WO2015149659A1 - 一种浅水用多极永磁电机和使用它的浅水式潜水泵 - Google Patents

一种浅水用多极永磁电机和使用它的浅水式潜水泵 Download PDF

Info

Publication number
WO2015149659A1
WO2015149659A1 PCT/CN2015/075286 CN2015075286W WO2015149659A1 WO 2015149659 A1 WO2015149659 A1 WO 2015149659A1 CN 2015075286 W CN2015075286 W CN 2015075286W WO 2015149659 A1 WO2015149659 A1 WO 2015149659A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor
oil chamber
stator
shallow water
Prior art date
Application number
PCT/CN2015/075286
Other languages
English (en)
French (fr)
Inventor
陈维加
Original Assignee
苏州泰格动力机器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州泰格动力机器有限公司 filed Critical 苏州泰格动力机器有限公司
Publication of WO2015149659A1 publication Critical patent/WO2015149659A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/086Units comprising pumps and their driving means the pump being electrically driven for submerged use the pump and drive motor are both submerged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0673Units comprising pumps and their driving means the pump being electrically driven the motor being of the inside-out type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/124Sealing of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/03Machines characterised by thrust bearings

Definitions

  • the present invention relates to a multi-pole permanent magnet motor for shallow water and a shallow water submersible pump using the same.
  • Submersible pumps are important equipment for underwater or deep well water extraction in production and life. They are usually composed of a pump body and an underwater motor (mainly a squirrel cage motor) designed on the upper part of the pump body.
  • the underwater motor is usually designed with a water-tight oil chamber inside the end connected to the pump body to ensure that the stator and rotor can be isolated from water.
  • the oil chamber and the stator and the rotor are arranged in series in the axial direction, which brings the following problems:
  • the conventional squirrel-cage motor casing is a cylindrical casing, and the stator is installed inside the casing.
  • the heat generated by the stator is led out through the casing, and the fan dissipates heat to the outer side of the casing, thereby cooling the motor.
  • the submersible pump using the squirrel-cage motor in actual use is to immerse the motor casing in water to achieve water-to-motor cooling. Since this type of submersible pump is located on the side of the motor (fixed rotor) with the peripheral wall of the outer casing that dissipates heat from the outside, the motor needs to be completely immersed in the water to be cooled.
  • the closed oil chamber for isolating water into the motor is axially arranged between the motor and the water pump, so that the entire submersible pump has a long axial length, so the submersible pump needs to be compared.
  • the high water surface can work normally and cannot be used when the water level line is lower than the motor housing. Especially for work situations where the water level is shallow (such as water in the road), because the motor casing cannot be immersed, it is impossible to effectively cool the motor, and the submersible pump cannot work normally.
  • the object of the present invention is to provide a multi-pole permanent magnet motor for shallow water which is more compact in structure and smaller in size, and which can be cooled by the end face of the motor casing, and can be assembled to the submersible pump to greatly reduce the minimum Working water level, better adapt to shallow water work.
  • a multi-pole permanent magnet motor for shallow water comprising a motor casing and a stator and a rotor disposed in a cavity of the motor casing and a rotor shaft fixed to the rotor and extending out of the motor casing, wherein the motor casing is A closed oil chamber is integrally provided in the inner cavity, and the rotor shaft passes through the oil chamber; and the stator and the rotor are arranged radially with respect to the oil chamber.
  • the motor casing is fixed by the motor front casing and the motor rear casing, and the front wall of the motor front casing is recessed inwardly and the closed oil chamber is formed by fixing the oil chamber cover.
  • the stator and the rotor are internal stator outer rotor configurations, the stator is directly fixed on the peripheral wall of the oil chamber, and the rotor is located at the periphery of the stator; or the stator and the rotor are the outer rotor outer stator configuration, and the stator is directly fixed to the motor
  • the inner peripheral wall of the shell is located at the periphery of the peripheral wall of the oil chamber, and the rotor is located inside the stator.
  • an oil injection hole communicating with the oil chamber is disposed, and the oil injection screw is fixed on the oil injection hole.
  • the rotor shaft passes through the oil chamber cover and the oil chamber end wall opposite to the oil chamber cover, and the oil chamber cover and the oil chamber end wall opposite thereto are sleeved. Mechanical water seal on the rotor shaft.
  • an oil seal sleeved on the rotor shaft is fixed on the outer side of the oil chamber cover to further improve the sealing performance of the motor.
  • the motor rear case and the oil chamber end wall opposite to the oil chamber cover are provided with bearing housings, and the rotor shaft is assembled with the corresponding bearing housing by bearings.
  • the stator includes a stator core, the periphery of the stator core is evenly spaced with a plurality of payout slots, the payout slot has a stator coil built therein, and the rotor includes a rotor fixed to the rotor shaft.
  • the rotor flywheel is bent over a turn edge, and the rotor magnetic tile opposite to the stator is uniformly spaced on the flange.
