WO2015149452A1 - 一种实现制式间分流的方法及装置 - Google Patents

一种实现制式间分流的方法及装置 Download PDF

Info

Publication number
WO2015149452A1
WO2015149452A1 PCT/CN2014/082777 CN2014082777W WO2015149452A1 WO 2015149452 A1 WO2015149452 A1 WO 2015149452A1 CN 2014082777 W CN2014082777 W CN 2014082777W WO 2015149452 A1 WO2015149452 A1 WO 2015149452A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
apn
data packet
packet size
transmission
Prior art date
Application number
PCT/CN2014/082777
Other languages
English (en)
French (fr)
Inventor
谢峰
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015149452A1 publication Critical patent/WO2015149452A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and apparatus for implementing split between systems. Background technique
  • a base station In a wireless cellular communication system, a base station (BS, Base Station) is a device that provides wireless access for a terminal (UE, User Equipment), and wireless communication is performed between the base station and the user equipment by electromagnetic waves.
  • a base station can provide services for one or more serving cells, and the wireless communication system can provide wireless coverage for terminals in a certain geographical range through the serving cell.
  • a wireless communication system needs to deploy a base station with a large coverage.
  • This base station is usually called a Macro Base (Macro Base Station), and its serving cell is usually called a macro cell (Macro). Cell ).
  • Macro Base Station Macro Base Station
  • macro cell Macro Cell
  • wireless communication systems need to provide users with coverage holes or provide higher quality wireless communication services in certain environments or scenarios, so some coverage is small and the transmission power is low.
  • the small base station (or transmission node TP, Transmission Point, ) is adopted.
  • These small base stations include a micro base station (Pico BS) and a child base station (Femto BS), wherein the child base station may also be referred to as a home base station (HNB), a femto base station or a femto base station, and the cells provided by the micro base station and the home base station are called micro cells. (pico cell) and femto cell.
  • the nodes corresponding to the small base stations are also called Low Power Nodes (LPNs), and the cells corresponding to these nodes are also called small cells.
  • LPNs Low Power Nodes
  • the wireless communication system includes a wireless local area network (WLAN), and its air interface standard is the IEEE802.11 series standard, including 802.11a, 802.11n, 802.1 lac, etc., which support the highest transmission. The rate is different. Since the WLAN spectrum is free and the cost of the WLAN chip is low, the deployment and application of the Access Point (AP) can provide operators and users with an inexpensive way to wirelessly access and load offload. Since a WLAN AP is also a low-power node, an operator often integrates a WLAN AP in a small base station when deploying a small cell. In other words, a typical system of a small base station includes a long-term evolution LTE network and a wireless local area network WLAN.
  • WLAN wireless local area network
  • the Access Network Discovery Support Functions provides a solution for selecting a target access network for a terminal based on an operator policy.
  • a DSF cooperates with the terminal to achieve effective traffic distribution of the network access, which is in line with the future multi-network coordinated operation direction.
  • the ANDSF formulates policies based on network load, terminal capabilities, and user subscriptions to help end users select the best access network standard and implement coordinated operation of multiple access methods.
  • ANDSF can be deployed separately or in combination with other network elements.
  • the base station can also provide the terminal as a network element for the access network to select a target access network.
  • the related technology is mainly a shunting strategy considered from the perspective of load sharing. The shunting method is not flexible enough, and the shunting strategy is not fully considered in terms of improving spectrum efficiency. Summary of the invention
  • the embodiment of the invention provides a method and a device for realizing the split between the systems, so that the splitting mode is flexible.
  • a method of shunting between systems including:
  • the network side and the terminal transmit the system selection information
  • the terminal or the network determines the system corresponding to the uplink or downlink transmission of the single bearer or the IP stream or the access point name APN according to the obtained system selection information, and performs uplink or downlink of the single bearer or IP flow or APN according to the corresponding system. transmission.
  • the system selection information includes a system identifier, or parameter information, corresponding to an uplink or downlink transmission of a single bearer or IP stream or APN.
  • the parameter information includes: a transmission rate threshold; or
  • the system selection information is a system identifier corresponding to an uplink or downlink transmission of a single bearer or an IP stream or an APN
  • the system corresponding to determining an uplink or downlink transmission of a single bearer or an IP stream or an APN is:
  • the system corresponding to the standard bearer or IP stream or the uplink or downlink transmission corresponding to the APN is a system of single bearer or IP stream or APN uplink or downlink transmission.
  • the parameter information is a transmission rate threshold
  • the system for determining the uplink or downlink transmission of a single bearer or IP flow or APN is: if the uplink transmission rate of a single bearer or IP flow or APN is greater than or equal to the transmission rate threshold, determining the single bearer or IP flow or APN Upstream transmission adopts a first standard; if an uplink transmission rate of a single bearer or an IP stream or an APN is smaller than a transmission rate threshold, determining that the uplink transmission of the single bearer or IP stream or APN adopts a second standard; or
  • the downlink transmission rate of the single bearer or the IP flow or the APN is greater than or equal to the transmission rate threshold, determine that the downlink transmission of the single bearer or IP flow or APN adopts the first standard; if the downlink transmission rate of the single bearer or IP flow or APN is less than The transmission rate threshold is determined to determine that the downlink transmission of the single bearer or IP stream or APN adopts the second standard.
  • the transmission rate threshold includes an uplink and downlink transmission rate threshold
  • the system for determining an uplink or downlink transmission of a single bearer or an IP stream or an APN is:
  • the uplink transmission rate of the single bearer or the IP stream or the APN is greater than or equal to the uplink transmission rate threshold, determine that the uplink transmission of the single bearer or IP flow or APN adopts the first standard; if the uplink transmission rate of a single bearer or IP flow or APN If the threshold is less than the uplink transmission rate, the uplink transmission of the single bearer or the IP stream or the APN is determined to be in the second mode; or
  • the downlink transmission rate of the single bearer or the IP flow or the APN is greater than or equal to the downlink transmission rate threshold, determine that the downlink transmission of the single bearer or IP flow or APN adopts the first standard; if the downlink transmission rate of a single bearer or IP flow or APN If it is smaller than the downlink transmission rate threshold, it is determined that the downlink transmission of the single bearer or IP flow or APN adopts the second standard.
  • the parameter information is a packet size average threshold
  • the system for determining the uplink or downlink transmission of a single bearer or IP stream or APN is: if the average value of the uplink packet size of a single bearer or IP stream or APN is greater than or equal to a packet size average threshold, determining the single bearer Or the uplink transmission of the IP stream or the APN adopts the first standard; if the average value of the uplink packet size of the single bearer or IP stream or the APN of the single bearer or the IP stream or the APN is smaller than the packet size average threshold, the single is determined.
  • Bearer or IP stream or The uplink transmission of the APN adopts the second standard; or
  • the average value of the downlink packet size of a single bearer or IP stream or APN is greater than or equal to the packet size average threshold, it is determined that the downlink transmission of the single bearer or IP stream or APN adopts the first standard; if a single bearer or IP stream or The average downlink packet size of the APN is smaller than the packet size average threshold, and then the downlink transmission of the single bearer or IP stream or APN is determined to be in the second mode.
  • the data packet size average threshold includes an uplink and downlink packet size average threshold
  • the system for determining the uplink or downlink transmission of a single bearer or IP stream or APN is: if the average value of the uplink packet size of a single bearer or IP stream or APN is greater than or equal to the uplink packet size average threshold, then determining the single The uplink transmission of the bearer or the IP stream or the APN adopts the first standard; if the average value of the uplink packet size of the single bearer or IP stream or the APN of the single bearer or the IP stream or the APN is smaller than the average threshold of the uplink packet size, then the The second transmission of the single bearer or IP stream or the uplink of the APN; or
  • the first system is a wireless local area network WLAN system; and the second system is a long term evolution LTE.
  • the embodiment of the invention further discloses a method for shunting between systems, comprising:
  • the system selection information is transmitted between the network side and the terminal;
  • the terminal or the network side determines a system corresponding to each data packet transmission according to the obtained system selection information, and performs uplink and/or downlink transmission of the data packet according to a corresponding system.
  • the system selection information includes: a packet size threshold; or an uplink and downlink packet size threshold.
  • the system selection information is a data packet size threshold;
  • the system for determining the corresponding transmission of each data packet is:
  • the uplink data packet size is greater than or equal to the data packet size threshold, determining that the uplink data packet transmission adopts a first standard; if the uplink data packet size is smaller than a data packet size threshold, determining that the uplink data packet transmission adopts a second standard;
  • the downlink data packet size is greater than the data packet size threshold, determining that the downlink data packet transmission adopts a first standard; if the downlink data packet size is smaller than a data packet size threshold, determining that the downlink data packet transmission adopts a second standard.
  • the system selection information is an uplink and downlink data packet size threshold
  • the system for determining each data packet transmission is:
  • the uplink data packet size is greater than or equal to the uplink data packet size threshold, determining that the uplink data packet transmission adopts a first standard; if the uplink data packet size is smaller than an uplink data packet size threshold, determining that the uplink data packet transmission adopts a second standard ;
  • the downlink data packet size is greater than or equal to the downlink data packet size threshold, determining that the downlink data packet transmission uses the first standard; if the downlink data packet size is smaller than the downlink data packet size threshold, determining that the downlink data packet transmission is used Two standards.
  • the first system is a wireless local area network WLAN system; and the second system is a long term evolution LTE.
  • an embodiment of the present invention further includes an apparatus, including: a first receiving module, a first determining module, and a first transmitting module;
  • the first receiving module is configured to receive the system selection information transmitted by the network side and the terminal; the first determining module is configured to determine, according to the obtained system selection information, the corresponding uplink or downlink transmission of the single bearer or the IP stream or the access point name APN Standard
  • the first transmission module is configured to perform uplink or downlink transmission of the single bearer or IP stream or APN according to a corresponding standard.
  • the system selection information includes a system identifier, or parameter information, corresponding to an uplink or downlink transmission of a single bearer or IP stream or APN.
  • the parameter information includes: a transmission rate threshold; or
  • the system selection information is a standard identifier corresponding to an uplink or downlink transmission of a single bearer or an IP stream or an APN;
  • the first determining module is set to:
  • the system corresponding to the uplink or downlink transmission of the single bearer or the IP stream or the APN is: the system corresponding to the standard bearer or the IP or the APN corresponding to the uplink or downlink transmission is a single bearer or an IP stream or an APN uplink or The format of the downlink transmission.
  • the parameter information is a transmission rate threshold
  • the first determining module is set to:
  • the uplink transmission rate of the single bearer or the IP stream or the APN is greater than or equal to the transmission rate threshold, determine that the uplink transmission of the single bearer or IP stream or APN adopts the first format; if the uplink transmission rate of a single bearer or IP stream or APN is less than The transmission rate threshold is determined to determine that the uplink transmission of the single bearer or IP stream or APN adopts a second standard; or
  • the downlink transmission rate of the single bearer or the IP flow or the APN is greater than or equal to the transmission rate threshold, determining that the downlink transmission of the single bearer or IP flow or APN adopts the first format; if the transmission rate of a single bearer or IP flow or APN is less than When the rate threshold is transmitted, it is determined that the transmission of the single bearer or IP stream or APN adopts the second standard.
  • the transmission rate threshold includes an uplink and downlink transmission rate threshold
  • the first determining module is set to:
  • the uplink transmission rate of the single bearer or the IP stream or the APN is greater than or equal to the uplink transmission rate threshold, determine that the uplink transmission of the single bearer or IP flow or APN adopts the first standard; if the uplink transmission rate of a single bearer or IP flow or APN If the threshold is less than the uplink transmission rate, the uplink transmission of the single bearer or the IP stream or the APN is determined to be in the second mode; or
  • the downlink transmission rate of a single bearer or IP stream or APN is greater than or equal to the downlink transmission rate threshold, it is determined that the downlink transmission of the single carrier or IP stream or APN adopts the first standard; if a single bearer or IP stream or APN transmission When the rate is lower than the downlink transmission rate threshold, it is determined that the transmission of the single bearer or IP stream or APN adopts the second mode.
  • the parameter information is a packet size average threshold
  • the first determining module is set to:
  • the average value of the uplink packet size of a single bearer or IP stream or APN is greater than or equal to the packet size average threshold, it is determined that the uplink transmission of the single bearer or IP stream or APN adopts the first standard; if a single bearer or IP stream or When the average value of the uplink data packet size of the uplink single bearer or the IP stream or the APN of the APN is smaller than the average value of the packet size average, it is determined that the uplink transmission of the single bearer or the IP flow or the APN adopts the second standard; or
