WO2015151813A1 - 制御装置、制御方法及び撮像装置 - Google Patents
制御装置、制御方法及び撮像装置 Download PDFInfo
- Publication number
- WO2015151813A1 WO2015151813A1 PCT/JP2015/058034 JP2015058034W WO2015151813A1 WO 2015151813 A1 WO2015151813 A1 WO 2015151813A1 JP 2015058034 W JP2015058034 W JP 2015058034W WO 2015151813 A1 WO2015151813 A1 WO 2015151813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame rate
- transmittance
- brightness
- change
- filter
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims description 22
- 238000002834 transmittance Methods 0.000 claims abstract description 98
- 230000008859 change Effects 0.000 claims abstract description 82
- 230000015654 memory Effects 0.000 claims description 36
- 238000007792 addition Methods 0.000 claims description 34
- 230000007704 transition Effects 0.000 description 52
- 239000004973 liquid crystal related substance Substances 0.000 description 47
- 238000010586 diagram Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000593 degrading effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/72—Combination of two or more compensation controls
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B11/00—Filters or other obturators specially adapted for photographic purposes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B7/00—Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
- G03B7/003—Control of exposure by setting shutters, diaphragms or filters, separately or conjointly setting of both shutter and diaphragm
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B9/00—Exposure-making shutters; Diaphragms
- G03B9/02—Diaphragms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/667—Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/71—Circuitry for evaluating the brightness variation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/73—Circuitry for compensating brightness variation in the scene by influencing the exposure time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/75—Circuitry for compensating brightness variation in the scene by influencing optical camera components
Definitions
- the present disclosure relates to a control device, a control method, and an imaging device.
- Patent Document 1 describes a technique for predicting a high luminance level, predicting a high luminance level range based on the time displacement, and generating a mask pattern that dims the high luminance range.
- a frame rate control unit that controls a frame rate of imaging, and a filter that transmits light incident on the imaging device so that the brightness of the imaged subject is maintained according to the change in the frame rate
- a transmittance control unit that controls the transmittance
- a filter that controls the imaging frame rate and transmits light incident on the imaging element so that the brightness of the imaged subject is maintained according to the change in the frame rate. Controlling the transmittance.
- an imaging device that captures a subject image for each frame, a filter that is disposed closer to the subject than the imaging device and transmits light incident on the imaging device, and controls a frame rate of imaging
- a frame rate control unit that controls, and a transmittance control unit that controls the transmittance of the filter so that the brightness of the subject image captured by the image sensor is maintained in accordance with a change in the frame rate.
- An imaging device is provided.
- the present disclosure it is possible to adjust the brightness without a sense of incongruity according to the change in the frame rate without causing a change in the image quality.
- the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
- FIG. 3 is a schematic diagram illustrating an exposure state when the imaging frame rate is continuously changed in an ideal shutter-off state as a moving image with respect to FIG. 2.
- FIG. 4 is a diagram schematically showing control for changing the density of the liquid crystal ND filter 103 while interlocking with the change in the frame rate in the shutter-off state according to the change in the frame rate, as in FIG. 3. It is a flowchart which shows the process in the imaging device 100 of this embodiment.
- FIG. 10 is a characteristic diagram illustrating a change in brightness when an attempt is made to suppress a change in brightness by rebating an image according to the number of memory additions in FIG. 9.
- FIG. 10 is a schematic diagram illustrating an example of controlling rebating by memory addition and density change of the liquid crystal ND filter 103 in conjunction with each other.
- some high-end camcorders are capable of shooting in the S & Q mode.
- playback is performed by changing the frame rate at the time of shooting.
- the frame rate range of about 1 fps to 240 fps
- by performing playback at a frame rate of 60 fps it is possible to perform 60 times to 1/4 times quick motion shooting or slow motion shooting.
- the brightness of the image changes. For example, in the case of shooting at an optimal exposure condition at a frame rate of 60 fps, if the frame rate changes to 1 fp, the brightness becomes 60 times brighter. For this reason, it is necessary to adjust the exposure amount so that the brightness is constant.
- the shutter in the off state means that shooting is performed at a shutter speed of 1/60 sec when the shooting frame rate is 60 fps and at a shutter speed of 1 sec when the shooting frame rate is 1 fps.
- the frame rate is changed from 60 fps to 1 fp, the brightness becomes 60 times brighter, so the exposure amount needs to be adjusted as described above.
- the change in the frame rate from 60 fps to 1 fps is as shown in FIG.
- a method of always setting the shutter speed to 1/60 sec (or faster) or closing the aperture according to the frame rate can be considered.