  • the present invention also provides a shallow water submersible pump using the above-described multi-pole permanent magnet motor for shallow water, which is used as a pump body rear shell for outputting a side end wall of a rotor shaft of a motor housing of a shallow water multi-pole permanent magnet motor.
  • a pump body front body is fixed on the rear shell of the pump body to form a pump body cavity, an impeller is arranged in the pump body cavity, the rotor shaft extends into the pump body cavity and is fixed with the impeller, and a water inlet is arranged at the bottom of the pump body front shell And the side is the water outlet.
  • the front casing of the pump body is fixed with the motor front shell of the multi-pole permanent magnet motor for shallow water, and the unrecessed portion and the oil chamber cover on the front shell of the motor are in contact with the pump body cavity. Because the rotor and the rotor are arranged radially with respect to the oil chamber, it is only necessary to satisfy a certain water level so that the water flow in the pump body cavity can be well matched by the contact surface (heat radiating end face) of the motor front shell and the pump body front shell to the motor (fixed rotor) ) Implement effective heat dissipation.
  • the shallow water submersible pump provided by the invention does not need to completely immerse the motor in the water, thereby greatly reducing the minimum working water surface required for the submersible pump work.
  • the height (water level) increases the adaptability of the submersible pump for shallow water applications.
  • a filter net is disposed at the water inlet end of the pump body front shell of the shallow water submersible pump.
  • the shallow water multi-pole permanent magnet motor provided by the invention has the advantages that the stator and the rotor are designed to be radially arranged with respect to the oil chamber, and the axial length of the motor is reduced, and the stator and the rotor are greatly improved.
  • the distance between the end faces of the motor casing so that when the motor casing is assembled with the pump body portion of the submersible pump, the stator and the rotor can be cooled by the combined end faces of the pump body and the motor (end face heat dissipation) without having to be completely immersed as in conventional technology.
  • cooling is performed by the peripheral wall of the motor casing (side heat dissipation). This greatly reduces the minimum working surface height of submersible pumps or similar equipment, greatly improving the adaptability of submersible pumps or similar equipment to shallow water working conditions.
  • the shallow water multi-pole permanent magnet motor provided by the invention has the advantages that the stator and the rotor are designed to be radially arranged with respect to the oil chamber, and the axial layout of the conventional underwater working motor is more conducive to saving internal space, and the length is greatly shortened.
  • the axial length makes the entire motor structure more compact and more compact.
  • the peripheral wall of the oil chamber can be used as the stator bracket portion, it is also advantageous for further saving production costs.
  • the shallow water submersible pump provided by the invention not only greatly shortens the axial structural length of the whole machine, but also effectively reduces the minimum water surface height required for the operation of the submersible pump, because it uses the multi-pole permanent magnet motor for shallow water.
  • the motor structure that originally required side heat dissipation by means of the peripheral wall of the motor casing was changed to a motor structure that implemented end face heat dissipation by means of a motor casing and a front wall of the pump body.
  • the shallow water submersible pump provided by the invention does not need to completely immerse the motor in the water, thereby greatly reducing the minimum working surface height required for the operation of the submersible pump. (water level height), which further improves the adaptability of the submersible pump for shallow water work.
  • water level height which further improves the adaptability of the submersible pump for shallow water work.
  • it can not only cope with deep water operations, but also adapt to shallow water operations, so it has a wider application range.
  • the shallow water submersible pump provided by the invention adopts a structure for radially arranging the stator, the rotor and the sealed oil chamber, and the structure is used for fixing the oil chamber peripheral wall of the stator, the motor casing end wall, the closed oil chamber, and the water pump.
  • the shell has been laid out in the most recent way or integrated design, which not only reduces the distance between the stator and the end wall of the motor casing, but also allows the heat of the stator to be transmitted to the end wall of the motor casing at the closest distance.
  • the oil in the closed oil chamber can also participate in the cooling of the stator.
  • the motor casing end wall and the oil chamber cover can be used as the rear casing of the submersible pump, which greatly simplifies the structure of the submersible pump, reduces the axial length and volume of the water pump, saves materials and reduces the cost.
  • the water pump can work normally, and the submersible pump can work normally at a very low shallow water level.
  • FIG. 1 is a schematic structural view of a specific embodiment of a multi-pole permanent magnet motor for shallow water according to the present invention
  • FIG. 2 is a schematic structural view of a specific embodiment of a shallow water submersible pump using the motor shown in FIG. 1;
  • Fig. 3 is a schematic diagram showing the comparison of the working water level of the conventional submersible pump and the shallow submersible pump provided by the present invention.