  • the average value of the downlink data packet size of the single bearer or the IP flow or the APN is greater than or equal to the average packet size threshold, it is determined that the downlink transmission of the single bearer or IP flow or APN adopts the first standard; if a single bearer or IP flow Or when the average value of the downlink packet size of the APN is less than the average threshold of the packet size, it is determined that the downlink transmission of the single bearer or IP stream or APN is in the second mode.
  • the data packet size average threshold includes an uplink and downlink packet size average threshold
  • the first determining module is set to:
  • the average value of the uplink data packet size of the single bearer or IP flow or APN is greater than or equal to the average value of the uplink data packet size, it is determined that the uplink transmission of the single bearer or IP flow or APN adopts the first standard; if a single bearer or IP flow Or determining, when the uplink single packet of the APN or the average value of the uplink data packet of the IP stream or the APN is smaller than the average value of the uplink data packet size, determining that the uplink transmission of the single bearer or the IP stream or the APN is in the second mode; or
  • the average value of the downlink data packet size of a single bearer or IP flow or APN is greater than or equal to the average value of the downlink data packet size, it is determined that the downlink transmission of the single bearer or IP flow or APN adopts the first standard; if a single bearer or IP When the average value of the downlink packet size of the stream or APN is less than the average threshold of the downlink packet size, it is determined that the downlink transmission of the single bearer or IP stream or APN is in the second mode.
  • the first system is a wireless local area network WLAN system; and the second system is a long term evolution LTE.
  • the present invention also discloses another apparatus, including at least: a second receiving module, a second determining module, and a second transmitting module;
  • a second receiving module configured to receive the system selection information transmitted by the network side and the terminal;
  • a second determining module configured to determine, according to the obtained system selection information, a format corresponding to each data packet transmission;
  • the second transmission module is configured to perform uplink or downlink transmission of the data packet according to a corresponding system.
  • the system selection information includes: a packet size threshold; or
  • the system selection information is a data packet size threshold
  • the second determining module is configured to:
  • the uplink data packet size is greater than or equal to the data packet size threshold, determining that the uplink data packet transmission adopts a first standard; if the uplink data packet size is smaller than a data packet size threshold, determining that the uplink data packet transmission adopts a second standard;
  • the downlink data packet size is greater than or equal to the data packet size threshold, determining that the downlink data packet transmission uses the first standard; if the downlink data packet size is smaller than the data packet size threshold, determining that the downlink data packet transmission adopts the second standard.
  • the system selection information is an uplink and downlink data packet size threshold
  • the second determining module is configured to:
  • the uplink data packet size is greater than or equal to the uplink data packet size threshold, determining that the uplink data packet transmission adopts a first standard; if the uplink data packet size is smaller than an uplink data packet size threshold, determining that the uplink data packet transmission adopts a second standard ;
  • the downlink data packet size is greater than or equal to the downlink data packet size threshold, determining that the downlink data packet transmission uses the first standard; if the downlink data packet size is smaller than the downlink data packet size threshold, determining that the downlink data packet transmission is used Two standards.
  • the first system is a wireless local area network WLAN system; and the second system is a long term evolution LTE.
  • the present invention also discloses a terminal comprising any of the above devices of the present invention.
  • the invention also discloses a base station comprising any of the above devices in the invention.
  • Embodiments of the present invention also provide a computer program, including program instructions, when the program instructions are When the network card device is executed, the network card device can perform the above method.
  • Embodiments of the present invention also provide a carrier carrying the above computer program.
  • the embodiment of the invention implements uplink or downlink data transmission for different uplink or downlink transmission of a single bearer or IP stream or APN, and the splitting mode is flexible.
  • FIG. 1 is a flow chart of a method for implementing a first embodiment of splitting between standards according to the present invention
  • FIG. 2 is a flow chart of a method for implementing a third embodiment of splitting between standards according to the present invention
  • FIG. 3 is a schematic structural diagram of a device for implementing a fifth embodiment of the split between the systems according to the present invention
  • FIG. 4 is a schematic structural diagram of a device for implementing the sixth embodiment of the split between the systems according to the present invention.
  • WLANs provide large bandwidth for dense networks, and there are also shortcomings in air interface efficiency.
  • WLAN uses carrier sense multiple channels due to the use of unlicensed spectrum.
  • the access/collision detection (CSMA/CA) mechanism is for competition, and it is necessary to compete for transmission resources from the AP to the UE or from the UE to the AP.
  • the more nodes and people (node-times) that participate in the competition the less resources are used to transmit valid data, and the lower the efficiency of spectrum utilization.
  • the ratio of the resource competition overhead required to transmit the packet to the actual transmission packet is much higher than the ratio of the overhead of transmitting the packet and the resource actually transmitting the packet.
  • the main traffic of many typical services is unidirectional, such as the main traffic flow of video downloads or the main throughput is down, while the uplink has very little throughput.
  • the downlink transmission control protocol (TCP) data packet is generally a large packet, usually between 500 1500 bytes, and the uplink TCP ACK/NACK is generally a small packet, usually only a few tens byte.
  • the WLAN is used to transmit large packets (packets) more efficiently than for transmitting small packets (TCP ACK/NACK), and the throughput of one traffic flow is mainly used for data packet transmission, and the data in the direction of the main traffic flow is offloaded.
  • the effect of transmission on sharing and mitigating the LTE network load is essentially the same as offloading all packet transmissions. In this way, only the data in the direction of the main service flow is offloaded to the WLAN, which can fully utilize the large bandwidth of the WLAN, and can also avoid the short board in which the WLAN has a large overhead for packet transmission.
  • the transmission efficiency of using different systems for transmission is different.
  • the cellular system LTE (or 3G) transmission is scheduled, and the WLAN transmission is based on contention.
  • the system bandwidth of the WLAN using the unlicensed spectrum can be much larger than the bandwidth of the cellular system using the licensed spectrum.
  • WLAN is more suitable for transmitting large-rate, large-packet services.
  • the first embodiment of the present invention provides a method for implementing inter-system shunting.
  • the uplink or downlink characteristic parameters (such as an uplink or downlink traffic transmission rate threshold and an uplink or downlink packet size average threshold) are provided.
  • To determine the transmission system includes:
  • Step 101 The network side and the terminal transmit the system selection information.
  • the system selection information includes a system identifier, or parameter information, for indicating an uplink or downlink transmission of a single bearer or IP stream or an APN.
  • the parameter information includes: a transmission rate threshold; or,
  • the network side includes: a base station, an access network discovery and selection function unit (ANDSF), a traffic off policy determination node, and a traffic distribution control node (such as a gateway).
  • a base station an access network discovery and selection function unit (ANDSF)
  • ANDSF access network discovery and selection function unit
  • traffic off policy determination node such as a gateway
  • traffic distribution control node such as a gateway
  • the transmission system selection information includes: the network side terminal UE transmits The system selects the information; or, the terminal UE transmits the system selection information to the network side.
  • Step 102 Determine a single bearer or IP flow or access point name according to the obtained system selection information.
  • the uplink or downlink transmission of the APN corresponds to the standard, and the uplink or downlink transmission of the single bearer or IP stream or APN is performed according to the corresponding system.
  • the network side may determine, according to the obtained system selection information, a format corresponding to an uplink or downlink transmission of a single bearer or an IP stream or an access point name APN; or
  • the UE determines a system corresponding to the uplink or downlink transmission of a single bearer or IP stream or access point name APN according to the obtained system selection information.
  • the system selection information is a system identifier corresponding to the uplink or downlink transmission of a single bearer or IP stream or APN
  • the system corresponding to the uplink or downlink transmission of the single bearer or IP stream or APN is determined as follows:
  • the system identifier corresponding to the uplink or downlink transmission of a single bearer or IP stream or APN is the system of the above-mentioned single bearer or IP stream or APN uplink or downlink transmission.
  • the system for determining the uplink or downlink transmission of a single bearer or IP stream or APN is: If the uplink transmission rate of the single bearer or IP stream or APN is greater than the transmission rate threshold, it is determined that the uplink transmission of the single bearer or IP stream or APN is adopted. a first system; if the uplink transmission rate of the single bearer or the IP stream or the APN is less than the transmission rate threshold, determining that the uplink transmission of the single bearer or the IP stream or the APN is in the second mode; or
  • the downlink transmission rate of the single bearer or the IP stream or the APN is greater than the transmission rate threshold, determine that the downlink transmission of the single bearer or the IP stream or the APN adopts the first mode; if the downlink transmission rate of the single bearer or the IP stream or the APN is less than The transmission rate threshold determines that the downlink transmission of the single bearer or IP stream or APN adopts the second standard.
  • the transmission rate threshold includes an uplink or downlink transmission rate threshold, and the above-mentioned system for determining the uplink or downlink of a single bearer or IP stream or APN is: If the uplink transmission rate of the single bearer or the IP stream or the APN is greater than the uplink transmission rate threshold, determine that the uplink transmission of the single bearer or the IP stream or the APN adopts the first format; if the uplink transmission rate of the single bearer or the IP stream or the APN is If it is smaller than the uplink transmission rate threshold, it is determined that the uplink transmission of the single bearer or the IP stream or the APN adopts the second standard; or
  • the downlink transmission rate of the single bearer or the IP stream or the APN is greater than the downlink transmission rate threshold, determining that the downlink transmission of the single bearer or the IP stream or the APN adopts the first standard; if the single bearer or the IP stream or the downlink transmission of the APN When the rate is lower than the downlink transmission rate threshold, it is determined that the downlink transmission of the single bearer or IP stream or APN adopts the second standard.
  • the parameter information is a packet size average threshold
  • the system for determining an uplink or downlink transmission of a single bearer or an IP stream or an APN is: if the average value of the uplink packet size of the single bearer or IP stream or APN is greater than a packet size average threshold, determining the single The uplink transmission of the bearer or the IP stream or the APN adopts the first standard; if the average value of the uplink packet size of the single bearer or IP stream or the APN of the single bearer or IP stream or the APN is smaller than the packet size average threshold, then it is determined The uplink transmission of the single bearer or IP stream or APN adopts a second standard; or
  • the average value of the downlink data packet size of the single bearer or the IP flow or the APN is greater than the average value of the data packet size, determining that the downlink transmission of the single bearer or IP flow or APN adopts the first standard; if the single bearer When the average value of the downlink packet size of the IP stream or the APN is smaller than the average threshold of the packet size, it is determined that the downlink transmission of the single bearer or IP stream or APN adopts the second standard.
  • the packet size average threshold includes the uplink or downlink packet size average threshold; the above-mentioned system for determining the uplink or downlink transmission of a single bearer or IP stream or APN is: If the above single bearer or IP stream or APN uplink packet If the average value of the size is greater than the average value of the uplink data packet size, it is determined that the uplink transmission of the single bearer or the IP flow or the APN adopts the first standard; if the single bearer or the IP flow or the uplink of the APN or the IP flow or the uplink of the APN If the average packet size is smaller than the average threshold of the uplink packet size, it is determined that the uplink transmission of the single bearer or the IP stream or the APN adopts the second standard; or
  • the packet size average threshold it is determined that the downlink transmission of the single bearer or the IP stream or the APN adopts the first standard; if the average value of the downlink packet size of the single bearer or the IP stream or the APN is smaller than the average threshold of the downlink packet size, Then, it is determined that the downlink transmission of the foregoing single bearer or IP stream or APN adopts the second standard.
  • the inclusion is greater than or equal to or less than or equal to or less than or equal to.
  • the first system is a wireless local area network WLAN system; the second system is a long-term evolution LTE.
  • the above method can be adjusted according to the load of the WLAN (and the uplink and downlink load of the LTE). For example, a mode for selecting a different system for uplink and downlink data transmission may be initiated according to the load of the WLAN. For example, when the WLAN load is higher than a certain threshold, the mode of the RAT is selected by starting the uplink or downlink of the bearer or IP stream or the APN.
  • a threshold for determining whether to use the WLAN for transmission or, set two or more groups of selection information parameters for different load levels of the WLAN, for example, multiple for determining whether to carry the bearer or IP flow or The threshold for transmission of the APN's uplink and downlink using WLAN.
  • the uplink or downlink packet size average threshold, the uplink or downlink traffic transmission rate threshold may be preset, and the relationship between the threshold values is not limited herein, and each of the above gates may be The limit values are set to two values or a finer division, respectively, which are all within the scope of the present invention.
