connected to the core 2 decreases, the pressed position can be detected. The elastic modulus of the core 2r and the like of the second to fourth optical waveguides W2 to W4 may be set to be the same as that of the first optical waveguide W1, or may be set to another elastic modulus. .
 また、上記アンダークラッド層1,コア2,2q,2rおよびオーバークラッド層3の形成材料としては、感光性樹脂,熱硬化性樹脂等があげられ、その形成材料に応じた製法により、第1~第4光導波路W1~W4を作製することができる。また、コア2,2q,2rの屈折率は、アンダークラッド層1およびオーバークラッド層3の屈折率よりも大きく設定されている。その屈折率および上記弾性率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。そして、各層の厚みは、例えば、アンダークラッド層1が10~500μmの範囲内、コア2,2q,2rが5~100μmの範囲内、オーバークラッド層3が1~200μmの範囲内に設定される。なお、上記アンダークラッド層1として、ゴムシートを用い、そのゴムシート上にコア2を格子状に形成するようにしてもよい。 Examples of the material for forming the under cladding layer 1, the cores 2, 2q, and 2r and the over cladding layer 3 include photosensitive resins and thermosetting resins. The fourth optical waveguides W1 to W4 can be manufactured. Further, the refractive indexes of the cores 2, 2 q and 2 r are set to be larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3. The refractive index and the elastic modulus can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio. The thickness of each layer is set, for example, in the range of 10 to 500 μm for the under cladding layer 1, in the range of 5 to 100 μm for the cores 2, 2 q and 2 r, and in the range of 1 to 200 μm for the over cladding layer 3. . Note that a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
 図4は、本発明の位置センサの他の実施の形態の側面部分を拡大して示す断面図である。この実施の形態では、図1(a),(b)に示す上記実施の形態において、光反射部材7が、樹脂製の光導波路(第5光導波路)となっている。この光反射部材(第5光導波路)7は、表面側の格子状のコア2の端部2cおよび裏面側の線状のコア2rの端部2dに対応する位置に、複数のコア7aが、第1光導波路W1の端面の厚み方向に沿って形成されており、それらコア7aが、アンダークラッド層7dとオーバークラッド層7eとで挟持されている。そして、上記コア7aの両端面が、そのコア7aの軸方向に対して45°傾斜した傾斜面に形成され、その傾斜面が、光を反射して光路を90°変換する光反射面7b,7cになっている。ここで、上記傾斜面の外側は空気であり、内側のコア7aよりも屈折率が小さいことから、その傾斜面が上記のように光反射面7b,7cとなるのである。それ以外の部分は、図1(a),(b)に示す上記実施の形態と同様であり、同様の部分には、同じ符号を付している。 FIG. 4 is an enlarged sectional view showing a side surface portion of another embodiment of the position sensor of the present invention. In this embodiment, in the above-described embodiment shown in FIGS. 1A and 1B, the light reflecting member 7 is a resinous optical waveguide (fifth optical waveguide). The light reflecting member (fifth optical waveguide) 7 has a plurality of cores 7a at positions corresponding to the end 2c of the lattice-like core 2 on the front surface side and the end 2d of the linear core 2r on the back surface side. It is formed along the thickness direction of the end face of the first optical waveguide W1, and the core 7a is sandwiched between the under cladding layer 7d and the over cladding layer 7e. Then, both end surfaces of the core 7a are formed as inclined surfaces inclined by 45 ° with respect to the axial direction of the core 7a, and the inclined surfaces reflect light and reflect light by converting the light path by 90 °, 7c. Here, the outside of the inclined surface is air, and the refractive index is smaller than that of the inner core 7a. Therefore, the inclined surface becomes the light reflecting surfaces 7b and 7c as described above. The other parts are the same as those in the embodiment shown in FIGS. 1A and 1B, and the same reference numerals are given to the same parts.
 この実施の形態では、光反射部材7が光導波路であるため、光反射部材7の幅を小さく形成できることから、位置センサを、より省スペース化することができる。 In this embodiment, since the light reflecting member 7 is an optical waveguide, the width of the light reflecting member 7 can be reduced, so that the position sensor can be further saved in space.
