WO2015149453A1 - 一种防氟气腐蚀的高温加热装置 - Google Patents
一种防氟气腐蚀的高温加热装置 Download PDFInfo
- Publication number
- WO2015149453A1 WO2015149453A1 PCT/CN2014/082818 CN2014082818W WO2015149453A1 WO 2015149453 A1 WO2015149453 A1 WO 2015149453A1 CN 2014082818 W CN2014082818 W CN 2014082818W WO 2015149453 A1 WO2015149453 A1 WO 2015149453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric heater
- heating device
- fluorine gas
- temperature heating
- high temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
Definitions
- the utility model relates to the field of equipment for high temperature PECVD reaction chamber, in particular to a high temperature heating device for preventing fluorine gas corrosion in a high temperature PECVD reaction chamber.
- the process temperature required to fabricate nitride films, oxide films, amorphous/microcrystalline silicon films, etc. using PECVD is usually 200-280. °C.
- PECVD plasma enhanced chemical vapor deposition
- the cavity materials and components must have good anti-fluorine gas corrosion characteristics and 200-280 °C. Temperature characteristics within the range.
- the nitride film used in the deposition of AMOLED, oxide film, non The process temperature of the PECVD equipment of the crystalline silicon film must be about 450 ° C, which is about 200 ° C higher than the process temperature of 200-280 ° C in the PECVD equipment used in the conventional industry.
- the melting point of aluminum is 580-700 °C.
- the stiffness/strength of the aluminum material will be significantly deteriorated, and even softening may occur. Heating the entire PECVD chamber in the conventional manner will no longer meet the PECVD process requirements.
- the entire heating device is in a high temperature of about 450 and a fluorine gas environment.
- the most commonly used armored electric heaters in heating devices are generally drawn from stainless steel materials with a resistance of more than 1000 degrees.
- the heating device in addition to the heating function, the heating device usually functions as a substrate. Therefore, the flatness of the surface of the heating device directly affects the film forming quality on the substrate.
- the conventional thin film deposition process requires a heating device for carrying the substrate.
- the surface flatness is less than 0.2, especially for a substrate having a large area, such as a 4.5 generation 920*730 mm substrate in the field of semiconductors, the surface flatness of the heating device carrying the substrate becomes critical.
- the thermal expansion deformation caused by the high temperature of about 450 ° C in the field of AMOLED makes it difficult to maintain extremely high flatness on the surface of the heating device.
- the present invention provides a high-temperature heating device for preventing fluorine gas corrosion, which is capable of heating a substrate in a reaction chamber containing a high temperature of 400 ° C or higher and maintaining excellent surface smoothness.
- Degree on the one hand, prevents corrosion and damage to the heating device in the high temperature fluorine gas environment, the other side
- the surface eliminates the adverse effect on the film formation quality of the large-area glass substrate due to the heating deformation.
- the utility model provides a high-temperature heating device for preventing fluorine gas corrosion, which can provide a high-temperature environment of 400 ° C or higher, and is characterized in that it comprises: an upper plate for placing a substrate, corresponding to the upper plate a slab, an armored electric heater located between the upper plate and the lower plate and in thermal contact with at least one of the upper plate or the lower plate, the armored electric heater being fixed by a positioning structure, the upper The side between the flat plate and the lower plate is sealed by a sealing structure, so that the armored electric heater and its positioning structure are sealed therein, and the materials of the upper plate, the lower plate and the side sealing structure are all prevented. Fluorine gas corroded material.
- the armored electric heater is made of stainless steel.
- the sheathed electric heater has a heating temperature ranging from 500 to 800 °C.
- the material of the upper flat plate, the lower flat plate and the side sealing structure is aluminum.
- the material of the positioning structure of the armored electric heater is aluminum or stainless steel.
- the flatness of the upper plate and the lower plate ranges from 0.1 to 0.15 mm@lm 2 .
- the area of the upper plate or the lower plate ranges from 0.1 m 2 to 2 m 2 .