- FIG. 1 is a schematic diagram illustrating a configuration example of an imaging device 100 according to an embodiment of the present disclosure.
- an imaging apparatus 100 includes a lens (imaging optical system) 101, a diaphragm 102, a liquid crystal ND filter 103, an imaging element 104, an analog signal processing unit 105, an A / D conversion unit 106, and a digital signal processing unit 107.
- TG timing generator
- microcomputer system controller
- the image pickup apparatus 100 shown in FIG. 1 receives light that has passed through the lens 101, the diaphragm 102, and the liquid crystal ND filter 103 by the image pickup element 104, adds (multiplies) an analog gain or the like to the image value by the analog signal processing unit 105, After A / D conversion is performed by the A / D conversion unit 106, digital signal processing is performed by the digital signal processing unit 107. The signal subjected to the digital signal processing is sent to the image display unit 108 and the image storage unit 109, an image is output from the image display unit 108, and recording is performed in the image storage unit 109. The digital signal processing unit 107 creates a detection value for correcting automatic exposure (AE) from the image data.
- AE automatic exposure
- the operation unit 113 receives a user operation and sends an operation input by the user operation to the system controller 120.
- the system controller 120 outputs a control amount instruction according to a user operation to each device.
- the operation input by the user operation includes an operation for changing the frame rate and an operation for changing the gain in a high-transmittance region described later.
- the system controller 120 issues an instruction to the lens driver 110 when it is desired to change the focus position, zoom position, aperture value, or transmittance of the liquid crystal ND filter 103.
- the system controller 120 issues an instruction to the timing generator 111 when changing the value of the electronic shutter, issues an instruction to the analog signal processing unit 105 when changing the analog gain, and digital when changing the digital signal processing. An instruction is issued to the signal processing unit 107.
- FIG. 2 is a schematic diagram showing an exposure state when the imaging frame rate is continuously changed with the shutter speed fixed in order to maintain the brightness in the S & Q mode.
- the width of the imaging cycle becomes wider.
- a time during which the frame is not exposed occurs at a low frame rate.
- the frame rate is 15 fps
- exposure is performed during the exposure time (1/60 sec) 200, but exposure is not performed during the remaining 3/60 sec in 15 fp. Therefore, since it is not photographed for 3/60 sec, it becomes a discrete moving image with discontinuity.
- FIG. 3 is a schematic diagram showing an exposure state when the imaging frame rate is continuously changed in a shutter-off state ideal as a moving image with respect to FIG.
- an ideal shutter OFF state means that shooting is performed at a shutter speed of 1/60 sec when the shooting frame rate is 60 fps, and 1 sec when the shooting frame rate is 1 fps.
- shooting is performed at a shutter speed of 1/60 sec when the shooting frame rate is 60 fps, and at a shutter speed of 1/15 sec when the frame rate is 15 fps.
- the exposure time 200 becomes longer in synchronism with the frame rate, instead of the occurrence of the time corresponding to the non-exposure time. For this reason, when the frame rate is 15 fps, the brightness is quadrupled when the frame rate is 60 fps.
- FIG. 4 is a diagram schematically showing control for changing the density of the liquid crystal ND filter 103 while interlocking with the change in the frame rate in the shutter-off state according to the change in the frame rate, as in FIG.
- the transmittance of the ND filter 103 is reduced when the frame rate is 15 fps compared to the frame rate of 60 fps.
- the transmittance of the ND filter 103 is 100%, and when the frame rate is 15 fps, the transmittance of the ND filter 103 is 25%.
- FIG. 5 is a flowchart showing processing in the imaging apparatus 100 of the present embodiment.
- a frame rate switching instruction is issued from the user, first, in step S10, the transmittance (density) of the liquid crystal ND filter 103 is linked based on the operation speed information of the liquid crystal ND filter 103 that is held in advance.
- the range of the frame rate that can maintain the brightness constant is calculated.
- the frame rate range that can maintain the brightness constant is performed by the frame rate range calculation unit 121 of the system controller 120.
- a frame rate transition instruction is output to the frame rate conversion processing unit 122 in order to change the frame rate within the range of the frame rate calculated in step S10.
- the frame rate conversion processing unit 122 performs processing for converting the imaging frame rate.
- the transmittance calculation unit 123 calculates the transmittance corresponding to the change in the frame rate, and gives an instruction for the transition of the transmittance to the lens driver.
- the lens driver 110 controls the transmittance of the liquid crystal ND filter 103 based on the received transmission transition instruction.
- next step S14 the current frame rate and the current transmittance of the liquid crystal ND filter 103 are updated.
- step S16 if the current frame rate matches the target frame rate, the process ends. On the other hand, if the current frame rate does not reach the target, the process returns to step S10, and the process is repeated so as to make a transition within a range where the brightness can be maintained constant.