 なお、上記各実施の形態では、第1~第4光導波路W1~W4を個別に作製し、第1光導波路W1の裏面側に、第2~第4光導波路W2~W4を設けたが、他の方法でもよい。例えば、図5に平面図で示すように、予め、あたかも、上記第1光導波路W1に、上記第2~第4光導波路W2~W4が直接接続されて、平面上に広げられているような光導波路基体W0を作製し、その光導波路基体W0から、上記第2~第4光導波路W2~W4に相当する部分を切断し、残った部分を上記第1光導波路W1として、その第1光導波路W1の裏面側に、上記切断した第2~第4光導波路W2~W4の部分を設けるようにしてもよい。 In each of the above embodiments, the first to fourth optical waveguides W1 to W4 are individually manufactured, and the second to fourth optical waveguides W2 to W4 are provided on the back surface side of the first optical waveguide W1. Other methods may be used. For example, as shown in a plan view in FIG. 5, the second to fourth optical waveguides W2 to W4 are directly connected to the first optical waveguide W1 and spread on the plane in advance. An optical waveguide substrate W0 is manufactured, the portion corresponding to the second to fourth optical waveguides W2 to W4 is cut from the optical waveguide substrate W0, and the remaining portion is used as the first optical waveguide W1. The cut second to fourth optical waveguides W2 to W4 may be provided on the back side of the waveguide W1.
 また、上記各実施の形態では、表面側の格子状のコア2の領域(入力領域3A)の4個所の側縁部分のうち3個所の裏面側に、線状のコア(第2~第4光導波路W2~W4の線状のコア)2rを設けたが、他でもよく、例えば、4個所全ての側縁部分の裏面側に設けてもよいし、2個所でもよいし、1個所だけでもよい。 In each of the above embodiments, the linear cores (second to fourth) are arranged on the back surface side of three of the four side edge portions of the region (input region 3A) of the lattice-like core 2 on the front side. (Linear cores of the optical waveguides W2 to W4) 2r are provided, but may be other, for example, may be provided on the back side of all four side edge portions, may be two locations, or may be only one location. Good.
 さらに、上記各実施の形態では、光反射部材6,7を金属製の棒状体,樹脂製の光導波路としたが、光を反射して、表面側の格子状のコア2と裏面側の線状のコア2rとの間の光伝播を可能とするものであれば、他のものでもよい。また、上記各実施の形態では、光反射部材6,7により、光路を90°変換する反射が2回なされたが、上記光伝播が可能であれば、光路変換角度や反射回数は他でもよい。 Further, in each of the above embodiments, the light reflecting members 6 and 7 are made of metal rods and resin optical waveguides. However, the light reflecting members 6 and 7 reflect light, and the lattice-like cores 2 on the front side and the lines on the back side are reflected. Any other material may be used as long as it allows light to propagate between the core 2r. In each of the above embodiments, the light reflecting members 6 and 7 make two reflections for converting the optical path by 90 °. However, the optical path conversion angle and the number of reflections may be other as long as the light propagation is possible. .
 そして、上記各実施の形態において、格子状のコア2の各交差部は、通常、図6(a)に拡大平面図で示すように、交差する4方向の全てが連続した状態に形成されているが、他でもよい。例えば、図6(b)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよい。上記隙間Gは、アンダークラッド層1またはオーバークラッド層3の形成材料で形成されている。その隙間Gの幅dは、0(零)を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。それと同様に、図6(c),(d)に示すように、交差する2方向〔図6(c)は対向する2方向、図6(d)は隣り合う2方向〕が不連続になっているものでもよいし、図6(e)に示すように、交差する3方向が不連続になっているものでもよいし、図6(f)に示すように、交差する4方向の全てが不連続になっているものでもよい。さらに、図6(a)~(f)に示す上記交差部のうちの2種類以上の交差部を備えた格子状としてもよい。すなわち、本発明において、複数の線状のコア2により形成される「格子状」とは、一部ないし全部の交差部が上記のように形成されているものを含む意味である。 In each of the above embodiments, each of the intersecting portions of the lattice-like core 2 is normally formed in a state in which all four intersecting directions are continuous, as shown in an enlarged plan view in FIG. There are others. For example, as shown in FIG. 6B, only one intersecting direction may be divided by the gap G and discontinuous. The gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3. The width d of the gap G exceeds 0 (zero), and is usually set to 20 μm or less. Similarly, as shown in FIGS. 6C and 6D, two intersecting directions (two directions facing each other in FIG. 6C and two adjacent directions in FIG. 6D) are discontinuous. As shown in FIG. 6 (e), the three intersecting directions may be discontinuous, or as shown in FIG. 6 (f), all the four intersecting directions may be discontinuous. It may be discontinuous. Furthermore, a lattice shape including two or more kinds of intersections among the intersections shown in FIGS. That is, in the present invention, the “lattice shape” formed by the plurality of linear cores 2 means that a part or all of the intersections are formed as described above.
