WO2015151388A1 - 赤外線センサ - Google Patents

赤外線センサ Download PDF

Info

Publication number
WO2015151388A1
WO2015151388A1 PCT/JP2015/000702 JP2015000702W WO2015151388A1 WO 2015151388 A1 WO2015151388 A1 WO 2015151388A1 JP 2015000702 W JP2015000702 W JP 2015000702W WO 2015151388 A1 WO2015151388 A1 WO 2015151388A1
Authority
WO
WIPO (PCT)
Prior art keywords
lenses
lens
infrared
infrared sensor
pair
Prior art date
Application number
PCT/JP2015/000702
Other languages
English (en)
French (fr)
Inventor
孝浩 園
西川 尚之
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015151388A1 publication Critical patent/WO2015151388A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation

Definitions

  • the present invention relates to an infrared sensor, and more particularly, to an infrared sensor including a lens array and an infrared detection element.
  • a pyroelectric infrared sensor 101 is provided with a pyroelectric infrared sensor 101, a mirror 103 that covers the pyroelectric infrared sensor 101, and a lens body 102 that is disposed in front of the mirror 103.
  • the pyroelectric infrared sensor 101 includes an element element 116.
  • the lens main body 102 includes five lenses 121.
  • Each lens 121 is arranged along the dome part 122 which forms a part of spherical surface (about 1/4).
  • the outer surface of the dome part 122 is a curved surface that is substantially smoothly continuous.
  • part corresponding to each lens 121 protrudes from the inner surface of the dome part 122, and is an uneven surface.
  • the mirror 103 and the lens body 102 constitute an optical system.
  • seven detection beams are set for one pyroelectric infrared sensor 101 by arranging an optical system in an infrared incident path to the pyroelectric infrared sensor 101.
  • a detection beam a small range in which the amount of infrared rays incident on the pyroelectric infrared sensor 101 is near the peak.
  • a beam A13 seven detection beams are referred to as a beam A13, a beam B13, a beam C13, and a beam D13 in order from a detection beam having a smaller angle due to a difference in the angle of the detection beam in a horizontal plane.
  • the angle of the detection beam in the horizontal plane is 0 degree in the front direction.
  • the left and right lenses 121 of the five lenses 121 are shared by the beam C13 and the beam D13.
  • the beam C13 passes through the lens 121 and directly enters the light receiving surface of the pyroelectric infrared sensor 101.
  • the beam D13 passes through the lens 121, is reflected by the mirror 103, and enters the light receiving surface of the pyroelectric infrared sensor 101.
  • an infrared human body detector having the configuration shown in FIG. 17 is also proposed.
  • This infrared human body detector has substantially the same configuration as the infrared human body detector of FIG. 17
  • the left and right lenses 121 of the five lenses 121 are shared by the beam C13 and the beam D13, so that the aberrations of the beams C13 and C14 are reduced. Is difficult.
  • An object of the present invention is to provide an infrared sensor capable of suppressing aberration.
  • the infrared sensor of the present invention includes an infrared detection element, a lens array, and an optical member.
  • the lens array includes a plurality of lenses arranged in a row and has a function of condensing infrared rays on a light receiving surface of the infrared detection element.
  • a first surface including a group of first lens surfaces of each of the plurality of lenses, and a second surface including a group of second lens surfaces of the plurality of lenses.
  • the optical member is disposed between the lens array and the infrared detection element and has a function of controlling a visual field of the infrared detection element.
  • the optical member is configured to pass infrared rays that pass through lenses other than the pair of lenses located at both ends of the plurality of lenses, and a part of infrared rays that pass through the pair of lenses is directed to the light receiving surface side.
  • a pair of reflecting mirror surfaces is provided. The pair of mirror surfaces are curved surfaces that condense the part of infrared rays onto the light receiving surface.
  • the infrared sensor of the present invention it becomes possible to suppress aberrations.
  • FIG. 1A is a schematic cross-sectional view showing a main part of the infrared sensor according to the embodiment.
  • FIG. 1B is a rear view of the optical member and the lens array in the infrared sensor according to the embodiment.
  • FIG. 2 is a schematic exploded perspective view of the infrared sensor according to the embodiment.
  • FIG. 3 is a schematic plan view of a state in which the cover of the infrared sensor according to the embodiment is attached to the optical member.
  • FIG. 4 is a schematic perspective view in which the optical member and the lens array in the infrared sensor according to the embodiment are viewed from the back side, partly omitted.
  • FIG. 5A is a schematic plan view of an infrared detection element in the infrared sensor of the embodiment.
  • FIG. 5B is a schematic cross-sectional view taken along the line GG in FIG. 5A.
  • FIG. 6 is a schematic explanatory diagram of a light receiving surface of an infrared detection element in the infrared sensor of the embodiment.
  • FIG. 7 is a schematic explanatory diagram of a detection zone by the infrared sensor according to the embodiment.
  • FIG. 8 is a schematic explanatory diagram of a detection zone by the infrared sensor of the first comparative example.
  • FIG. 9 is a circuit block diagram of the infrared sensor according to the embodiment.
  • FIG. 10 is a schematic explanatory diagram of the center of the aperture stop of the infrared sensor according to the embodiment.
  • FIG. 11 is a side view of an essential part of the optical member in the infrared sensor according to the embodiment.
  • FIG. 12 is an explanatory diagram of an infrared traveling path in the infrared sensor according to the embodiment.
  • FIG. 13 is an explanatory diagram of stray light generated in a conventional infrared human body detector.
  • FIG. 14 is a schematic cross-sectional view showing the main part of the infrared sensor of the first modified example.
  • FIG. 15A is a schematic explanatory diagram of a Fresnel lens in the infrared sensor of the embodiment.
  • FIG. 15B is a schematic YY sectional view of FIG. 15A.
  • FIG. 16 is a schematic cross-sectional view of a main part of an infrared human body detector showing a conventional example.
  • FIG. 17 is a schematic exploded perspective view of an infrared human body detector showing another conventional example.
  • FIG. 1A corresponds to a schematic cross section taken along the plane P4 in FIG.
  • the infrared sensor 1 includes an infrared detection element 2, a lens array 3, and an optical member 4.
  • the lens array 3 includes a plurality of first lenses 31 (lenses) arranged in a row, and has a function of condensing infrared rays on the light receiving surface 2 a of the infrared detection element 2.
  • the lens array 3 includes a first surface 3 a including a group of first lens surfaces 31 a of the plurality of first lenses 31, and a second surface 3 b including a group of second lens surfaces 31 b of the plurality of first lenses 31. .
  • the optical member 4 is disposed between the lens array 3 and the infrared detection element 2 and has a function of controlling the field of view of the infrared detection element 2.
  • the optical member 4 is configured to transmit infrared rays that pass through the first lenses 31 other than the pair of first lenses 31 located at both ends of the plurality of first lenses 31, and the infrared rays that have passed through the pair of first lenses 31.
  • a pair of mirror surfaces 44 that reflect some infrared rays toward the light receiving surface 2a are provided.
  • the pair of mirror surfaces 44 are curved surfaces that collect the part of the infrared rays on the light receiving surface 2a.
  • the infrared sensor 1 can have each of the pair of mirror surfaces 44 have a function of reflecting incident infrared rays toward the light receiving surface 2a of the infrared detection element 2 and a function of reducing aberration. Become. Therefore, aberration can be suppressed in the infrared sensor 1.
  • the infrared sensor 1 can achieve high sensitivity by suppressing aberration.
  • the infrared sensor 1 includes a sensor main body 20 having an infrared detection element 2 and a cover 30 in which the lens array 3 is integrally formed.
  • the sensor body 20 includes a package 21 in which the infrared detection element 2 is housed.
  • the cover 30 is disposed so as to cover the sensor body 20 and the optical member 4.
  • the optical member 4 is attached to the sensor body 20.
  • a cover 30 is attached to the optical member 4.
  • the package 21 includes a pedestal 27 and a cap 28 fixed to the pedestal 27, and a window hole 28 d is formed in the cap 28 in front of the infrared detection element 2. it can.
  • the window hole 28d is closed by an infrared transmitting member 29.
  • the infrared transmitting member 29 for example, a silicon substrate or a germanium substrate can be used.
  • the infrared transmitting member 29 is preferably provided with an appropriate optical filter film, antireflection film, and the like.
  • the pedestal 27 is preferably made of metal.
  • the pedestal 27 is formed in a disc shape.
  • the cap 28 is preferably made of metal.
  • the cap 28 preferably includes a cylindrical body 28a, a first flange 28b, and a second flange 28c.
  • the cylinder 28a is formed in a cylindrical shape.
  • the first flange 28b protrudes outward from the first end portion of the cylindrical body 28a on the side close to the pedestal 27.
  • the second flange 28c protrudes inward from a second end portion opposite to the first end portion of the cylindrical body 28a.
  • the inner peripheral surface of the second flange 28c constitutes the inner peripheral surface of the window hole 28d.
  • the cap 28 has a bottomed cylindrical shape as a whole.
  • the pedestal 27 is provided with a first lead pin, a second lead pin, and a third lead pin penetrating in the thickness direction of the pedestal 27.
  • the pedestal 27 holds the first lead pin, the second lead pin, and the third lead pin.
  • the first lead pin constitutes a terminal for taking out the output signal of the infrared sensor 1.
  • the second lead pin constitutes a power supply terminal for the infrared sensor 1.
  • the third lead pin constitutes a ground terminal of the infrared sensor 1.
  • the infrared detection element 2 is a quad-type pyroelectric element in which four detection units 24 are formed on one pyroelectric substrate 23. Can be configured.
  • each detection unit 24 In the infrared detecting element 2, four detectors 24 are arranged in a 2 ⁇ 2 array on one pyroelectric substrate 23.
  • the planar view shape of each detection unit 24 can be a square shape.
  • the center of the detection unit 24 is located at each of the four corners of the virtual square VR1 (see FIG. 6) inside the outer peripheral line 23d of the pyroelectric substrate 23 at the center of the pyroelectric substrate 23.
  • the pyroelectric substrate 23 is a substrate having pyroelectric properties.
  • the pyroelectric substrate 23 is made of, for example, a single crystal LiTaO 3 substrate.
  • Each detection unit 24 includes a surface electrode 25 formed on the surface 23 a of the pyroelectric substrate 23, a back electrode 26 formed on the back surface 23 b of the pyroelectric substrate 23, and the surface electrode 25 on the pyroelectric substrate 23. It is a capacitor
  • the polarity of the surface electrode 25 located on the lens array 3 side in each detector 24 is indicated by the signs “+” and “ ⁇ ”.
  • the light receiving surface 24 a of the detection unit 24 is the surface of the surface electrode 25.
  • the infrared detection element 2 includes two detection units 24 having the same polarity on one diagonal line of the virtual square VR ⁇ b> 1 connected in parallel, and the same polarity 2 on the other diagonal line.
  • the detection units 24 are connected in parallel.
  • the infrared detection element 2 is formed by connecting two detection units 24 arranged side by side in the left-right direction in FIG. 5A in antiparallel and side by side in the vertical direction in FIG. 5A.
  • the two detection units 24 are connected in antiparallel.
  • the light receiving surface 2a of the infrared detection element 2 is the smallest convex polygon VR2 (FIG. 6) that includes each of the light reception surfaces 24a of the plurality of detection units 24.
  • the detection area of the infrared sensor 1 can be determined by the infrared detection element 2 and the lens array 3.
  • detection zones corresponding to the number of detection units 24 are set for each first lens 31.
  • a detection zone can be set.
  • the detection zone is a small range in which the amount of infrared rays incident on the infrared detection element 2 is near the peak, and is an effective region for detecting infrared rays from an object to be detected.