  • the network side for example, the base station or the A DSF or the offload control node
  • the terminal can interact with each other.
  • downlink switch path or RAT standard signaling including bearer or IP flow or APN identity, uplink and/or downlink indication, target RAT information.
  • Such interaction can be performed between the base station and the UE through an RRC reconfiguration message or a MAC CE.
  • the interface between the base station and the AP may be a private interface.
  • the base station and the WLAN AP are not co-located, if the base station is used as the offload control node, the base station and the AP also need to exchange which bearer uplinks and/or downlinks are offloaded to the WLAN, that is, add/modify/delete in the offload.
  • a message such as a Se B add/modify message or a Se B delete message
  • the uplink of bearer 1 is transmitted through LTE
  • the downlink is transmitted through WLAN
  • the uplink and downlink of bearer 2 are transmitted through LTE.
  • Example 1 The base station sends the system selection information to the UE1, where the uplink LTE transmission of the DRB1 (data radio bearer 1) of the UE1 is indicated, the WLAN transmission is performed, the uplink WLAN transmission of the DRB2 is performed, the LTE transmission is performed, and the uplink and downlink of the DRB3 are performed. Both are transmitted using LTE. Or, the base station sends the system selection information to the UE1, where the WLAN is used to transmit the downlink of the DRB1 and the uplink of the DRB2, and the LTE is used to transmit the uplink of the DRB1, the downlink of the DRB2, and the uplink and downlink of the DRB3. After receiving the system selection information, UE1 performs corresponding transmission (transmission and reception) according to the indication.
  • the uplink LTE transmission of the DRB1 data radio bearer 1
  • the base station sends the system selection information to the UE1, where the WLAN is used to transmit the downlink of the DRB1 and the uplink of the DRB2, and the LTE
  • Example 2 The A DSF or the base station sends the system selection information to the UE, where the transmission rate threshold is 100 kbps, and the UE selects the uplink and downlink IP flows or the APN according to the threshold. For example, if the uplink rate of the APN1 is ⁇ 100 kbps, the downlink rate> 1001:1 ⁇ 3, the APN1 downlink uses WLAN transmission, and the uplink uses LTE transmission. If the APN2 uplink rate is >100kbps and the downlink rate is ⁇ 100kbps, the APN2 uplink uses WLAN transmission, and the downlink uses LTE transmission, if the APN3 uplink and If the downlink rate is less than 100 kbps, the uplink and downlink of APN3 are transmitted by LTE. If the uplink and downlink rates of APN4 are both greater than 100 kbps, the uplink and downlink of APN4 are transmitted by WLAN.
  • Example 3 The A DSF or the base station sends the system selection information to the UE, where the uplink and downlink transmission rate thresholds are 50 kbps and 200 kbps, respectively, and the UE selects the uplink and downlink IP flows and the APN according to the two thresholds, for example, if the IP
  • the uplink rate of stream 1 is ⁇ 50 kbps, and the downlink rate is >200 kbps.
  • the downlink of IP stream 1 is transmitted by WLAN, and the uplink is transmitted by LTE. If the uplink rate of IP stream 2 is >50 kbps and the downlink rate is ⁇ 2001 ⁇ 3, then IP stream 2
  • the uplink is transmitted by WLAN, and the downlink is transmitted by LTE.
  • the uplink and downlink of IP stream 3 are transmitted by LTE, if the uplink rate of IP stream 4 is > 50kbps, downlink rate >200kbps, then the uplink and downlink of IP stream 4 are transmitted by WLAN.
  • Example 4 The ANDSF or the base station sends the system selection information to the UE, where the average packet threshold is 200 bytes, and the UE selects the uplink and downlink IP flows or the APN according to the threshold, for example, if the uplink packet size of the APN1 is Average ⁇ 200 bytes, average downstream packet size The value is > 200 bytes, then the downlink of the APN1 is transmitted by WLAN, and the uplink is transmitted by LTE. If the average value of the uplink packet size of APN2 is >200 bytes, and the average value of the downlink packet size is ⁇ 200 bytes, the uplink WLAN of APN2 is used.
  • APN4 uplink and downlink are transmitted by WLAN.
  • Example 5 The A DSF or the base station sends the system selection information to the UE, where the uplink and downlink data packet size average thresholds are 100 bytes and 500 bytes, respectively, and the UE performs uplink and downlink IP flows according to the two thresholds.
  • APN system selection for example, if the average packet size of IP stream 1 is ⁇ 100 bytes, and the average value of downlink packet size is >500 bytes, then downlink 1 of IP stream 1 is transmitted by WLAN, and uplink is transmitted by LTE, if The average value of the upstream packet size of IP stream 2 is >100 bytes, and the average value of the downlink packet size is ⁇ 500 bytes.
  • the uplink of IP stream 2 is transmitted by WLAN, and the downlink is transmitted by LTE, if the uplink packet size of IP stream 3 is used.
  • the average value is ⁇ 100 bytes, and the average value of the downlink packet size is ⁇ 500 bytes.
  • the uplink and downlink of IP stream 3 are transmitted by LTE. If the average value of the uplink packet size of IP stream 4 is >100 bytes, the downlink packet size is The average value is >500 bytes, and both uplink and downlink of IP stream 4 are transmitted by WLAN.
  • the second embodiment of the present invention provides another method for implementing inter-system shunting.
  • the main difference between this embodiment and the first embodiment is that the uplink or downlink data of a single bearer or IP flow or APN is determined in the first embodiment.
  • a single threshold parameter is used, and in this embodiment, two threshold parameters can be used in determining the format used for the uplink or downlink data transmission of a single bearer or IP stream or APN.
  • the reason for this is that using a single threshold parameter can only generate (uplink or downlink) traffic for large-rate traffic or large packets with one system, small-rate traffic or small packet traffic with another system.
  • the air interface technology such as multi-antenna technology and feedback technology, may have advantages in transmission efficiency for transmitting large data packets or large-rate services. Therefore, after considering the efficiency of air interface transmission and the efficiency of resource competition/utilization, it may It is beneficial to find that using two thresholds.
  • the network selection information includes a transmission rate threshold 1 and a transmission rate threshold 2, if the uplink or downlink rate of the bearer or IP stream or APN is greater than (or greater than or equal to) the transmission rate threshold 1 and less than (or less than or equal to) the transmission rate threshold 2, the first system is used, if the uplink or downlink rate of the bearer or IP stream or APN is less than or equal to (or less than) the transmission rate threshold 1 or greater than or equal to (or greater than) the transmission rate threshold 2, the second system is used;
  • the network selection information includes an uplink transmission rate threshold 1 and an uplink transmission rate threshold 2, a downlink transmission rate threshold 1 and a downlink transmission rate threshold 2, if the uplink rate of the bearer or IP stream or the APN is greater than (or greater than or equal to) the uplink transmission rate threshold 1 and less than (or less than or equal to) the uplink transmission rate threshold 2, the uplink transmission uses the first standard, if the uplink rate of the bearer or IP stream or APN is less than or equal to (or less than) the uplink transmission rate threshold 1 or greater than or equal to (or greater than The uplink transmission rate threshold 2, the uplink transmission uses the second standard; if the downlink rate of the bearer or IP stream or APN is greater than (or greater than or equal to) the downlink transmission rate threshold 1 and less than (or less than or equal to) the downlink transmission rate threshold 2, The downlink transmission uses the first type. If the downlink rate of the bearer or IP stream or APN is less than or equal to (or less than) the downlink transmission rate threshold 1
  • the network selection information includes a packet size average threshold 1 and a packet size average threshold 2, if the average value of the uplink or downlink packet size of the bearer or IP stream or the APN is greater than (or greater than or equal to) the packet size average threshold. 1 and less than (or less than or equal to) the packet size average threshold 2, the first standard is used, if the average value of the uplink or downlink packet size of the bearer or IP stream or APN is less than or equal to (or less than) the packet size average Threshold 1 or greater than or equal to (or greater than) the packet size average threshold 2, then use the second mode;
  • the network selection information includes an uplink packet size average threshold 1 and an uplink packet size average threshold 2, a downlink packet size average threshold 1 and a downlink packet size average threshold 2, if bearer or IP flow or APN
  • the uplink packet size average is greater than (or greater than or equal to) the uplink packet size average threshold is 1 and less than (or less than or equal to) the upstream packet size average threshold 2, then the uplink transmission uses the first standard, if bearer or IP flow Or the APN uplink packet size average value is less than or equal to (or less than) the uplink packet size average threshold 1, or greater than or equal to (or greater than) the uplink packet size average threshold 2, then the uplink transmission uses the second standard; If the downlink packet size average of the bearer or IP stream or APN is greater than (or greater than or equal to) the downlink packet size average threshold is 1 and less than (or less than or equal to) the downlink packet size average threshold is 2, then the downlink transmission uses the first If the average downlink packet size of the bearer or IP stream or A
  • the first standard is the wireless local area network WLAN standard; the second standard is the long-term evolution LTE.
  • Third embodiment is the wireless local area network WLAN standard; the second standard is the long-term evolution LTE.
  • the third embodiment of the present invention provides another method for implementing inter-system shunting.
  • the main difference between this embodiment and the first embodiment is that the first embodiment is a single bearer or IP flow or APN uplink or downlink behavior granularity.
  • the present embodiment is granular in data packets.
  • the appropriate format can be selected for transmission according to the size of each (upstream or downstream) data packet. For example, for large packets (or packet size greater than the given packet size threshold), use or prioritize
  • the WLAN transmits, for small packets (or packet sizes less than and/or equal to a given packet size threshold), using or preferentially using LTE (or 3G) for transmission. It is also possible to make the downlink packet size threshold and the upstream packet size threshold different. In this way, determining a format for transmitting an uplink data packet according to an uplink data packet size and an uplink data packet size threshold; determining a format for transmitting a downlink data packet according to a downlink data packet size and a downlink data packet size threshold; using and uplink data packet size
  • the corresponding standard system performs uplink data packet transmission; the downlink data packet is transmitted by using a system corresponding to the downlink data packet size.
  • Step 201 The network side and the terminal transmit the system selection information.
  • the system selection information includes: a packet size threshold; or, an uplink and downlink packet size threshold.
  • the network side includes: a base station, an access network discovery and selection function unit (ANDSF), a traffic off policy determination node, and a traffic distribution control node.
  • a base station an access network discovery and selection function unit (ANDSF)
  • ANDSF access network discovery and selection function unit
  • traffic off policy determination node a traffic off policy determination node
  • traffic distribution control node a traffic distribution control node
  • Step 202 Determine, according to the obtained system selection information, a system corresponding to each data packet transmission, and perform uplink and/or downlink transmission of the data packet according to a corresponding system.
  • the network side may determine a system corresponding to the data packet transmission according to the obtained system selection information; or, the UE determines a system corresponding to the data packet transmission according to the obtained system selection information.
  • the system selection information is a data packet size threshold
  • the uplink data packet size is greater than the data packet size threshold, determining that the uplink data packet transmission adopts a first standard; if the uplink data packet size is smaller than a data packet size threshold, determining that the uplink data packet transmission adopts a second standard;
  • the downlink packet size is greater than the packet size threshold, determining that the downlink data packet transmission adopts a first standard; if the downlink data packet size is smaller than a data packet size threshold, determining that the downlink data packet transmission adopts a second standard.
  • the system selection information is the uplink and downlink packet size thresholds
  • the uplink data packet size is greater than the uplink data packet size threshold, determining that the uplink data packet transmission adopts a first standard; if the uplink data packet size is smaller than an uplink data packet size threshold, determining that the uplink data packet transmission adopts a second standard;
  • the downlink data packet size is greater than the downlink data packet size threshold, determining that the downlink data packet transmission adopts a first standard; if the downlink data packet size is smaller than a downlink data packet size threshold, determining that the downlink data packet transmission adopts a second standard.
  • the first system is a wireless local area network WLAN system; the second system is a long-term evolution LTE.
  • the load of the WLAN (and the uplink and downlink load of the LTE) has an important influence on the determination or adjustment of the above rules or modes. For example, when the load state of the WLAN is less than the load threshold of the WLAN, the transmission of the small data packet through the WLAN has little effect on the system efficiency, and when the load state of the WLAN is greater than the load threshold of the WLAN, the small data packet is transmitted through the WLAN. System efficiency impacts can be significant.
  • a mode for transmitting a different system according to the packet size selection may be initiated according to the load of the WLAN. For example, when WLAN When the load is above a certain threshold, the mode of selecting the RAT by packet size is started. Or, according to the load of the WLAN, adjust a threshold for selecting a RAT for transmission (for example, an uplink and/or a downlink packet size threshold); or, set two or more groups of network indication information parameters, for example, multiple, for different load levels of the WLA. Threshold for judging whether to use WLAN for different (upstream and/or downlink) packets, such as (upstream and/or downlink) packet size threshold under high load conditions, under low load (upstream and / Or downlink) packet size threshold.
  • the packet size threshold and the uplink or downlink packet size threshold are preset, and the relationship between the uplink packet size threshold and the downlink packet size threshold is not limited herein. Fine data offloading, while diverting the main traffic, avoids the overhead of small packets to WLAN resources, thereby improving the utilization efficiency of the WLAN spectrum, and also improving the traffic that the WLAN frequency can carry. Therefore, the advantages of the two technologies (LTE) and the unlicensed spectrum technology (WLAN) are fully utilized as the data transmission service, which improves the LTE/WLAN networking capacity.