 なかでも、図6(b)~(f)に示すように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができる。すなわち、図7(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図7(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面での入射角が臨界角よりも小さいことから、コア2を透過する〔図7(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図7(a)では下方向〕でも発生する。これに対し、図7(b)に示すように、交差する1方向〔図7(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図7(a)においてコア2を透過する光の一部は、上記界面での入射角が臨界角よりも大きくなることから、その界面を透過することなく、その界面で反射し、コア2を進み続ける〔図7(b)の二点鎖線の矢印参照〕。このことから、先に述べたように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができるのである。その結果、ペン先等による押圧位置の検知感度を高めることができる。 In particular, as shown in FIGS. 6B to 6F, if at least one crossing direction is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 7 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions (upward in FIG. 7 (a)) is noted, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and the incident angle at the wall surface is smaller than the critical angle, and thus passes through the core 2 [FIG. )) Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 7A). On the other hand, as shown in FIG. 7B, when one intersecting direction (the upward direction in FIG. 7B) is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light formed and transmitted through the core 2 in FIG. 7A is reflected at the interface without transmitting through the interface because the incident angle at the interface is larger than the critical angle. Continue to advance the core 2 (see the two-dot chain arrow in FIG. 7B). From this, as described above, if at least one intersecting direction is discontinuous, the light crossing loss can be reduced. As a result, it is possible to increase the detection sensitivity of the pressed position by the pen tip or the like.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
〔アンダークラッド層およびオーバークラッド層の形成材料〕
 成分a:エポキシ樹脂(三菱化学社製、YL7410)60重量部。
 成分b:エポキシ樹脂(ダイセル社製、EHPE3150)40重量部。
 成分c:光酸発生剤(サンアプロ社製、CPI101A)4重量部。
 これら成分a~cを混合することにより、アンダークラッド層およびオーバークラッド層の形成材料を調製した。
[Formation material of under clad layer and over clad layer]
Component a: 60 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation YL7410).
Component b: 40 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
Component c: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI101A).
By mixing these components a to c, materials for forming the under cladding layer and the over cladding layer were prepared.
〔コアの形成材料〕
 成分d:エポキシ樹脂(ダイセル社製、EHPE3150)90重量部。
 成分e:エポキシ樹脂(三菱化学社製、エピコート1002)10重量部。
 成分f:光酸発生剤(ADEKA社製、SP170)1重量部。
 成分g:乳酸エチル(和光純薬工業社製、溶剤)50重量部。
 これら成分d~gを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component d: 90 parts by weight of an epoxy resin (manufactured by Daicel Corporation, EHPE3150).
Component e: 10 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, Epicoat 1002).
Component f: 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
Component g: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries, Ltd., solvent).
A core forming material was prepared by mixing these components d to g.
〔第1~第4光導波路の作製〕
 まず、上記アンダークラッド層の形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。このアンダークラッド層の厚みは25μmとした。弾性率は240MPa、屈折率は1.496であった。なお、弾性率の測定は、粘弾性測定装置(TA instruments Japan Inc. 社製、RSA3)を用いた。
[Production of first to fourth optical waveguides]
First, an under clad layer was formed by spin coating using the under clad layer forming material. The thickness of this under cladding layer was 25 μm. The elastic modulus was 240 MPa and the refractive index was 1.496. The elastic modulus was measured using a viscoelasticity measuring device (TA instruments Japan Inc., RSA3).
 ついで、上記アンダークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、複数の線状のコアを、各光導波路に応じて、パターン形成した。上記コアの幅は100μm、厚みは50μmとした。また、第1光導波路の格子状のコアの領域(入力領域)の寸法は、縦210mm×横297mmとし、その領域における隣り合う平行な線状のコアとコアとの間の隙間の幅は500μmとした。弾性率は1.58GPa、屈折率は1.516であった。 Next, a plurality of linear cores were patterned on the surface of the under cladding layer by the photolithography method using the core forming material according to each optical waveguide. The core had a width of 100 μm and a thickness of 50 μm. The size of the grid-shaped core region (input region) of the first optical waveguide is 210 mm long × 297 mm wide, and the width of the gap between adjacent parallel linear cores in the region is 500 μm. It was. The elastic modulus was 1.58 GPa and the refractive index was 1.516.