  • the left side of the figure is the conventional shallow water pump D , using squirrel cage motor, and oil chamber and motor fixed, rotor axial layout
  • stator 1, stator; 1a, stator core; 1b, stator coil; 2, rotor; 2a, rotor flywheel; 2b 3, rotor shaft; 4, oil chamber; 4a, oil chamber peripheral wall; 4b, oil chamber end wall; 5, motor front shell; 6, motor rear shell; 7, oil chamber cover; ; 9 , oil-filled screw; 10, oil seal; 11, bearing; 12, mechanical water seal; 13, sealing ring; 14, pump body front shell; 14a, water inlet; 14b, water outlet; 16, filter; A, heat dissipation end; D, conventional submersible pump; E, shallow submersible pump; H, minimum working water surface.
  • Embodiment 1 Combined with Figure 1 Shown is a specific embodiment of the shallow water multi-pole permanent magnet motor provided by the present invention, which has a motor casing and stators 1 and 2 disposed in the inner cavity of the motor casing and fixed to the rotor 2 and protrudes from the motor casing.
  • Rotor shaft 3 The motor casing is integrally provided with a closed oil chamber 4 in the inner cavity, the stators 1 and 2 are arranged radially with respect to the oil chamber 4, and the rotor shaft 3 passes through the oil chamber 4.
  • the motor casing in this embodiment is composed of a motor front case 5 and a motor rear case 6 Fixed (bolted, not shown), the front wall of the motor front case 5 is recessed inwardly and the closed oil chamber 4 is formed by fixing the oil chamber cover 7, the stator and the rotor 1, 2
  • the stator 1 is directly fixed to the oil chamber peripheral wall 4a, and the rotor 2 is located at the periphery of the stator 1.
  • the motor front housing 5 is provided with an oil filling hole communicating with the oil chamber 4 8
  • the oiling screw 8 is fixed on the oil hole 8 .
  • the rotor shaft 3 passes through the oil chamber cover 7 and the oil chamber end wall 4b opposite to the oil chamber cover 7, and the oil chamber cover 7 A mechanical water seal 12 is placed between the oil chamber end wall 4b opposite to the rotor shaft 3 to further prevent water from flowing into the inner casing of the motor casing along the shaft hole and the rotor shaft 3 during underwater operation.
  • the oil chamber cover 7 The outer side is also fixed with an oil seal 10 which is placed on the rotor shaft 3 to further improve the waterproof sealing performance.
  • the motor rear case 6 and the oil chamber end wall 4b opposite to the oil chamber cover 7 are provided with bearing housings, and the rotor shaft 3 It is assembled with the corresponding bearing housing by bearing 11.
  • the stator 1 in this embodiment is composed of a stator core 1a and a stator coil 1b as in the conventional art, and the stator core 1a
  • the sleeve is tightly connected to the peripheral wall 4a of the oil chamber, and a plurality of payout grooves are evenly spaced around the periphery thereof, and the stator coil 1b is built in the payout groove;
  • the rotor 2 is composed of a rotor flywheel 2a and a rotor magnetic tile 2b, and the rotor flywheel 2a is fixed to the rotor shaft 3, and the rotor flywheel 2a is bent over a turn flange, and the inner edge of the flange is uniformly spaced apart from the stator magnet 2b opposite to the stator 1.
  • a seal ring 13 is disposed between the oil chamber cover 7 and the motor front case 5; and the motor front case 5 and the motor front case 6
  • a sealing ring 14 is also interposed on the joint surface to improve the overall waterproof performance of the motor.
  • Embodiment 2 As shown in FIG. 2, it is an embodiment 1 A specific application example of a shallow water submersible pump for a multi-pole permanent magnet motor for shallow water is provided.
  • the shallow water submersible pump outputs a side end wall of the rotor shaft 3 (i.e., the motor front case 5 and the oil chamber cover 7) in the motor housing of the multi-pole permanent magnet motor for shallow water.
  • an impeller 15 is arranged in the pump body cavity, and the rotor shaft 3 extends into the pump body cavity and with the impeller 15 Fixed, pump body front shell 14
  • the water inlet 14a is provided at the bottom and the water outlet 14b is provided at the side.
  • the pump body front case 14 is fixed to the motor front case 5 of the shallow water multi-pole permanent magnet motor.
  • the oil of the closed oil chamber 4 can also participate in the cooling of the stator 1, and the motor front shell 5 end wall and the oil chamber cover 7 It is also the rear shell of the submersible pump, which greatly simplifies the structure of the submersible pump, reduces the axial length and volume of the pump, saves materials and reduces costs.
  • the submersible pump can be well adapted to the front housing of the motor as long as the water inlet 14a contacts the surface of the water so that the water in the inner chamber of the pump body 14 is provided.
  • the contact surface with the front casing 14 of the pump body (the heat radiating end face A in Fig. 2) and the oil chamber cover 7 effectively dissipate the motor (the fixed rotor 1 and 2), so that the entire submersible pump operates normally.
  • conventional submersible pumps D using a side wall heat-dissipating underwater motor, that is, a submersible pump of a squirrel-cage motor
  • the shallow water submersible pump provided by the present invention It is not necessary to completely immerse the motor in the water, which greatly reduces the minimum working surface height H (water level) required for the submersible pump to work, thereby improving the adaptability of the submersible pump to shallow water working conditions.
  • the filter body 16 is provided at the water inlet 14a end of the pump body front casing 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