  • LTE long-term evolution
  • WLAN unlicensed spectrum technology
  • the uplink of bearer 1 is transmitted through LTE
  • the downlink is transmitted through WLAN
  • the uplink and downlink of bearer 2 are transmitted through LTE.
  • Example 1 The A DSF or the base station sends the system selection information to the UE, where the packet size threshold is 200 bytes, and the UE selects the uplink and downlink DRB or IP stream or the APN according to the threshold, for example, if the DRB1 uplink packet 1 ⁇ 5 size ⁇ 200 bytes, use LTE transmission, if the uplink data packet 6 ⁇ 8 size>200 bytes, use WLAN transmission, if DRB1 downlink data packet 21 ⁇ 56 size>200 bytes, use WLAN Transmission, if the size of the downlink packets 57 to 78 is ⁇ 200 bytes, LTE transmission is used.
  • the packet size threshold is 200 bytes
  • the UE selects the uplink and downlink DRB or IP stream or the APN according to the threshold, for example, if the DRB1 uplink packet 1 ⁇ 5 size ⁇ 200 bytes, use LTE transmission, if the uplink data packet 6 ⁇ 8 size>200 bytes, use WLAN transmission, if DRB1 downlink data packet 21 ⁇ 56 size>200 by
  • Example 2 The A DSF or the base station sends the system selection information to the UE, where the uplink and downlink data packet size thresholds are 100 bytes and 500 bytes respectively, and the UE performs the uplink and downlink DRB or IP flow and the APN according to the two thresholds.
  • System selection for example, if the upstream packet 1 ⁇ 5 of IP stream 1 is ⁇ 100 bytes, LTE transmission is used, if the uplink packet 6 ⁇ 8 size is >100 bytes, WLAN transmission is used, if downlink data of DRB1 Package 21 56 size > 500 bytes, then use WLAN transmission, if the size of the downlink data packet 57 78 is ⁇ 500 bytes, LTE transmission is used.
  • Example 3 The A DSF or the base station sends the system selection information to the UE, where the uplink and downlink data packet size thresholds of the DRB or the IP stream and the APN are indicated, for example, the uplink and downlink data packet size thresholds indicating the DRB1 are 100 bytes and 500 words, respectively.
  • the uplink and downlink packet size thresholds of the DRB2 are 50 bytes and 200 bytes respectively; the UE selects the upstream and downstream DRB or IP flows and the APN according to these thresholds, for example, if the uplink packets of the DRB1 are 1 ⁇ 5 If the size is ⁇ 100 bytes, then LTE transmission is used. If the uplink data packet is 6 ⁇ 8 size>100 bytes, WLAN transmission is used.
  • the downlink data packet 21 ⁇ 56 of DRB1 is >500 bytes
  • WLAN transmission is used. If the size of the downlink data packets 57 to 78 is ⁇ 500 bytes, the LTE transmission is used; if the uplink data packet of the DRB2 is 1 to 9 size ⁇ 50 bytes, the LTE transmission is used, if the uplink data packet 10 ⁇ 21 size>50 bytes Then, the WLAN transmission is used. If the downlink data packet 31 46 of the DRB2 is >200 bytes, the WLAN transmission is used. If the size of the downlink data packets 47 to 52 is ⁇ 200 bytes, the LTE transmission is used.
  • the average downlink packet size is >500 bytes, then the downlink of the IP stream 1 is transmitted by WLAN, and the uplink is transmitted by LTE. If the average value of the uplink packet size of the IP stream 2 is >100 bytes, the average value of the downlink packet size is ⁇ 500. Byte, the uplink of IP stream 2 is transmitted by WLAN, and the downlink is transmitted by LTE. If the average value of uplink packet size of IP stream 3 is ⁇ 100 bytes, and the average value of downlink packet size is ⁇ 500 bytes, IP stream 3 Both uplink and downlink are transmitted by LTE. If the average value of the uplink packet size of IP stream 4 is >100 bytes and the average value of the downlink packet size is >500 bytes, the uplink and downlink of IP stream 4 are transmitted by WLAN. Fourth embodiment
  • a fourth embodiment of the present invention provides another method for implementing inter-system shunting.
  • the main difference between this embodiment and the third embodiment is that, in the third embodiment, when determining the system used for each data packet transmission, Only a single threshold parameter is used, and in this embodiment, two threshold parameters can be used in determining the format used for uplink or downlink data transmission for each data packet.
  • the reason for this is that using a single threshold parameter can only produce a large data packet with one system, and a small data packet with another system for the shunting effect, but cannot produce a system when the packet size is within a certain range. , while not using the shunting effect of another system.
  • the latter shunting effect may also be beneficial in some scenarios, for example, considering LTE adopts multi-antenna technology and feedback technology in air interface transmission.
  • the air interface technology may also have the advantage of transmission efficiency for transmitting large data packets. Therefore, after considering the air interface transmission efficiency and resource competition/utilization efficiency, it may be beneficial to use two thresholds.
  • the network selection information includes a packet size threshold 1 and a packet size threshold 2, and if the size of the data packet is greater than (or greater than or equal to) the packet size threshold 1 and less than (or less than or equal to) the packet size threshold 2, then The packet transmission uses the first standard. If the size of the data packet is less than or equal to (or less than) the packet size threshold 1, or greater than or equal to (or greater than) the packet size threshold 2, the packet transmission uses the second standard. ;
  • the network selection information includes an uplink data packet size threshold 1 and an uplink data packet size threshold 2, a downlink data packet size threshold 1 and a downlink data packet size threshold 2, if the uplink data packet size is greater than (or greater than or equal to) the uplink data packet size threshold 1 and less than (or less than or equal to) the uplink packet size threshold 2, then the uplink packet transmission uses the first standard, if the uplink packet size is less than or equal to (or less than) the uplink packet size threshold 1 or greater than or equal to (or greater than The uplink data packet size threshold 2, the uplink data packet transmission uses the second standard; if the downlink data packet size is greater than (or greater than or equal to) the downlink data packet size threshold 1 is less than (or less than or equal to) the downlink data packet size threshold 2 The downlink data packet transmission uses the first standard. If the downlink data packet size is less than or equal to (or less than) the downlink data packet size threshold 1 or greater than or equal to (or greater than) the downlink data packet size threshold 2,
  • the first standard is the wireless local area network WLAN standard
  • the second standard is the long-term evolution LTE.
  • 3 is a schematic structural diagram of a device according to a fifth embodiment of the present invention, which includes a first receiving module, a first determining module, and a first transmitting module;
  • the first receiving module is configured to receive the system selection information transmitted by the network side and the terminal; the first determining module is configured to determine, according to the obtained system selection information, a single bearer or an IP stream or an access point name APN corresponding to the uplink or downlink transmission Standard
  • the first transmission module is configured to perform uplink or downlink transmission of the single bearer or IP stream or APN according to a corresponding standard.
  • the system selection information includes a system identifier, or parameter information, for indicating an uplink or downlink transmission of a single bearer or an IP stream or an APN.
  • the parameter information includes: a transmission rate threshold; or, a packet size average threshold.
  • the first determining module is set to:
  • the system corresponding to the uplink or downlink transmission of the single bearer or the IP flow or the APN is as follows:
  • the system corresponding to the single bearer or the IP or the APN of the uplink or downlink transmission corresponds to the standard bearer or the IP or APN uplink or downlink.
  • the format of the transmission is as follows:
  • the first determining module above is set to:
  • the uplink transmission rate of the single bearer or the IP stream or the APN is greater than the transmission rate threshold, it is determined that the uplink transmission of the single bearer or the IP stream or the APN adopts the first standard; if the uplink transmission rate of the single bearer or the IP stream or the APN is smaller than the transmission rate Threshold, determining that the uplink transmission of the foregoing single bearer or IP stream or APN adopts the second standard; or
  • the downlink transmission rate of the single bearer or the IP stream or the APN is greater than the transmission rate threshold, determining that the downlink transmission of the single bearer or the IP stream or the APN is in the first mode; if the downlink transmission rate of the single bearer or the IP stream or the APN is less than When the rate threshold is transmitted, it is determined that the downlink transmission of the single bearer or the IP stream or the APN adopts the second standard.
  • the foregoing transmission rate threshold includes uplink and downlink transmission rate thresholds
  • the first determining module is set to:
  • the uplink transmission rate threshold determines that the uplink transmission of the single bearer or IP stream or APN adopts the first format; if the uplink transmission rate of a single bearer or IP stream or APN is less than The uplink transmission rate threshold is determined to determine that the uplink transmission of the single bearer or IP stream or APN adopts a second standard; or
  • the downlink transmission rate of the single bearer or the IP stream or the APN is greater than the downlink transmission rate threshold, determining that the downlink transmission of the single bearer or IP stream or APN adopts the first format; if the transmission rate of a single bearer or IP stream or APN is less than When the downlink transmission rate threshold is determined, it is determined that the transmission of the single bearer or IP stream or APN adopts the second standard.
  • the first determining module is set to: If the average value of the uplink packet size of a single bearer or IP stream or APN is greater than the packet size average threshold, it is determined that the uplink transmission of the single bearer or IP stream or APN adopts the first standard; if a single bearer or IP flow or APN If the average value of the uplink packet size of the uplink single bearer or the IP stream or the APN is less than the average value of the packet size, the uplink transmission of the single bearer or the IP stream or the APN is determined to be in the second mode; or
  • the average value of the downlink data packet size of a single bearer or IP flow or APN is greater than the average packet size threshold, it is determined that the downlink transmission of the single bearer or IP flow or APN adopts the first standard; if a single bearer or IP flow or When the average value of the downlink packet size of the APN is smaller than the average threshold of the packet size, it is determined that the downlink transmission of the single bearer or IP stream or APN adopts the second standard.
  • the first determining module is set to:
  • the average value of the uplink packet size of a single bearer or IP stream or APN is greater than the average threshold of the uplink packet size, it is determined that the uplink transmission of the single bearer or IP stream or APN is in the first format; if a single bearer or IP stream Or determining that the uplink transmission of the single bearer or the IP stream or the APN of the APN is smaller than the average value of the uplink packet size, and determining that the uplink transmission of the single bearer or the IP stream or the APN adopts the second standard; or
  • the average value of the downlink data packet size of a single bearer or IP flow or APN is greater than the average value of the downlink data packet size, it is determined that the downlink transmission of the single bearer or IP flow or APN is in the first format; if a single bearer or IP When the average value of the downlink packet size of the stream or APN is smaller than the average threshold of the downlink packet size, it is determined that the downlink transmission of the single bearer or IP stream or APN adopts the second standard.
  • the first standard is the wireless local area network WLAN standard
  • the second standard is the long-term evolution LTE.
  • the above device is provided in the terminal or in the base station.
  • the first receiving module receives the system selection information transmitted by the network side; when the device is set in the base station, the first receiving module receives the system selection information transmitted by the terminal.
  • the terminal has the following features:
  • FIG. 4 is a schematic structural diagram of a device for implementing a sixth embodiment of the inter-system shunting, comprising: a second receiving module, a second determining module, and a second transmitting module;
  • a second receiving module configured to receive the system selection information transmitted by the network side and the terminal; the second determining module is configured to determine, according to the obtained system selection information, a format corresponding to each data packet transmission;
  • the second transmission module is configured to perform uplink or downlink transmission of the data packet according to a corresponding system.
  • the system selection information includes a packet size threshold; or, an uplink and downlink packet size threshold.
  • the above second determining module is set to:
  • the uplink data packet size is greater than the data packet size threshold, determining that the uplink data packet transmission uses the first standard; if the uplink data packet size is smaller than the data packet size threshold, determining that the uplink data packet transmission adopts the second standard;
  • the downlink data packet size is greater than the data packet size threshold, it is determined that the downlink data packet transmission adopts the first standard; if the downlink data packet size is smaller than the data packet size threshold, it is determined that the downlink data packet transmission adopts the second standard.
  • the above second determining module is set to:
  • the uplink packet size is greater than the uplink packet size threshold, determining the uplink packet The first mode is used for transmission; if the uplink data packet size is smaller than the uplink data packet size threshold, it is determined that the uplink data packet transmission adopts the second standard;
  • the downlink data packet size is greater than the downlink data packet size threshold, it is determined that the downlink data packet transmission adopts the first standard; if the downlink data packet size is smaller than the downlink data packet size threshold, it is determined that the downlink data packet transmission uses the second standard.
  • the first standard is the wireless local area network WLAN standard
  • the second standard is the long-term evolution LTE.
  • the above device is provided in the terminal or in the base station.
  • the second receiving module receives the system selection information transmitted by the network side; when the device is set in the base station, the second receiving module receives the system selection information transmitted by the terminal.
  • the embodiment of the present invention further provides a computer program, including a program instruction, when the program instruction is executed by a terminal or a network side device, so that the terminal or the network side device can execute the foregoing method.
  • Embodiments of the present invention also provide a carrier carrying the above computer program.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from The steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the embodiment of the invention implements uplink or downlink data transmission for different uplink or downlink transmission of a single bearer or IP stream or APN, and the splitting mode is flexible.