- the positioning structure of the armored electric heater is a metal plate having a thickness smaller than or equal to a thickness of the armored electric heater.
- the metal plate is provided with a trench for fixing the armored electric heater, and the trench may be a blind slot or a through slot.
- the distribution manner of the trench can be calculated by simulation.
- the positioning structure of the armored electric heater is a plurality of small clips.
- the distribution manner of the small clips can be calculated by simulation.
- the upper plate or the lower plate is chamfered.
- the high temperature heating device is applied to a PECVD reaction chamber.
- the utility model provides a high-temperature heating device for preventing fluorine gas corrosion, which can provide a high temperature environment of 400 or more, and seals the armored electric heater and its positioning structure in the high temperature reaction chamber of the fluorine-containing gas.
- the upper plate, the lower plate and the side of the fluorine gas corrosive material avoid corrosion and damage of the fluorine gas to the sheathed electric heater casing, and weaken the adverse effect of the deformation of the sheathed electric heater on the substrate, plus
- the use of the upper plate to carry the substrate is advantageous for maintaining excellent surface flatness, further eliminating the adverse effect on the film forming quality of the large-area glass substrate due to the high temperature deformation of the sheathed electric heater, thereby improving the high temperature reaction chamber. Film formation quality.
- the upper plate and the lower plate can be realized by directly purchasing the existing super flat plate in the market, which saves the machining amount on the one hand, and reduces the mechanical residual stress release of the upper plate and the lower plate in the high temperature environment on the other hand, and improves the upper and lower sides.
- the positioning structure of the armored electric heater can be fixed by means of a plurality of small clips, which can make the armored electric heater more easily free between the upper plate and the lower plate when heated.
- the lateral movement of the ground weakens the deformation of the armored electric heater in the longitudinal direction, thereby better maintaining the flatness of the upper and lower plates and further improving the film forming quality in the high temperature reaction chamber.
- the distribution pattern of the groove on the metal plate and the distribution pattern of the small clip can be calculated by simulation to optimize the temperature uniformity of the high temperature heating device.
- the chamfering design of the upper plate or the lower plate can make the RF electromagnetic field and the gas flow field in the reaction chamber more gradual, improve the boundary effect of the electromagnetic field and the airflow field of the substrate, and improve the uniformity of film formation. Sex.
- FIG. 1 is a schematic view showing the structure of a high-temperature heating device for preventing fluorine gas corrosion in the present invention.
- FIG. 2 is a view showing the positional relationship between the positioning structure and the armored electric heater in an embodiment of the present invention.
- Figure 3 is a diagram showing the positional relationship between the positioning structure and the armored electric heater in another embodiment of the present invention.
- the utility model discloses a high-temperature heating device for preventing fluorine gas corrosion, which is generally applied to a high-temperature reaction chamber containing fluorine gas, for example, a high-temperature PECVD reaction chamber for producing AMOLED.
- the upper plate 110 of the substrate 200 and the lower plate 120 corresponding to the upper plate 110 may be any one of a glass substrate or a metal substrate, and a glass substrate is generally used in the industry.
- the upper plate 110 or the lower plate 120 has an area ranging from 0.1 m 2 to 2 m 2 , a thickness ranging from 5 to 20 mm, and a flatness ranging from 0.1 to 0.15 mm @ lm 2 , which can be directly purchased from the "super flat plate" on the market.
- the armored electric heater 130 is fixedly disposed between the upper plate 110 and the lower plate 120 by a positioning structure 140.
- the armored electric heater 130 is made of stainless steel and has a heating temperature of 500-800 ° C or higher.
- the armored electric heater 130 is in thermal contact with at least one of the upper plate 110 or the lower plate 120.
- the side formed between the upper plate 110 and the lower plate 120 is sealed by a sealing structure 150 such that the armored electric heater 130 and its positioning structure 140 are sealed therein, the upper plate 110 and the lower plate
- the flat plate 120 and the side sealing structure 150 are made of a material resistant to fluorine gas corrosion, such as aluminum, nickel, niobium and titanium alloys.