- the target frame rate corresponds to the frame rate designated by the user. For example, in FIG. 4, when the user instructs to change the frame rate from the current 60 fps to 15 fps, the target frame rate is 15 fps.
- step S10 of FIG. 5 the liquid crystal ND filter 103 is controlled to calculate a frame rate range in which the brightness can be kept constant. If the transition to the target frame rate cannot be made at a time, the processing of steps S10 to S16 is repeated, so that the frame is gradually changed within the frame rate range in which the brightness can be maintained constant according to the operation speed of the liquid crystal ND filter 103. Change the rate.
- FIG. 6 is a flowchart showing the processing in this case.
- the luminance calculation unit 124 of the system controller acquires the detected detection value and the output value of the AE-related element (shutter speed, gain, aperture value, liquid crystal ND filter).
- the brightness of the subject is calculated from the transmission 103).
- the digital signal processing unit 107 can generate a detection value such as automatic exposure (AE) from the image data, and can calculate the brightness of the subject based on the detection value.
- AE automatic exposure
- the liquid crystal ND filter 103 is obtained from the operation speed information of the liquid crystal ND filter 103 held in advance and the target transmittance of the liquid crystal ND filter 103 calculated from the brightness of the subject calculated in step S20.
- the range of the frame rate in which the brightness can be maintained is calculated by interlocking with the transmittance of.
- the target transmittance of the liquid crystal ND filter 103 calculated from the brightness of the subject is calculated by the transmittance calculating unit 123 based on the brightness of the subject calculated by the luminance calculating unit 124.
- the frame rate range calculation unit 121 calculates the range of the frame rate that can maintain the brightness.
- a frame rate transition instruction is output to the frame rate conversion processing unit 122 in order to change the frame rate within the range of the frame rate calculated in step S22.
- the transmittance calculation unit 123 calculates a transmittance corresponding to the change in the frame rate when the frame rate changes within the range of the frame rate calculated in step S22, and instructs the lens driver to change the transmittance.
- the lens driver 110 controls the transmittance of the liquid crystal ND filter 103 based on the received transmission transition instruction.
- next step S26 the current frame rate and the current transmittance of the liquid crystal ND filter 103 are updated.
- step S28 if the current frame rate matches the target frame rate, the process ends. On the other hand, if the current frame rate does not reach the target, the process returns to step S20, and the process is repeated so as to make a transition within a range where the brightness can be maintained constant. Steps S24 to S28 are the same as steps S12 to S16 in FIG.
- the transition amount of the transmittance of the liquid crystal ND filter 103 that complements the brightness change due to the change of the frame rate and the transition to the target brightness by AE.
- the transmittance of the liquid crystal ND filter 103 can be optimally controlled according to the transition of the AE and the transition of the frame rate.
- FIG. 7 illustrates the processing of FIG. 6 in detail.
- the transmittance is controlled according to the transition of AE and the brightness is constant according to the change in the frame rate.
- the case where the control which maintains to is performed simultaneously is represented typically.
- the maximum change rate of the transmittance of the liquid crystal ND filter 103 within one frame is 1/8.
- images 901 to 904 show transitions in normal AE that do not involve a change in frame rate.
- the transmittance is changed from 100% to 20% by AE.
- the transition of the AE exposure amount is started, and the AE exposure amount transitions across the state of the image 903 (transmittance 80%) so that the transition looks smooth.
- the state where the transition is completed to the optimum value is shown.
- Images 911 to 915 have the same AE exposure amount transition as the images 901 to 904 and a frame that maintains the AE exposure amount transition and brightness when the frame rate change (transition) that maintains brightness occurs simultaneously.
- the case where the rate transition is controlled independently is shown.
- the transition amount for maintaining the brightness with respect to the change in frame rate A transition of transmittance occurs (added to reduce the transmittance to 1 ⁇ 4).
- the transition by AE and the transition by the frame rate are combined and the transmittance is shifted to 5%.
- control is performed as in the images 921 to 925.
- the transitions of the images 921 to 925 correspond to the processing of FIG. 6, and when the transition due to AE and the frame rate transition maintaining the brightness occur simultaneously, the AE transition and the frame rate transition maintaining the brightness are linked. This shows the case where control is performed.
- the conditions of the images 921 to 925 are the same as those of the images 911 to 915, but the sum of the request for the change in transmittance of the liquid crystal ND filter 103 due to AE and the request for the change in transmittance due to the change in frame rate is the specification of the liquid crystal ND filter 103 ( Therefore, the frame rate change is temporarily limited in the image 924 so that the brightness does not go too far.