提供了一种浅水用多极永磁电机和使用它的浅水式潜水泵。该永磁电机包括电机外壳和设于电机外壳内腔中的定子(1)、转子(2)及与转子(2)固定并伸出电机外壳的转子轴(3),电机外壳于内腔中一体设置密闭的油腔(4),而转子轴(3)穿过油腔(4);定子(1)、转子(2)相对于油腔(4)径向布置。该永磁电机及使用该永磁电机的潜水泵的结构布局更加紧凑、体积更小,并且定子(1)、转子(2)可有效借助电机外壳端面实施冷却,能够降低潜水泵的工作水面高度,适应浅水工作场合。

Description

一种浅水用多极永磁电机和使用它的浅水式潜水泵
技术领域
本发明涉及一种浅水用多极永磁电机和使用它的浅水式潜水泵。
背景技术
潜水泵是目前生产生活中水下或深井提水的重要设备,其通常由泵体和设计于泵体上部的水下电机(主要是鼠笼式电机)两部分组成。出于电机防水的考虑,水下电机通常在与泵体连接的一端内部设计有隔水的油腔,确保定、转子能够与水隔绝。然而常规的结构设计中该油腔与定、转子是沿轴向串接布局,其带来如下问题:
1 )常规鼠笼式电机外壳为一个圆筒壳体,定子被安装在壳体内侧,定子产生的热量通过壳体导出,风扇对壳体外侧面进行散热,从而实现对电机的冷却。因水下电机在工作时其定、转子需借助水流冷却,否则易烧毁,故实际使用时采用鼠笼式电机的潜水泵是将电机壳体浸入水中,实现水对电机的冷却。由于这类潜水泵用于同外界散热的外壳周壁位于电机(定转子)的侧面,因此电机需要完全浸入水下才可以被冷却。又因鼠笼式电机的结构原因,其用于隔离水进入电机的密闭油腔被轴向布置在电机与水泵之间,这样整个潜水泵轴向长度便很长,因此该种潜水泵需要较高的水面才能正常工作,当水位线低于电机壳体时则无法使用。尤其对于水位较浅的工作场合(例如马路积水),因无法浸没电机外壳,也就完全无法对于电机实施有效冷却,造成潜水泵根本不能正常工作。
2 )这类密封架构设计导致水下电机整体结构不够紧凑,浪费材料,体积较大,生产成本高。
发明内容
本发明目的是:提供一种结构布局更加紧凑、体积更小,并且其定、转子可有效借助电机外壳端面实施冷却的浅水用多极永磁电机,将其装配至潜水泵上能够大大降低最低工作水面高度,更好的适应浅水工作场合。
本发明的技术方案是:一种浅水用多极永磁电机,包括电机外壳和设于电机外壳内腔中的定、转子及与转子固定并伸出电机外壳的转子轴,所述电机外壳于内腔中一体设置密闭的油腔,而所述转子轴穿过所述油腔;其特征在于所述定、转子相对于油腔径向布置。
进一步的,本发明中所述电机外壳由电机前壳和电机后壳固定而成,所述电机前壳的前壁向内凹进并通过固定油腔盖形成所述封闭的油腔,所述定、转子为内定子外转子构型,所述定子直接固定于油腔周壁上,而转子位于定子外围;或者所述定、转子为内转子外定子构型,所述定子直接固定于电机前壳的内周壁上,并位于所述油腔周壁外围,而转子则位于定子内侧。
更进一步的,本发明中所述电机前壳上设有与油腔相连通的注油孔,所述注油孔上固定注油螺钉。
更进一步的,本发明中所述转子轴穿过油腔盖和与油腔盖相对的油腔端壁,并且所述油腔盖和与之相对的油腔端壁之间抵设有套置于转子轴上的机械水封。
更进一步的,本发明中所述油腔盖外侧固定有套置于转子轴上的油封,以进一步提高电机的密封性。
更进一步的,本发明中所述电机后壳和与油腔盖相对的油腔端壁上均设有轴承座,所述转子轴藉由轴承与对应的轴承座装配。
更进一步的,本发明中所述定子包括定子铁芯,所述定子铁芯外围均匀间隔分布有若干放线槽,放线槽内置有定子线圈;而所述转子包括固定在转子轴上的转子飞轮,所述转子飞轮上弯有一圈翻边,所述翻边上均匀间隔固定有与定子相对的转子磁瓦。
本发明同时提供一种使用上述浅水用多极永磁电机的浅水式潜水泵,该浅水式潜水泵以浅水用多极永磁电机的电机外壳输出转子轴的一侧端壁作为泵体后壳,并在所述泵体后壳上固定泵体前壳形成泵体内腔,所述泵体内腔中设置叶轮,转子轴伸入泵体内腔中并与叶轮固定,泵体前壳底部设置进水口,而侧部则为出水口。实际装配时,泵体前壳与所述浅水用多极永磁电机的电机前壳固定,电机前壳上的未凹进部分和油腔盖均与泵体内腔接触。因定、转子相对于油腔径向布置,只需满足一定水位使得泵体内腔中具备水流即可很好的借助电机前壳与泵体前壳的接触面(散热端面)对电机(定转子)实施有效散热。故相比常规的采用侧壁散热式水下电机(鼠笼式电机)的潜水泵,本发明提供的浅水式潜水泵无需将电机完全没入水中,大大降低了潜水泵工作所需的最低工作水面高度(水位高度),进而提高了潜水泵对于浅水工作场合的适应性。
进一步的,所述浅水式潜水泵的泵体前壳的进水口端设有过滤网。
本发明的优点是:
1. 本发明提供的这种浅水用多极永磁电机,其因将定、转子设计成相对于油腔径向布局,其在缩减电机轴向结构长度的同时,也大大拉近了定、转子与电机外壳端面的距离,这样当电机外壳与潜水泵的泵体部分实施装配之后,使得定、转子能够靠泵体和电机的结合端面实施冷却(端面散热),而无需像常规技术那样必须完全没入水中,依靠电机外壳周壁实施冷却(侧面散热)。这也就大大降低了潜水泵或类似设备的最低工作水面高度,大大提高了潜水泵或类似设备对于浅水工作场合的适应性。