Abstract

一种实现制式间分流的方法及装置,包括:网络侧与终端传递制式选择信息;根据获得的制式选择信息确定单个承载或IP流或接入点名称APN的上行或下行传输对应的制式,并按照对应的制式进行所述单个承载或IP流或APN的上行或下行传输,从而实现了对单个承载或IP流或接入点名称APN的上行或下行传输采用不同的制式进行上行或下行数据传输,分流方式灵活。

Description

一种实现制式间分流的方法及装置
技术领域
本发明涉及无线通信技术领域,尤指一种实现制式间分流的方法及装置。 背景技术
在无线蜂窝通信系统中, 基站( BS, Base Station )是为终端( UE, User Equipment )提供无线接入的设备, 基站与用户设备之间通过电磁波进行无线 通信。 一个基站可以为一个或多个服务小区提供服务, 无线通信系统通过服 务小区可以为一定地理范围内的终端提供无线覆盖。
无线通信系统为了能够大范围的为用户提供无线通信服务, 需要部署覆 盖范围大的基站,这种基站通常称为宏基站( Macro BS, Macro Base Station ), 其服务小区通常称为宏小区(Macro Cell )。 另外, 考虑到用户的不同需求和 不同使用环境, 无线通信系统需要在某些环境或者场景下为用户提供弥补覆 盖空洞或提供更高质量的无线通信服务, 因此一些覆盖范围小、 发射功率较 低的小型基站(或称为传输节点 TP , Transmission Point, )被采用。 这些小 型基站包括微基站 (Pico BS )和仔基站 (Femto BS ) , 其中仔基站也可以称 为家庭基站 (HNB ) 、 毫微微基站或飞基站, 微基站和家庭基站提供的小区 称为微小区 (pico cell )和毫微微小区 (femto cell ) 。 与小型基站对应的节点 又称为低功率节点 ( LPN,Low Power Node ) , 这些节点对应的小区又称为小 小区 (small cell ) 。
除了无线蜂窝通信系统之外, 无线通信系统还包括无线局域网( WLAN, Wireless Local Access Network ) , 其空口标准为 IEEE802.11系列标准, 包括 802.11a, 802.11η, 802.1 lac 等, 它们支持的最高传输速率是不同的。 由于 WLAN频谱是免费的并且 WLAN芯片的成本低廉,接入点( AP, Access Point ) 的部署和应用可以为运营商和用户提供一种廉价的无线接入和负荷分流的途 径。 由于 WLAN AP也是一种低功率节点, 因此运营商在部署 small cell时, 往往在小型基站中集成 WLAN AP, 或者说, 小型基站的典型制式包括长期 演进 LTE网和无线局域网 WLAN 。目前,无线通信技术(包括 LTE和 WLAN ) 正在向第五代(5G )发展。 在这种趋势中, 由小型基站组成的密集 /超密集网 络能够为办公室、 体育馆、 住宅区、 机场等热点区域提供很大的网络容量。
业界已经提出将 WLA 与现有无线蜂窝通信系统网絡进行融合, 实现联 合传输, 以达到负荷分流和提高网络性能的目的。 为此, 接入网发现和选择 功能单元 ( ANDSF , Access Network Discovery Support Functions )提供了一 种根据运营商策略为终端选择目标接入网络的方案。 A DSF通过与终端的交 互协同, 实现网络接入的有效分流, 符合未来多网协同的运营方向。 ANDSF 基于网络负荷、 终端能力、 用户签约情况等信息制定策略, 帮助终端用户选 择最佳接入的网络制式, 实现多种接入方式的协同运营。 ANDSF既可以单独 部署, 也可与其它网元合设。 此外, 基站也可以作为接入网网元为终端提供 用于选择目标接入网络的策略。 然而, 相关技术主要是从负荷分担的角度考 虑的分流策略, 分流的方式不够灵活, 也没有充分考虑从频谱效率的提高的 方面制定分流策略。 发明内容
为了解决上述技术问题, 本发明实施例提供了一种实现制式间分流的方 法及装置, 使得分流方式灵活。
一种制式间分流的方法, 包括:
网络侧与终端传递制式选择信息;
终端或网络侧根据获得的制式选择信息确定单个承载或 IP流或接入点名 称 APN的上行或下行传输对应的制式,并按照对应的制式进行所述单个承载 或 IP流或 APN的上行或下行传输。
较佳地, 所述制式选择信息包括用于表示单个承载或 IP流或 APN的上 行或下行传输对应的制式标识, 或参数信息。
较佳地, 所述参数信息包括: 传输速率门限; 或者,
数据包大小平均值门限。
较佳地, 所述制式选择信息为单个承载或 IP流或 APN的上行或下行传 输对应的制式标识, 所述确定单个承载或 IP流或 APN的上行或下行传输对 应的制式为: 所述单个承载或 IP流或 APN的上行或下行传输对应的制式标识对应的 制式为单个承载或 IP流或 APN的上行或下行传输的制式。
较佳地, 所述参数信息为传输速率门限;
所述确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果单个承载或 IP流或 APN的上行传输速率大于等于传输速率门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单个承 载或 IP流或 APN的上行传输速率小于传输速率门限, 则确定所述单个承载 或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于等于传输速率门限, 则确定所述单个承载或 IP流或 APN的下行传输采用第一制式; 如果单个承 载或 IP流或 APN的下行传输速率小于传输速率门限, 则确定所述单个承载 或 IP流或 APN的下行传输采用第二制式。
较佳地, 所述传输速率门限包括上行和下行传输速率门限, 所述确定单 个承载或 IP流或 APN的上行或下行传输对应的制式为:
如果单个承载或 IP流或 APN的上行传输速率大于等于上行传输速率门 限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单 个承载或 IP流或 APN的上行传输速率小于上行传输速率门限, 则确定所述 单个承载或 IP流或 APN的上行传输釆用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于等于下行传输速率门 限, 则确定所述单个承载或 IP流或 APN的下行传输采用第一制式; 如果单 个承载或 IP流或 APN的下行传输速率小于下行传输速率门限, 则确定所述 单个承载或 IP流或 APN的下行传输采用第二制式。
较佳地, 所述参数信息为数据包大小平均值门限;
所述确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果单个承载或 IP流或 APN的上行数据包大小平均值大于等于数据包 大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一 制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上行数 据包大小平均值小于数据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于等于数据包 大小平均值门限, 则确定所述单个承载或 IP流或 APN的下行传输采用第一 制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于数据包大 小平均值门限, 则确定所述单个承载或 IP流或 APN的下行传输釆用第二制 式。
较佳地, 所述数据包大小平均值门限包括上行和下行数据包大小平均值 门限;
所述确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果单个承载或 IP流或 APN的上行数据包大小平均值大于等于上行数 据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用 第一制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上 行数据包大小平均值小于上行数据包大小平均值门限, 则确定所述单个承载 或 IP流或 APN的上行传输釆用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于等于下行数 据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的下行传输采用 第一制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于下行 数据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的下行传输采 用第二制式。 较佳地,第一制式为无线局域网 WLAN制式;第二制式为长期演进 LTE。 本发明实施例还公开了一种制式间分流的方法, 包括:
网络侧与终端间传递制式选择信息;
终端或网絡侧根据获得的制式选择信息确定每个数据包传输对应的制 式, 并按照对应的制式进行所述数据包的上行和 /或下行传输。
较佳地, 所述制式选择信息包括: 数据包大小门限; 或者, 上行和下行的数据包大小门限。
较佳地, 所述制式选择信息为数据包大小门限; 所述确定每个数据包传输对应的制式为:
如果上行数据包大小大于等于数据包大小门限, 则确定所述上行数据包 传输采用第一制式; 如果上行数据包大小小于数据包大小门限, 则确定所述 上行数据包传输采用第二制式;
如果下行数据包大小大于数据包大小门限, 则确定所述下行数据包传输 采用第一制式; 如果下行数据包大小小于数据包大小门限, 则确定所述下行 数据包传输采用第二制式。
较佳地, 所述制式选择信息为上行和下行数据包大小门限, 所述确定每 个数据包传输对应的制式为:
如果上行数据包大小大于等于上行数据包大小门限, 则确定所述上行数 据包传输采用第一制式; 如果上行数据包大小小于上行数据包大小门限, 则 确定所述上行数据包传输采用第二制式;
如果下行数据包大小大于等于下行数据包大小门限, 则确定所述下行数 据包传输釆用第一制式; 如果下行数据包大小小于下行数据包大小门限, 则 确定所述下行数据包传输釆用第二制式。
较佳地,第一制式为无线局域网 WLAN制式;第二制式为长期演进 LTE。 相应地, 本发明实施例还公开了一种装置, 包括: 第一接收模块、 第一 确定模块, 以及第一传输模块; 其中,
第一接收模块, 设置为接收网络侧与终端传递的制式选择信息; 第一确定模块,设置为根据获得的制式选择信息确定单个承载或 IP流或 接入点名称 APN的上行或下行传输的对应的制式;
第一传输模块,设置为按照对应的制式进行所述单个承载或 IP流或 APN 的上行或下行传输。
较佳地, 所述制式选择信息包括用于表示单个承载或 IP流或 APN的上 行或下行传输对应的制式标识, 或参数信息。
较佳地, 所述参数信息包括: 传输速率门限; 或者,
数据包大小平均值门限。 较佳地, 所述制式选择信息为单个承载或 IP流或 APN的上行或下行传 输对应的制式标识;
所述第一确定模块, 是设置为:
确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 所述单个承载或 IP流或 APN的上行或下行传输对应的制式标识对应的 制式为单个承载或 IP流或 APN的上行或下行传输的制式。
较佳地, 所述参数信息为传输速率门限;
所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行传输速率大于等于传输速率门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单个承 载或 IP流或 APN的上行传输速率小于传输速率门限, 则确定所述单个承载 或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于等于传输速率门限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第一制式; 如果单个承 载或 IP流或 APN的传输速率小于传输速率门限时, 则确定所述单个承载或 IP流或 APN的传输采用第二制式。
较佳地, 所述传输速率门限包括上行和下行传输速率门限;
所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行传输速率大于等于上行传输速率门 限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单 个承载或 IP流或 APN的上行传输速率小于上行传输速率门限, 则确定所述 单个承载或 IP流或 APN的上行传输釆用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于等于下行传输速率门 限时, 则确定所述单个^载或 IP流或 APN的下行传输采用第一制式; 如果 单个承载或 IP流或 APN的传输速率小于下行传输速率门限时, 则确定所述 单个承载或 IP流或 APN的传输采用第二制式。
较佳地, 所述参数信息为数据包大小平均值门限; 所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行数据包大小平均值大于等于数据包 大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一 制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上行数 据包大小平均值小于数据包大小平均值门限时, 则确定所述单个承载或 IP流 或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于等于数据包 大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第 一制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于数据包 大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输釆用第 二制式。
较佳地, 所述数据包大小平均值门限包括上行和下行数据包大小平均值 门限;
所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行数据包大小平均值大于等于上行数 据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用 第一制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上 行数据包大小平均值小于上行数据包大小平均值门限时, 则确定所述单个承 载或 IP流或 APN的上行传输釆用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于等于下行数 据包大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输采 用第一制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于下 行数据包大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传 输釆用第二制式。 较佳地,第一制式为无线局域网 WLAN制式;第二制式为长期演进 LTE。 相应地, 本发明还公开了另一种装置, 至少包括: 第二接收模块、 第二 确定模块, 以及第二传输模块; 其中,
第二接收模块, 设置为接收网络侧与终端传递的制式选择信息; 第二确定模块, 设置为根据获得的制式选择信息确定每个数据包传输对 应的制式;
第二传输模块, 设置为按照对应的制式进行所述数据包的上行或下行传 输。
较佳地, 所述制式选择信息包括: 数据包大小门限; 或者,
上行和下行的数据包大小门限。
较佳地, 所述制式选择信息为数据包大小门限;
所述第二确定模块, 是设置为:
如果上行数据包大小大于等于数据包大小门限, 则确定所述上行数据包 传输采用第一制式; 如果上行数据包大小小于数据包大小门限, 则确定所述 上行数据包传输采用第二制式;
如果下行数据包大小大于等于数据包大小门限, 则确定所述下行数据包 传输釆用第一制式; 如果下行数据包大小小于数据包大小门限, 则确定所述 下行数据包传输采用第二制式。
较佳地, 所述制式选择信息为上行和下行数据包大小门限;
所述第二确定模块, 是设置为:
如果上行数据包大小大于等于上行数据包大小门限, 则确定所述上行数 据包传输采用第一制式; 如果上行数据包大小小于上行数据包大小门限, 则 确定所述上行数据包传输采用第二制式;
如果下行数据包大小大于等于下行数据包大小门限, 则确定所述下行数 据包传输釆用第一制式; 如果下行数据包大小小于下行数据包大小门限, 则 确定所述下行数据包传输釆用第二制式。
较佳地,第一制式为无线局域网 WLAN制式;第二制式为长期演进 LTE。 本发明还公开了一种终端, 包括本发明中上述的任一项装置。 本发明还公开了一种基站, 包括本发明中上述的任一项装置。
本发明实施例还提供一种计算机程序, 包括程序指令, 当该程序指令被 网卡设备执行时, 使得该网卡设备可执行上述方法。
本发明实施例还提供一种载有上述计算机程序的载体。
本发明实施例实现了对单个承载或 IP流或 APN的上行或下行传输采用 不同的制式进行上行或下行数据传输, 分流方式灵活。 附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1为本发明实现制式间分流的第一实施例的方法流程图;
图 2为本发明实现制式间分流的第三实施例的方法流程图;
图 3为本发明实现制式间分流的第五实施例的装置的组成结构示意图; 图 4为本发明实现制式间分流的第六实施例的装置的组成结构示意图。 本发明的较佳实施方式