  • the detection zone is described as a detection beam in Document 1.
  • the infrared sensor 1 includes the optical member 4, each of the first lenses 31D at both ends of the plurality of first lenses 31 arranged in a row is detected twice as much as the other first lenses 31A, 31B, and 31C.
  • a zone can be set.
  • the infrared sensor 1 may have a configuration in which the lens array 3 includes a plurality of second lenses 32 in addition to the plurality of first lenses 31.
  • FIG. 7 is a schematic explanatory diagram of each detection zone formed on a semi-cylindrical virtual screen assumed at a position away from the infrared sensor on the front side of the infrared sensor 1.
  • FIG. 7 shows a case where the infrared sensor 1 is arranged such that the seven first lenses 31 of the infrared sensor 1 are on the upper stage and the three second lenses 32 are on the lower stage.
  • the horizontal axis of FIG. 7 is an angle formed between the normal line and a straight line inclined from the normal line on a virtual horizontal plane including a normal line standing at the center 2b of the light receiving surface 2a of the infrared detection element 2.
  • FIG. 7 has shown the distance from the reference plane in the up-down direction when a virtual horizontal surface is made into a reference plane.
  • the distance between the infrared sensor 1 and the virtual screen is set to 3 m.
  • FIG. 8 is a schematic explanatory diagram of each detection zone of the infrared human body detector of FIG. Comparing FIG. 7 and FIG. 8, it can be seen that the infrared sensor 1 can shorten the interval between the groups of four detection zones as compared with the infrared human body detector of FIG. Thereby, the infrared sensor 1 can achieve higher sensitivity than the infrared human body detector of FIG.
  • the sensor body 20 includes an amplifier circuit 201, a band filter 202, a comparison circuit 203, and an output circuit 205 in addition to the infrared detection element 2.
  • the amplifier circuit 201, the band filter 202, the comparison circuit 203, and the output circuit 205 are preferably integrated in one IC (Integrated Circuit) element 206.
  • IC Integrated Circuit
  • a substrate on which the infrared detection element 2 and the IC element 206 are mounted is preferably accommodated in the package 21.
  • the amplification circuit 201 is a circuit that amplifies the output signal of the infrared detection element 2.
  • the amplifier circuit 201 can be constituted by, for example, a current-voltage conversion circuit and a voltage amplifier circuit.
  • the current-voltage conversion circuit is a circuit that converts a current signal that is an output signal output from the infrared detection element 2 into a voltage signal and outputs the voltage signal.
  • the voltage amplification circuit is a circuit that amplifies and outputs a voltage signal in a predetermined frequency band among the voltage signals converted by the current-voltage conversion circuit.
  • the band filter 202 is a filter that removes unnecessary frequency components that become noise from the voltage signal amplified by the amplifier circuit 201.
  • the comparison circuit 203 is a circuit that compares the voltage signal amplified by the amplification circuit 201 with a preset threshold value and determines whether or not the voltage signal exceeds the threshold value.
  • the comparison circuit 203 can be configured using, for example, a comparator.
  • the output circuit 205 is a circuit that outputs a detection signal as an output signal when the comparison circuit 203 determines that the voltage signal has exceeded a threshold value.
  • the cover 30 is formed integrally with the lens array 3.
  • the lens array 3 has a function of imparting uneven sensitivity to the visual field of the infrared detection element 2.
  • the lens array 3 has the infrared detection element 2 so that the rate of change of the infrared ray incident on the infrared detection element 2 is relatively large even if the movement of a person existing in the field of view of the infrared detection element 2 is minute. It has a function to cause uneven sensitivity in the visual field.
  • the lens array 3 is configured to suppress, for example, the optical member 4 and the sensor main body 20 from being visually recognized by a person who has seen the infrared sensor 1.
  • a material of the lens array 3 it is preferable to employ, for example, polyethylene to which a white pigment is added. Therefore, the material of the cover 30 is preferably polyethylene added with a white pigment.
  • the cover 30 can be formed by a molding method, for example. As the molding method, for example, an injection molding method, a compression molding method, or the like can be employed.
  • the lens array 3 is formed by integrally forming a plurality of first lenses 31 and a plurality of second lenses 32 on a semi-cylindrical base portion 30a.
  • the cover 30 includes a cover main body 300 (see FIGS. 2 and 3) surrounding the sensor main body 20 and the optical member 4.
  • the cover main body 300 is formed in a rectangular frame shape.
  • the cover main body 300 includes a pair of side walls 301 that are continuous to both ends in the outer peripheral direction of the base portion 30a, and a pair of side walls 302 that are continuous to both ends in the axial direction of the base portion 30a. Thereby, the cover 30 can improve the stability of the shape of the lens array 3 formed on the semi-cylindrical base portion 30a.
  • the lens array 3 is a condensing lens, and the first surface 3a constitutes an infrared incident surface, and the second surface 3b constitutes an infrared emission surface.
  • the first surface 3a is preferably a single convex curved surface having an axis of symmetry.
  • the first surface 3a is preferably flush with the outer surface 30aa of the base portion 30a.
  • the lens array 3 is preferably designed such that the focal point is at the same position on the infrared detection element 2 side of each first lens 31.
  • the plurality of first lenses 31 includes four types of first lenses 31 having different shapes.
  • the type of the first lens 31 is not limited to four types, and may be five types, for example.
  • the plurality of second lenses 32 includes two types of second lenses 32 having different shapes.
  • the type of the second lens 32 is not limited to two types, and may be three types, for example.
  • first lenses 31 may be described with different symbols.
  • second lenses 32 may be described with different reference numerals.
  • the first lens 31 intersecting the center line passing through the center 2b of the light receiving surface 2a of the infrared detection element 2 is defined as a first lens 31A, and a pair of first lenses 31B in order from the first lens 31A.
  • a pair of first lenses 31C and a pair of first lenses 31D are provided.
  • the middle first lens 31 among the seven first lenses 31 arranged in a row is the first lens 31A, and the pair of first lenses 31B and the pair of first lenses 31A are arranged in order from the first lens 31A.
  • the first lens 31C is a pair of first lenses 31D.
  • the pair of first lenses 31 ⁇ / b> D constitutes a pair of first lenses 31 positioned at both ends of the plurality of first lenses 31 arranged in a line.
  • a detection zone in which an infrared ray bundle used to form an image on the light receiving surface 2a of the infrared detection element 2 passes through the first lens 31A is referred to as a detection zone A3.
  • a detection zone in which an infrared ray bundle used for forming an image on the light receiving surface 2a of the infrared detection element 2 passes through the first lens 31B is referred to as a detection zone B3.
  • a detection zone in which an infrared ray bundle used to form an image on the light receiving surface 2a of the infrared detection element 2 passes through the first lens 31C is referred to as a detection zone C3.
  • a detection zone in which an infrared ray bundle used for forming an image on the light receiving surface 2a of the infrared detection element 2 passes only through the first lens 31D is referred to as a detection zone D3.
  • a detection zone in which an infrared ray bundle used to form an image on the light receiving surface 2a of the infrared detection element 2 passes through the mirror surface 44 and the first lens 31D is referred to as a detection zone D4.
  • FIG. 1A the center lines of the detection zones A3, B3, C3, D3 and D4 are shown.
  • the cover 30 is formed with an aperture stop for each of the first lens 31 and the second lens 32.
  • Each aperture stop corresponding to each first lens 31 on a one-to-one basis defines an infrared transmission region of the corresponding first lens 31.
  • Each aperture stop corresponding to each second lens 32 on a one-to-one basis defines an infrared transmission region of the corresponding second lens 32.
  • aperture stop means an aperture that defines an optical aperture through which an infrared ray bundle used to form an image on the light receiving surface 2a of the infrared detection element 2 passes.
  • the “optical aperture” in the present specification means an infrared transmission region through which an infrared ray bundle passes, and does not include a physical aperture such as a through hole.
  • the aperture stop corresponding to the first lens 31 limits the infrared ray passing region by the edge of the first lens 31.
  • the edge of the first lens 31D includes a portion of the cover 30 that is adjacent to the first lens 31D and a first lens 31C that is adjacent to the first lens 31D.
  • the center Q1 of the aperture stop of the first lens 31D is the center of an area surrounded by the thick portion 30c adjacent to the first lens 31D and the first lens 31C in the cover 30 (see FIG. 10).
  • the thick portion 30 c is a portion of the cover 30 that is formed to be thicker than the peripheral portion of the first lens 31. It is preferable that the thickness of the thick portion 30 c is set so that infrared rays are less likely to pass through than the peripheral portion of the first lens 31. “Being less likely to transmit infrared rays” means that the infrared rays are more attenuated and less likely to pass through.
  • the infrared sensor 1 for example, as an infrared ray to be controlled controlled by the lens array 3, for example, an infrared ray having a wavelength range of 8 ⁇ m to 13 ⁇ m can be given.
  • the transmittance of the infrared light to be controlled perpendicularly incident on an arbitrary point on the first lens surface 31 a is about 40%. Decreases.
  • the term “perpendicularly incident” means that the light is incident on an arbitrary point on the first lens surface 31a along the normal of the arbitrary point.
  • the optical path length of the infrared light to be controlled that is obliquely incident on an arbitrary point on the first lens surface 31a of the first lens 31 is longer than the thickness of the first lens 31 corresponding to the arbitrary point. There is a concern that the transmittance becomes too low.
  • obliquely incident means that the light is incident on an arbitrary point on the first lens surface 31a from a direction inclined with respect to the normal of the arbitrary point.
  • the cover 30 preferably has a rectangular aperture stop for each first lens 31.
  • the boundary between the adjacent first lenses 31 is linear.
  • the cover 30 can reduce the gap between the adjacent first lenses 31 in a configuration in which the plurality of first lenses 31 are arranged in a line. Therefore, the infrared sensor 1 can achieve high sensitivity.
  • the cover 30 can have a rectangular aperture stop for each second lens 32.
  • the boundary between the adjacent second lenses 32 is preferably linear. Thereby, the cover 30 can reduce the gap between the adjacent second lenses 32 in a configuration in which the plurality of second lenses 32 are arranged in a line. Therefore, the infrared sensor 1 can achieve high sensitivity.
  • Each of the pair of first lenses 31D includes a straight line L12 connecting the center Q2 of the second lens surface 31b and the center 2b of the light receiving surface 2a, and a normal L11 of the center Q1 of each aperture stop of the pair of first lenses 31D. And non-parallel to each other (see FIG. 10). Thereby, the infrared sensor 1 can enhance the light collecting function.
  • the first surface 3a is constituted by a part of a semi-cylindrical surface.
  • the central axis of the second lens surface 31b is parallel to a straight line connecting the center of the aperture stop and the center of the mirror surface 44 of the pair of mirror surfaces 44 facing the second lens surface 31b. It can be set as the structure which is. Thereby, the infrared sensor 1 can further reduce the aberration of infrared rays that are incident on the light receiving surface 2 a of the infrared detecting element 2 via the mirror surface 44.
  • each of the pair of first lenses 31D may be configured such that the central axis of the second lens surface 31b is parallel to a straight line connecting the center Q1 of the aperture stop and the center 2b of the light receiving surface 2a.