- a material resistant to fluorine gas corrosion such as aluminum, nickel, niobium and titanium alloys.
- the material of the upper plate 110, the lower plate 120, and the side sealing structure 150 of the present invention is preferably aluminum.
- the sealing structure 150 may be an aluminum sealing plate, and the upper plate 110 and the lower plate 120 are fastened by a step seal or a metal compression spring seal.
- an armored electric heater 130 of 500-800 ° C or more between the upper plate 110 and the lower plate 120 high-temperature heating of the substrate higher than 400 ° C is achieved.
- the armored electric heater 130 and its positioning structure 140 are sealed in the upper plate 110, the lower plate 120 and the side of the anti-fluorine gas corrosion material, thereby avoiding corrosion and damage of the fluorine gas to the sheathed electric heater casing, and weakening
- the adverse effect of the deformation of the armored electric heater on the substrate, coupled with the upper plate with a flatness range of 0.1-0.15mm@lm 2 to carry the substrate is advantageous for maintaining excellent surface flatness and further eliminating the need for armoring.
- the electric heater is deformed by high temperature and has an adverse effect on the film forming quality of the large-area glass substrate, thereby improving the film forming quality in the high-temperature reaction chamber.
- the armored electric heater 130 and its positioning structure 140 are completely sealed in the upper plate 110, the lower plate 120 and its sides, and the armored electric heater 130 and the upper plate 110 or the lower plate are provided. At least one of the plates 120 maintains thermal contact, heat conduction is well achieved, and the surface temperature of the sheathed electric heater 130 can be lowered at the same process temperature, thereby increasing the service life of the sheathed electric heater.
- the positioning structure 140 can be a metal plate, and the relationship between the armored electric heater 130 can be specifically referred to FIG. 2.
- the material of the metal plate is preferably stainless steel or aluminum, and the metal plate is provided with a groove (not shown) for holding the electric heater 130.
- the thickness of the metal plate may be thicker than that of the armored electric heater.
- the metal plate is a blind groove, that is, only a part of the depth of the metal plate is dug, and the armored electric heater is pressed into the place.
- the thickness of the metal plate may also be relatively thin relative to the armored electric heater.
- the groove on the metal plate is a through groove, which can distribute a certain distributed armored electric heater.
- the difference in thickness between the metal plate and the armored electric heater does not exceed 0.5 mm. It should be noted that whether the trench is a blind slot or a through slot, the armored electric heater should be kept in thermal contact with at least one of the upper or lower plates to achieve a good heat transfer function. In order to improve the temperature uniformity of the high-temperature heating device of the present invention, the optimal distribution pattern of the trench can be selected according to the simulation calculation result.
- the positioning structure 140 may be a plurality of small clips.
- the material of the small clip is preferably stainless steel, and the distribution of the small clips may be based on a simulation calculation.
- the arrangement is performed to improve the temperature uniformity of the high temperature heating device of the present invention.
- the use of the small clip as the positioning structure makes it easier for the armored electric heater 130 to move laterally relatively freely between the upper plate and the lower plate at a high temperature, thereby weakening the deformation of the armored electric heater in the longitudinal direction. Thereby, the flatness of the upper and lower plates can be better maintained, and the film forming quality in the high temperature reaction chamber can be further improved.