- This processing corresponds to the processing in steps S22 and S24 in FIG. As described above, if the frame rate is 15 fps in the image 924, the image becomes bright and the brightness cannot be maintained constant. In this example, in step S22 in FIG. 6, the frame rate that can maintain the brightness is 30 fps. Is calculated. Thereby, the frame rate of the image 924 is set to 30 fps.
- the frame rate is changed to the target 15 fps while maintaining the brightness at the transition from the image 924 to the image 925.
- the frame rate is switched, the brightness does not go too far to the high luminance side, and natural transition can be realized.
- the frame rate is changed while maintaining the brightness by using the gain control in the low gain region where the image quality is relatively difficult to affect the image and allowed.
- a method for enlarging a region where the image can be processed will be described. Brightness can be controlled by multiplying the pixel value by a gain.
- the influence on the image quality is relatively small, and the image quality can be maintained even if the gain is multiplied. Therefore, in the low gain region, the range of control linked to the frame rate can be expanded by changing the gain in addition to the transition of the transmittance.
- FIG. 8 is a schematic diagram showing an example of controlling the gain in the low gain region in addition to the transmittance transition by the liquid crystal ND filter 103.
- the control of the transmittance from the frame rate of 15 fps to 60 fps is the same as in FIG. Compared to FIG. 4, the gain is changed from 0 dB to 6 dB in a low gain region where it is difficult to affect the image with respect to the frame rate transition to the higher speed side than the reference frame rate of 60 fps.
- the gain control unit 125 of the system controller 120 controls the gain from 0 dB to 6 dB.
- liquid crystal ND filter 103 by controlling the liquid crystal ND filter 103 so as to interpolate the roughness of the resolution, it is possible to change the frame rate while maintaining the brightness in high speed tracking over a wide range that is difficult with the liquid crystal ND filter 103 alone.
- FIG. 9 shows an example in which the memory addition number is increased when the frame rate is lowered on the low frame rate side of 1 fps to 8 fps.
- the image signal is divided (redivided) by the number of sheets added to the memory, only the brightness can be reduced without degrading the image quality.
- FIG. 10 shows a change in brightness when an attempt is made to suppress the change in brightness by rebating the image according to the number of memory additions in FIG.
- the horizontal axis indicates the set frame rate [fps]
- the vertical axis indicates the brightness when the brightness at 60 fps is 1.
- the amount of change in brightness tends to increase on the low frame rate side, but by performing rebate, it is possible to keep the change in brightness within a predetermined range. Therefore, it is basically possible to keep the brightness constant when the frame rate changes by performing rebate according to the change in the frame rate.
- FIG. 11 is a schematic diagram illustrating an example in which rebating by memory addition and density change of the liquid crystal ND filter 103 are controlled in conjunction with each other.
- FIG. 8 also shows an exposure state when the imaging frame rate is continuously changed in an ideal shutter-off state.
- the brightness is maintained by the liquid crystal ND filter 103 until the timing when the added number is switched.
- the brightness can be maintained in the entire range by switching the transmittance of the liquid crystal ND filter 103 at the timing when the number of additions is switched and performing addition.
- the display addition is performed for both 3 fps and 4 fps, the brightness cannot be kept constant according to the change in the frame rate when rebating, but in FIG. Since the transmittance of the liquid crystal ND filter 103 is increased to 50% at 3 fps, it can be brighter at 3 fps.
- the transmittance of the liquid crystal ND filter 103 is increased by 16%, 19%, 22%, and 25% as the frame rate increases.
- the brightness can be kept constant according to the change in the frame rate.
- Rebate by memory addition is performed by the memory addition control unit 126 of the system controller 120.
- the memory addition control unit 126 changes the number of memory additions as shown in FIG. 9 according to the frame rate, and performs rebate.
- the transmittance calculator 123 calculates the transmittance of the liquid crystal ND filter 103 as shown in FIG. 11 according to the number of added memories and the frame rate.
- the transmittance of the liquid crystal ND filter 103 is controlled according to the change in the frame rate, the brightness is kept constant even when the frame rate changes. Is possible.
- a frame rate control unit that controls a frame rate of imaging
- a transmittance control unit that controls the transmittance of a filter through which light incident on the imaging element is transmitted so that the brightness of the imaged subject is maintained according to the change in the frame rate
- a control device comprising: (2) a frame rate range calculation unit that calculates a range in which the frame rate can be changed under the condition that the brightness of the subject image is maintained according to the operation speed of the filter;
- the control device controls the transmittance stepwise in accordance with a range in which the frame rate can be changed and a target frame rate.
- a subject brightness acquisition unit that acquires the brightness of the subject is provided.