  • the infrared sensor 1 can further reduce the aberration of infrared rays that are incident on the light receiving surface 2a of the infrared detecting element 2 without using the mirror surface 44.
  • the center axis of the second lens surface 31b is a straight line connecting the center Q1 of the aperture stop and the centers of the pair of mirror surfaces 44, and the center Q1 of the aperture stop and the light reception. It is good also as a structure which is parallel to the bisector of the angle
  • the infrared sensor 1 causes the aberration of infrared rays incident on the light receiving surface 2a of the infrared detecting element 2 through the mirror surface 44 and the infrared rays incident on the light receiving surface 2a of the infrared detecting element 2 without passing through the mirror surface 44. It is possible to reduce variations in aberrations. Therefore, the infrared sensor 1 can make the sensitivity uniform between the detection zone D3 not passing through the mirror surface 44 and the detection zone D4 passing through the mirror surface 44.
  • the mirror surface 44 can be constituted by, for example, a part of a spherical surface, a part of a general aspherical surface, a part of a toroidal surface, or the like.
  • a toroidal surface for example, an anamorphic aspheric surface can be employed.
  • the optical member 4 may have a configuration in which, for example, a metal plating film that reflects infrared rays is provided on the surface of a synthetic resin molded product.
  • a metal plating film that reflects infrared rays is provided on the surface of a synthetic resin molded product.
  • the metal aluminum or the like having a high reflectance with respect to infrared rays is preferable.
  • the optical member 4 includes a reflecting piece 43 having a pair of mirror surfaces 44 and a support portion 42 that supports the reflecting piece 43 (see FIGS. 2 and 3).
  • a first slit 45 through which infrared light passes through the first lenses 31 ⁇ / b> A, 31 ⁇ / b> B, and 31 ⁇ / b> C other than the pair of first lenses 31 ⁇ / b> D among the plurality of first lenses 31 is formed in the central portion of the reflecting piece 43. (See FIGS. 1B, 2 and 3).
  • the optical member 4 preferably has a curved shape in which the outline of the reflecting piece 43 is convex in a direction away from the first slit 45.
  • the infrared sensor 1 has the first slit 45 formed in the reflection piece 43, so that the infrared ray passing through the first lens 31A can be prevented from being eclipse by the reflection piece 43. It is possible to suppress a decrease in sensitivity due to the above. “Kere” means a phenomenon in which the infrared rays traveling through the first lens 31 toward the light receiving surface 2 a of the infrared detecting element 2 are blocked by the reflecting piece 43.
  • the infrared sensor 1 is configured such that the outline of the reflecting piece 43 is a curved shape that is convex in a direction away from the first slit 45, so that infrared rays passing through the first lens 31B are prevented from being damaged by the reflecting piece 43.
  • FIG. 1A the traveling path L1 closest to the first lens 31A among the traveling paths of the infrared rays collected through the first lens 31B and focused on the center 2b of the light receiving surface 2a of the infrared detecting element 2, and the first lens 31A.
  • the travel path L2 farthest from the head is schematically shown by a broken line.
  • the traveling paths L1 and L2 indicated by broken lines in FIG. 1A are formed on a plane different from the plane including the cross section shown in FIG. 1A.
  • the reflective piece 43 has a first portion by making the width of the portion close to the support portion 42 in the reflective piece 43 smaller than the width of the portion where the first slit 45 is formed. It is possible to suppress the infrared rays passing through the lens 31 ⁇ / b> A from being distorted by the reflecting piece 43.
  • the reflecting piece 43 is closer to the center line of the first lens 31 ⁇ / b> A and the first side as the inner surface 45 a of the first slit 45 approaches the first first lens 31 ⁇ / b> A among the plurality of first lenses 31.
  • the inclined surface has a long distance from the plane P1 including the center line of the slit 45.
  • the traveling path of infrared rays is indicated by alternate long and short dash lines L21 to L24.
  • the stray light means an infrared ray that is undesired for image formation and is generated by reflection on the optical member 4.
  • infrared detector of FIG. 16 for example, as shown in FIG. 13, infrared light whose traveling path is indicated by a one-dot chain line B ⁇ b> 23 becomes stray light.
  • the traveling path of the incident infrared rays is indicated by a one-dot chain line B23 in parallel with the center line of the detection beam C13 with respect to the second lens 121B from the left.
  • the infrared sensor 1 After passing through the lens 121, the infrared light is reflected by the first reflecting portion 133 of the mirror 103 and enters the element element 116.
  • the infrared sensor 1 can suppress the generation of stray light because the inner surface 45a of the first slit 45 is an inclined surface.
  • the optical member 4 preferably has an inner surface 45a of the first slit 45 as a rough surface. Thereby, the infrared sensor 1 can further suppress the generation of stray light.
  • the lens array 3 further includes a plurality of second lenses 32 arranged in a separate row from the plurality of first lenses 31 as described above.
  • a second slit 46 through which infrared rays passing through the plurality of second lenses 32 pass is formed in the reflecting piece 43.
  • the width of the second slit 46 is preferably wider than the width of the first slit 45.
  • the reflection piece 43 has a center line of the second lens 32 ⁇ / b> A and the second slit as the inner surface 46 a of the second slit 46 approaches the second lens 32 ⁇ / b> A in the middle of the plurality of second lenses 32. It is preferable that the inclined surface has a long distance from the plane P2 including the center line 46. Thereby, the infrared sensor 1 can suppress the generation of stray light.
  • the optical member 4 has the inner surface 46a of the second slit 46 as a rough surface. Thereby, the infrared sensor 1 can further suppress the generation of stray light. In the infrared sensor 1, when the lens array 3 does not include the second lens 32, the optical member 4 may not include the second slit 46.
  • the first lens 31 having the reflecting piece 43 on a straight line connecting the center of the aperture stop and the center 2b of the light receiving surface 2a is The width in the direction in which the plurality of first lenses 31 are arranged is preferably wider than the adjacent first lens 31.
  • the first lens 31B of the first lenses 31A, 31B and 31C excluding the first lens 31D is adjacent to the first lens 31B. It is preferable that the width is wider than that of the first lens 31A and 31C.
  • the infrared sensor 1 can make the area of the 1st lens 31B larger than the 1st lenses 31A and 31C.
  • the infrared sensor 1 reduces the sensitivity of the detection zone B3 passing through the first lens 31B compared to the case where the width of the first lens 31 is the same in the direction in which the plurality of first lenses 31 are arranged as shown in FIG. It becomes possible to suppress.
  • FIG. 14 when the outline of the reflecting piece 43 is a straight line with a constant distance from the first slit 45, the reflecting piece 43 is condensed on the center 2b of the light receiving surface 2a of the infrared detecting element 2 through the first lens 31B.
  • the traveling paths of infrared rays the first traveling path B31 and the second traveling path B32 are schematically shown by broken lines.
  • the first travel path B31 is the travel path closest to the first lens 31A
  • the second travel path B32 is the travel path farthest from the first lens 31A.
  • the traveling path indicated by a broken line in FIG. 14 is formed on a plane different from the plane including the cross section shown in FIG.
  • the maximum distance from the first slit 45 to the contour in the reflecting piece 43 is the same.
  • the infrared sensor 1 is configured such that the outline of the reflecting piece 43 has a curved shape that is convex in a direction away from the first slit 45, thereby suppressing the infrared rays passing through the first lens 31B from being crushed by the reflecting piece 43. It becomes possible.
  • Each of the plurality of first lenses 31 is preferably a Fresnel lens. Thereby, the infrared sensor 1 can reduce the thickness of each first lens 31 in the lens array 3 or increase the light receiving area.
  • each of the plurality of second lenses 32 is preferably a Fresnel lens.
  • the infrared sensor 1 can make the thickness of each second lens 32 in the lens array 3 thinner.
  • the Fresnel lens is defined by an aperture stop, for example, of the Fresnel lens 320 including a central lens portion 311 and a plurality of peripheral lens portions 312 surrounding the central lens portion 311 as shown in the schematic diagrams of FIGS. 15A and 15B. It can be constituted by a portion corresponding to an optical aperture.
  • the infrared sensor 1 includes the sensor body 20 including the cover 30 in which the lens array 3 is integrally formed, and the infrared detection element 2 and the package 21 that houses the infrared detection element 2.
  • the optical member 4 includes a cylindrical tube portion 41 surrounding the sensor body 20. Further, the optical member 4 is formed such that the support portion 42 protrudes from the first end portion 41 a in the axial direction of the cylindrical portion 41.
  • the cover 30 and the optical member 4 are preferably fitted together.
  • the infrared sensor 1 can improve the relative positional accuracy between the cover 30 and the optical member 4, and can improve the relative positional accuracy between the lens array 3 and the optical member 4. Become.
  • the optical member 4 may have a configuration in which a protruding portion 48 that protrudes outward from the side surface of the second end portion 41b in the axial direction of the cylindrical portion 41 is formed.
  • the cover 30 and the optical member 4 are preferably fitted with the protrusion 48 of the optical member 4 in a recess (first recess) 30f formed at the rear edge of the cover 30.
  • the infrared sensor 1 can improve the relative positional accuracy between the cover 30 and the optical member 4 while reducing the size of the cylindrical portion 41 of the optical member 4.
  • the support part 42 and the protrusion part 48 are formed integrally with the cylindrical body part 41.
  • the support portion 42 is formed so as to protrude from a part of the first end portion 41 a on the cylindrical body portion 41 on the side close to the infrared transmitting member 29 of the sensor body 20.
  • the support portion 42 is formed integrally with the cylindrical body portion 41.
  • the recesses 30f and the protrusions 48 are two each, and are on one plane including the center 2b of the light receiving surface 2a of the infrared detection element 2 and including the center line along the thickness direction of the infrared detection element 2. Is preferred. Thereby, the infrared sensor 1 can further improve the relative positional accuracy between the cover 30 and the optical member 4.
  • the cylindrical portion 41 is preferably formed in a cylindrical shape.
  • the sensor main body 20 is fitted into the cylinder body 41 and is surrounded by the cylinder body 41.
  • the cylindrical body portion 41 has a projection for positioning the sensor main body 20 formed on the inner surface of the cylindrical body portion 41, and a second recess for positioning the sensor main body 20 at the second end 41 b of the cylindrical body portion 41. ing.
  • the infrared detection element 2 has four detection units 24 formed on one pyroelectric substrate 23.
  • the infrared detecting element 2 includes four detectors 24 at each of the four vertices of the virtual square VR1 (see FIG. 6) inside the outer periphery of the pyroelectric substrate 23 at the center of the pyroelectric substrate 23. The center of is located.
  • the infrared detection element 2 it is preferable that one of the pair of diagonal lines of the virtual square VR1 is on the plane P4 (see FIG. 3) and the other diagonal line is orthogonal to the plane P4.
  • the infrared sensor 1 can further improve the relative positional accuracy of the infrared detection element 2, the pair of mirror surfaces 44, and the lens array 3.
  • the infrared sensor 1 can be used, for example, for detecting a heat source moving in the lateral direction.
  • the heat source include a human body and an animal.
  • the infrared sensor 1 is used by being incorporated in a human body detector, the heat source to be detected is a human body.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