2 .本发明提供的这种浅水用多极永磁电机,其因将定、转子设计成相对于油腔径向布局,相比常规水下作业电机的轴向布局更利于节省内部空间,大大缩短了轴向长度,故使得整个电机结构更加紧凑,也更加小型化。并且因可借用油腔周壁充当定子支架部分,故也利于进一步节约生产成本。
3. 本发明提供的浅水式潜水泵,因其使用了所述浅水用多极永磁电机,不仅大大缩短了整机轴向结构长度,并且有效降低了潜水泵工作所需的最低水面高度。将原先需借助电机外壳周壁实施侧面散热的电机架构改换为借助电机外壳与泵体前壳结合端壁实施端面散热的电机架构。相比常规的采用侧壁散热式水下电机(鼠笼式电机)的潜水泵,本发明提供的浅水式潜水泵无需将电机完全没入水中,大大降低了潜水泵工作所需的最低工作水面高度(水位高度),进而提高了潜水泵对于浅水工作场合的适应性。相比常规的潜水泵,其不仅能够应对深水作业,还能够适应浅水作业,故适用范围更广。
4. 本发明提供的浅水式潜水泵,其采用了将电机定、转子及密闭油腔径向布局的结构,该结构将用于固定定子的油腔周壁、电机外壳端壁、密闭油腔、水泵后壳已最近方式布局或一体化设计,这样不但可以减少定子与电机外壳端壁的距离,便于定子的热量已最近距离传导至电机外壳端壁,其密闭油腔的油也可参与对定子的冷却,同时该电机外壳端壁及油腔盖又可作为潜水泵的后壳,这样也大大简化了潜水泵的结构,减小了水泵的轴向长度和体积,节约了材料,降低了成本,该水泵只要进水口接触到水面即可正常工作,实现了潜水泵在极低浅水位也能正常工作的可能。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图 1 为本发明一种浅水用多极永磁电机的具体实施方式结构示意图;
图 2 为使用图 1 所示电机的浅水式潜水泵的具体实施方式结构示意图;
图 3 为常规潜水泵与本发明提供的浅水式潜水泵的工作水位比较示意图。(图中左侧为常规浅水泵 D ,采用鼠笼式电机,且油腔与电机定、转子轴向布局)
其中: 1 、定子; 1a 、定子铁芯; 1b 、定子线圈; 2 、转子; 2a 、转子飞轮; 2b 、转子磁瓦; 3 、转子轴; 4 、油腔; 4a 、油腔周壁; 4b 、油腔端壁; 5 、电机前壳; 6 、电机后壳; 7 、油腔盖; 8 、注油孔; 9 、注油螺钉; 10 、油封; 11 、轴承; 12 、机械水封; 13 、密封圈; 14 、泵体前壳; 14a 、进水口; 14b 、出水口; 15 、叶轮; 16 、过滤网; A 、散热端面; D 、常规潜水泵; E 、浅水式潜水泵; H 、最低工作水面。
具体实施方式
实施例 1 :结合图 1 所示为本发明提供的浅水用多极永磁电机的一种具体实施方式,其具有电机外壳和设于电机外壳内腔中的定、转子 1 、 2 及与转子 2 固定并伸出电机外壳的转子轴 3 ,所述电机外壳于内腔中一体设置密闭的油腔 4 ,所述定、转子 1 、 2 相对于油腔 4 径向布置,而所述转子轴 3 穿过所述油腔 4 。
具体见图 1 所示,本实施例中的所述电机外壳由电机前壳 5 和电机后壳 6 固定(螺栓固定,图中未画出)而成,所述电机前壳 5 的前壁向内凹进并通过固定油腔盖 7 形成所述封闭的油腔 4 ,所述定、转子 1 、 2 为内定子外转子构型,所述定子 1 直接固定于油腔周壁 4a 上,而转子 2 位于定子 1 外围。所述电机前壳 5 上设有与油腔 4 相连通的注油孔 8 ,所述注油孔 8 上固定注油螺钉 9 。
本实施例中所述转子轴 3 穿过油腔盖 7 和与油腔盖 7 相对的油腔端壁 4b ,并且所述油腔盖 7 和与之相对的油腔端壁 4b 之间抵设有套置于转子轴 3 上的机械水封 12 ,进一步防止水下作业时水沿轴孔和转子轴 3 流入电机外壳内腔中。所述油腔盖 7 外侧还固定有套置于转子轴 3 上的油封 10 ,进一步提高防水密封性能。所述电机后壳 6 和与油腔盖 7 相对的油腔端壁 4b 上均设有轴承座,所述转子轴 3 藉由轴承 11 与对应的轴承座装配。
本实施例中所述定子 1 同常规技术一样由定子铁芯 1a 和定子线圈 1b 组成,所述定子铁芯 1a 套紧至油腔周壁 4a 上,其外围均匀间隔分布有若干放线槽,放线槽内置有定子线圈 1b ;而所述转子 2 由转子飞轮 2a 和转子磁瓦 2b 组成,转子飞轮 2a 固定在转子轴 3 上,所述转子飞轮 2a 上弯有一圈翻边,所述翻边内缘均匀间隔固定有与定子 1 相对的转子磁瓦 2b 。
本实施例中油腔盖 7 和电机前壳 5 之间设有密封圈 13 ;而电机前壳 5 和电机前壳 6 的结合面处也夹设有密封圈 14 ,以提高电机整体的防水性能。