在密集网络中, 空口效率是网络容量的关键, WLAN在为密集网络提供 大带宽的同时, 在空口效率上也有一些短板, 比如说, WLAN由于使用非授 权频谱, 它采用的载波监听多路访问 /冲突检测 ( CSMA/CA )机制^ ^于竟 争的, 而且从 AP到 UE或者从 UE到 AP都需要在一起竟争传输资源。 参与 竟争的节点和人次(节点 -次)越多, 用于传输有效数据的资源越少, 频谱的 利用效率越低。 另一方面, 为了传输小包所需的资源竟争开销和实际传输小 包的资源之比远高于传输大包的开销和实际传输大包的资源之比。也就是说, 传输的小包越多, 频谱的利用效率也越低。 实际上, 很多典型的业务(例如 视频下载和观看) 的主要业务流是单方向的, 例如视频下载的主要业务流或 者说主要的吞吐量在下行, 而上行只有很少的吞吐量。 并且, 对于视频下载 为代表的业务来说, 下行传输控制协议 (TCP ) 的数据包一般是大包, 通常 介于 500 1500字节,而上行 TCP ACK/NACK—般是小包,通常仅几十字节。 这些数据包从媒体接入控制 (MAC )层看都是业务数据, 都参加资源竟争, 考虑到 WLAN用于传输大包(数据包) 比用于传输小包( TCP ACK/NACK ) 更有效率, 并且一个业务流的吞吐量主要是用于数据包的传输, 分流主要业 务流方向的数据传输对分担和减轻 LTE网络负荷的作用基本上和分流所有的 包传输的作用相同。 这样, 仅将主要业务流方向的数据分流到 WLAN既能充 分利用 WLAN的大带宽, 也能避免 WLAN对于小包传输开销大的短板。
对于不同流量( traffic )为主的单个承载或 IP流或 APN的上行 /下行传输 或者上行和 /或下行数据包大小不同的数据包传输, 采用不同的制式进行传输 的传输效率是不同的。例如,蜂窝系统 LTE (或者 3G )的传输^ ^于调度的, 而 WLAN的传输是基于竟争的, 使用非授权频谱的 WLAN的系统带宽可以 远大于使用授权频谱的蜂窝系统的带宽, 相比而言, WLAN更适合传输大速 率、 大数据包业务。 基于此, 本发明实施例提出了如何将不同业务的上下行 数据通过不同类型频谱的无线接入技术(例如 LTE或 WLAN )即不同的制式 进行数据传输的技术方案。
下面结合附图对本发明具体实施方式作详细描述。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。 第 一实施例
下面结合附图 1 , 对本发明的第一实施例进行说明。 本发明的第一实施例提供了一种实现制式间分流的方法, 本实施例中是 以上行或下行特征参数(如上行或下行流量传输速率门限, 以及上行或下行 数据包大小平均值门限) 来确定传输制式的, 如图 1所示, 包括:
步骤 101, 网络侧与终端传递制式选择信息。
其中, 制式选择信息包括用于表示单个承载或 IP流或 APN的上行或下 行传输对应的制式标识, 或参数信息。
参数信息包括: 传输速率门限; 或者,
数据包大小平均值门限。
网络侧包括: 基站, 接入网发现和选择功能单元(ANDSF ) , 分流策略 确定节点, 分流控制节点 (例如网关) 。
本步骤中需要说明的是, 传递制式选择信息包括: 网络侧向终端 UE传 递制式选择信息; 或者, 终端 UE向网络侧传递制式选择信息。
其中 , 如何传递制式选择信息属于本领域技术人员的惯用技术手段(例 如可以通过 RRC消息, NAS消息, 应用层消息等进行传递), 并不用于限 定本发明的保护范围, 这里不再赘述。
步骤 102, 根据获得的制式选择信息确定单个承载或 IP流或接入点名称
APN的上行或下行传输对应的制式 , 并按照对应的制式进行所述单个承载或 IP流或 APN的上行或下行传输。
本步骤中, 可以是网络侧根据获得的制式选择信息确定单个承载或 IP流 或接入点名称 APN的上行或下行传输对应的制式; 或者,
UE根据获得的制式选择信息确定单个承载或 IP流或接入点名称 APN的 上行或下行传输对应的制式。
当制式选择信息为单个承载或 IP流或 APN的上行或下行传输对应的制 式标识时, 确定上述单个承载或 IP流或 APN的上行或下行传输对应的制式 为:
单个承载或 IP流或 APN的上行或下行传输对应的制式标识对应的制式 为上述单个承载或 IP流或 APN的上行或下行传输的制式。
当参数信息为传输速率门限;
确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果上述单个承载或 IP流或 APN的上行传输速率大于传输速率门限, 则确定上述单个承载或 IP流或 APN的上行传输采用第一制式; 如果上述单 个承载或 IP流或 APN的上行传输速率小于传输速率门限, 则确定上述单个 承载或 IP流或 APN的上行传输釆用第二制式; 或者,
如果上述单个承载或 IP流或 APN的下行传输速率大于传输速率门限, 则确定上述单个承载或 IP流或 APN的下行传输采用第一制式; 如果上述单 个承载或 IP流或 APN的下行传输速率小于传输速率门限, 则确定上述单个 承载或 IP流或 APN的下行传输采用第二制式。
传输速率门限包括上行或下行传输速率门限, 上述确定单个承载或 IP流 或 APN的上^ "或下行传输对应的制式为: 如果上述单个承载或 IP流或 APN的上行传输速率大于上行传输速率门 限, 则确定上述单个承载或 IP流或 APN的上行传输采用第一制式; 如果上 述单个承载或 IP流或 APN的上行传输速率小于上行传输速率门限, 则确定 上述单个承载或 IP流或 APN的上行传输采用第二制式; 或者,
如果上述单个承载或 IP流或 APN的下行传输速率大于下行传输速率门 限时, 则确定上述单个承载或 IP流或 APN的下行传输采用第一制式; 如果 上述单个承载或 IP流或 APN的下行传输速率小于下行传输速率门限时, 则 确定上述单个承载或 IP流或 APN的下行传输采用第二制式。
参数信息为数据包大小平均值门限;
所述确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果所述单个承载或 IP流或 APN的上行数据包大小平均值大于数据包 大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一 制式;如果所述单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上 行数据包大小平均值小于数据包大小平均值门限, 则确定所述单个承载或 IP 流或 APN的上行传输采用第二制式; 或者,
如果所述单个承载或 IP流或 APN的下行数据包大小平均值大于数据包 大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第 一制式; 如果所述单个承载或 IP流或 APN的下行数据包大小平均值小于数 据包大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输采 用第二制式。
数据包大小平均值门限包括上行或下行的数据包大小平均值门限; 上述确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果上述单个承载或 IP流或 APN的上行数据包大小平均值大于上行数 据包大小平均值门限, 则确定上述单个承载或 IP流或 APN的上行传输采用 第一制式; 如果上述单个承载或 IP流或 APN的上行单个承载或 IP流或 APN 的上行数据包大小平均值小于上行数据包大小平均值门限, 则确定上述单个 承载或 IP流或 APN的上行传输采用第二制式; 或者,
如果上述单个承载或 IP流或 APN的下行数据包大小平均值大于下行数 据包大小平均值门限, 则确定上述单个承载或 IP流或 APN的下行传输采用 第一制式; 如果上述单个承载或 IP流或 APN的下行数据包大小平均值小于 下行数据包大小平均值门限, 则确定上述单个承载或 IP流或 APN的下行传 输采用第二制式。 上述方法中, 需要说明的是, 大于包括大于等于或者小于包括小于等于。 其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。 本方法中需要说明的是, 首先, 在 WLAN的负荷状态小于 WLA 的负 荷门限时, 将小数据包通过 WLAN 进行传输对系统效率影响不大, 而在 WLAN的负荷状态大于 WLAN的负荷门限时, 将小数据包通过 WLAN传输 对系统效率影响可能就 4艮大。 因此, 可以根据 WLAN的负荷 (以及 LTE的 上下行负荷)调整上述方法。 例如, 可以根据 WLAN的负荷启动对于上下行 数据选择不同的制式进行传输的模式。例如,当 WLAN负荷高于某一门限时, 启动承载或 IP流或 APN的上下行分别选择 RAT的模式。 或者, 根据 WLAN 的负荷调整用于判断是否使用 WLAN进行传输的门限; 或者, 针对 WLAN 的不同负荷级别设置两组或多组制式选择信息参数, 例如多个用于判断是否 对承载或 IP流或 APN的上行和下行使用 WLAN进行传输的门限。
其次, 根据实际的情况, 可以对上行或下行的数据包大小平均值门限、 上行或下行的流量传输速率门限进行预先设置, 这里并不限制上述门限值的 关系, 另外可以将上述每个门限值分别设置为两个值或者是更细的划分, 这 都是在本发明的保护范围之内的。
最后, 当需要对于承载或 IP流或 APN的上行或下行传输的制式进行转 换时 (例如在承载的业务特征变化时) , 网絡侧 (例如基站或 A DSF 或分 流控制节点 )和终端可以交互上行或下行 switch路径或 RAT制式信令, 其中 包括承载或 IP流或 APN的标识, 上行和 /或下行指示, 目标 RAT信息。 基站 和 UE间可以通过 RRC重配消息, 或 MAC CE进行此类交互。
当 3 GPP基站和 WLAN AP共站时,基站和 AP间的接口可以是私有接口。 而当基站和 WLAN AP不共站时, 如果基站作为分流控制节点, 基站和 AP 间也需要交互将哪些承载的上行和 /或下行分流到 WLAN, 也就是说, 在分流 的添加 /修改 /删除消息 (例如 Se B 添加 /修改消息或 Se B删除消息) 中, 需要带上承载的标识以及上下行指示 (上行和 /或下行指示) 。
通过上面的方法, 可以达到这样的效果: 例如, 承载 1的上行通过 LTE 传输, 下行通过 WLAN传输, 而承载 2的上行和下行都通过 LTE传输。 下 面是一些具体实现的例子:
实例 1 : 基站向 UE1发送制式选择信息, 其中指示 UE1的 DRB1 (数据 无线承载 1 )的上行用 LTE传输,下行为 WLAN传输, DRB2的上行用 WLAN 传输, 下行为 LTE传输, DRB3的上行和下行都用 LTE传输。 或者, 基站向 UE1发送制式选择信息, 其中指示 WLAN用于传输 DRB 1的下行, DRB2的 上行, LTE用于传输 DRB1 的上行、 DRB2的下行, DRB3 的上下行。 UE1 收到制式选择信息后根据指示进行相应的传输(收发) 。
实例 2: A DSF或基站向 UE发送制式选择信息, 其中指示传输速率门 限为 100kbps, UE根据该门限进行上下行 IP流或 APN的制式选择, 例如, 如果 APN1 的上行速率 <100kbps, 下行速率>1001:1^3 , 则 APN1 的下行用 WLAN传输, 上行用 LTE传输, 如果 APN2的上行速率 >100kbps, 下行速率 < 100kbps, 则 APN2的上行用 WLAN传输, 下行用 LTE传输, 如果 APN3 的上行和下行速率都小于 100kbps, 则 APN3的上下行都用 LTE传输, 如果 APN4的上行和下行速率都大于 100kbps, 则 APN4的上下行都用 WLAN传 输。
实例 3: A DSF或基站向 UE发送制式选择信息, 其中指示上行和下行 传输速率门限分别为 50kbps和 200kbps, 则 UE根据这两个门限进行上下行 IP流和 APN的制式选择, 例如, 如果 IP流 1的上行速率 <50kbps, 下行速率 >200kbps, 则 IP流 1的下行用 WLAN传输, 上行用 LTE传输, 如果 IP流 2 的上行速率 >50kbps, 下行速率<2001^^3 , 则 IP流 2的上行用 WLAN传输, 下行用 LTE传输, 如果 IP流 3的上行速率 <50kbps, 下行速率<2001:1^3 , 则 IP流 3的上下行都用 LTE传输, 如果 IP流 4的上行速率〉 50kbps, 下行速率 >200kbps, 则 IP流 4的上下行都用 WLAN传输。
实例 4: ANDSF或基站向 UE发送制式选择信息, 其中指示数据包大小 平均值门限为 200字节, UE根据该门限进行上下行 IP流或 APN的制式选择, 例如, 如果 APN1的上行数据包大小平均值 <200字节, 下行数据包大小平均 值〉 200字节, 则 APN1的下行用 WLAN传输, 上行用 LTE传输, 如果 APN2 的上行数据包大小平均值 >200 字节, 下行数据包大小平均值<200 字节, 则 APN2的上行用 WLAN传输, 下行用 LTE传输, 如果 APN3的上行和下行数 据包大小平均值都小于 200字节,则 APN3的上下行都用 LTE传输,如果 APN4 的上行和下行数据包大小平均值都大于 200 字节, 则 APN4 的上下行都用 WLAN传输。
实例 5: A DSF或基站向 UE发送制式选择信息, 其中指示上行和下行 数据包大小平均值门限分别为 100字节和 500字节, 则 UE才艮据这两个门限 进行上下行 IP流和 APN的制式选择, 例如, 如果 IP流 1的上行数据包大小 平均值 <100字节, 下行数据包大小平均值〉500 字节, 则 IP 流 1 的下行用 WLAN传输, 上行用 LTE传输, 如果 IP流 2的上行数据包大小平均值 >100 字节 , 下行数据包大小平均值<500字节, 则 IP流 2的上行用 WLAN传输, 下行用 LTE传输, 如果 IP流 3的上行数据包大小平均值 <100字节, 下行数 据包大小平均值<500字节, 则 IP流 3的上下行都用 LTE传输, 如果 IP流 4 的上行数据包大小平均值 >100字节,下行数据包大小平均值>500字节,则 IP 流 4的上下行都用 WLAN传输。 第二实施例
本发明的第二实施例提供了另一种实现制式间分流的方法, 本实施例与 第一实施例的主要不同在于, 实施例一中在确定单个承载或 IP流或 APN的 上行或下行数据传输所采用的制式时, 仅使用了单个门限参数, 而在本实施 例中, 在确定单个承载或 IP流或 APN的上行或下行数据传输所采用的制式 时, 可以使用两个门限参数。 这样做的原因在于, 使用单个门限参数只能产 生 (上行或下行) 大速率业务流或大数据包的业务流用一种制式, 小速率业 务流或小数据包业务流用另一种制式的分流效果, 而无法产生当业务流速率 介于一定范围内时或数据包大小平均值介于一定范围内时该业务流用一种制 式, 而不在范围内时用另一种制式的分流效果。 而后面这种分流效果可能在 某些场景下也是有益的, 例如考虑到 LTE在空口传输方面通过多天线技术、 反馈技术等空口技术可能对传输大数据包或者大速率业务也有传输效率上的 优势, 因此, 综合考虑到空口传输效率以及资源竟争 /利用效率以后, 可能会 发现使用两个门限是有好处的。
具体来说, 网络选择信息包括传输速率门限 1 和传输速率门限 2, 如果 承载或 IP流或 APN的上行或下行速率大于 (或大于等于)传输速率门限 1 且小于 (或小于等于)传输速率门限 2, 则使用第一种制式, 如果承载或 IP 流或 APN的上行或下行速率小于等于(或小于)传输速率门限 1或大于等于 (或大于)传输速率门限 2, 则使用第二种制式;
或者 , 网络选择信息包括上行传输速率门限 1 和上行传输速率门限 2 , 下行传输速率门限 1和下行传输速率门限 2 ,如果承载或 IP流或 APN的上行 速率大于 (或大于等于)上行传输速率门限 1且小于 (或小于等于) 上行传 输速率门限 2, 则上行传输使用第一种制式, 如果承载或 IP流或 APN的上行 速率小于等于 (或小于)上行传输速率门限 1或大于等于 (或大于) 上行传 输速率门限 2 , 则上行传输使用第二种制式; 如果承载或 IP流或 APN的下行 速率大于 (或大于等于) 下行传输速率门限 1且小于 (或小于等于) 下行传 输速率门限 2 , 则下行传输使用第一种制式,如果承载或 IP流或 APN的下行 速率小于等于 (或小于) 下行传输速率门限 1或大于等于 (或大于) 下行传 输速率门限 2, 则下行传输使用第二种制式;
或者, 网络选择信息包括数据包大小平均值门限 1和数据包大小平均值 门限 2, 如果承载或 IP流或 APN的上行或下行数据包大小平均值大于(或大 于等于)数据包大小平均值门限 1且小于 (或小于等于)数据包大小平均值 门限 2, 则使用第一种制式, 如果承载或 IP流或 APN的上行或下行数据包大 小平均值小于等于(或小于 )数据包大小平均值门限 1或大于等于(或大于) 数据包大小平均值门限 2, 则使用第二种制式;
或者, 网络选择信息包括上行数据包大小平均值门限 1和上行数据包大 小平均值门限 2, 下行数据包大小平均值门限 1 和下行数据包大小平均值门 限 2, 如果承载或 IP流或 APN的上行数据包大小平均值大于 (或大于等于) 上行数据包大小平均值门限 1且小于 (或小于等于)上行数据包大小平均值 门限 2 , 则上行传输使用第一种制式 , 如果承载或 IP流或 APN的上行数据包 大小平均值小于等于 (或小于)上行数据包大小平均值门限 1 , 或大于等于 (或大于) 上行数据包大小平均值门限 2, 则上行传输使用第二种制式; 如 果承载或 IP流或 APN的下行数据包大小平均值大于 (或大于等于) 下行数 据包大小平均值门限 1且小于 (或小于等于) 下行数据包大小平均值门限 2, 则下行传输使用第一种制式, 如果承载或 IP流或 APN的下行数据包大小平 均值小于等于 (或小于) 下行数据包大小平均值门限 1 , 或大于等于 (或大 于) 下行数据包大小平均值门限 2, 则下行传输使用第二种制式。
其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。 第三实施例
本发明的第三实施例提供了另一种实现制式间分流的方法, 本实施例与 第一实施例的主要不同在于, 实施例一是以单个承载或 IP流或 APN的上行 或下行为粒度的, 而本实施例是以数据包为粒度的。 具体来说, 可以根据每 个 (上行或下行的)数据包的大小, 选择合适的制式进行传输。 例如, 对于 大数据包 (或数据包大小大于给定的数据包大小门限) , 使用或优先使用