- the upper plate 110 or the lower plate 120 can also be chamfered to make the RF electromagnetic field and the gas flow field in the reaction chamber more gentle, and improve the boundary effect of the electromagnetic field and the airflow field of the substrate. It is beneficial to improve the uniformity of film formation.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Resistance Heating (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
一种防氟气腐蚀的高温加热装置(100),能够提供400°C以上的高温环境,包括:用于载置基板(200)的上平板(110),与上平板(110)相对应的下平板(120),位于上平板(110)和下平板(120)之间并且与上平板(110)或者下平板(120)中的至少一个板保持热接触的铠装电加热器(130),铠装电加热器(130)采用定位结构(140)进行固定,上平板(110)和下平板(120)之间的侧边采用密封结构(150)进行密封,以使铠装电加热器(130)及其定位结构(140)被密封其中,上平板(110)、下平板(120)及侧边密封结构(150)的材料均为防氟气腐蚀的材料。
Description
一种防氟气腐蚀的高温加热装置
技术领域
本实用新型涉及高温 PECVD反应腔的设备领域, 尤其涉及一种应用于高温 PECVD反应腔的防氟气腐蚀的高温加热装置。
背景技术
在传统工业如太阳能和 LCD平板显示行业中利用 PECVD (等离子体增强型化 学气相沉积) 方法制备氮化膜, 氧化膜, 非晶 /微晶硅膜等薄膜所需要的工艺温 度通常为 200-280°C。在这些 PECVD设备中由于要使用 NF3气体进行清洗以及薄 膜沉积过程中反应腔内处于 200-280 温度氛围, 要求腔体材料以及零部件必须 具有较好的防氟气腐蚀特性和 200-280 °C范围内的温度特性。
在新兴的 AMOLED (有源矩阵有机发光二极管) 的工艺设备领域中, 为了使 薄膜具有最优的减反射和最佳表面钝化的效果,用于沉积 AMOLED中的氮化膜, 氧化膜, 非晶硅膜的 PECVD设备所采用的工艺温度必须达到 450°C左右,这相对 于传统工业中使用的 PECVD设备中 200-280°C的工艺温度提高了约 200 °C。
一般铝材的熔点为 580-700 °C, 当用作制备 PECVD反应腔腔体的铝材被加热 至超过 350 以上时, 铝材的刚度 /强度会明显变差, 甚至会出现软化现象, 因 此传统方式中对整个 PECVD腔体进行加热将不再满足 PECVD的工艺要求。此时, 若针对基板采用局部加热方式来实现高温工艺,虽然可以缓解前述腔体在高温环 境中刚度变差的问题, 但却会使得整个加热装置都处于 450 左右的高温以及氟 气环境中。 加热装置中最常用的铠装电加热器一般都是用耐 1000度以上的不锈 钢材料拉拔而成, 其只能适用于普通的酸碱环境中,特别是由于铠装电加热器本 身会产生大量热量, 使其表面温度甚至于达到 800 °C, 在这种高温环境下, 腔体 内的氟气将使得加热器外壳加速腐蚀和老化。
另外, 加热装置除了具有加热的功能外, 通常还起着承载基板的作用, 因此 加热装置表面的平整度会直接影响基板上的成膜质量,例如通常的薄膜沉积工艺 都要求承载基板的加热装置表面平整度小于 0.2, 特别是对于面积较大的基板, 如半导体领域的 4.5代 920*730mm基板, 其承载基板的加热装置的表面平整度 变得至关重要。 然而, AMOLED领域中由于 450°C左右的高温所引起的热膨胀变 形使得加热装置表面很难保持极高的平整度。
综上所述, 如何提供一种在 400 以上的高温环境中既能够防氟气腐蚀又能 够保持很好的表面平整度的加热装置成为一个需要解决的技术问题。
实用新型内容:
为了解决上述问题,本实用新型提供了一种防氟气腐蚀的高温加热装置, 其 能够在 400 °C以上的高温且含有氟气的反应腔中对基板进行加热, 同时能保持优 良的表面平整度, 一方面防止了高温氟气环境对加热装置的腐蚀和损坏, 另一方
面消除了因加热形变而对大面积玻璃基板成膜质量产生的不良影响。
本实用新型提供了一种防氟气腐蚀的高温加热装置, 能够提供 400 °C以上的 高温环境, 其特征在于: 包括: 用于载置基板的上平板, 与所述上平板相对应的 下平板,位于所述上平板和下平板之间并且与上平板或者下平板中的至少一个板 保持热接触的铠装电加热器,所述铠装电加热器采用定位结构进行固定,所述上 平板和下平板之间的侧边采用密封结构进行密封,以使所述铠装电加热器及其定 位结构被密封其中, 所述上平板、 下平板、 及侧边密封结构的材料均为防氟气腐 蚀的材料。