实施例 2 :结合图 2 所示,是一种采用实施例 1 提供的浅水用多极永磁电机的浅水式潜水泵的具体应用实例。该浅水式潜水泵以浅水用多极永磁电机的电机外壳输出转子轴 3 的一侧端壁(也即电机前壳 5 和油腔盖 7 )作为泵体后壳,并在所述泵体后壳上固定泵体前壳 14 形成泵体内腔,所述泵体内腔中设置叶轮 15 ,转子轴 3 伸入泵体内腔中并与叶轮 15 固定,泵体前壳 14 底部设置进水口 14a ,而侧部则为出水口 14b 。实际装配时,泵体前壳 14 与所述浅水用多极永磁电机的电机前壳 5 固定。因定、转子 1 、 2 相对于油腔 4 径向布置,这种布局结构将用于固定定子 1 的油腔周壁 4a 、电机前壳 5 、密闭油腔 4 和水泵后壳已最近方式布局及一体化设计,这样不但减少了定子 1 与电机前壳 5 的距离,便于定子 1 的热量已最近距离传导至电机前壳端壁(图 2 中的散热端面 A )上;而且其密闭油腔 4 的油也可参与对定子 1 的冷却,同时该电机前壳 5 端壁及油腔盖 7 又是潜水泵的后壳,这样也大大简化了潜水泵的结构,减小了水泵的轴向长度和体积,节约了材料,降低了成本。
这种潜水泵只要进水口 14a 接触到水面使得泵体前壳 14 内腔中具备水流即可很好的借助电机前壳 5 与泵体前壳 14 的接触面(图 2 中的散热端面 A )和油腔盖 7 对电机(定转子 1 、 2 )实施有效散热,从而使得整个潜水泵正常工作。故相比常规潜水泵 D (采用侧壁散热式水下电机,也即鼠笼式电机的潜水泵),结合图 3 所示,本发明提供的浅水式潜水泵 E 无需将电机完全没入水中,大大降低了潜水泵工作所需的最低工作水面高度 H (水位高度),进而提高了潜水泵对于浅水工作场合的适应性。
本实施例中所述泵体前壳 14 的进水口 14a 端设有过滤网 16 。
当然上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种浅水用多极永磁电机,包括电机外壳和设于电机外壳内腔中的定、转子(1、2)及与转子(2)固定并伸出电机外壳的转子轴(3),所述电机外壳于内腔中一体设置密闭的油腔(4),而所述转子轴(3)穿过所述油腔(4);其特征在于所述定、转子(1、2)相对于油腔(4)径向布置。
  2. 根据权利要求1所述的一种浅水用多极永磁电机,其特征在于所述电机外壳由电机前壳(5)和电机后壳(6)固定而成,所述电机前壳(5)的前壁向内凹进并通过固定油腔盖(7)形成所述封闭的油腔(4),所述定、转子(1、2)为内定子外转子构型,所述定子(1)直接固定于油腔周壁(4a)上,而转子(2)位于定子(1)外围;或者所述定、转子(1、2)为内转子外定子构型,所述定子(1)直接固定于电机前壳(5)的内周壁上,并位于所述油腔周壁(4a)外围,而转子(2)则位于定子(1)内侧。
  3. 根据权利要求2所述的一种浅水用多极永磁电机,其特征在于所述电机前壳(5)上设有与油腔(4)相连通的注油孔(8),所述注油孔(8)上固定注油螺钉(9)。
  4. 根据权利要求2所述的一种浅水用多极永磁电机,其特征在于所述转子轴(3)穿过油腔盖(7)和与油腔盖(7)相对的油腔端壁(4b),并且所述油腔盖(7)和与之相对的油腔端壁(4b)之间抵设有套置于转子轴(3)上的机械水封(12)。
  5. 根据权利要求2所述的一种浅水用多极永磁电机,其特征在于所述油腔盖(7)外侧固定有套置于转子轴(3)上的油封(10)。
  6. 根据权利要求2所述的一种浅水用多极永磁电机,其特征在于所述电机后壳(6)和与油腔盖(7)相对的油腔端壁(4b)上均设有轴承座,所述转子轴(3)藉由轴承(11)与对应的轴承座装配。
  7. 根据权利要求2所述的一种浅水用多极永磁电机,其特征在于所述定子(1)包括定子铁芯(1a),所述定子铁芯(1a)外围均匀间隔分布有若干放线槽,放线槽内置有定子线圈(1b);而所述转子(2)包括固定在转子轴(3)上的转子飞轮(2a),所述转子飞轮(2a)上弯有一圈翻边,所述翻边上均匀间隔固定有与定子(1)相对的转子磁瓦(2b)。
  8. 一种使用如权利要求1~7任意一项所述浅水用多极永磁电机的浅水式潜水泵。
  9. 根据权利要求8所述的浅水式潜水泵,其特征在于该浅水式潜水泵以浅水用多极永磁电机的电机外壳输出转子轴(3)的一侧端壁作为泵体后壳,并在所述泵体后壳上固定泵体前壳(14)形成泵体内腔,所述泵体内腔中设置叶轮(15),转子轴(3)伸入泵体内腔中并与叶轮(15)固定,泵体前壳(14)底部设置进水口(14a),而侧部则为出水口(14b)。
  10. 根据权利要求9所述的浅水式潜水泵,其特征在于所述泵体前壳的进水口端设有过滤网(16)。
PCT/CN2015/075286 2014-04-04 2015-03-27 一种浅水用多极永磁电机和使用它的浅水式潜水泵 WO2015149659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410135656.4 2014-04-04
CN201410135656.4A CN103956846B (zh) 2014-04-04 2014-04-04 一种浅水用多极永磁电机和使用它的浅水式潜水泵