 収差を抑制することが可能な赤外線センサを提供する。赤外線センサ(1)は、赤外線検知素子(2)とレンズアレイ(3)と光学部材(4)とを備える。レンズアレイ(3)は、一列に並んだ複数の第1レンズ(31)を備える。光学部材(4)は、複数の第1レンズ(31)のうち両端に位置する一対の第1レンズ(31)以外の第1レンズ(31)を通る赤外線を通すように構成され、一対の第1レンズ(31)を通して受光面(2a)に直接入射しない赤外線を受光面(2a)側に反射する一対のミラー面(44)を備える。一対のミラー面(44)は、一対の第1レンズ(31)それぞれを通して受光面(2a)に直接入射しない赤外線を受光面(2a)に集光させる曲面である。

Description

赤外線センサ
 本発明は、赤外線センサに関し、より詳細には、レンズアレイと赤外線検知素子とを備えた赤外線センサに関する。
 この種の赤外線センサとしては、例えば、図16に示す構成の赤外線式人体検知器が知られている(日本国特許番号3617359参照、以下「文献1」という)。
 図16に示す構成の赤外線式人体検知器は、焦電型赤外線センサ101と、焦電型赤外線センサ101に被せられるミラー103と、ミラー103の前方に配置されるレンズ本体102と、を備える。
 焦電型赤外線センサ101は、素子エレメント116を備えている。
 レンズ本体102は、5個のレンズ121を備えている。各レンズ121は、球面の一部(4分の1程度)を形成するドーム部122に沿って配列されている。これにより、ドーム部122の外側面は、ほぼ滑らかに連続した曲面となっている。また、ドーム部122の内側面は、各レンズ121に対応する部位が突出しており、凹凸面になっている。
 赤外線式人体検知器は、ミラー103と、レンズ本体102と、により光学系を構成している。赤外線式人体検知器は、焦電型赤外線センサ101への赤外線の入射経路に光学系を配置することによって、1つの焦電型赤外線センサ101に対して、7本の検知ビームを設定してある。文献1では、焦電型赤外線センサ101への赤外線の入射量がピーク付近になる小範囲を検知ビームと呼んでいる。
 文献1では、7本の検知ビームについて、水平面内での検知ビームの角度の違いにより、角度の小さい検知ビームから順に、ビームA13、ビームB13、ビームC13、ビームD13と呼んでいる。水平面内での検知ビームの角度は、正面方向を0度としている。
 上述の赤外線式人体検知器は、5個のレンズ121のうち左右両端の各レンズ121をビームC13及びビームD13に共用させている。ビームC13は、レンズ121を通って焦電型赤外線センサ101の受光面に直接入射する。ビームD13は、レンズ121を通ってミラー103で反射されて焦電型赤外線センサ101の受光面に入射する。
 また、文献1には、図17に示す構成の赤外線式人体検知器も提案されている。この赤外線式人体検知器は、図16の赤外線式人体検知器と略同じ構成を有する。
 図16の赤外線式人体検知器では、5個のレンズ121のうち左右両端の各レンズ121を、ビームC13とビームD13とに共用させているので、ビームC13、ビームC14それぞれの収差を小さくするのが難しい。
 本発明の目的は、収差を抑制することが可能な赤外線センサを提供することにある。
 本発明の赤外線センサは、赤外線検知素子と、レンズアレイと、光学部材と、を備える。前記レンズアレイは、一列に並んだ複数のレンズを備え、前記赤外線検知素子の受光面に赤外線を集光する機能を有する。前記複数のレンズそれぞれの第1レンズ面の一群を含む第1面と、前記複数のレンズそれぞれの第2レンズ面の一群を含む第2面と、を備える。前記光学部材は、前記レンズアレイと前記赤外線検知素子との間に配置され前記赤外線検知素子の視野を制御する機能を有する。前記光学部材は、前記複数のレンズのうち両端に位置する一対のレンズ以外のレンズを通る赤外線を通すように構成され、前記一対のレンズを通った赤外線の一部の赤外線を前記受光面側に反射する一対のミラー面を備える。前記一対のミラー面は、前記一部の赤外線を前記受光面に集光させる曲面である。
 本発明の赤外線センサによると、収差を抑制することが可能となる。
図1Aは、実施形態の赤外線センサの要部を示す概略横断面図である。図1Bは、実施形態の赤外線センサにおける光学部材及びレンズアレイの背面図である。 図2は、実施形態の赤外線センサの概略分解斜視図である。 図3は、実施形態の赤外線センサにおけるカバーを光学部材に取り付けた状態の概略平面図である。 図4は、実施形態の赤外線センサにおける光学部材及びレンズアレイを背面側から見た、一部省略した概略斜視図である。 図5Aは、実施形態の赤外線センサにおける赤外線検知素子の概略平面図である。図5Bは、図5AのG-G概略断面図である。 図6は、実施形態の赤外線センサにおける赤外線検知素子の受光面の模式的な説明図である。 図7は、実施形態の赤外線センサによる検知ゾーンの模式的な説明図である。 図8は、第1比較例の赤外線センサによる検知ゾーンの模式的な説明図である。 図9は、実施形態の赤外線センサの回路ブロック図である。 図10は、実施形態の赤外線センサの開口絞りの中心についての模式的な説明図である。 図11は、実施形態の赤外線センサにおける光学部材の要部側面図である。 図12は、実施形態の赤外線センサにおける赤外線の進行経路の説明図である。 図13は、従来例の赤外線式人体検知器において発生する迷光の説明図である。 図14は、第1変形例の赤外線センサの要部を示す概略横断面図である。 図15Aは、実施形態の赤外線センサにおけるフレネルレンズの模式的な説明図である。図15Bは、図15AのY-Y概略断面図である。 図16は、従来例を示す赤外線式人体検知器の要部の概略断面図である。 図17は、他の従来例を示す赤外線式人体検知器の概略分解斜視図である。
 以下では、本実施形態の赤外線センサ1について図1A、1B、2~4、5A、5B、6~12、15A及び15B等に基づいて説明する。なお、図1Aは、図3における平面P4で破断した概略断面に相当する。
 赤外線センサ1は、図1A、1B、2~4、5A及び5Bに示すように、赤外線検知素子2と、レンズアレイ3と、光学部材4と、を備える。レンズアレイ3は、一列に並んだ複数の第1レンズ31(レンズ)を備え、赤外線検知素子2の受光面2aに赤外線を集光する機能を有する。レンズアレイ3は、複数の第1レンズ31それぞれの第1レンズ面31aの一群を含む第1面3aと、複数の第1レンズ31それぞれの第2レンズ面31bの一群を含む第2面3bと、を備える。光学部材4は、レンズアレイ3と赤外線検知素子2との間に配置され赤外線検知素子2の視野(field of view)を制御する機能を有する。光学部材4は、複数の第1レンズ31のうち両端に位置する一対の第1レンズ31以外の第1レンズ31を通る赤外線を通すように構成され、一対の第1レンズ31を通った赤外線の一部の赤外線を受光面2a側に反射する一対のミラー面44を備える。一対のミラー面44は、当該一部の赤外線を受光面2aに集光させる曲面である。これにより、赤外線センサ1は、一対のミラー面44それぞれに、入射する赤外線を赤外線検知素子2の受光面2aに向かって反射する機能と、収差を低減する機能と、を持たせることが可能となる。よって、赤外線センサ1においては、収差を抑制することが可能となる。赤外線センサ1は、収差が抑制されることにより、高感度化を図ることが可能となる。
 赤外線センサ1は、赤外線検知素子2を有するセンサ本体20と、レンズアレイ3が一体に形成されたカバー30と、を備える。センサ本体20は、赤外線検知素子2を収納したパッケージ21を備えている。カバー30は、センサ本体20及び光学部材4を覆うように配置されている。赤外線センサ1では、センサ本体20に光学部材4が取り付けられている。また、赤外線センサ1では、光学部材4にカバー30が取り付けられている。
 赤外線センサ1の各構成要素については、以下に、より詳細に説明する。
 パッケージ21は、図2に示すように、台座27と、台座27に固着されるキャップ28と、を備え、キャップ28における赤外線検知素子2の前方に窓孔28dが形成された構成とすることができる。窓孔28dは、赤外線透過部材29により閉塞されている。赤外線透過部材29としては、例えば、シリコン基板やゲルマニウム基板等を用いることができる。赤外線透過部材29は、適宜の光学フィルタ膜、反射防止膜等を備えているのが好ましい。
 台座27は、金属製であるのが好ましい。台座27は、円板状に形成されている。キャップ28は、金属製であるのが好ましい。キャップ28は、筒体28aと、第1フランジ28bと、第2フランジ28cと、を備えているのが好ましい。筒体28aは、円筒状に形成されている。第1フランジ28bは、筒体28aにおける台座27に近い側の第1端部から外方へ突出している。第2フランジ28cは、筒体28aにおける第1端部とは反対の第2端部から内方へ突出している。キャップ28は、第2フランジ28cの内周面が窓孔28dの内周面を構成している。キャップ28は、全体として、有底円筒状の形状である。