- the control device controls the transmittance of the filter according to a luminance of the subject and a change in the frame rate.
- a frame rate range calculation unit that calculates a range in which the frame rate can be changed under the condition that the brightness of the subject image is maintained according to the operation speed of the filter;
- the control device according to (4), wherein the transmittance control unit controls the transmittance according to a range in which the frame rate can be changed.
- a gain control unit that controls a gain by which the pixel value of the subject imaged by the image sensor is multiplied;
- the control apparatus according to any one of (1) to (5), wherein the gain control unit controls the gain according to a change in the frame rate in the region where the transmittance is high.
- a memory addition control unit that controls memory addition of the pixel value of the subject imaged by the image sensor, The control device according to claim 1, wherein the transmittance control unit controls the transmittance according to a change in the frame rate and the number of memory additions.
- An operation input unit for inputting a user operation is provided.
- the control apparatus according to any one of (1) to (7), wherein the frame rate control unit controls the frame rate in accordance with a user operation input.
- An operation input unit for inputting a user operation is provided.
- the said gain control part is a control apparatus as described in said (1) which controls the said gain according to a user's operation input.
- a control method comprising: (11) an image sensor that captures a subject image for each frame; A filter that is disposed closer to the subject than the image sensor and transmits light incident on the image sensor; A frame rate control unit for controlling the frame rate of imaging; A transmittance control unit that controls the transmittance of the filter so that the brightness of the subject image captured by the image sensor is maintained according to the change in the frame rate;
- An imaging apparatus comprising:
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Studio Devices (AREA)
- Blocking Light For Cameras (AREA)
Abstract
Description
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
1.本開示の前提
2.本実施形態に係る撮像装置の構成例
3.AE(自動露出)による露光量調整との併用
4.ゲイン制御との併用
5.メモリでの画像加算との併用
例えば、上位機種のカムコーダーでは、S&Qモードで撮影が可能なものがある。S&Qモードでは、撮影時のフレームレートを変更して再生が行われる。一例として、フレームレートが1fps~240fps程度の範囲で撮影が可能な場合に、再生を60fpsのフレームレートで行うことで、60倍~1/4倍のクイックモーション撮影、またはスローモーション撮影が可能になる。
図1は、本開示の一実施形態に係る撮像装置100の構成例を示す模式図である。図1に示すように、撮像装置100は、レンズ(撮像光学系)101、絞り102、液晶NDフィルタ103、撮像素子104、アナログ信号処理部105、A/D変換部106、ディジタル信号処理部107、画像表示部108、画像保存部109、レンズドライバ110、タイミングジェネレータ(TG)111、システムコントローラ(マイクロコンピュータ)120、操作部113、を有して構成されている。
4において、フレームレートを現状の60fpsから15fpsへ変化させるようにユーザが指示した場合、目標フレームレートが15fpsである。
次に、液晶NDフィルタ103の透過率を制御してAE(自動露出)をする場合に、フレームレートの変更による明るさ変化を補完する透過率の遷移量と、AEで目標とする明るさへ遷移するために必要な透過率の遷移量の両方に鑑みて、AEの遷移スピード、フレームレートの遷移量にスムージングを掛ける手法について説明する。図6は、この場合の処理を示すフローチャートである。