 つぎに、上記コアパターン部材を被覆するように、上記アンダークラッド層の表面に、上記オーバークラッド層の形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。このオーバークラッド層の厚み(コアの表面からの厚み)は40μmとした。弾性率は240MPa、屈折率は1.496であった。このようにして、シート状の第1~第4光導波路〔図2(a),(b)、図3参照〕を作製した。 Next, an over clad layer was formed on the surface of the under clad layer by spin coating using the over clad layer forming material so as to cover the core pattern member. The thickness of this over clad layer (thickness from the surface of the core) was 40 μm. The elastic modulus was 240 MPa and the refractive index was 1.496. In this way, sheet-like first to fourth optical waveguides [see FIGS. 2A, 2B and 3] were produced.
〔光反射部材の作製〕
 断面長方形のステンレス製棒状体の一側面を切削および研磨し、その側面に凹溝を形成した。その凹溝の側壁を45°傾斜した傾斜面に形成した〔図1(b)参照〕。その光反射部材の高さは6mmとし、幅は、第3光導波路の側に設けるものを10mm、第2,第4光導波路の側に設けるものを5mmとした。
(Production of light reflecting member)
One side surface of a stainless steel rod having a rectangular cross section was cut and polished to form a groove on the side surface. The side wall of the groove was formed on an inclined surface inclined 45 ° [see FIG. 1 (b)]. The height of the light reflecting member was 6 mm, and the width was 10 mm provided on the third optical waveguide side and 5 mm provided on the second and fourth optical waveguide sides.
〔位置センサの作製〕
 第1光導波路と第2光導波路とに、それぞれ、発光素子(Optowell社製、XH85-S0603-2s )を接続し、第3光導波路と第4光導波路とに、それぞれ、受光素子(浜松ホトニクス社製、s10226)を接続した。そして、上記第1光導波路の3個所の側縁部分の裏面側に、上記第2~第4光導波路を設け〔図1(b)参照〕、上記3個所の端面に、上記光反射部材を設けた。
[Production of position sensor]
Light emitting elements (Optowell, XH85-S0603-2s) are connected to the first optical waveguide and the second optical waveguide, respectively, and light receiving elements (Hamamatsu Photonics) are connected to the third optical waveguide and the fourth optical waveguide, respectively. S10226) manufactured by the company was connected. Then, the second to fourth optical waveguides are provided on the back surface side of the three side edge portions of the first optical waveguide [see FIG. 1B], and the light reflecting member is provided on the end surfaces of the three locations. Provided.
〔比較例〕
 上記実施例において、あたかも、第1光導波路に、第2~第4光導波路が直接接続されて、平面上に広げられているもの(図5参照)を比較例とした。
[Comparative Example]
In the above embodiment, a comparative example is as if the second to fourth optical waveguides were directly connected to the first optical waveguide and spread on a plane (see FIG. 5).
 その結果、第2~第4光導波路が設けられている、第1光導波路の3個所の側縁部分の外側の幅は、実施例では、上記光反射部材の幅であり、両側の2個所が5mm、その間の1個所が10mmであった。それに対し、比較例では、その幅は、上記第2~第4光導波路の幅であり、両側の2個所が47.5mm,35.5mm、その間の1個所が60.0mmであった。このことから、上記実施例は、省スペース化されていることがわかる。 As a result, the outer width of the three side edge portions of the first optical waveguide where the second to fourth optical waveguides are provided is the width of the light reflecting member in the embodiment, Was 5 mm, and one portion in between was 10 mm. On the other hand, in the comparative example, the width is the width of the second to fourth optical waveguides, and the two places on both sides are 47.5 mm and 35.5 mm, and one place between them is 60.0 mm. From this, it can be seen that the above embodiment is space-saving.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の位置センサは、省スペース化を図る場合に利用可能である。 The position sensor of the present invention can be used for space saving.
 W1 第1光導波路
 W2 第2光導波路
 W3 第3光導波路
 W4 第4光導波路
 2,2r コア
 4 発光素子
 5 受光素子
 6 光反射部材
W1 1st optical waveguide W2 2nd optical waveguide W3 3rd optical waveguide W4 4th optical waveguide 2, 2r Core 4 Light emitting element 5 Light receiving element 6 Light reflecting member