可选地, 所述铠装电加热器为不锈钢材质。
可选地, 所述铠装电加热器的加热温度范围为 500-800°C。
可选地, 所述上平板、 下平板、 侧边密封结构的材料为铝。
可选地, 所述铠装电加热器的定位结构的材料为铝或者不锈钢。
可选地, 所述上平板和下平板的平面度范围为: 0.1-0.15mm@lm2。
可选地, 所述上平板或下平板的面积范围为 0.1m2— 2m2。
可选地,所述铠装电加热器的定位结构为一种金属板,所述金属板的厚度小 于或者等于所述铠装电加热器的厚度。
可选地, 所述金属板上设置有挖槽, 用以固定所述铠装电加热器, 所述挖槽 可以为盲槽或者通槽。
可选地, 所述挖槽的分布方式可以通过仿真计算得出。
可选地, 所述铠装电加热器的定位结构为若干小卡子。
可选地, 所述小卡子的分布方式可以通过仿真计算得出。
可选地, 所述上平板或者下平板采用倒角设计。
可选地, 所述高温加热装置应用于 PECVD反应腔中。
相对于现有技术, 本实用新型主要实现了如下技术效果:
1, 本实用新型提供了一种防氟气腐蚀的高温加热装置, 能够提供 400 以上的 高温环境, 在含氟气的高温反应腔中, 通过将铠装电加热器及其定位结构密 封于防氟气腐蚀材料的上平板、 下平板及其侧边中, 避免了氟气对铠装电加 热器外壳的腐蚀和损坏, 并且弱化了铠装电加热器形变对基板的不良影响, 再加上采用上平板来承载基板, 有利于保持优良的表面平整度, 进一步消除 了因铠装电加热器受高温形变而对大面积玻璃基板成膜质量产生的不良影响, 从而改善了高温反应腔内的成膜质量。
2, 通过将铠装电加热器及其定位结构完全密封于上平板、 下平板及其侧边中, 并且使铠装电加热器与上平板或者下平板中的至少一个板保持热接触, 可以 很好地实现热传导,能够在同样的工艺温度下降低铠装电加热器的表面温度, 从而提高铠装电加热器的使用寿命。
3, 上平板和下平板可以通过直接购买市面现有的超平板实现, 一方面节省了机 械加工量, 另一方面减少了高温环境中上平板和下平板的机械加工残余应力 释放, 提高了上下平板高温下的平整度。
4, 在可选方案中, 铠装电加热器的定位结构可以采用若干小卡子的方式进行固 定, 这种方式可以使铠装电加热器加热时在上平板和下平板之间更容易相对 自由地横向移动, 减弱了铠装电加热器在纵向上的形变拱起, 从而能够更好 地保持上下平板的平整度, 进一步提高高温反应腔内的成膜质量。
5, 在分别采用金属板或者小卡子作为固定结构的可选方案中, 可以通过仿真计 算出金属板上挖槽的分布方式以及小卡子的分布方式, 从而优化该高温加热 装置的温度均一性。
6, 在可选方案中, 上平板或者下平板采用倒角设计能够使反应腔内的射频电磁 场和气体流场更加平缓, 改善基板的电磁场和气流场的边界效应, 有利于提 高成膜的均匀性。
附图说明
图 1是本实用新型中的防氟气腐蚀的高温加热装置的结构示意图。
图 2 是本实用新型的一具体实施方式中的定位结构与铠装电加热器的位置 关系图。
图 3 是本实用新型的另一具体实施方式中的定位结构与铠装电加热器的位 置关系图。
具体实施方式:
以下将结合附图所示的具体实施例对本实用新型进行详细描述。值得说明的 是, 下文所记载的实施例并不限制本实用新型,本领域的普通技术人员根据这些 实施例所做出的结构、方法、或功能上的变换均包含在本实用新型的保护范围内。
本实用新型揭示了一种防氟气腐蚀的高温加热装置,其通常应用于含有氟气 的高温反应腔中, 例如可以是用于生产 AMOLED的高温 PECVD反应腔。
图 1所示为所述防氟气腐蚀的高温加热装置的结构示意图, 其能够提供 400 以上的高温环境,如图所示,所述防氟气腐蚀的高温加热装置 100包括了用于载 置基板 200的上平板 110和与所述上平板 110相对应的下平板 120,所述基板 200 可以为玻璃基板或金属基板中的任意一种, 工业上通常多采用玻璃基板。所述上 平板 110或下平板 120的面积范围为 0.1m2— 2m2, 厚度范围为 5-20mm, 平面度 范围为 0.1-0.15mm@lm2, 可以通过直接购买市面上的 "超平板"方式获得, 这 样一方面能够节省机械加工量,另一方面也能够避免由于大量机械加工而带来的 加工应力释放所造成的板的变形, 从而提高了上下平板在高温环境中的平整度。 所述上平板 110和下平板 120之间通过定位结构 140来固定设置铠装电加热器 130, 所述铠装电加热器 130为不锈钢材质, 其加热温度达到 500-800 °C以上。