図8は、液晶NDフィルタ103による透過率の遷移に加えて、低ゲイン領域でゲインを制御する例を示す模式図である。フレームレート15fps~60fpsまでの透過率の制御は、図4と同様である。図4と比較すると、基準としていたフレームレート60fpsよりも高速側へのフレームレートの遷移に対して、画像に影響が出にくい低ゲイン領域でゲインを0dBから6dBまで変化させている。具体的には、フレームレートが60fpsから120fpsまで遷移すると、システムコントローラ120のゲイン制御部125がゲインを0dBから6dBへ制御する。これにより、フレームレートを120fpsまで変化させても明るさを一定に維持することができ、明るさを維持できるフレームレートの領域を拡大することができる。
次に、メモリでの画像加算と併用した例について説明する。メモリでの画像加算と併用してS&Qモードの撮影を実現している場合、加算枚数を割り戻すことで画質の劣化なく画像を暗くすることが可能である。しかしながら、加算枚数の割り戻しでは、分解能が粗くなる欠点がある。
(1) 撮像のフレームレートを制御するフレームレート制御部と、
前記フレームレートの変化に応じて、撮像した被写体の明るさが維持されるように撮像素子へ入射する光が透過するフィルタの透過率を制御する透過率制御部と、
を備える、制御装置。
(2) 前記フィルタの動作速度に応じて、前記被写体像の明るさが維持される条件下で前記フレームレートを遷移可能な範囲を算出するフレームレート範囲算出部を備え、
前記透過率制御部は、前記フレームレートを遷移可能な範囲に応じて前記透過率を制御する、前記(1)に記載の制御装置。
(3) 前記透過率制御部は、前記フレームレートを遷移可能な範囲と目標のフレームレートとに応じて、前記透過率を段階的に制御する、前記(2)に記載の制御装置。
(4) 被写体の輝度を取得する被写体輝度取得部を備え、
前記透過率制御部は、前記被写体の輝度と前記フレームレートの変化とに応じて、前記フィルタの透過率を制御する、前記(1)~(3)のいずれかに記載の制御装置。
(5) 前記フィルタの動作速度に応じて、前記被写体像の明るさが維持される条件下で前記フレームレートを遷移可能な範囲を算出するフレームレート範囲算出部を備え、
前記透過率制御部は、前記フレームレートを遷移可能な範囲に応じて前記透過率を制御する、前記(4)に記載の制御装置。
(6) 前記撮像素子が撮像した被写体の画素値に乗算するゲインを制御するゲイン制御部を備え、
前記ゲイン制御部は、前記透過率が高い領域では、前記フレームレートの変化に応じて前記ゲインを制御する、前記(1)~(5)のいずれかに記載の制御装置。
(7) 前記撮像素子が撮像した被写体の画素値のメモリ加算を制御するメモリ加算制御部を備え、
前記透過率制御部は、前記フレームレートの変化と前記メモリ加算の枚数とに応じて前記透過率を制御する、請求項1に記載の制御装置。
(8) ユーザの操作が入力される操作入力部を備え、
前記フレームレート制御部は、ユーザの操作入力に応じて前記フレームレートを制御する、前記(1)~(7)のいずれかに記載の制御装置。
(9) ユーザの操作が入力される操作入力部を備え、
前記ゲイン制御部は、ユーザの操作入力に応じて前記ゲインを制御する、前記(1)に記載の制御装置。
(10) 撮像のフレームレートを制御することと、
前記フレームレートの変化に応じて、撮像した被写体の明るさが維持されるように撮像素子へ入射する光が透過するフィルタの透過率を制御することと、
を備える、制御方法。
(11) 被写体像をフレーム毎に撮像する撮像素子と、
前記撮像素子よりも被写体側に配置され、前記撮像素子へ入射する光が透過するフィルタと、
撮像のフレームレートを制御するフレームレート制御部と、
前記フレームレートの変化に応じて、前記撮像素子が撮像した被写体像の明るさが維持されるように前記フィルタの透過率を制御する透過率制御部と、
を備える、撮像装置。
103 液晶NDフィルタ
104 撮像素子
122 フレームレート変換処理部
123 透過率算出部
Claims (11)
- 撮像のフレームレートを制御するフレームレート制御部と、
前記フレームレートの変化に応じて、撮像した被写体の明るさが維持されるように撮像素子へ入射する光が透過するフィルタの透過率を制御する透過率制御部と、
を備える、制御装置。 - 前記フィルタの動作速度に応じて、前記被写体像の明るさが維持される条件下で前記フレームレートを遷移可能な範囲を算出するフレームレート範囲算出部を備え、
前記透過率制御部は、前記フレームレートを遷移可能な範囲に応じて前記透過率を制御する、請求項1に記載の制御装置。 - 前記透過率制御部は、前記フレームレートを遷移可能な範囲と目標のフレームレートとに応じて、前記透過率を段階的に制御する、請求項2に記載の制御装置。
- 被写体の輝度を取得する被写体輝度取得部を備え、
前記透過率制御部は、前記被写体の輝度と前記フレームレートの変化とに応じて、前記フィルタの透過率を制御する、請求項1に記載の制御装置。 - 前記フィルタの動作速度に応じて、前記被写体像の明るさが維持される条件下で前記フレームレートを遷移可能な範囲を算出するフレームレート範囲算出部を備え、
前記透過率制御部は、前記フレームレートを遷移可能な範囲に応じて前記透過率を制御する、請求項4に記載の制御装置。 - 前記撮像素子が撮像した被写体の画素値に乗算するゲインを制御するゲイン制御部を備え、
前記ゲイン制御部は、前記透過率が高い領域では、前記フレームレートの変化に応じて前記ゲインを制御する、請求項1に記載の制御装置。 - 前記撮像素子が撮像した被写体の画素値のメモリ加算を制御するメモリ加算制御部を備え、
前記透過率制御部は、前記フレームレートの変化と前記メモリ加算の枚数とに応じて前記透過率を制御する、請求項1に記載の制御装置。 - ユーザの操作が入力される操作入力部を備え、
前記フレームレート制御部は、ユーザの操作入力に応じて前記フレームレートを制御する、請求項1に記載の制御装置。 - ユーザの操作が入力される操作入力部を備え、
前記ゲイン制御部は、ユーザの操作入力に応じて前記ゲインを制御する、請求項6に記載の制御装置。 - 撮像のフレームレートを制御することと、
前記フレームレートの変化に応じて、撮像した被写体の明るさが維持されるように撮像素子へ入射する光が透過するフィルタの透過率を制御することと、
を備える、制御方法。 - 被写体像をフレーム毎に撮像する撮像素子と、
前記撮像素子よりも被写体側に配置され、前記撮像素子へ入射する光が透過するフィルタと、
撮像のフレームレートを制御するフレームレート制御部と、
前記フレームレートの変化に応じて、前記撮像素子が撮像した被写体像の明るさが維持されるように前記フィルタの透過率を制御する透過率制御部と、
を備える、撮像装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016511524A JP6558362B2 (ja) | 2014-03-31 | 2015-03-18 | 制御装置、制御方法及び撮像装置 |