 台座27には、第1リードピン、第2リードピン及び第3リードピンが、台座27の厚さ方向に貫通して設けられる。台座27は、第1リードピン、第2リードピン及び第3リードピンを保持している。第1リードピンは、赤外線センサ1の出力信号の取り出し用の端子を構成している。また、第2リードピンは、赤外線センサ1の給電用の端子を構成している。また、第3リードピンは、赤外線センサ1のグラウンド用の端子を構成している。
 赤外線検知素子2は、例えば、図5A、5B及び6に示すように、1枚の焦電体基板23に4個の検出部24が形成されたクワッドタイプ(quad-type)の焦電素子により構成することができる。
 赤外線検知素子2は、1枚の焦電体基板23に、4個の検出部24が2×2のアレイ状に配列されている。赤外線検知素子2は、各検出部24の平面視形状を正方形状とすることができる。赤外線検知素子2は、焦電体基板23の中央部において焦電体基板23の外周線23dよりも内側の仮想正方形VR1(図6参照)の4つの角それぞれに検出部24の中心が位置するように配置されている。
 焦電体基板23は、焦電性を有する基板である。焦電体基板23は、例えば単結晶のLiTaO基板により構成されている。
 各検出部24は、焦電体基板23の表面23aに形成された表面電極25と、焦電体基板23の裏面23bに形成された裏面電極26と、焦電体基板23において表面電極25と裏面電極26とで挟まれた部分23cと、で構成されるコンデンサである(図5B参照)。図5Aでは、各検出部24においてレンズアレイ3側に位置する表面電極25の極性を、“+”、“-”の符号で示してある。検出部24の受光面24aは、表面電極25の表面である。赤外線検知素子2は、4個の検出部24のうち、仮想正方形VR1の一方の対角線上にある同極性の2個の検出部24同士が並列接続され、他方の対角線上にある同極性の2個の検出部24同士が並列接続されている。要するに、赤外線検知素子2は、図5Aの左右方向に沿って並んで形成されている2個の検出部24同士が逆並列に接続され、且つ、図5Aの上下方向に沿って並んで形成されている2個の検出部24同士が逆並列に接続されている。
 赤外線検知素子2が複数個の検出部24を備えている場合、赤外線検知素子2の受光面2aは、複数の検出部24の各々の受光面24aを内包する最小の凸多角形VR2(図6参照)の外周線で囲まれた領域の表面を意味する。したがって、図6の例では、最小の凸多角形VR2は、上述の仮想正方形VR1よりも大きな正方形となる。
 赤外線センサ1は、仮に光学部材4を備えていないとすると、赤外線センサ1の検知エリアを、赤外線検知素子2とレンズアレイ3とで決めることができる。この場合、赤外線センサ1の検知エリアには、各第1レンズ31ごとに、検出部24の数の検知ゾーン(detection zone)が設定される。赤外線センサ1は、レンズアレイ3が7個の第1レンズ31を一体に備えているので、赤外線検知素子2と7個の第1レンズ31とで、検知エリア内に7×4=28個の検知ゾーンを設定することができる。検知ゾーンは、赤外線検知素子2への赤外線の入射量がピーク付近になる小範囲であって、検知対象の物体からの赤外線を検出する有効領域である。検知ゾーンは、文献1では、検知ビームと記載されている。
 赤外線センサ1は、光学部材4を備えているので、一列に並んだ複数の第1レンズ31のうち両端の第1レンズ31Dそれぞれについて、他の第1レンズ31A,31B,31Cの2倍の検知ゾーンを設定することができる。赤外線センサ1は、第1レンズ31の数が7個であり、赤外線検知素子2と7個の第1レンズ31と一対のミラー面44とで、(7-2)×4+2×(2×4)=36個の検知ゾーンを設定することができる。赤外線センサ1は、図1B及び4に示すように、レンズアレイ3が、複数の第1レンズ31とは別に複数の第2レンズ32を備えた構成とすることができる。赤外線センサ1は、第2レンズ32の数が3個であり、赤外線検知素子2と3個の第2レンズ32とで、3×4=12個の検知ゾーンを設定することができる。なお、レンズアレイ3における第1レンズ31及び第2レンズ32の数は、特に限定されない。
 図7は、赤外線センサ1の正面側において赤外線センサから離れた位置に想定した半円筒の仮想スクリーンに形成される各検知ゾーンの模式説明図である。図7は、赤外線センサ1の7個の第1レンズ31が上段、3個の第2レンズ32が下段となるようにして、赤外線センサ1を配置した場合である。図7の横軸は、赤外線検知素子2の受光面2aの中心2bに立てた法線を含む仮想水平面上において当該法線と当該法線から傾いた直線とのなす角度である。図7の縦軸は、仮想水平面を基準平面としたときの上下方向における基準平面からの距離を示している。赤外線センサ1と仮想スクリーンとの距離は、3mに設定してある。図8は、図17の赤外線式人体検知器の各検知ゾーンの模式説明図である。図7と図8とを比較すれば、赤外線センサ1では、図17の赤外線式人体検知器に比べて、4個の検知ゾーンの群間の間隔を短くできることが分かる。これにより、赤外線センサ1は、図17の赤外線式人体検知器に比べて、高感度化を図ることが可能となる。
 センサ本体20は、図9に示すように、赤外線検知素子2の他に、増幅回路201と、帯域フィルタ202と、比較回路203と、出力回路205と、を備えている。
 センサ本体20は、増幅回路201と、帯域フィルタ202と、比較回路203と、出力回路205と、が1つのIC(Integrated Circuit)素子206に集積化されているのが好ましい。そして、センサ本体20は、赤外線検知素子2とIC素子206とが実装された基板が、パッケージ21内に収納されているのが好ましい。
 増幅回路201は、赤外線検知素子2の出力信号を増幅する回路である。増幅回路201は、例えば、電流電圧変換回路と、電圧増幅回路と、で構成することができる。電流電圧変換回路は、赤外線検知素子2から出力される出力信号である電流信号を電圧信号に変換して出力する回路である。電圧増幅回路は、電流電圧変換回路により変換された電圧信号のうち所定の周波数帯域の電圧信号を増幅して出力する回路である。
 帯域フィルタ202は、増幅回路201で増幅された電圧信号から、雑音となる不要な周波数成分を除去するフィルタである。
 比較回路203は、増幅回路201で増幅された電圧信号と予め設定された閾値とを比較し電圧信号が閾値を超えたか否かを判断する回路である。比較回路203は、例えば、コンパレータ等を用いて構成することができる。
 出力回路205は、比較回路203において電圧信号が閾値を超えたと判断されたときに検知信号を出力信号として出す回路である。
 カバー30は、レンズアレイ3が一体に形成されている。レンズアレイ3は、赤外線検知素子2の視野内に感度むらを付与する機能を備える。要するに、レンズアレイ3は、赤外線検知素子2の視野内に存在する人の動きが微小であっても、赤外線検知素子2に入射する赤外線の変化率が比較的大きくなるように、赤外線検知素子2の視野内に感度むらを生じさせる機能を備える。
 また、レンズアレイ3は、例えば、赤外線センサ1を見た人から光学部材4及びセンサ本体20が視認されるのを抑制するように構成されているのが好ましい。このため、レンズアレイ3の材料としては、例えば、白色顔料を添加したポリエチレンを採用するのが好ましい。よって、カバー30の材料は、白色顔料を添加したポリエチレンが好ましい。カバー30は、例えば、成形法により形成することができる。成形法としては、例えば、射出成形法、圧縮成形法等を採用することができる。
 レンズアレイ3は、半円筒状のベース部30aに、複数の第1レンズ31及び複数の第2レンズ32を一体に形成してある。
 カバー30は、センサ本体20と光学部材4とを囲むカバー本体300(図2及び3参照)を備えている。カバー本体300は、矩形枠状に形成されている。カバー本体300は、ベース部30aの外周方向の両端部それぞれに連続する一対の側壁301と、ベース部30aの軸方向の両端部それぞれに連続する一対の側壁302と、を備えている。これにより、カバー30は、半円筒状のベース部30aに形成されたレンズアレイ3の形状の安定性を向上させることが可能となる。
 レンズアレイ3は、集光レンズであり、第1面3aが赤外線の入射面を構成し、第2面3bが赤外線の出射面を構成する。第1面3aは、対称軸を有する単一の凸曲面としてあるのが好ましい。第1面3aは、ベース部30aの外面30aaと面一であるのが好ましい。
 レンズアレイ3は、各第1レンズ31それぞれの赤外線検知素子2側で焦点が同一位置となるように設計してあるのが好ましい。
 レンズアレイ3は、複数の第1レンズ31が、形状の異なる4種類の第1レンズ31を含んでいる。第1レンズ31の種類は、4種類に限らず、例えば、5種類でもよい。また、レンズアレイ3は、複数の第2レンズ32が、形状の異なる2種類の第2レンズ32を含んでいる。第2レンズ32の種類は、2種類に限らず、例えば、3種類でもよい。