WLAN进行传输, 对于小数据包(或数据包大小小于和 /或等于给定的数据包 大小门限) , 使用或优先使用 LTE (或 3G )进行传输。 也可以让下行的数据 包大小门限和上行的数据包大小门限不同。 这样, 根据上行数据包大小和上 行数据包大小门限确定用于传输上行数据包的制式; 根据下行数据包大小和 下行数据包大小门限确定用于传输下行数据包的制式; 使用与上行数据包大 小对应的制式进行上行数据包的传输; 使用与下行数据包大小对应的制式进 行下行数据包的传输。
如图 2所示, 包括:
步骤 201, 网络侧与终端传递制式选择信息。
本步骤与步骤 101的过程一样, 不再重复描述。 其中, 制式选择信息包括: 数据包大小门限; 或者, 上行和下行的数据 包大小门限。
网络侧包括: 基站, 接入网发现和选择功能单元(ANDSF ) , 分流策略 确定节点, 分流控制节点。
步骤 202, 根据获得的制式选择信息确定每个数据包传输对应的制式, 并按照对应的制式进行所述数据包的上行和 /或下行传输。 本步骤中, 可以是网络侧根据获得的制式选择信息确定数据包传输对应 的制式; 或者, UE根据获得的制式选择信息确定数据包传输对应的制式。
根据获得的制式选择信息确定数据包传输对应的制式, 具体包括: 制式选择信息为数据包大小门限;
上述确定每个数据包传输对应的制式为:
如果上述上行数据包大小大于数据包大小门限, 则确定上述上行数据包 传输采用第一制式; 如果上述上行数据包大小小于数据包大小门限, 则确定 上述上行数据包传输采用第二制式;
如果上述下行数据包大小大于数据包大小门限, 则确定上述下行数据包 传输采用第一制式; 如果上述下行数据包大小小于数据包大小门限, 则确定 上述下行数据包传输采用第二制式。
制式选择信息为上行和下行数据包大小门限;
上述确定每个数据包传输对应的制式为:
如果上述上行数据包大小大于上行数据包大小门限, 则确定上述上行数 据包传输采用第一制式;如果上述上行数据包大小小于上行数据包大小门限, 则确定上述上行数据包传输采用第二制式;
如果上述下行数据包大小大于下行数据包大小门限, 则确定上述下行数 据包传输采用第一制式;如果上述下行数据包大小小于下行数据包大小门限, 则确定上述下行数据包传输采用第二制式。
上述方法中, 需要说明的是, 大于包括大于等于或者小于包括小于等于。 其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。 本方法中需要说明的是,首先, WLAN的负荷(以及 LTE的上下行负荷) 对于上述规则或方式的确定或调整有着重要影响。 例如, 在 WLAN的负荷状 态小于 WLAN的负荷门限时, 将小数据包通过 WLAN进行传输对系统效率 影响不大, 而在 WLAN的负荷状态大于 WLAN的负荷门限时, 将小数据包 通过 WLAN传输对系统效率影响可能就艮大。 因此, 可以根据 WLAN的负 荷 (以及 LTE的上下行负荷)调整上述规则。 例如, 可以根据 WLAN的负 荷启动对于按数据包大小选择不同的制式进行传输的模式。 例如, 当 WLAN 负荷高于某一门限时,启动按数据包大小选择 RAT的模式。或者,根据 WLAN 的负荷调整用于选择 RAT 进行传输的门限 (例如上行和 /或下行数据包大小 门限); 或者, 针对 WLA 的不同负荷级别设置两组或多组网络指示信息参 数,例如多个用于判断是否对(上行和 /或下行)不同大小的数据包使用 WLAN 进行传输的门限, 例如高负载情况下的 (上行和 /或下行)数据包大小门限, 低负载情况下 (上行和 /或下行)数据包大小门限。
本方法中, 需要说明的是, 根据实际的情况, 数据包大小门限以及上行 或下行的数据包大小门限进行预先设置, 这里并不限制上行数据包大小门限 和下行数据包大小门限的关系。 精细的数据分流, 在分流主要业务流量的同时, 避免了小数据包对 WLAN资 源的开销, 从而提高了 WLAN频谱的利用效率, 也相当于提升了 WLAN频 可以承载的业务流量。 从而充分的利用了授权频侮技术(LTE ) 和非授权 频谱技术(WLAN ) 两种无线接入技术(RAT )各自的优点为数据传输服务, 提升了 LTE/WLAN组网容量。
通过上面的方法, 可以达到这样的效果: 例如, 承载 1的上行通过 LTE 传输, 下行通过 WLAN传输, 而承载 2的上行和下行都通过 LTE传输。 下 面是一些具体实现的例子:
实例 1 : A DSF或基站向 UE发送制式选择信息, 其中指示数据包大小 门限为 200字节, UE根据该门限进行上下行 DRB或 IP流或 APN的制式选 择, 例如, 如果 DRB1的上行数据包 1~5大小 <200字节, 则使用 LTE传输, 如果上行数据包 6~8大小 >200字节, 则使用 WLAN传输, 如果 DRB1的下 行数据包 21〜56大小 >200字节, 则使用 WLAN传输, 如果下行数据包 57〜78 的大小 <200字节, 则使用 LTE传输。
实例 2: A DSF或基站向 UE发送制式选择信息, 其中指示上行和下行 数据包大小门限分别为 100字节和 500字节, 则 UE根据这两个门限进行上 下行 DRB或 IP流和 APN的制式选择, 例如, 如果 IP流 1的上行数据包 1〜5 大小 <100字节, 则使用 LTE传输, 如果上行数据包 6〜8大小 >100字节, 则 使用 WLAN传输, 如果 DRB1的下行数据包 21 56大小 >500字节, 则使用 WLAN传输, 如果下行数据包 57 78的大小 <500字节, 则使用 LTE传输。 实例 3: A DSF或基站向 UE发送制式选择信息, 其中指示 DRB或 IP 流和 APN的上行和下行数据包大小门限,例如指示 DRB1的上行和下行数据 包大小门限分别为 100字节和 500字节, DRB2的上行和下行数据包大小门 限分别为 50字节和 200字节; 则 UE根据这些门限进行上下行 DRB或 IP流 和 APN的制式选择, 例如, 如果 DRB1的上行数据包 1~5大小 <100字节, 则使用 LTE传输, 如果上行数据包 6~8大小 >100字节, 则使用 WLAN传输, 如果 DRB1的下行数据包 21〜56大小 >500字节, 则使用 WLAN传输, 如果 下行数据包 57〜78的大小 <500字节, 则使用 LTE传输; 如果 DRB2的上行数 据包 1~9大小 <50字节, 则使用 LTE传输, 如果上行数据包 10~21 大小〉50 字节, 则使用 WLAN传输, 如果 DRB2的下行数据包 31 46大小 >200字节, 则使用 WLAN传输, 如果下行数据包 47~52的大小 <200字节, 则使用 LTE 传输。
下行数据包大小平均值>500字节, 则 IP流 1的下行用 WLAN传输, 上 行用 LTE传输, 如果 IP流 2的上行数据包大小平均值〉100字节, 下行数据 包大小平均值 <500字节,则 IP流 2的上行用 WLAN传输,下行用 LTE传输, 如果 IP流 3的上行数据包大小平均值 <100字节,下行数据包大小平均值<500 字节 , 则 IP流 3的上下行都用 LTE传输, 如果 IP流 4的上行数据包大小平 均值 >100字节, 下行数据包大小平均值>500字节, 则 IP流 4的上下行都用 WLAN传输。 第四实施例
本发明的第四实施例提供了另一种实现制式间分流的方法, 本实施例与 第三实施例的主要不同在于, 实施例三中在确定每个数据包传输所釆用的制 式时, 仅使用了单个门限参数, 而在本实施例中, 在确定每个数据包的上行 或下行数据传输所采用的制式时, 可以使用两个门限参数。 这样做的原因在 于, 使用单个门限参数只能产生大数据包用一种制式, 小数据包用另一种制 式的分流效果, 而无法产生当数据包大小介于一定范围内时用一种制式, 而 不在范围内时用另一种制式的分流效果。 而后面这种分流效果可能在某些场 景下也是有益的, 例如考虑到 LTE在空口传输方面通过多天线技术、 反馈技 术等空口技术可能对传输大数据包也有传输效率上的优势, 因此, 综合考虑 到空口传输效率以及资源竟争 /利用效率以后, 可能会发现使用两个门限是有 好处的。
具体来说, 网络选择信息包括数据包大小门限 1 和数据包大小门限 2, 如果数据包的大小大于 (或大于等于)数据包大小门限 1且小于 (或小于等 于)数据包大小门限 2 , 则该数据包传输使用第一种制式, 如果数据包的大 小小于等于 (或小于)数据包大小门限 1 , 或者大于等于 (或大于)数据包 大小门限 2, 则该数据包传输使用第二种制式;
或者, 网络选择信息包括上行数据包大小门限 1和上行数据包大小门限 2, 下行数据包大小门限 1和下行数据包大小门限 2, 如果上行数据包大小大 于 (或大于等于)上行数据包大小门限 1且小于 (或小于等于) 上行数据包 大小门限 2, 则该上行数据包传输使用第一种制式, 如果上行数据包大小小 于等于 (或小于)上行数据包大小门限 1或大于等于 (或大于) 上行数据包 大小门限 2, 则该上行数据包传输使用第二种制式; 如果下行数据包大小大 于 (或大于等于) 下行数据包大小门限 1且小于 (或小于等于) 下行数据包 大小门限 2, 则该下行数据包传输使用第一种制式, 如果下行数据包大小小 于等于 (或小于) 下行数据包大小门限 1或大于等于 (或大于) 下行数据包 大小门限 2, 则该下行数据包传输使用第二种制式。
其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。 图 3是本发明实现制式间分流的第五实施例的装置的组成结构示意图, 包括: 第一接收模块、 第一确定模块, 以及第一传输模块; 其中,
第一接收模块, 设置为接收网络侧与终端传递的制式选择信息; 第一确定模块,设置为根据获得的制式选择信息确定单个承载或 IP流或 接入点名称 APN的上行或下行传输对应的制式;
第一传输模块,设置为按照对应的制式进行所述单个承载或 IP流或 APN 的上行或下行传输。
其中, 制式选择信息包括用于表示单个承载或 IP流或 APN的上行或下 行传输对应的制式标识, 或参数信息。 参数信息包括: 传输速率门限; 或者, 数据包大小平均值门限。
当上述制式选择信息为制式标识; 第一确定模块, 是设置为:
确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 上述单个承载或 IP流或 APN的上行或下行传输对应的制式标识对应的 制式为单个承载或 IP流或 APN的上行或下行传输的制式。
当上述参数信息为传输速率门限;
上述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行传输速率大于传输速率门限, 则确 定上述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单个承载或 IP流或 APN的上行传输速率小于传输速率门限, 则确定上述单个承载或 IP 流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于传输速率门限时, 则 确定上述单个承载或 IP流或 APN的下行传输釆用第一制式; 如果单个承载 或 IP流或 APN的下行传输速率小于传输速率门限时, 则确定上述单个承载 或 IP流或 APN的下行传输采用第二制式。
上述传输速率门限包括上行和下行传输速率门限;
所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行传输速率大于上行传输速率门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单个承 载或 IP流或 APN的上行传输速率小于上行传输速率门限, 则确定所述单个 承载或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于下行传输速率门限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第一制式; 如果单个承 载或 IP流或 APN的传输速率小于下行传输速率门限时, 则确定所述单个承 载或 IP流或 APN的传输采用第二制式。
当参数信息为数据包大小平均值门限;
所述第一确定模块, 是设置为: 如果单个承载或 IP流或 APN的上行数据包大小平均值大于数据包大小 平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上行数据包大 小平均值小于数据包大小平均值门限时,则确定所述单个承载或 IP流或 APN 的上行传输釆用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于数据包大小 平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第一制 式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于数据包大小 平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第二制 式。
当数据包大小平均值门限包括上行或下行数据包大小平均值门限; 所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行数据包大小平均值大于上行数据包 大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输釆用第一 制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上行数 据包大小平均值小于上行数据包大小平均值门限时, 则确定所述单个承载或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于下行数据包 大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输釆用第 一制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于下行数 据包大小平均值门限时 , 则确定所述单个承载或 IP流或 APN的下行传输采 用第二制式。
其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。 上述装置设置在终端中, 或设置在基站中。 当上述装置设置在终端中时, 第一接收模块接收网络侧传递的制式选择信息; 当上述装置设置在基站中时 , 第一接收模块接收终端传递的制式选择信息。
本装置中, 需要说明的是, 终端具有以下特征:
1 ) 有下行流量为主的承载或 IP流或 APN; 2 ) 有上行流量为主的承载或 IP流或 APN;
3 ) 有双向均衡流量为主的承载或 IP流或 APN;
4 ) 可能同时存在以上三者之二或者全部承载或 IP流或 APN;
5 ) 可能同一承载或 IP流或 APN在不同时段表现出不同特征。
可以根据终端的不同特征, 制定不同的策略, 因此这些策略都都需要纳 入本申请的保护范围。 图 4是本发明实现制式间分流的第六实施例的装置的组成结构示意图, 包括: 第二接收模块、 第二确定模块, 以及第二传输模块; 其中,
第二接收模块, 设置为接收网络侧与终端传递的制式选择信息; 第二确定模块, 设置为根据获得的制式选择信息确定每个数据包传输对 应的制式;
第二传输模块, 设置为按照对应的制式进行所述数据包的上行或下行传 输。
其中, 制式选择信息包括数据包大小门限; 或者, 上行和下行的数据包 大小门限。
当上述制式选择信息为数据包大小门限;
上述第二确定模块, 是设置为:
如果上行数据包大小大于数据包大小门限, 则确定上述上行数据包传输 釆用第一制式; 如果上行数据包大小小于数据包大小门限, 则确定上述上行 数据包传输采用第二制式;
如果下行数据包大小大于数据包大小门限, 则确定上述下行数据包传输 采用第一制式; 如果下行数据包大小小于数据包大小门限, 则确定上述下行 数据包传输采用第二制式。
当上述制式选择信息为上行或下行数据包大小门限;
上述第二确定模块, 是设置为:
如果上行数据包大小大于上行数据包大小门限, 则确定上述上行数据包 传输釆用第一制式; 如果上行数据包大小小于上行数据包大小门限, 则确定 上述上行数据包传输采用第二制式;
如果下行数据包大小大于下行数据包大小门限, 则确定上述下行数据包 传输采用第一制式; 如果下行数据包大小小于下行数据包大小门限, 则确定 上述下行数据包传输釆用第二制式。
其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。 上述装置设置在终端中, 或设置在基站中。 当上述装置设置在终端中时, 第二接收模块接收网络侧传递的制式选择信息; 当上述装置设置在基站中时, 第二接收模块接收终端传递的制式选择信息。
本申请中, 如没有特殊的说明, 大于包括大于等于或者小于包括小于等 于。
本发明实施例还提供一种计算机程序, 包括程序指令, 当该程序指令被 终端或网络侧设备执行时, 使得该终端或网络侧设备可执行上述方法。
本发明实施例还提供一种载有上述计算机程序的载体。
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
显然, 本领域的技术人员应该明白, 上述的本发明实施例的各模块或各 步骤可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或 者分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执 行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执 行, 并且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤 制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和 软件结合。 工业实用性
本发明实施例实现了对单个承载或 IP流或 APN的上行或下行传输采用 不同的制式进行上行或下行数据传输, 分流方式灵活。