所述铠装电加热器 130与所述上平板 110或者下平板 120中至少一个板保持热接 触。所述上平板 110和所述下平板 120之间形成的侧边采用密封结构 150进行密 封,从而使得所述铠装电加热器 130及其定位结构 140被密封其中,所述上平板 110、下平板 120、及侧边的密封结构 150材料均采用防氟气腐蚀的材料,例如: 铝, 镍, 钽和钛合金等金属材料, 对于尺寸大于 0.5m2的 AMOLED基板而言, 因 镍,钽和钛合金受工艺水平的限制难以做大和价格昂贵的原因,使得本实用新型 中上平板 110、 下平板 120、 及侧边的密封结构 150的材料优选为铝。 所述密封 结构 150 可以为铝材密封板, 采用台阶密封或者金属压簧密封等方式将上平板 110和下平板 120紧固连接。
在本实用新型中, 通过在所述上平板 110和下平板 120之间设置 500-800 °C 以上的铠装电加热器 130, 实现了对基板高于 400°C高温加热, 通过将所述铠装 电加热器 130及其定位结构 140密封于防氟气腐蚀材料的上平板 110、下平板 120 及其侧边中,避免了氟气对铠装电加热器外壳的腐蚀和损坏, 并且弱化了铠装电 加热器形变对基板的不良影响,再加上采用平面度范围为 0.1-0.15mm@lm2的上 平板来承载基板,有利于保持优良的表面平整度,进一步消除了因铠装电加热器 受高温形变而对大面积玻璃基板成膜质量产生的不良影响,从而改善了高温反应 腔内的成膜质量。
在本实用新型中,通过将铠装电加热器 130及其定位结构 140完全密封于上 平板 110、 下平板 120及其侧边中, 并且使铠装电加热器 130与上平板 110或者 下平板 120中的至少一个板保持热接触, 可以很好地实现热传导, 能够在同样的 工艺温度下降低铠装电加热器 130的表面温度,从而提高铠装电加热器的使用寿 命。
在一种具体实施方式中,所述定位结构 140可以是金属板, 其于铠装电加热 器 130的关系具体可参照图 2所示。所述金属板的材料优选为不锈钢或铝,所述 金属板上设置有用以盛放述铠装电加热器 130的挖槽 (图未示)。 所述金属板的 厚度可以相对于铠装电加热器较厚,此时在金属板上为挖盲槽, 即仅挖出金属板 的部分深度, 并将所述铠装电加热器压入所述盲槽中; 另外, 所述金属板的厚度 也可以相对于铠装电加热器较薄,此时所述金属板上的挖槽为通槽, 其能够将一 定分布的铠装电加热器分隔开,优选地, 金属板与铠装电加热器的厚度差不超过 0.5mm。 需要指出的是, 无论挖槽是盲槽还是通槽, 都应使得铠装电加热器与所 述上平板或者下平板中至少一个板保持热接触, 以能够实现良好的热传导功能。 为了能够提高本实用新型中高温加热装置的温度均一性,可以根据仿真计算结果 来选择最优的挖槽的分布方式。
在另一具体实施方式中, 所述定位结构 140可以是若干小卡子, 参照图 3, 所述小卡子的材料优选为不锈钢,所述小卡子的分布方式可以根据仿真计算的结
果进行排布, 从而改善本实用新型的高温加热装置的温度均一性。采用小卡子作 为定位结构可以使铠装电加热器 130在高温状态下更容易在上平板和下平板之 间进行相对自由地横向移动,减弱了铠装电加热器在纵向上的形变拱起, 从而能 够更好地保持上下平板的平整度, 进一步提高高温反应腔内的成膜质量。
在可选方案中,所述上平板 110或者下平板 120还可以采用倒角设计, 以能 够使反应腔内的射频电磁场和气体流场更加平缓,改善基板的电磁场和气流场的 边界效应, 有利于提高成膜的均匀性。
应当理解, 虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包 含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见,本领域技术 人员应当将说明书作为一个整体, 各实施方式中的技术方案也可以经适当组合, 形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本实用新型的可行性实施方式 的具体说明, 它们并非用以限制本实用新型的保护范围, 凡未脱离本实用新型技 艺精神所作的等效实施方式或变更均应包含在本实用新型的保护范围之内。
Claims
1. 一种防氟气腐蚀的高温加热装置, 能够提供 40CTC以上的高温环境, 其特征在于: 包括: 用于载置基板的上平板, 与所述上平板相对应的下平板, 位于所述上平板和 下平板之间并且与上平板或者下平板中的至少一个板保持热接触的铠装电加热器, 所述铠装电加热器采用定位结构进行固定, 所述上平板和下平板之间的侧边采用密 封结构进行密封, 以使所述铠装电加热器及其定位结构被密封其中, 所述上平板、 下平板、 及侧边密封结构的材料均为防氟气腐蚀的材料。
2. 根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述铠装电 加热器为不锈钢材质。
3. 根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述铠装电 加热器的加热温度范围为 500-800 °C。