EP15773607.5A EP3128741B1 (en) | 2014-03-31 | 2015-03-18 | Control device, control method, and imaging device |
US15/128,182 US10033936B2 (en) | 2014-03-31 | 2015-03-18 | Control apparatus, control method, and imaging apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-071969 | 2014-03-31 | ||
JP2014071969 | 2014-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015151813A1 true WO2015151813A1 (ja) | 2015-10-08 |
Family
ID=54240144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/058034 WO2015151813A1 (ja) | 2014-03-31 | 2015-03-18 | 制御装置、制御方法及び撮像装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10033936B2 (ja) |
EP (1) | EP3128741B1 (ja) |
JP (1) | JP6558362B2 (ja) |
WO (1) | WO2015151813A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020067486A (ja) * | 2018-10-22 | 2020-04-30 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 制御装置、撮像装置、移動体、制御方法、及びプログラム |
WO2021193403A1 (ja) * | 2020-03-25 | 2021-09-30 | 富士フイルム株式会社 | 撮像装置、撮像方法、及び撮像プログラム |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019128380A (ja) * | 2018-01-22 | 2019-08-01 | キヤノン株式会社 | 撮像装置及びその制御方法 |
US10750099B2 (en) * | 2018-10-17 | 2020-08-18 | Primesensor Technology Inc. | Image sensing method and image sensing system |
US10971161B1 (en) | 2018-12-12 | 2021-04-06 | Amazon Technologies, Inc. | Techniques for loss mitigation of audio streams |
US11336954B1 (en) * | 2018-12-12 | 2022-05-17 | Amazon Technologies, Inc. | Method to determine the FPS on a client without instrumenting rendering layer |
US11356326B2 (en) | 2018-12-13 | 2022-06-07 | Amazon Technologies, Inc. | Continuously calibrated network system |
US11368400B2 (en) | 2018-12-13 | 2022-06-21 | Amazon Technologies, Inc. | Continuously calibrated network system |
US11252097B2 (en) | 2018-12-13 | 2022-02-15 | Amazon Technologies, Inc. | Continuous calibration of network metrics |
US11016792B1 (en) | 2019-03-07 | 2021-05-25 | Amazon Technologies, Inc. | Remote seamless windows |
US11461168B1 (en) | 2019-03-29 | 2022-10-04 | Amazon Technologies, Inc. | Data loss protection with continuity |
US11245772B1 (en) | 2019-03-29 | 2022-02-08 | Amazon Technologies, Inc. | Dynamic representation of remote computing environment |
WO2021157950A1 (ko) * | 2020-02-06 | 2021-08-12 | 삼성전자 주식회사 | 디스플레이 구동 방법 및 이를 지원하는 전자 장치 |
US20220413366A1 (en) * | 2021-03-02 | 2022-12-29 | Bulletproof Property Management, Llc | Camera with shutter release control of frame rate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003324648A (ja) * | 2002-04-30 | 2003-11-14 | Olympus Optical Co Ltd | カメラ |
JP2007336599A (ja) * | 2007-08-27 | 2007-12-27 | Sony Corp | 撮像装置 |
WO2009013907A1 (ja) * | 2007-07-26 | 2009-01-29 | Panasonic Corporation | 撮影装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002204391A (ja) | 2000-10-23 | 2002-07-19 | Hitachi Kokusai Electric Inc | 透過光量制御方法およびその方法を用いたテレビジョンカメラ装置 |
JP4483963B2 (ja) * | 2008-03-25 | 2010-06-16 | ソニー株式会社 | 撮像装置、撮像方法 |
JP5704957B2 (ja) * | 2011-02-22 | 2015-04-22 | キヤノン株式会社 | 動画撮影装置及びその制御方法 |