Claims (3)

  1.  格子状に形成された複数の線状のコアと、その格子状のコアを挟む2層のクラッド層とを備えたシート状の光導波路と、
     この光導波路の格子状のコア内に光を供給する発光素子と、
     その供給された光を上記コアを介して受光する受光素子と、
     上記光導波路の裏面側に設けられ、表面側の上記格子状のコアに連絡する、素子接続用の線状のコアと、
     上記光導波路のシート状の端面に設けられ、光を反射して、上記表面側の格子状のコアと上記裏面側の線状のコアとの間の光伝播を可能にする光反射部材と
    を備えた位置センサであって、
     上記裏面側の線状のコアに、上記発光素子または上記受光素子が接続されており、
     上記格子状のコアに対応する上記位置センサの表面部分を入力領域とし、その入力領域における押圧位置を、その押圧により変化したコアの光伝播量によって特定することを特徴とする位置センサ。
    A sheet-like optical waveguide comprising a plurality of linear cores formed in a lattice shape and two clad layers sandwiching the lattice-shaped core;
    A light emitting element for supplying light into the lattice-like core of the optical waveguide;
    A light receiving element that receives the supplied light through the core;
    A linear core for connecting elements, which is provided on the back side of the optical waveguide and communicates with the lattice-like core on the front side;
    A light reflecting member provided on the sheet-like end face of the optical waveguide, which reflects light and allows light propagation between the lattice-like core on the front surface side and the linear core on the back surface side; A position sensor comprising:
    The light emitting element or the light receiving element is connected to the linear core on the back side,
    A position sensor characterized in that a surface portion of the position sensor corresponding to the lattice-shaped core is used as an input region, and a pressing position in the input region is specified by a light propagation amount of the core changed by the pressing.
  2.  上記光反射部材が、金属および樹脂のいずれかからなり、上記表面側の格子状のコアおよび裏面側の線状のコアのいずれか一面側のコアから到来する光を反射させて上記光導波路の端面の厚み方向に沿って通す第1の傾斜面と、その端面の厚み方向に沿った光をさらに反射させて上記表面側の格子状のコアおよび裏面側の線状のコアのいずれか他面側のコアに導く第2の傾斜面を有している請求項1記載の位置センサ。 The light reflecting member is made of either metal or resin, and reflects light arriving from any one of the lattice-like core on the front surface side and the linear core on the back surface side so as to reflect the light on the optical waveguide. The first inclined surface that passes along the thickness direction of the end surface and the other surface of the lattice core on the surface side and the linear core on the back surface side by further reflecting light along the thickness direction of the end surface The position sensor according to claim 1, further comprising a second inclined surface leading to the side core.
  3.  上記第1および第2の傾斜面が、光路を90°変換する光反射面となっている請求項2記載の位置センサ。 The position sensor according to claim 2, wherein the first and second inclined surfaces are light reflecting surfaces for converting an optical path by 90 °.
PCT/JP2015/074331 2014-09-12 2015-08-28 Position sensor WO2016039166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-186093 2014-09-12
JP2014186093A JP2016058014A (en) 2014-09-12 2014-09-12 Position sensor