4. 根据权利要求 1所述的一种防氟气腐蚀的高温加热装置,其特征在于:所述上平板、 下平板、 侧边密封结构的材料为铝。
5. 根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述铠装电 加热器的定位结构的材料为铝或者不锈钢。
6. 根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述上平板 和下平板的平面度范围为: 0.1-0.15mm@lm2。
7. 根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述上平板 或下平板的面积范围为 0.1m2— 2m2。
8. 根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述铠装电 加热器的定位结构为一种金属板, 所述金属板的厚度小于或者等于所述铠装电加热 器的厚度。
9. 根据权利要求 8所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述金属板 上设置有挖槽, 用以固定所述铠装电加热器, 所述挖槽可以为盲槽或者通槽。
10.根据权利要求 9所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述挖槽的 分布方式可以通过仿真计算得出。
11.根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述铠装电 加热器的定位结构为若干小卡子。
12.根据权利要求 11所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述小卡子 的分布方式可以通过仿真计算得出。
13.根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述上平板 或者下平板采用倒角设计。
14.根据权利要求 1所述的一种防氟气腐蚀的高温加热装置, 其特征在于: 所述高温加 热装置应用于 PECVD反应腔中。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420150019.XU CN203807555U (zh) | 2014-03-31 | 2014-03-31 | 一种防氟气腐蚀的高温加热装置 |
CN201420150019.X | 2014-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015149453A1 true WO2015149453A1 (zh) | 2015-10-08 |
Family
ID=51446338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/082818 WO2015149453A1 (zh) | 2014-03-31 | 2014-07-23 | 一种防氟气腐蚀的高温加热装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN203807555U (zh) |
WO (1) | WO2015149453A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5688331A (en) * | 1993-05-27 | 1997-11-18 | Applied Materisls, Inc. | Resistance heated stem mounted aluminum susceptor assembly |
US6025575A (en) * | 1997-11-27 | 2000-02-15 | Lg Semicon Co., Ltd. | Heating apparatus for chemical vapor deposition equipment |
US20020125240A1 (en) * | 2001-03-09 | 2002-09-12 | Kazumi Ogura | Heating device, method for producing same and film forming apparatus |
US20070095289A1 (en) * | 2003-06-23 | 2007-05-03 | Tokyo Electron Limited | Heat treatment apparatus |
CN103137534A (zh) * | 2011-11-25 | 2013-06-05 | 日本发条株式会社 | 基板支撑装置 |
-
2014