 以下では、説明の便宜上、図1A及び1Bにおいて括弧書きで示したように、4種類の第1レンズ31にそれぞれ異なる符合を付して説明することもある。また、3種類の第2レンズ32にそれぞれ異なる符号を付して説明することもある。
 図1A及び1Bでは、赤外線検知素子2の受光面2aの中心2bを通る中心線が交差する第1レンズ31を、第1レンズ31Aとし、第1レンズ31Aに近い順に、一対の第1レンズ31B、一対の第1レンズ31C、一対の第1レンズ31Dとしてある。要するに、レンズアレイ3では、一列に並んだ7個の第1レンズ31のうち真ん中の第1レンズ31を第1レンズ31Aとし、第1レンズ31Aに近い順に、一対の第1レンズ31B、一対の第1レンズ31C、一対の第1レンズ31Dとしてある。レンズアレイ3では、一対の第1レンズ31Dが、一列に並んだ複数の第1レンズ31のうち両端に位置する一対の第1レンズ31を構成している。また、本明細書では、赤外線検知素子2の受光面2a上に像をつくるために使われる赤外線束が第1レンズ31Aを通る検知ゾーンを検知ゾーンA3と称する。赤外線検知素子2の受光面2a上に像をつくるために使われる赤外線束が第1レンズ31Bを通る検知ゾーンを検知ゾーンB3と称する。赤外線検知素子2の受光面2a上に像をつくるために使われる赤外線束が第1レンズ31Cを通る検知ゾーンを検知ゾーンC3と称する。また、本明細書では、赤外線検知素子2の受光面2a上に像をつくるために使われる赤外線束が第1レンズ31Dのみを通る検知ゾーンを検知ゾーンD3と称する。赤外線検知素子2の受光面2a上に像をつくるために使われる赤外線束がミラー面44と第1レンズ31Dとを通る検知ゾーンを検知ゾーンD4と称する。なお、図1Aでは、各検知ゾーンA3、B3、C3、D3及びD4それぞれの中心線を図示してある。
 カバー30は、各第1レンズ31及び各第2レンズ32のそれぞれに対して、開口絞りが形成されている。各第1レンズ31に1対1で対応する各開口絞りは、対応する第1レンズ31の赤外線透過領域を規定する。各第2レンズ32に1対1で対応する各開口絞りは、対応する第2レンズ32の赤外線透過領域を規定する。
 本明細書における「開口絞り」とは、赤外線検知素子2の受光面2a上に像をつくるために使われる赤外線束を通過させる光学的開口を規定する絞りを意味する。本明細書における「光学的開口」は、赤外線束を通過させる赤外線通過領域を意味し、貫通孔のような物理的開口を含まない。ここで、第1レンズ31に対応する開口絞りは、この第1レンズ31の縁により赤外線通過領域を制限する。例えば、第1レンズ31Dの縁は、カバー30において第1レンズ31Dに隣り合う部分と、第1レンズ31Dに隣り合う第1レンズ31Cと、で構成される。
 第1レンズ31Dの開口絞りの中心Q1は、カバー30において第1レンズ31Dに隣り合う厚肉部分30cと、第1レンズ31Cと、で囲まれた領域の中心である(図10参照)。厚肉部分30cとは、カバー30において、第1レンズ31の周部よりも厚さが厚く形成された部分である。厚肉部分30cは、第1レンズ31の周部よりも赤外線が透過しにくくなるように厚さを設定してあるのが好ましい。赤外線が透過しにくくなるとは、赤外線がより減衰されて透過しにくくなることを意味する。赤外線センサ1は、例えば、レンズアレイ3で制御する制御対象の赤外線として、例えば、波長が8μm~13μmの波長域の赤外線が挙げられる。レンズアレイ3は、第1レンズ31の厚さが1mmでも、第1レンズ面31aの任意の点に垂直入射する制御対象の赤外線の透過率が40%程度であり、厚さが厚いほど透過率が低下する。垂直入射するとは、第1レンズ面31aの任意の点に、この任意の点の法線に沿って入射することを意味する。また、レンズアレイ3は、第1レンズ31の第1レンズ面31aの任意の点に斜め入射する制御対象の赤外線の光路長が、この任意の点に対応する第1レンズ31の厚さよりも長くなって透過率が低くなりすぎる懸念がある。斜め入射するとは、第1レンズ面31aの任意の点に、この任意の点の法線に対して傾いた方向から入射することを意味する。
 カバー30は、各第1レンズ31の開口絞りが、矩形状であるのが好ましい。言い換えれば、複数の第1レンズ31は、隣り合う第1レンズ31同士の境界が直線状であるのが好ましい。これにより、カバー30は、複数の第1レンズ31を一列に並べた構成において、隣り合う第1レンズ31間の隙間を低減することが可能となる。よって、赤外線センサ1は、高感度化を図ることが可能となる。また、カバー30は、各第2レンズ32の開口絞りを矩形状とすることができる。複数の第2レンズ32は、隣り合う第2レンズ32同士の境界が直線状であるのが好ましい。これにより、カバー30は、複数の第2レンズ32を一列に並べた構成において、隣り合う第2レンズ32間の隙間を低減することが可能となる。よって、赤外線センサ1は、高感度化を図ることが可能となる。
 一対の第1レンズ31Dの各々は、第2レンズ面31bの中心Q2と受光面2aの中心2bとを結ぶ直線L12と、一対の第1レンズ31Dの各々の開口絞りの中心Q1の法線L11と、が非平行である構成とすることができる(図10参照)。これにより、赤外線センサ1は、集光機能を高めることが可能となる。
 レンズアレイ3は、第1面3aが半円柱面の一部により構成されている。
 一対の第1レンズ31Dの各々は、第2レンズ面31bの中心軸が、開口絞りの中心と一対のミラー面44のうち第2レンズ面31bが臨むミラー面44の中心とを結ぶ直線と平行である構成とすることができる。これにより、赤外線センサ1は、ミラー面44を介して赤外線検知素子2の受光面2aへ入射する赤外線の収差をより低減することが可能となる。
 また、一対の第1レンズ31Dの各々は、第2レンズ面31bの中心軸が、開口絞りの中心Q1と受光面2aの中心2bとを結ぶ直線と平行である構成としてもよい。これにより、赤外線センサ1は、ミラー面44を介さずに赤外線検知素子2の受光面2aへ入射する赤外線の収差をより低減することが可能となる。
 また、一対の第1レンズ31Dの各々は、第2レンズ面31bの中心軸が、開口絞りの中心Q1と一対のミラー面44の各々の中心とを結ぶ直線と、開口絞りの中心Q1と受光面2aの中心2bとを結ぶ直線と、のなす角の二等分線と平行である構成としてもよい。これにより、赤外線センサ1は、ミラー面44を介して赤外線検知素子2の受光面2aへ入射する赤外線の収差と、ミラー面44を介さずに赤外線検知素子2の受光面2aへ入射する赤外線の収差と、のばらつきを小さくすることが可能となる。よって、赤外線センサ1は、ミラー面44を介さない検知ゾーンD3と、ミラー面44を介した検知ゾーンD4と、の感度の均一化を図ることが可能となる。
 ミラー面44は、例えば、球面の一部、一般非球面の一部、トロイダル面の一部等により構成することができる。トロイダル面としては、例えば、アナモフィック非球面(anamorphic aspheric surface)等を採用することができる。
 光学部材4は、例えば、合成樹脂成形品の表面に、赤外線を反射する金属のめっき膜を設けた構成とすることができる。金属としては、赤外線に対する反射率の高いアルミニウム等が好ましい。
 光学部材4は、一対のミラー面44を有する反射片43と、反射片43を支持する支持部42と、を備える(図2、3参照)。光学部材4は、反射片43の中央部に、複数の第1レンズ31のうち一対の第1レンズ31D以外の第1レンズ31A,31B,31Cを通る赤外線を通す第1スリット45が形成されている(図1B、2、3参照)。光学部材4は、反射片43の輪郭が第1スリット45から離れる向きに凸となる曲線状であるのが好ましい。赤外線センサ1は、反射片43に第1スリット45が形成されていることにより、第1レンズ31Aを通った赤外線の、反射片43によるけられ(eclipse)を抑制することが可能となり、けられによる感度の低下を抑制することが可能となる。「けられ」とは、第1レンズ31を通って赤外線検知素子2の受光面2aへ向かう赤外線が反射片43で遮られる現象を意味する。また、赤外線センサ1は、反射片43の輪郭が第1スリット45から離れる向きに凸となる曲線状であることにより、第1レンズ31Bを通った赤外線の、反射片43によるけられを抑制することが可能となり、けられによる感度の低下を抑制することが可能となる。図1Aでは、第1レンズ31Bを通って赤外線検知素子2の受光面2aの中心2bに集光される赤外線の進行経路のうち、第1レンズ31Aに最も近い進行経路L1と、第1レンズ31Aから最も遠い進行経路L2と、を破線で模式的に示してある。ただし、図1A中に破線で示した進行経路L1,L2は、図1Aで示した断面を含む平面とは異なる平面上に形成される。
 ここで、反射片43は、図3に示すように、反射片43において支持部42に近い部分の幅を、第1スリット45が形成されている部分の幅よりも狭くすることで、第1レンズ31Aを通った赤外線の、反射片43によるけられを抑制することが可能となる。