Publications (1)

Publication Number Publication Date
WO2016039166A1 true WO2016039166A1 (en) 2016-03-17

Family

ID=55458920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074331 WO2016039166A1 (en) 2014-09-12 2015-08-28 Position sensor

Country Status (3)

Country Link
JP (1) JP2016058014A (en)
TW (1) TW201614456A (en)
WO (1) WO2016039166A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3926233A1 (en) * 2020-06-19 2021-12-22 VitreaLab GmbH Optical device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505398A (en) * 2004-06-30 2008-02-21 ナショナル セミコンダクタ コーポレイション Apparatus and method for a folded optical element waveguide for use in a light-based touch screen
JP2009535723A (en) * 2006-05-01 2009-10-01 アールピーオー・ピーティワイ・リミテッド Waveguide material for optical touch screen
JP2010527100A (en) * 2007-05-11 2010-08-05 アールピーオー・ピーティワイ・リミテッド Permeable body
US20130314368A1 (en) * 2012-05-24 2013-11-28 Corning Incorporated Waveguide-based touch system employing interference effects
JP5513655B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Information management system
JP5513654B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Electronic underlay with wireless transmission function
JP5513656B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Electronic underlay

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505398A (en) * 2004-06-30 2008-02-21 ナショナル セミコンダクタ コーポレイション Apparatus and method for a folded optical element waveguide for use in a light-based touch screen
JP2009535723A (en) * 2006-05-01 2009-10-01 アールピーオー・ピーティワイ・リミテッド Waveguide material for optical touch screen
JP2010527100A (en) * 2007-05-11 2010-08-05 アールピーオー・ピーティワイ・リミテッド Permeable body
US20130314368A1 (en) * 2012-05-24 2013-11-28 Corning Incorporated Waveguide-based touch system employing interference effects
JP5513655B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Information management system
JP5513654B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Electronic underlay with wireless transmission function
JP5513656B1 (en) * 2013-03-08 2014-06-04 日東電工株式会社 Electronic underlay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3926233A1 (en) * 2020-06-19 2021-12-22 VitreaLab GmbH Optical device
WO2021255241A1 (en) * 2020-06-19 2021-12-23 Vitrealab Gmbh Optical device

Also Published As

Publication number Publication date
JP2016058014A (en) 2016-04-21
TW201614456A (en) 2016-04-16

Similar Documents

Publication Publication Date Title
CN107924026B (en) Optical waveguide, and position sensor and optical circuit board using the same
WO2016039166A1 (en) Position sensor
WO2016031601A1 (en) Location sensor
WO2016031538A1 (en) Position sensor
WO2017043570A1 (en) Optical waveguide, and position sensor and optical circuit board using optical waveguide
US10101855B2 (en) Optical waveguide and position sensor using same
WO2016056393A1 (en) Position sensor
WO2016043047A1 (en) Position sensor
WO2015151859A1 (en) Position sensor
WO2015151861A1 (en) Position sensor
WO2016043048A1 (en) Position sensor
WO2015045571A1 (en) Input device
WO2016031539A1 (en) Position sensor
WO2016047448A1 (en) Position sensor
WO2014196390A1 (en) Electronic underlay
WO2015156111A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2014175298A1 (en) Position sensor
WO2015049908A1 (en) Input apparatus
JP2017004199A (en) Position sensor
WO2015156112A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2015159754A1 (en) Position sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840710

Country of ref document: EP

Kind code of ref document: A1