Claims

权 利 要 求 书
1、 一种实现制式间分流的方法, 包括:
网络侧与终端间传递制式选择信息;
所述终端或所述网絡侧根据获得的制式选择信息确定单个承载或 IP流或 接入点名称 APN的上行或下行传输对应的制式,并按照对应的制式进行所述 单个承载或 IP流或 APN的上行或下行传输。
2、 根据权利要求 1 所述的方法, 其中, 所述制式选择信息包括用于表 示单个承载或 IP流或 APN的上行或下行传输对应的制式标识, 或参数信息。
3、 根据权利要求 2所述的方法, 其中, 所述参数信息包括: 传输速率 门限; 或者,
数据包大小平均值门限。
4、 根据权利要求 2所述的方法, 其中, 所述制式选择信息为单个承载 或 IP流或 APN的上行或下行传输对应的制式标识, 所述确定单个 载或 IP 流或 APN的上行或下行传输对应的制式为:
所述单个承载或 IP流或 APN的上行或下行传输对应的制式标识对应的 制式为单个承载或 IP流或 APN的上行或下行传输的制式。
5、 根据权利要求 3所述的方法, 其中, 所述参数信息为传输速率门限; 所述确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果单个承载或 IP流或 APN的上行传输速率大于等于传输速率门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单个承 载或 IP流或 APN的上行传输速率小于传输速率门限, 则确定所述单个承载 或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于等于传输速率门限, 则确定所述单个承载或 IP流或 APN的下行传输釆用第一制式; 如果单个承 载或 IP流或 APN的下行传输速率小于传输速率门限, 则确定所述单个承载 或 IP流或 APN的下行传输采用第二制式。
6、 权利要求 3 所述的方法, 其中, 所述传输速率门限包括上行和下行 传输速率门限, 所述确定单个承载或 IP流或 APN的上行或下行传输对应的 制式为:
如杲单个承载或 ip流或 APN的上行传输速率大于等于上行传输速率门 限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单 个承载或 IP流或 APN的上行传输速率小于上行传输速率门限, 则确定所述 单个承载或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于等于下行传输速率门 限, 则确定所述单个承载或 IP流或 APN的下行传输采用第一制式; 如果单 个承载或 IP流或 APN的下行传输速率小于下行传输速率门限, 则确定所述 单个承载或 IP流或 APN的下行传输釆用第二制式。
7、 根据权利要求 3 所述的方法, 其中, 所述参数信息为数据包大小平 均值门限;
所述确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果单个承载或 IP流或 APN的上行数据包大小平均值大于等于数据包 大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一 制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上行数 据包大小平均值小于数据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于等于数据包 大小平均值门限, 则确定所述单个承载或 IP流或 APN的下行传输釆用第一 制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于数据包大 小平均值门限, 则确定所述单个承载或 IP流或 APN的下行传输采用第二制 式。
8、 根据权利要求 3 所述的方法, 其中, 所述数据包大小平均值门限包 括上行和下行数据包大小平均值门限;
所述确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 如果单个承载或 IP流或 APN的上行数据包大小平均值大于等于上行数 据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输釆用 第一制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上 行数据包大小平均值小于上行数据包大小平均值门限, 则确定所述单个承载 或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于等于下行数 据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的下行传输釆用 第一制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于下行 数据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的下行传输采 用第二制式。
9、 根据权利要求 5 或 7 所述的方法, 其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。
10、 一种实现制式间分流的方法, 包括:
网络侧与终端间传递制式选择信息;
所述终端或所述网络侧根据获得的制式选择信息确定每个数据包传输对 应的制式, 并按照对应的制式进行所述数据包的上行和 /或下行传输。
11、 根据权利要求 10所述的方法, 其中, 所述制式选择信息包括: 数据包大小门限; 或者,
上行和下行的数据包大小门限。
12、 根据权利要求 11所述的方法, 其中, 所述制式选择信息为数据包大 小门限;
所述确定每个数据包传输对应的制式为:
如果上行数据包大小大于等于数据包大小门限, 则确定所述上行数据包 传输采用第一制式; 如果上行数据包大小小于数据包大小门限, 则确定所述 上行数据包传输采用第二制式;
如果下行数据包大小大于等于数据包大小门限, 则确定所述下行数据包 传输采用第一制式; 如果下行数据包大小小于数据包大小门限, 则确定所述 下行数据包传输采用第二制式。
13、 权利要求 10所述的方法, 其中, 所述制式选择信息为上行和下行数 据包大小门限, 所述确定每个数据包传输对应的制式为:
如果上行数据包大小大于等于上行数据包大小门限, 则确定所述上行数 据包传输采用第一制式; 如果上行数据包大小小于上行数据包大小门限, 则 确定所述上行数据包传输采用第二制式;
如果下行数据包大小大于等于下行数据包大小门限, 则确定所述下行数 据包传输采用第一制式; 如果下行数据包大小小于下行数据包大小门限, 则 确定所述下行数据包传输采用第二制式。
14、 根据权利要求 12或 13所述的方法, 其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。
15、 一种实现制式间分流的装置, 包括: 第一接收模块、 第一确定模块, 以及第一传输模块; 其中,
所述第一接收模块, 设置为接收网络侧与终端传递的制式选择信息; 所述第一确定模块, 设置为根据获得的制式选择信息确定单个承载或 IP 流或接入点名称 APN的上行或下行传输的对应的制式;
所述第一传输模块,设置为按照对应的制式进行所述单个承载或 IP流或
APN的上行或下行传输。
16、 根据权利要求 15所述的装置, 其中, 所述制式选择信息包括用于表 示单个承载或 IP流或 APN的上行或下行传输对应的制式标识, 或参数信息。
17、 根据权利要求 16所述的装置, 其中, 所述参数信息包括: 传输速率 门限; 或者,
数据包大小平均值门限。
18、 根据权利要求 16所述的装置, 其中, 所述制式选择信息为单个承载 或 IP流或 APN的上行或下行传输对应的制式标识;
所述第一确定模块, 是设置为:
确定单个承载或 IP流或 APN的上行或下行传输对应的制式为: 所述单个承载或 IP流或 APN的上行或下行传输对应的制式标识对应的 制式为单个承载或 IP流或 APN的上行或下行传输的制式。
19、 根据权利要求 17所述的装置,其中,所述参数信息为传输速率门限; 所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行传输速率大于等于传输速率门限, 则确定所述单个承载或 IP流或 APN的上行传输釆用第一制式; 如果单个承 载或 IP流或 APN的上行传输速率小于传输速率门限, 则确定所述单个承载 或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于等于传输速率门限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第一制式; 如果单个承 载或 IP流或 APN的传输速率小于传输速率门限时, 则确定所述单个承载或 IP流或 APN的传输采用第二制式。
20、 根据权利要求 17所述的装置, 其中, 所述传输速率门限包括上行和 下行传输速率门限;
所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行传输速率大于等于上行传输速率门 限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一制式; 如果单 个承载或 IP流或 APN的上行传输速率小于上行传输速率门限, 则确定所述 单个承载或 IP流或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行传输速率大于等于下行传输速率门 限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第一制式; 如果 单个承载或 IP流或 APN的传输速率小于下行传输速率门限时 , 则确定所述 单个承载或 IP流或 APN的传输采用第二制式。
21、 根据权利要求 17所述的装置, 其中, 所述参数信息为数据包大小平 均值门限;
所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行数据包大小平均值大于等于数据包 大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用第一 制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上行数 据包大小平均值小于数据包大小平均值门限时, 则确定所述单个承载或 IP流 或 APN的上行传输采用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于等于数据包 大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输采用第 一制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于数据包 大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输釆用第 二制式。
22、 根据权利要求 21所述的装置, 其中, 所述数据包大小平均值门限包 括上行和下行数据包大小平均值门限;
所述第一确定模块, 是设置为:
如果单个承载或 IP流或 APN的上行数据包大小平均值大于等于上行数 据包大小平均值门限, 则确定所述单个承载或 IP流或 APN的上行传输采用 第一制式;如果单个承载或 IP流或 APN的上行单个承载或 IP流或 APN的上 行数据包大小平均值小于上行数据包大小平均值门限时, 则确定所述单个承 载或 IP流或 APN的上行传输釆用第二制式; 或者,
如果单个承载或 IP流或 APN的下行数据包大小平均值大于等于下行数 据包大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传输采 用第一制式; 如果单个承载或 IP流或 APN的下行数据包大小平均值小于下 行数据包大小平均值门限时, 则确定所述单个承载或 IP流或 APN的下行传 输釆用第二制式。
23、 根据权利要求 19或 21所述的装置, 其中, 第一制式为无线局域网
WLAN制式; 第二制式为长期演进 LTE。
24、 一种实现制式间分流的装置, 包括: 第二接收模块、 第二确定模块, 以及第二传输模块; 其中,
所述第二接收模块, 设置为接收网络侧与终端传递的制式选择信息; 所述第二确定模块, 用于根据获得的制式选择信息确定每个数据包传输 对应的制式;
所述第二传输模块, 用于按照对应的制式进行所述数据包的上行或下行 传输。
25、 根据权利要求 24所述的装置, 其中, 所述制式选择信息包括: 数据 包大小门限; 或者,
上行和下行的数据包大小门限。
26、 根据权利要求 25所述的装置, 其中, 所述制式选择信息为数据包大 小门限;
所述第二确定模块, 是设置为:
如果上行数据包大小大于等于数据包大小门限, 则确定所述上行数据包 传输釆用第一制式; 如果上行数据包大小小于数据包大小门限, 则确定所述 上行数据包传输釆用第二制式;
如果下行数据包大小大于等于数据包大小门限, 则确定所述下行数据包 传输采用第一制式; 如果下行数据包大小小于数据包大小门限, 则确定所述 下行数据包传输采用第二制式。
27、 权利要求 25所述的装置, 其中, 所述制式选择信息为上行和下行数 据包大小门限;
所述第二确定模块, 是设置为:
如果上行数据包大小大于等于上行数据包大小门限, 则确定所述上行数 据包传输釆用第一制式; 如果上行数据包大小小于上行数据包大小门限, 则 确定所述上行数据包传输釆用第二制式;
如果下行数据包大小大于等于下行数据包大小门限, 则确定所述下行数 据包传输采用第一制式; 如果下行数据包大小小于下行数据包大小门限, 则 确定所述下行数据包传输采用第二制式。
28、 根据权利要求 26或 27所述的装置, 其中, 第一制式为无线局域网 WLAN制式; 第二制式为长期演进 LTE。
29、 一种终端, 包括如权利要求 15-23任意一项所述的装置。
30、 一种终端, 包括如权利要求 24-28任意一项所述的装置。
31、 一种基站, 包括如权利要求 15-23任意一项所述的装置。
32、 一种基站, 包括如权利要求 24-28任意一项所述的装置。
33、 一种计算机程序, 包括程序指令, 当该程序指令被终端或者网络侧 设备执行时, 使得该基站或网络侧设备可执行权利要求 1-14任一项所述的方 法。
34、 一种载有权利要求 33所述计算机程序的载体。
PCT/CN2014/082777 2014-04-04 2014-07-23 一种实现制式间分流的方法及装置 WO2015149452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410135816.5A CN104980970A (zh) 2014-04-04 2014-04-04 一种实现制式间分流的方法及装置
CN201410135816.5 2014-04-04

Publications (1)

Publication Number Publication Date
WO2015149452A1 true WO2015149452A1 (zh) 2015-10-08

Family

ID=54239351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082777 WO2015149452A1 (zh) 2014-04-04 2014-07-23 一种实现制式间分流的方法及装置

Country Status (2)

Country Link
CN (1) CN104980970A (zh)
WO (1) WO2015149452A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021078170A1 (zh) * 2019-10-22 2021-04-29 华为技术有限公司 一种通信方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682150A (zh) * 2016-02-25 2016-06-15 努比亚技术有限公司 多链路智能分流方法及移动终端
GB2548905B (en) * 2016-04-01 2021-07-28 Tcl Communication Ltd Systems and methods for RAN-WLAN aggregation
CN108235377A (zh) * 2016-12-14 2018-06-29 中兴通讯股份有限公司 一种上行数据的传输方法、装置及设备
CN112566182B (zh) * 2019-09-25 2022-06-28 上海华为技术有限公司 网络协同控制方法、控制器、控制系统、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119314A (zh) * 2007-09-14 2008-02-06 中国科学院计算技术研究所 一种多模终端业务流的控制系统和装置以及方法
CN102457905A (zh) * 2010-10-19 2012-05-16 中兴通讯股份有限公司 多制式组网无线资源管理方法、多制式网络及装置
CN102547915A (zh) * 2010-12-27 2012-07-04 天津海润恒通高性能计算系统科技有限公司 一种无线通信系统的多制式多版本控制方法和装置
CN102857999A (zh) * 2012-05-14 2013-01-02 中兴通讯股份有限公司 多模终端及多模终端的业务实现方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212761A (zh) * 2006-12-30 2008-07-02 华为技术有限公司 多制式通信网络中实现无线资源管理的系统、装置及方法
CN101626554A (zh) * 2009-08-13 2010-01-13 中兴通讯股份有限公司 一种多模移动终端及其下载资源的方法
CN102523590B (zh) * 2012-01-05 2014-07-30 北京邮电大学 多制式智能可配的无线网络的规划方法
CN102970711B (zh) * 2012-11-19 2015-11-25 华为技术有限公司 基于多种制式网络的数据传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119314A (zh) * 2007-09-14 2008-02-06 中国科学院计算技术研究所 一种多模终端业务流的控制系统和装置以及方法
CN102457905A (zh) * 2010-10-19 2012-05-16 中兴通讯股份有限公司 多制式组网无线资源管理方法、多制式网络及装置
CN102547915A (zh) * 2010-12-27 2012-07-04 天津海润恒通高性能计算系统科技有限公司 一种无线通信系统的多制式多版本控制方法和装置
CN102857999A (zh) * 2012-05-14 2013-01-02 中兴通讯股份有限公司 多模终端及多模终端的业务实现方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021078170A1 (zh) * 2019-10-22 2021-04-29 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN104980970A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
EP3213594B1 (en) Network selection and data aggregation with lte-wlan aggregation
US11510223B2 (en) Wireless data priority services
CN107113656B (zh) 用于lte-wlan聚合的qos保障
JP7084409B2 (ja) 無線通信システムにおけるlte/nrインターワーキングのサポートのためのインターフェースを管理する方法及び装置
CN105144833B (zh) 在无线通信系统中发送停用指示的方法和设备
JP6433084B2 (ja) 複数の通信システムで基地局を探索する方法及びこのための装置
EP3142415B1 (en) User equipment and communication control method
US11297535B2 (en) Methods and apparatus for integration of wireless wide area networks with wireless local area networks
TWI486088B (zh) 在無線網路及蜂巢式網路之間的互通基地台
EP3086589B1 (en) Core network device, access network device, data distribution method and system
JP2022095657A (ja) ロングタームエボリューション通信システムのためのマルチテクノロジアグリゲーションアーキテクチャ
Ling et al. Enhanced capacity and coverage by Wi-Fi LTE integration
EP2962503A1 (en) Communication terminal, network component, base station and method for a direct communication
WO2012107004A1 (zh) 一种基于服务质量的调度方法、设备及系统
CN107071816B (zh) 一种基于异构融合网络的流量管理方法及系统
WO2016155292A1 (zh) 一种获取接入技术网络间传输时延的方法及装置
WO2015149452A1 (zh) 一种实现制式间分流的方法及装置
WO2017139211A1 (en) Traffic management of wireless devices attached to a relay node
WO2014169718A1 (zh) 一种无线资源管理方法、宏基站及低功率节点
WO2014017873A2 (ko) 2이상의 무선접속기술(radio access technology, RAT)을 이용한 신호 송수신을 지원하기 위한 방법 및 이를 위한 장치
WO2016119423A1 (zh) 网络连接方法及装置
WO2015125698A1 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
WO2016029409A1 (zh) 一种数据传输方法及装置
WO2015058335A1 (zh) 数据分流控制装置和方法
WO2021241507A1 (ja) 基地局、基地局の制御方法、及びセルラ通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888504

Country of ref document: EP

Kind code of ref document: A1