 反射片43は、図11に示すように、第1スリット45の内側面45aが、複数の第1レンズ31のうち真ん中の第1レンズ31Aに近づくほど、第1レンズ31Aの中心線と第1スリット45の中心線とを含む平面P1との距離が長くなる傾斜面であるのが好ましい。これにより、赤外線センサ1は、図12に示すように、第1レンズ31Aを通過して第1スリット45の内側面45aに入射した赤外線が受光面2aに入射しやすくなり、迷光の発生を抑制することが可能となる。図12では、赤外線の進行経路を一点鎖線L21~L24で示してある。迷光とは、光学部材4での反射によって生じる、結像に望ましくない赤外線を意味する。図16の赤外線式検知器では、例えば、図13に示すように、一点鎖線B23で進行経路を示した赤外線が迷光となってしまう。図13では、左から2番目のレンズ121Bに対して検知ビームC13の中心線と平行に、入射する赤外線の進行経路を一点鎖線B23で示してある。この赤外線は、レンズ121を通過した後にミラー103の第1反射部133で反射されて素子エレメント116へ入射している。これに対して、赤外線センサ1は、第1スリット45の内側面45aが傾斜面となっていることにより、迷光の発生を抑制することが可能となる。
 光学部材4は、第1スリット45の内側面45aを粗面としてあるのが好ましい。これにより、赤外線センサ1は、迷光の発生をより抑制することが可能となる。
 レンズアレイ3は、上述のように、複数の第1レンズ31とは別の列に並んだ複数の第2レンズ32を更に備える。また、光学部材4は、反射片43に、複数の第2レンズ32を通る赤外線を通す第2スリット46が形成されている。ここで、光学部材4は、第2スリット46の幅が、第1スリット45の幅よりも広いのが好ましい。これにより、赤外線センサ1は、第2レンズ32Aを通った赤外線の、反射片43によるけられを抑制することが可能となり、けられによる感度の低下を抑制することが可能となる。複数の第2レンズ32は、複数の第1レンズ31よりも数が少ない。ただし、複数の第2レンズ32は、複数の第1レンズ31と同じ数でもよいし、複数の第1レンズ31よりも数が多くてもよい。
 反射片43は、図11に示すように第2スリット46の内側面46aが、複数の第2レンズ32のうち真ん中の第2レンズ32Aに近づくほど、第2レンズ32Aの中心線と第2スリット46の中心線とを含む平面P2との距離が長くなる傾斜面であるのが好ましい。これにより、赤外線センサ1は、迷光の発生を抑制することが可能となる。
 また、光学部材4は、第2スリット46の内側面46aを粗面としてあるのが好ましい。これにより、赤外線センサ1は、迷光の発生をより抑制することが可能となる。なお、赤外線センサ1は、レンズアレイ3が第2レンズ32を備えていない場合、光学部材4が第2スリット46を備えていなくてもよい。
 複数の第1レンズ31において一対の第1レンズ31を除いた第1レンズ31のうち、開口絞りの中心と受光面2aの中心2bとを結ぶ直線上に反射片43のある第1レンズ31は、隣接する第1レンズ31よりも複数の第1レンズ31の並ぶ方向における幅が広いのが好ましい。詳細には、第1レンズ31A、31B、31C及び31Dのうち、第1レンズ31Dを除いた第1レンズ31A、31B及び31Cのうち、第1レンズ31Bは、この第1レンズ31Bに隣接する第1レンズ31A及び31Cよりも、幅が広いのが好ましい。これにより、赤外線センサ1は、第1レンズ31Bの面積を第1レンズ31A及び31Cよりも大きくすることができる。よって、赤外線センサ1は、図14に示すように複数の第1レンズ31が並ぶ方向において第1レンズ31の幅が同じ場合に比べて、第1レンズ31Bを通る検知ゾーンB3の感度の低下を抑制することが可能となる。図14では、反射片43の輪郭が第1スリット45からの距離を一定とした直線状である場合に、第1レンズ31Bを通って赤外線検知素子2の受光面2aの中心2bに集光される赤外線の進行経路のうち、第1進行経路B31と、第2進行経路B32と、を破線で模式的に示す。ここで、第1進行経路B31は、第1レンズ31Aに最も近い進行経路であり、第2進行経路B32は、第1レンズ31Aから最も遠い進行経路である。ただし、図14中に破線で示した進行経路は、図14で示した断面を含む平面とは異なる平面上に形成される。
 図1Aと図14とでは、反射片43における第1スリット45から輪郭までの最大距離を同じとしてある。赤外線センサ1は、反射片43の輪郭が第1スリット45から離れる向きに凸となる曲線状であることにより、第1レンズ31Bを通った赤外線の、反射片43によるけられを抑制することが可能となる。
 上述の複数の第1レンズ31の各々は、フレネルレンズであるのが好ましい。これにより、赤外線センサ1は、レンズアレイ3における各第1レンズ31それぞれの厚さを、より薄くしたり、受光面積を増大させることが可能となる。
 複数の第2レンズ32を備える場合、複数の第2レンズ32の各々は、フレネルレンズであるのが好ましい。これにより、赤外線センサ1は、レンズアレイ3における各第2レンズ32それぞれの厚さを、より薄くすることが可能となる。
 フレネルレンズは、例えば、図15A及び15Bに示す模式図のように中央レンズ部311と中央レンズ部311を囲む複数の周辺レンズ部312とを備えたフレネルレンズ320のうち、開口絞りで規定された光学的開口に相当する部分により構成することができる。
 上述のように赤外線センサ1は、レンズアレイ3が一体に形成されたカバー30と、赤外線検知素子2と赤外線検知素子2を収納するパッケージ21とを含むセンサ本体20と、を備える。ここで、光学部材4は、センサ本体20を囲む筒状の筒体部41を備える。また、光学部材4は、筒体部41の軸方向の第1端部41aから支持部42が突出して形成されている。カバー30と光学部材4とは、嵌め合わされているのが好ましい。これにより、赤外線センサ1は、カバー30と光学部材4との相対的な位置精度を向上させることが可能となり、レンズアレイ3と光学部材4との相対的な位置精度を向上させることが可能となる。特に、赤外線センサ1では、複数の第1レンズ31のうち両端に位置する一対の第1レンズ31と光学部材4における一対のミラー面44との相対的な位置精度を向上させること可能となる。光学部材4は、例えば、筒体部41の軸方向の第2端部41bにおける側面から外方へ突出する突起部48が形成された構成とすることができる。この場合、カバー30と光学部材4とは、カバー30の後端縁に形成された凹部(第1凹部)30fに、光学部材4の突起部48が嵌め合されているのが好ましい。これにより、赤外線センサ1は、光学部材4の筒体部41の小型化を図りながらも、カバー30と光学部材4との相対的な位置精度を向上させることが可能となる。
 支持部42及び突起部48は、筒体部41に一体に形成されている。支持部42は、筒体部41においてセンサ本体20の赤外線透過部材29に近い側の第1端部41aの一部から突出して形成されている。支持部42は、筒体部41に一体に形成されている。
 凹部30f及び突起部48は、2つずつであり、赤外線検知素子2の受光面2aの中心2bを含み且つ赤外線検知素子2の厚さ方向に沿った中心線を含む1つの平面上にあるのが好ましい。これにより、赤外線センサ1は、カバー30と光学部材4との相対的な位置精度をより向上させることが可能となる。
 筒体部41は、円筒状に形成されているのが好ましい。センサ本体20は、筒体部41に嵌め合され、筒体部41により囲まれる。筒体部41は、この筒体部41の内側面に、センサ本体20を位置決めする突起が形成され、筒体部41の第2端部41bにセンサ本体20を位置決めする第2凹部が形成されている。
 赤外線検知素子2は、上述のように、1枚の焦電体基板23に4個の検出部24が形成されている。ここで、赤外線検知素子2は、焦電体基板23の中央部において焦電体基板23の外周線よりも内側の仮想正方形VR1(図6参照)の4つの頂点それぞれに4個の検出部24の中心が位置している。赤外線検知素子2は、仮想正方形VR1の一対の対角線のうちの一方の対角線が平面P4(図3参照)上にあり、他方の対角線が平面P4に直交しているのが好ましい。これにより、赤外線センサ1は、赤外線検知素子2と一対のミラー面44とレンズアレイ3との相対的な位置精度を更に向上させることが可能となる。
 赤外線センサ1は、例えば、横方向へ移動する熱源を検知する用途に用いることができる。熱源としては、例えば、人体、動物等が挙げられる。赤外線センサ1は、例えば、人体検知器に組み込んで使用する場合、検知対象の熱源が、人体となる。
 上述の実施形態等において説明した各図は、模式的な図であり、各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。また、実施形態等に記載した材料、数値等は、好ましい例を示しているだけであり、それに限定する主旨ではない。更に、本願発明は、その技術的思想の範囲を逸脱しない範囲で、構成に適宜変第1更を加えることが可能である。