Publications (1)

Publication Number Publication Date
WO2015149659A1 true WO2015149659A1 (zh) 2015-10-08

Family

ID=51334091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075286 WO2015149659A1 (zh) 2014-04-04 2015-03-27 一种浅水用多极永磁电机和使用它的浅水式潜水泵

Country Status (2)

Country Link
CN (1) CN103956846B (zh)
WO (1) WO2015149659A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3355450A4 (en) * 2015-10-26 2018-10-24 Autel Robotics Co., Ltd. Motor, pan-tilt, and aircraft
AU2017279582B2 (en) * 2017-03-31 2020-01-02 Fujian Mindong Electric Corp., Ltd. Remote control method and system for water pump
CN111525725A (zh) * 2020-05-26 2020-08-11 苏州美达斯机电有限公司 一种长寿命高效电机
CN114526241A (zh) * 2022-02-21 2022-05-24 江苏久智环境科技服务有限公司 一种高效环保排污水节能泵
US11808268B2 (en) 2020-10-19 2023-11-07 Milwaukee Electric Tool Corporation Stick pump assembly

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956846B (zh) * 2014-04-04 2017-05-17 苏州泰格动力机器有限公司 一种浅水用多极永磁电机和使用它的浅水式潜水泵
CN104410182B (zh) * 2014-10-13 2017-05-24 三禾电器(福建)有限公司 一种电泵
CN106089743A (zh) * 2016-06-15 2016-11-09 浙江耀鼎机电有限公司 潜水泵
DE102017120039A1 (de) 2017-08-31 2019-02-28 Nidec Gpm Gmbh Kühlmittelpumpe mit anwendungsoptimiertem Aufbau
CN109605391A (zh) * 2018-12-28 2019-04-12 前沿驱动(北京)技术有限公司 一种执行器、机械躯干及机器人
CN110594166A (zh) * 2019-10-28 2019-12-20 兴化市中兴电器制造有限公司 一种油冷却的潜水泵
US11757330B2 (en) * 2019-12-19 2023-09-12 Black & Decker, Inc. Canned outer-rotor brushless motor for a power tool
US11437900B2 (en) 2019-12-19 2022-09-06 Black & Decker Inc. Modular outer-rotor brushless motor for a power tool
CN112087089B (zh) * 2020-09-09 2023-06-06 哈尔滨工业大学 一种大力矩深海电机
CN114123604B (zh) * 2021-11-15 2022-11-11 杭州爱纬斯电子有限公司 一种单轴承永磁发电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2082777U (zh) * 1990-12-21 1991-08-14 刘健 一种微型井用潜水泵
CN201155483Y (zh) * 2008-01-23 2008-11-26 江门市瑞荣泵业有限公司 一体化潜水泵
CN102628464A (zh) * 2011-11-14 2012-08-08 兰州理工大学 一体化电机叶片泵液压动力单元
CN103956846A (zh) * 2014-04-04 2014-07-30 苏州泰格动力机器有限公司 一种浅水用多极永磁电机和使用它的浅水式潜水泵
CN203896086U (zh) * 2014-04-04 2014-10-22 苏州泰格动力机器有限公司 一种浅水用多极永磁电机和使用它的浅水式潜水泵