- 2014-03-31 CN CN201420150019.XU patent/CN203807555U/zh not_active Expired - Lifetime
- 2014-07-23 WO PCT/CN2014/082818 patent/WO2015149453A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5688331A (en) * | 1993-05-27 | 1997-11-18 | Applied Materisls, Inc. | Resistance heated stem mounted aluminum susceptor assembly |
US6025575A (en) * | 1997-11-27 | 2000-02-15 | Lg Semicon Co., Ltd. | Heating apparatus for chemical vapor deposition equipment |
US20020125240A1 (en) * | 2001-03-09 | 2002-09-12 | Kazumi Ogura | Heating device, method for producing same and film forming apparatus |
US20070095289A1 (en) * | 2003-06-23 | 2007-05-03 | Tokyo Electron Limited | Heat treatment apparatus |
CN103137534A (zh) * | 2011-11-25 | 2013-06-05 | 日本发条株式会社 | 基板支撑装置 |
Also Published As
Publication number | Publication date |
---|---|
CN203807555U (zh) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102147326B1 (ko) | 기판 지지장치 | |
KR101136892B1 (ko) | 디스플레이 장치 제조공정용 세라믹 평판 히터 | |
CN104144531A (zh) | 一种高发热碳晶板及其制备方法 | |
WO2017188145A1 (ja) | サセプタ | |
TWI716891B (zh) | 氣相成膜裝置 | |
WO2015149453A1 (zh) | 一种防氟气腐蚀的高温加热装置 | |
JP2015204434A (ja) | サセプタ処理方法及びサセプタ処理用プレート | |
JP2014002931A (ja) | グラファイトヒーター | |
CN202246834U (zh) | 一种薄膜沉积设备和均热板 | |
CN104862666B (zh) | 一种用于制备amoled的pecvd装置 | |
JP4877156B2 (ja) | スパッタリングカソード及び成膜方法 | |
JP2010258276A (ja) | 耐食部材 | |
WO2017050379A1 (en) | Carrier for carrying a substrate in a material deposition process and method for carrying a substrate | |
CN103628042A (zh) | 一种改善晶硅电池镀膜质量的方法 | |
KR20220146992A (ko) | 코팅 타입 고온 정전척 | |
JP2012015036A (ja) | プレートヒータ | |
CN103570377B (zh) | 一种石墨发热体加热炉内碳素材料表面制备SiC涂层的方法 | |
JP4890313B2 (ja) | プラズマcvd装置 | |
CN102905405B (zh) | 一种加热装置及应用该加热装置的等离子体加工设备 | |
JP2020106172A (ja) | 設備の断熱方法 | |
JPWO2012057128A1 (ja) | 成膜装置及びそれを用いた成膜方法 | |
JP2008187067A (ja) | 熱処理装置、遮熱用真空バッファー体及び遮熱板 | |
JP5235223B2 (ja) | 基板へのスパッタ薄膜の形成方法および搬送キャリア | |
JP2009218324A (ja) | プラズマ処理装置 | |
JP2013237915A (ja) | 蒸発源及び真空蒸着装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14888108 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 14888108 Country of ref document: EP Kind code of ref document: A1 |