Claims (14)

  1.  赤外線検知素子と、レンズアレイと、光学部材と、を備え、
     前記レンズアレイは、一列に並んだ複数のレンズを備え、前記赤外線検知素子の受光面に赤外線を集光する機能を有し、
     前記複数のレンズそれぞれの第1レンズ面の一群を含む第1面と、前記複数のレンズそれぞれの第2レンズ面の一群を含む第2面と、を備え、
     前記光学部材は、前記レンズアレイと前記赤外線検知素子との間に配置され前記赤外線検知素子の視野を制御する機能を有し、
     前記光学部材は、前記複数のレンズのうち両端に位置する一対のレンズ以外のレンズを通る赤外線を通すように構成され、前記一対のレンズを通った赤外線の一部の赤外線を前記受光面側に反射する一対のミラー面を備え、
     前記一対のミラー面は、前記一部の赤外線を前記受光面に集光させる曲面である、
     ことを特徴とする赤外線センサ。
  2.  前記レンズアレイが一体に形成されたカバーを備え、前記一対のレンズの各々は、前記第2レンズ面の中心と前記受光面の中心とを結ぶ直線と、前記一対のレンズの各々に対する開口絞りの中心を通る前記第1レンズ面の法線と、が非平行である、
     ことを特徴とする請求項1記載の赤外線センサ。
  3.  前記一対のレンズの各々は、前記第2レンズ面の中心軸が、前記開口絞りの中心と前記一対のミラー面のうち前記第2レンズ面が臨むミラー面の中心とを結ぶ直線と平行である、
     ことを特徴とする請求項2記載の赤外線センサ。
  4.  前記一対のレンズの各々は、前記第2レンズ面の中心軸が、前記開口絞りの中心と前記受光面の中心とを結ぶ直線と平行である、
     ことを特徴とする請求項2記載の赤外線センサ。
  5.  前記一対のレンズの各々は、前記第2レンズ面の中心軸が、前記開口絞りの中心と前記一対のミラー面の各々の中心とを結ぶ直線と、前記開口絞りの中心と前記受光面の中心とを結ぶ直線と、のなす角の二等分線と平行である、
     ことを特徴とする請求項2記載の赤外線センサ。
  6.  前記光学部材は、前記一対のミラー面を有する反射片と、前記反射片を支持する支持部と、を備え、前記反射片の中央部に、前記複数のレンズのうち前記一対のレンズ以外のレンズを通る赤外線を通す第1スリットが形成されており、
     前記反射片の輪郭が前記第1スリットから離れる向きに凸となる曲線状である、
     ことを特徴とする請求項1乃至5のいずれか一項に記載の赤外線センサ。
  7.  前記反射片は、前記第1スリットの内側面が、前記複数のレンズのうち真ん中のレンズに近づくほど、前記真ん中のレンズの中心線と前記第1スリットの中心線とを含む平面との距離が長くなる傾斜面である、
     ことを特徴とする請求項6記載の赤外線センサ。
  8.  前記光学部材は、前記第1スリットの内側面を粗面としてある、
     ことを特徴とする請求項6又は7記載の赤外線センサ。
  9.  前記レンズアレイは、前記複数のレンズとしての第1レンズとは別の列に並んだ複数の第2レンズを更に備え、
     前記光学部材は、前記反射片に、前記複数の第2レンズを通る赤外線を通す第2スリットが形成されており、
     前記第2スリットの幅が、前記第1スリットの幅よりも広い、
     ことを特徴とする請求項6乃至8のいずれか一項に記載の赤外線センサ。
  10.  前記複数のレンズにおいて前記一対のレンズを除いたレンズのうち、前記一対のレンズの各々に対する開口絞りの中心と前記受光面の中心とを結ぶ直線上に前記反射片のあるレンズは、隣接するレンズよりも前記複数のレンズの並ぶ方向における幅が広い、
     ことを特徴とする請求項6乃至9のいずれか一項に記載の赤外線センサ。
  11.  前記レンズアレイが一体に形成されたカバーと、前記赤外線検知素子と前記赤外線検知素子を収納するパッケージとを含むセンサ本体と、を備え、
     前記光学部材は、前記センサ本体を囲む筒状の筒体部を備え、前記筒体部の軸方向の端部から前記支持部が突出して形成され、
     前記カバーと前記光学部材とは、嵌め合わされている、
     ことを特徴とする請求項6乃至10のいずれか一項に記載の赤外線センサ。
  12.  前記光学部材は、前記筒体部の前記軸方向の前記端部としての第1端部とは異なる第2端部における側面から外方へ突出する突起部が形成されており、
     前記カバーと前記光学部材とは、前記カバーの後端縁に形成された凹部に、前記光学部材の突起部が嵌め合わされている、
     ことを特徴とする請求項11記載の赤外線センサ。
  13.  前記複数のレンズの各々は、フレネルレンズである、
     ことを特徴とする請求項1乃至12のいずれか一項に記載の赤外線センサ。
  14.  前記複数の第1レンズの各々及び前記複数の第2レンズの各々は、フレネルレンズである、
     ことを特徴とする請求項9記載の赤外線センサ。
     
PCT/JP2015/000702 2014-03-31 2015-02-17 赤外線センサ WO2015151388A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014072458A JP6308460B2 (ja) 2014-03-31 2014-03-31 赤外線センサ
JP2014-072458 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151388A1 true WO2015151388A1 (ja) 2015-10-08

Family

ID=54239744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000702 WO2015151388A1 (ja) 2014-03-31 2015-02-17 赤外線センサ

Country Status (2)

Country Link
JP (1) JP6308460B2 (ja)
WO (1) WO2015151388A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107678146A (zh) * 2017-11-22 2018-02-09 东莞市美光达光学科技有限公司 一种被动式红外传感器广角光学系统
CN108780005A (zh) * 2016-03-22 2018-11-09 松下知识产权经营株式会社 红外线检测装置
CN113810566A (zh) * 2020-06-11 2021-12-17 东芝泰格有限公司 传感器单元及图像处理装置
US11402259B2 (en) 2018-04-04 2022-08-02 Panasonic Intellectual Property Management Co., Ltd. Infrared sensing device
WO2023274408A1 (zh) * 2021-07-02 2023-01-05 杭州海康威视数字技术股份有限公司 被动光学探测器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201996A (ja) * 1992-12-28 1994-07-22 Nippon Hikyumen Lens Kk 広角集光レンズ
US5453622A (en) * 1993-10-05 1995-09-26 Larry C. Y. Lee Wide-angle motion detector with close-in, prismoidal reflector
JPH09305871A (ja) * 1996-05-10 1997-11-28 Tdk Corp 赤外線検出装置
JPH10213672A (ja) * 1997-01-30 1998-08-11 Matsushita Electric Works Ltd 熱線式検知器
JPH11278205A (ja) * 1998-03-25 1999-10-12 Toyota Central Res & Dev Lab Inc エアバッグ作動制御装置
JP2000329860A (ja) * 1999-05-20 2000-11-30 Matsushita Electric Works Ltd 赤外線式人体検知器
WO2003100367A1 (fr) * 2002-05-08 2003-12-04 Konami Corporation Dispositif de reception lumineuse pour maquette, maquette, et procede de detection d'une lumiere de signalisation de la maquette
JP2004071366A (ja) * 2002-08-07 2004-03-04 Omron Corp 光電センサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201996A (ja) * 1992-12-28 1994-07-22 Nippon Hikyumen Lens Kk 広角集光レンズ
US5453622A (en) * 1993-10-05 1995-09-26 Larry C. Y. Lee Wide-angle motion detector with close-in, prismoidal reflector
JPH09305871A (ja) * 1996-05-10 1997-11-28 Tdk Corp 赤外線検出装置
JPH10213672A (ja) * 1997-01-30 1998-08-11 Matsushita Electric Works Ltd 熱線式検知器
JPH11278205A (ja) * 1998-03-25 1999-10-12 Toyota Central Res & Dev Lab Inc エアバッグ作動制御装置
JP2000329860A (ja) * 1999-05-20 2000-11-30 Matsushita Electric Works Ltd 赤外線式人体検知器
WO2003100367A1 (fr) * 2002-05-08 2003-12-04 Konami Corporation Dispositif de reception lumineuse pour maquette, maquette, et procede de detection d'une lumiere de signalisation de la maquette
JP2004071366A (ja) * 2002-08-07 2004-03-04 Omron Corp 光電センサ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780005A (zh) * 2016-03-22 2018-11-09 松下知识产权经营株式会社 红外线检测装置
CN108780005B (zh) * 2016-03-22 2021-07-06 松下知识产权经营株式会社 红外线检测装置
CN107678146A (zh) * 2017-11-22 2018-02-09 东莞市美光达光学科技有限公司 一种被动式红外传感器广角光学系统
US11402259B2 (en) 2018-04-04 2022-08-02 Panasonic Intellectual Property Management Co., Ltd. Infrared sensing device
CN113810566A (zh) * 2020-06-11 2021-12-17 东芝泰格有限公司 传感器单元及图像处理装置
US11971305B2 (en) 2020-06-11 2024-04-30 Toshiba Tec Kabushiki Kaisha Sensor unit and image processing device
WO2023274408A1 (zh) * 2021-07-02 2023-01-05 杭州海康威视数字技术股份有限公司 被动光学探测器

Also Published As

Publication number Publication date
JP2015194400A (ja) 2015-11-05
JP6308460B2 (ja) 2018-04-11

Similar Documents

Publication Publication Date Title
WO2015151388A1 (ja) 赤外線センサ
JP5584870B2 (ja) 赤外線用撮像光学系
US10627514B2 (en) Image ranging system, light source module and image sensing module
US11940263B2 (en) Detector for determining a position of at least one object
KR20200102900A (ko) 라이다 장치
KR101439411B1 (ko) 전방위 렌즈 모듈
CN102183359B (zh) 对光束的准直性进行检测的方法和装置
JP2021535407A (ja) 少なくとも1つの物体の位置を決定する測定ヘッド
KR20230006924A (ko) 대물 렌즈, 대물 렌즈의 사용, 대물 렌즈를 포함하는 측정 시스템, 및 대물 렌즈에서의 이중-비구면 플라스틱 렌즈의 사용
US9441960B2 (en) Device for generating an optical dot pattern
JPS6120841B2 (ja)
WO2021153542A1 (ja) 光検出装置
CN106291895A (zh) 一种大视场凝视型红外紫外双色预警装置
JP2021124725A (ja) 光検出装置
US20160116719A1 (en) Compact multispectral wide angle refractive optical system
KR102324807B1 (ko) 3D 센서용 ToF 렌즈 어셈블리
JP6601761B2 (ja) 赤外線検出装置
WO2017163760A1 (ja) 赤外線検出装置
JP2017072464A (ja) 測量機の光学系
WO2016021016A1 (ja) 撮像光学系
US11287637B2 (en) Multi-channel sensor using a rear-stopped reflective triplet
CN217819911U (zh) 一种粒子计数器
EP3690512A1 (en) Optical apparatus using reflection geometry
JP2018531427A6 (ja) サーマルイメージャのための光学システム
JP2018531427A (ja) サーマルイメージャのための光学システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15774367

Country of ref document: EP

Kind code of ref document: A1