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1102923A (en) * 1965-03-04 1968-02-14 Leuna Werke Veb Improvements in canned motor pumps
US5417507A (en) * 1989-10-07 1995-05-23 Hitachi, Ltd. Vertical motor, method of manufacturing same, polygon mirror motor using said motor, and bearing device for use in said motor
GB2401487A (en) * 2003-05-08 2004-11-10 Automotive Motion Tech Ltd An electrically driven fluid pump assembly
TWI283958B (en) * 2005-05-19 2007-07-11 Delta Electronics Inc Motor structure for preventing oil leakage
CN101338761A (zh) * 2007-07-03 2009-01-07 天津甘泉集团有限公司 油浸式防水潜水泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2082777U (zh) * 1990-12-21 1991-08-14 刘健 一种微型井用潜水泵
CN201155483Y (zh) * 2008-01-23 2008-11-26 江门市瑞荣泵业有限公司 一体化潜水泵
CN102628464A (zh) * 2011-11-14 2012-08-08 兰州理工大学 一体化电机叶片泵液压动力单元
CN103956846A (zh) * 2014-04-04 2014-07-30 苏州泰格动力机器有限公司 一种浅水用多极永磁电机和使用它的浅水式潜水泵
CN203896086U (zh) * 2014-04-04 2014-10-22 苏州泰格动力机器有限公司 一种浅水用多极永磁电机和使用它的浅水式潜水泵

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3355450A4 (en) * 2015-10-26 2018-10-24 Autel Robotics Co., Ltd. Motor, pan-tilt, and aircraft
US10298848B2 (en) 2015-10-26 2019-05-21 Autel Robotics Co., Ltd. Motor, gimbal and aircraft
AU2017279582B2 (en) * 2017-03-31 2020-01-02 Fujian Mindong Electric Corp., Ltd. Remote control method and system for water pump
CN111525725A (zh) * 2020-05-26 2020-08-11 苏州美达斯机电有限公司 一种长寿命高效电机
US11808268B2 (en) 2020-10-19 2023-11-07 Milwaukee Electric Tool Corporation Stick pump assembly
CN114526241A (zh) * 2022-02-21 2022-05-24 江苏久智环境科技服务有限公司 一种高效环保排污水节能泵
CN114526241B (zh) * 2022-02-21 2023-03-24 江苏久智环境科技服务有限公司 一种高效环保排污水节能泵

Also Published As

Publication number Publication date
CN103956846B (zh) 2017-05-17
CN103956846A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2015149659A1 (zh) 一种浅水用多极永磁电机和使用它的浅水式潜水泵
US10731659B2 (en) Energy-saving and endurable auto electric water pump
JP3872104B2 (ja) ロータリポンプ
US20140292163A1 (en) Electric motor with cooling apparatus
CN106089739B (zh) 热水循环泵
TW201832452A (zh) 電機冷卻結構、動力電機及電驅動系統
US9525324B2 (en) Axial flux electrical machines
TW201705653A (zh) 旋轉電機
CN206023442U (zh) 一种机壳散热式电机
CN111425409B (zh) 一种内部液冷隔离式盘式无刷电子水泵
US11283330B2 (en) Integrated apparatus of water-cooled motor and driver
JP2019170077A (ja) モータ
JP2018053873A (ja) モータポンプ
CN203896086U (zh) 一种浅水用多极永磁电机和使用它的浅水式潜水泵
CN203114653U (zh) 潜水排污泵
JP2008167575A (ja) 直駆式液体冷却モータの固定子
JP2017101646A (ja) モータポンプ
CN211930442U (zh) 一种油冷电机
CN210343737U (zh) 一种水泵用的水冷电机
WO2020253173A1 (zh) 全地形车
CN106787295B (zh) 永磁电机
CN218733684U (zh) 一种真空泵用永磁屏蔽式电动驱动装置
US3128399A (en) Cooling system for a submersible electric motor
CN217643022U (zh) 一种一体式振动电机
KR102317828B1 (ko) 반도체 칠러용 캔드 모터 펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15772632

Country of ref document: EP

Kind code of ref document: A1