US8610818B2 (en) * | 2012-01-18 | 2013-12-17 | Cisco Technology, Inc. | Systems and methods for improving video stutter in high resolution progressive video |
KR102010628B1 (ko) * | 2013-04-05 | 2019-08-13 | 레드.컴, 엘엘씨 | 카메라용 광학 필터링 |
-
2015
- 2015-03-18 WO PCT/JP2015/058034 patent/WO2015151813A1/ja active Application Filing
- 2015-03-18 US US15/128,182 patent/US10033936B2/en active Active
- 2015-03-18 JP JP2016511524A patent/JP6558362B2/ja active Active
- 2015-03-18 EP EP15773607.5A patent/EP3128741B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003324648A (ja) * | 2002-04-30 | 2003-11-14 | Olympus Optical Co Ltd | カメラ |
WO2009013907A1 (ja) * | 2007-07-26 | 2009-01-29 | Panasonic Corporation | 撮影装置 |
JP2007336599A (ja) * | 2007-08-27 | 2007-12-27 | Sony Corp | 撮像装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3128741A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020067486A (ja) * | 2018-10-22 | 2020-04-30 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 制御装置、撮像装置、移動体、制御方法、及びプログラム |
WO2021193403A1 (ja) * | 2020-03-25 | 2021-09-30 | 富士フイルム株式会社 | 撮像装置、撮像方法、及び撮像プログラム |
JPWO2021193403A1 (ja) * | 2020-03-25 | 2021-09-30 | ||
CN115336251A (zh) * | 2020-03-25 | 2022-11-11 | 富士胶片株式会社 | 摄像装置、摄像方法及摄像程序 |
US11805320B2 (en) | 2020-03-25 | 2023-10-31 | Fujifilm Corporation | Imaging device, imaging method, and imaging program |
JP7407909B2 (ja) | 2020-03-25 | 2024-01-04 | 富士フイルム株式会社 | 撮像装置、撮像方法、撮像プログラム、及び記録媒体 |
CN115336251B (zh) * | 2020-03-25 | 2024-05-03 | 富士胶片株式会社 | 摄像装置、摄像方法及记录介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3128741B1 (en) | 2020-12-09 |
US10033936B2 (en) | 2018-07-24 |
EP3128741A1 (en) | 2017-02-08 |
JP6558362B2 (ja) | 2019-08-14 |
US20170104909A1 (en) | 2017-04-13 |
JPWO2015151813A1 (ja) | 2017-04-13 |
EP3128741A4 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6558362B2 (ja) | 制御装置、制御方法及び撮像装置 | |
JP6680377B2 (ja) | 撮像装置、撮像方法及びプログラム | |
JP7071099B2 (ja) | 撮像装置 | |
JP2011119846A (ja) | 撮像装置、撮像方法、およびプログラム | |
JP2008035167A (ja) | 撮像装置 | |
JP2011100010A (ja) | 撮像装置 | |
JP2006128781A (ja) | 撮影装置 | |
JP5910852B2 (ja) | 動作制御装置および動作制御方法、撮像装置、並びにプログラム | |
JP2008209577A (ja) | カメラ | |
JP2020109924A (ja) | 画像処理装置および画像処理方法 | |
JP4958635B2 (ja) | 撮像装置及びその制御方法 | |
JP5948997B2 (ja) | 撮像装置及び撮像方法 | |
JP2007110636A (ja) | カメラ装置 | |
JP5780885B2 (ja) | 撮像装置、その制御方法、および制御プログラム | |
JP5003348B2 (ja) | 電子カメラ | |
JP6090565B2 (ja) | 撮像装置、撮像方法及びプログラム | |
JP2017224940A (ja) | 画像処理方法および画像処理装置 | |
JP5595167B2 (ja) | 撮像装置及びその制御方法 | |
JP2009201062A (ja) | 撮像装置及び撮像方法 | |
US9521355B2 (en) | Image processing apparatus, image processing method and program thereof | |
JP2011239187A (ja) | 撮像装置 | |
JP6708490B2 (ja) | 画像処理方法および画像処理装置 | |
JP2010226314A (ja) | 動画処理装置、動画処理方法及び動画処理プログラム | |
JP2018014680A (ja) | 撮像装置、制御方法及びプログラム | |
KR102089981B1 (ko) | 영상처리장치, 영상처리방법 및 프로그램 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15773607 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016511524 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015773607 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15128182 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |