WO2015146959A1 - Reflecting sheet, reflection unit for surface light source device, and surface light source device - Google Patents

Reflecting sheet, reflection unit for surface light source device, and surface light source device Download PDF

Info

Publication number
WO2015146959A1
WO2015146959A1 PCT/JP2015/058853 JP2015058853W WO2015146959A1 WO 2015146959 A1 WO2015146959 A1 WO 2015146959A1 JP 2015058853 W JP2015058853 W JP 2015058853W WO 2015146959 A1 WO2015146959 A1 WO 2015146959A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light source
sheet
reflection
reflective sheet
Prior art date
Application number
PCT/JP2015/058853
Other languages
French (fr)
Japanese (ja)
Inventor
若原隆一
河田融司
田中正太郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015532239A priority Critical patent/JP6540508B2/en
Priority to KR1020167028302A priority patent/KR102362100B1/en
Priority to CN201580015615.4A priority patent/CN106133561B/en
Publication of WO2015146959A1 publication Critical patent/WO2015146959A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V11/00Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00
    • F21V11/08Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using diaphragms containing one or more apertures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the present invention relates to a reflective sheet and a surface light source device used for a surface light source device used in a display device such as a backlight of a liquid crystal display (LCD backlight), a signboard for illumination, an automobile, and a vehicle.
  • a display device such as a backlight of a liquid crystal display (LCD backlight), a signboard for illumination, an automobile, and a vehicle.
  • LCD backlight liquid crystal display
  • a surface light source device used for a backlight unit of a liquid crystal display generally has a configuration in which a reflection sheet is provided on the back surface of the light source.
  • the backlight unit using this surface light source device generally has a configuration in which an optical sheet such as a light diffusion film is disposed at a position facing the reflection sheet of the surface light source device.
  • An LED (light emitting diode) light source is generally used for these surface light source devices.
  • the LED light source is provided with a lens for enhancing the directivity of light, it has been a cause of cost increase.
  • a reflection sheet (lower reflection sheet) is provided on the back surface of the light source (the side opposite to the direction in which the surface light source device emits light), and faces the light source and the lower reflection sheet.
  • An upper reflection sheet having a reflection part that reflects light emitted from a light source and a transmission part that transmits light is arranged (Patent Documents 1 to 3).
  • a light reflection region (reflection portion) and a light transmission region (transmission portion) are provided as an upper reflection sheet by providing an opening pattern composed of a plurality of transmission holes (openings) for transmitting light to the reflection sheet. ) Is formed.
  • the reflection sheet used in the surface light source device In reality, it is difficult for the reflection sheet used in the surface light source device to reduce the light transmittance of the reflection sheet itself to 0% because of the configuration, material cost, and the like. (For example, the light transmittance is about 0.5 to 20%). In the case of a reflection sheet in a conventional surface light source device (a reflection sheet disposed on the back surface of a light source), light transmitted through the reflection sheet is not used, and thus the transmission color of the reflection sheet is not considered.
  • an object of the present invention is to provide a reflection sheet in which unevenness in emission color is suppressed in a reflection sheet disposed opposite to the light source of the surface light source device, a surface light source device using the reflection sheet, and the like.
  • the present invention has the following configuration. (1) A reflection sheet disposed opposite to a light source of a surface light source device, the reflection sheet having a reflection part for reflecting light from the light source and a transmission part for transmitting light from the light source, and reflecting Reflective sheet having a transmitted yellowness (YI) of 50 parts or less, particularly preferably 30 or less.
  • YI transmitted yellowness
  • the reflection sheet wherein the transmission part is a through hole.
  • the reflection sheet is a reflection film in which a layer (A layer) for supporting the B layer is laminated on both surfaces of a layer containing air bubbles (B layer).
  • the reflective sheet according to any one of the above.
  • the reflection sheet By using the reflection sheet, the reflection unit for a surface light source device, and the surface light source device of the present invention, it is possible to suppress uneven emission color of the surface light source device. According to a preferred aspect of the present invention, a surface light source device with uniform brightness can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a surface light source device in which the reflection sheet of the present invention is used.
  • FIG. 2 is a schematic plan view showing an example of the reflection sheet of the present invention.
  • FIG. 3 is a schematic cross-sectional view of FIG.
  • FIG. 4 is a schematic plan view showing another embodiment of the reflection sheet of the present invention. It is a cross-sectional schematic diagram of the simple surface light source device used for an Example.
  • FIG. 1 is a schematic cross-sectional view showing the main part of the surface light source device.
  • This surface light source device is used for a backlight unit of a liquid crystal display, for example.
  • a light source 1 a lower reflective sheet 2 that reflects light, an upper reflective sheet 3 that reflects light, and a side reflective sheet 4 that reflects light are arranged in a casing 5.
  • the lower reflective sheet 2 is disposed on the back surface of the light source 1, and the upper reflective sheet 3 is disposed at a position facing the light source 1.
  • the lower reflective sheet 2 and the upper reflective sheet 3 are arranged in parallel so that almost the entire surface is equally spaced.
  • the lower reflective sheet 2 may be integrally formed with the side reflective sheet 4, or separate reflective sheets may be arranged respectively.
  • a point light source such as an LED (light emitting diode) is preferably used as the light source.
  • the reflective sheet of the present invention is used as the upper reflective sheet 3.
  • the term upper reflective sheet may be used as the reflective sheet of the present invention.
  • the upper reflection sheet 3 has a reflection part 6 that reflects light emitted from the light source and a transmission part 7 that transmits light emitted from the light source 1.
  • the transmission part 7 can be comprised by several opening part, for example, as shown in FIG.2 and FIG.4.
  • the opening is preferably a through hole obtained by a penetrating operation.
  • the area other than the transmission part 7 is a reflection part.
  • the light emitted from the light source 1 is a reflective sheet (the lower reflective sheet 2, the upper reflective sheet 3, and the side surface) disposed in the surface light source device 11.
  • the light is reflected by the reflective sheet 4) or transmitted through the transmission part 7 of the upper reflective sheet 3 and emitted upward while repeating reflection between the lower reflective sheet and the upper reflective sheet.
  • a part of the light emitted from the light source 1 may be directly transmitted through the transmission part 7 of the upper reflection sheet 3.
  • the light emitted from the light source 1 and reflected by the reflecting portion 6 of the upper reflecting sheet 3 is reflected by the lower reflecting sheet 2 and the side reflecting sheet 4 or while being repeatedly reflected between these reflecting sheets.
  • the light passes through the transmission part 7 of the sheet 3 and exits upward.
  • a part of the light hitting the reflection part 6 of the upper reflection sheet 3 passes through the reflection part 6 and is emitted upward. That is, the light that passes through the transmissive part 7 of the upper reflective sheet 3 becomes the main light emitted from the surface light source device, but the light that passes through the reflective part 6 also constitutes a part thereof.
  • the transmission yellowness (YI) in the reflection part of the upper reflection sheet of the present invention is preferably 50 or less, more preferably 40 or less, still more preferably 35 or less, and particularly preferably 30 or less.
  • the transmission yellowness (YI) of the reflection sheet of the present invention varies depending on the material, composition, thickness and the like constituting the reflection portion, the transmission yellowness (YI) can be controlled by adjusting these. Details will be described later.
  • the reflection part of the reflection sheet of the present invention has some light transmission.
  • the total light transmittance of the reflecting portion in the reflecting sheet is generally about 0.5 to 20%, but the total light transmittance of the reflecting sheet of the present invention is preferably 0.5 to 10%.
  • the total light transmittance in the reflecting portion of the reflecting sheet of the present invention is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less.
  • the lower limit of the total light transmittance in the reflecting portion is preferably 0.5% or more, but 1.2% or more is more preferable from the viewpoint of giving an appropriate gradation to the amount of light transmitted through the reflecting sheet and the transmitted color. 0.5% or more is more preferable, 2.0% or more is particularly preferable, and 3.0% or more is most preferable. By applying an appropriate gradation, emission color unevenness can be reduced.
  • the average reflectance at a wavelength of 400 to 700 nm in the reflecting portion of the reflecting sheet of the present invention is preferably 90% or more, more preferably 95% or more, and particularly preferably 100% or more.
  • the upper limit of the average reflectance is about 150%.
  • the reflectance is a relative reflectance with respect to the standard white plate.
  • a part number 210-0740 manufactured by Hitachi Keiki Service Co., Ltd. can be used for the standard white plate.
  • a through-hole is provided in a part of a reflection member whose entire surface is a reflection portion to form an opening, which is used as a transmission portion.
  • a preferred embodiment of the reflective sheet of the present invention is a reflective portion other than the transmissive portion.
  • the reflective sheet of the present invention has a reflective part and a transmissive part, and the material and composition of the reflective sheet are not particularly limited as long as the transmission yellowness (YI) of the reflective part is not more than a specific value.
  • an opening is provided in a reflection member whose entire surface is a reflection portion, and the opening is used as a transmission portion.
  • a reflective film is preferably used as such a reflective member.
  • a layer for supporting the B layer (hereinafter referred to as A layer) is laminated on at least one surface of a layer containing bubbles (hereinafter referred to as B layer).
  • B layer a layer containing bubbles
  • the A layer may be laminated only on one side of the B layer, or two A layers (hereinafter referred to as A1 layer and A2 layer, respectively) may be laminated on both sides of the B layer.
  • A1 layer and A2 layer two A layers
  • A1 layer / B layer / A2 layer is preferable from the viewpoint of ensuring good workability (formation of a transmission part) and obtaining high rigidity.
  • the A1 layer and the A2 layer may have the same composition and the same thickness, or may be different.
  • the reflection sheet obtained by forming the transmission part on these reflection films is arranged so that the surface of the A layer faces the light source.
  • the surface of the A layer is disposed opposite to the light source to be a reflecting portion
  • the surface is arranged to face the light source and becomes a reflection portion.
  • the A1 layer and the A2 layer may be configured with exactly the same composition or may be configured with different compositions, but from the viewpoint of the productivity of the reflective film, the A1 layer And the A2 layer preferably have the same composition.
  • the A1 layer and the A2 layer may be collectively referred to as “A layer”, and the expression “A layer” includes the A layer in the case of the two-layer configuration and the A1 in the case of the three-layer configuration. Layers and A2 layers are included.
  • the amount of various materials contained in the A layer indicates the amount per one of the A layer and the A2 layer in the case of the A layer in the case of the two-layer configuration and the three-layer configuration.
  • the A layer has a function of supporting the B layer, and further has a function of adjusting the center line average roughness Ra of the reflecting portion to 100 nm or less as described later.
  • the A layer is preferably a layer containing a resin as a main component.
  • the layer A is “a layer containing a resin as a main component” means that the resin contains 50% by mass or more of resin with respect to 100% by mass of the total solid content of the A layer.
  • the A layer preferably contains 60% by mass or more of resin, more preferably 70% by mass or more, and particularly preferably 80% by mass or more. The upper limit is about 99% by mass.
  • a polyester resin is preferable.
  • a polyester resin polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable.
  • various known additives such as an antioxidant and an antistatic agent may be added to the polyester resin.
  • the content of the polyester resin constituting the A layer is preferably 50% by mass or more, more preferably 60% by mass or more, particularly preferably 70% by mass or more based on the total amount of the resin constituting the A layer. The upper limit is about 99% by mass.
  • the layer A preferably contains particles. By including particles in the A layer, an appropriate slip property can be imparted to the reflective film. By providing slip properties to the reflective film, handling properties and workability for creating through holes are improved.
  • Examples of the particles contained in the A layer include organic particles and inorganic particles.
  • Examples of the organic particles include polyester resins, polyamide resins such as benzoguanamine, polyurethane resins, acrylic resins, methacrylic resins, polyamide resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyacetic acids.
  • examples thereof include particles made of a resin such as a vinyl resin, a fluorine-based resin, and a silicone resin, and particles made of two or more copolymers of the above resins and a mixture thereof.
  • Inorganic particles include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, zinc sulfide, calcium phosphate, silica, alumina, mica, titanium mica, talc, clay, kaolin, fluoride. And lithium fluoride and calcium fluoride.
  • inorganic particles are preferable, and among the inorganic particles, calcium carbonate, titanium oxide, barium sulfate, and silica are preferably used.
  • the average particle diameter of the particles is suitably in the range of 0.05 to 10 ⁇ m, preferably in the range of 0.1 to 5 ⁇ m, and more preferably in the range of 0.2 to 3 ⁇ m.
  • the content of particles in the A layer is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more with respect to the total solid content of the A layer.
  • the upper limit content is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less, based on the total solid content of the A layer.
  • the content of the particles is less than 0.005% by mass, good sliding properties may not be obtained.
  • the content of the particles exceeds 20% by mass, the film forming property may be deteriorated.
  • the reflection sheet obtained by forming the transmission part on the reflection film is arranged so that the surface of the A layer faces the light source. That is, in the case of a two-layer configuration, the surface of the A layer is a reflection portion, and in the case of a three-layer configuration, the A1 layer or the A2 layer is a reflection portion.
  • the reflective part of the reflective sheet of the present invention preferably has a higher smoothness.
  • the smoothness of the reflecting portion By increasing the smoothness of the reflecting portion, the irregular reflection of the light reflected by the reflecting portion of the reflecting sheet is suppressed, so that a decrease in the amount of light in a region far from the light source is suppressed. As a result, the brightness of the portion directly above the light source and the peripheral portion is uniform.
  • the smoothness of the reflective part can be expressed by the centerline average roughness Ra.
  • the center line average roughness Ra of the reflecting portion in the reflecting sheet of the present invention is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • the center line average roughness Ra of the reflective portion is 5 nm or more is preferable and 10 nm or more is more preferable.
  • the average particle diameter and the content of the particles to be contained in the A layer serving as the reflective portion is sufficiently smaller than the film thickness (T) of the A layer.
  • the ratio (D / T) of the average particle diameter (D) of the particles to the film thickness (T) of the A layer is preferably 0.7 or less, more preferably 0.5 or less, and particularly preferably 0.3 or less.
  • the ratio (D / T) between the thickness (T) of (D) and the A layer is preferably 0.01 or more, more preferably 0.03 or more, and particularly preferably 0.05 or more.
  • the average particle diameter (D) of the particles to be contained in the A layer serving as the reflective portion is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, particularly 1 ⁇ m, from the viewpoint of ensuring the smoothness and slipperiness described above.
  • the following is preferred.
  • 0.1 micrometer or more is preferable, 0.2 micrometer or more is more preferable, and 0.3 micrometer or more is especially preferable.
  • the content of the particles to be contained in the A layer serving as the reflective portion is preferably in the range of 0.005 to 10% by mass, and in the range of 0.01 to 5% by mass with respect to 100% by mass of the solid content of the A layer. Is more preferable, and the range of 0.02 to 3% by mass is particularly preferable.
  • the B layer preferably contains bubbles inside the layer.
  • the B layer is preferably a film, and a porous unstretched or biaxially stretched polypropylene film or a porous unstretched or stretched polyethylene terephthalate film is preferably used.
  • JP-A-8-262208 (correspondingly, European Patent Application Publication No. 0724181)
  • JP-A-2002-90515 (correspondingly) European Patent Application Publication No. 1302788)
  • Japanese Patent Application Laid-Open No. 2002-138150 are disclosed in detail and can be used in the present invention.
  • the B layer is preferably made of a polypropylene resin or a polyester resin, and particularly preferably made of a polyester resin.
  • a polyester resin As the polyester resin constituting the B layer, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable.
  • the content of the polyester resin constituting the B layer is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more with respect to the total solid content of the B layer.
  • the upper limit is about 95% by mass.
  • Formation of bubbles in the B layer can be achieved, for example, by finely dispersing a resin incompatible with the polyester resin in a polyester film that is a film base material and stretching it uniaxially or biaxially.
  • the B layer is preferably mixed with the polyester resin constituting the B layer in an incompatible resin (hereinafter sometimes simply referred to as an incompatible resin) and contained in the B layer.
  • an incompatible resin hereinafter sometimes simply referred to as an incompatible resin
  • the resin incompatible with the polyester resin may be a homopolymer or a copolymer.
  • Polyolefin resin such as polyethylene, polypropylene, polybutene, polymethylpentene, cyclic polyolefin resin, polystyrene resin, polyacrylate Resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, fluororesins, and the like are preferably used. Two or more of these may be used in combination.
  • polyolefin resin is preferable.
  • the polyolefin resin include polyolefin resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, cyclic polyolefin resins, and copolymers thereof.
  • a copolymer of ethylene and bicycloalkene which is a cyclic olefin copolymer, is particularly preferable.
  • the preferable content of the incompatible resin to be contained in the B layer is 5% by mass or more and 25% by mass or less with respect to the total solid content of the B layer.
  • the incompatible resin contained in the B layer is dispersed in a matrix made of a polyester resin with a number average particle diameter of 0.4 ⁇ m or more and 3.0 ⁇ m or less. It is preferable in obtaining.
  • the number average particle size of the incompatible resin is preferably in the range of 0.5 ⁇ m to 1.5 ⁇ m.
  • the layer B further contains particles such as organic particles and inorganic particles.
  • particles include the same particles as those that can be contained in the A layer.
  • inorganic particles such as calcium carbonate, barium sulfate, and titanium dioxide that absorb less in the visible light range of wavelength 400 to 700 nm are preferable from the viewpoints of reflection characteristics, concealability, production cost, and the like.
  • barium sulfate and titanium dioxide are most preferable from the viewpoints of film winding property, long-term film-forming stability, and improvement in reflection characteristics.
  • the average particle diameter of the particles is preferably in the range of 0.1 to 3 ⁇ m, and the use of such inorganic particles improves the reflectivity and concealability.
  • the content of the inorganic particles in the B layer is preferably 0.1% by mass or more, more preferably 0.5% by mass or more with respect to the total solid content of the B layer, from the viewpoint of ensuring good reflection characteristics and concealment. 1% by mass or more is particularly preferable.
  • the upper limit content of the inorganic particles is preferably 10% by mass or less, and 5% by mass. The following is more preferable, and 3% by mass or less is particularly preferable.
  • the B layer further contains a copolyester.
  • a copolyester By containing the copolyester in the B layer, it is possible to stably form a film even when the B layer contains a relatively high concentration of inorganic particles.
  • the copolyester also has a role as a dispersant for the incompatible resin in the B layer.
  • Examples of such a copolyester include a copolymer of polyethylene terephthalate and isophthalic acid, a copolymer of polyethylene terephthalate and cyclohexanedimethanol, a copolymer of polybutylene terephthalate and polytetramethylene terephthalate, and the like. In this invention, it is preferable to contain at least 2 types chosen from the group which consists of these copolyesters.
  • the range of A layer: B layer 3: 97 to 10:90 is more preferable.
  • the thickness per layer of A layer (in the case of a two-layer configuration means the thickness of the A layer, and in the case of a three-layer configuration means the thickness of each of the A1 layer and the A2 layer) supports the B layer. From the viewpoint of achieving, it is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 6 ⁇ m or more.
  • the upper limit thickness is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the thickness of the B layer is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and particularly preferably 90 ⁇ m or more from the viewpoint of ensuring high reflectance.
  • the upper limit thickness is preferably 440 ⁇ m or less, more preferably 350 ⁇ m or less, and particularly preferably 300 ⁇ m or less.
  • the A layer is preferably a layer that substantially does not contain bubbles from the viewpoint of supporting the B layer. “Contains substantially no bubbles” means a layer state having a porosity of less than 10%.
  • the thickness of the A layer is determined as the thickness from the surface to the depth in the cross-section direction in which bubbles are not substantially contained when the cross section is observed with an electron microscope.
  • a bead layer is not provided on the surface to be a reflective portion.
  • This bead layer is formed by a coating layer containing a binder and spherical particles, and has a function of diffusing the light reflected by the reflection film.
  • a reflection sheet provided with a bead layer on a reflection film is widely used as a light guide plate type backlight unit, but is preferably not applied to a surface to be a reflection portion of the reflection sheet of the present invention.
  • the above-mentioned bead layer can be applied to the surface opposite to the reflecting portion of the reflecting sheet of the present invention within a range that does not impair the objects and effects of the present invention or for improving the slipperiness of the reflecting sheet.
  • the center line average roughness Ra is usually 500 nm or more, and the smoothness of the reflective part is deteriorated. As a result, the brightness of the central part and the peripheral part directly above the light source is uneven. It may become.
  • the thickness of the reflective sheet of the present invention is preferably 100 ⁇ m or more, and preferably 150 ⁇ m or more from the viewpoint of obtaining high reflectivity and high rigidity.
  • the thickness of the reflection sheet is preferably larger from the viewpoint of ensuring high rigidity.
  • the upper limit of the thickness of the reflective sheet is preferably 500 ⁇ m or less, and more preferably 350 ⁇ m or less, from the viewpoints of workability for forming the transmission part, handling property, productivity, and cost.
  • the transmission yellowness (YI) of the reflective part is more preferably 50 or less, 40 or less, further preferably 35 or less, and particularly preferably 30 or less.
  • the above-described reflective film tends to increase the transmission yellowness (YI), but is considered to affect the transmission yellowness (YI), the type of particles, the size of particles, the content of particles, the type of resin.
  • the transmission yellowness (YI) of the reflective portion can be controlled to be low.
  • the copolymerized polyester resin also tends to increase the transmission yellowness (YI), although it depends on the type of the copolymer component, and therefore the content thereof is preferably adjusted.
  • the B layer is thicker than the A layer and usually contains a large amount of various additives, it is considered that the influence on the transmission yellowness (YI) is larger than that of the A layer. It is preferable to adjust the thickness of the B layer.
  • the reflection sheet of the present invention has a reflection part and a transmission part.
  • the reflection sheet of the present invention can be obtained, for example, by providing a transmission part (opening) on a reflection member such as a reflection film as described above. This opening (through hole) can be formed by laser processing or punching.
  • the permeation part is preferably a hole, and examples of the shape include a circle, a triangle, a rectangle, a polygon (for example, 5 to 12 squares), and a ring in which the inside and the outside are partially connected.
  • examples of the shape include a circle, a triangle, a rectangle, a polygon (for example, 5 to 12 squares), and a ring in which the inside and the outside are partially connected.
  • an ellipse, a circle, a rectangle, and a polygon are preferable, an ellipse and a circle are more preferable, and a perfect circle is particularly preferable.
  • the transmission part is composed of a plurality of independent openings.
  • the “transmission portion” may indicate an individual opening portion or a transmission region including a plurality of opening portions.
  • the transmission part in the reflection sheet of the present invention can arrange a plurality of independent openings in a specific pattern.
  • the opening pattern of the transmissive part can be appropriately selected depending on the light amount per light source, the number of light sources arranged, and the like.
  • Examples of the arrangement pattern of the openings of the transmission part include the patterns shown in FIGS. 3 and 6 of JP 2010-272245 A, but the present invention is not limited to these patterns. These patterns can be arranged for each point light source or for each unit including a plurality of adjacent point light sources as one unit.
  • a directional light source such as an LED tends to decrease in light quantity as it moves away from the center position. Therefore, by arranging the transmissive part so that the amount of light transmitted from the transmissive part gradually increases as it moves away from the region located directly above the light source of the upper reflective sheet as described above, the luminance unevenness is suppressed and uniform. A sufficient amount of light can be obtained.
  • FIG. 2 is a schematic plan view (schematic plan view showing a positional relationship between a light source and an opening pattern) showing an example of the reflection sheet of the present invention
  • FIG. 3 is a schematic cross-sectional view of FIG.
  • the upper reflection sheet 3 is provided with a large number of transmission parts 7. As the distance from the region 10 located directly above the light source 1 of the upper reflective sheet 3 increases, the opening area per one transmission portion 7 (circular opening) increases. That is, in the aspect of FIG. 2, the transmissive part is arranged so that the amount of light transmitted from the transmissive part gradually increases as it moves away from the region located directly above the light source of the upper reflective sheet.
  • FIG. 4 is a schematic plan view showing another aspect (another opening pattern) of the reflection sheet of the present invention.
  • the opening pattern of FIG. 4 is also a pattern that gradually increases the amount of light transmitted from the transmissive portion as it moves away from the region located directly above the light source of the upper reflective sheet, as in FIG.
  • FIG. 4 is a mode in which a large number of transmission parts 7 having substantially the same opening area per one are provided, and the transmission parts 7 are arranged as they move away from the region 10 located directly above the light source 1 of the upper reflection sheet 3. It arrange
  • a lower reflection sheet 2 is disposed on the back surface of a light source 1.
  • the lower reflection sheet 2 and the upper reflection sheet 3 are arranged in parallel via a space (air layer) so that the respective reflection portions face each other.
  • most of the surface of the lower reflective sheet 2 that faces the upper reflective sheet 3 is a reflective portion.
  • the place where the light source 1 is installed and the place necessary for connecting the light source 1 do not need to be a reflecting portion.
  • the reflection sheet of the present invention provides the following reflection unit for a surface light source device and an apparatus for a surface light source in which uneven emission color is suppressed.
  • a unit for a surface light source device comprising: a lower reflective sheet that reflects light; and an upper reflective sheet composed of the above-described reflective sheet facing the lower reflective sheet.
  • the lower reflective sheet preferably has a reflective portion on the entire surface facing the upper reflective sheet. However, there may be an opening for installing or connecting the light source.
  • the lower reflective sheet has a high reflectance.
  • the reflection unit for a surface light source device and the surface light source device of the present invention include a large amount of light that passes through the transmission part of the upper reflection sheet and emits upward while repeating reflection between the upper reflection sheet and the lower reflection sheet. ing. Therefore, it is desirable to avoid as much as possible the decrease in the light quantity in the process of repeating reflection.
  • the average reflectance at a wavelength of 400 to 700 nm in the reflecting portion of the lower reflective sheet is preferably 90% or more, more preferably 95% or more, and particularly preferably 100% or more.
  • the upper limit average reflectance is about 150%.
  • the reflective part of the lower reflective sheet preferably has higher smoothness.
  • the smoothness of the reflection part of the lower reflection sheet By increasing the smoothness of the reflection part of the lower reflection sheet, the irregular reflection of the light reflected by the reflection part of the lower reflection sheet is suppressed, so that a decrease in the amount of light in a region far from the light source is suppressed.
  • the brightness of the portion directly above the light source and the peripheral portion away from directly above are uniform. That is, the uniformity of brightness is improved.
  • the smoothness of the reflective part of the lower reflective sheet can be expressed by the centerline average roughness Ra.
  • the center line average roughness Ra of the reflective portion of the lower reflective sheet is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • the center line average roughness Ra of the reflective portion of the lower reflective sheet is preferably 5 nm or more. 10 nm or more is more preferable.
  • the total light transmittance of the lower reflective sheet is preferably 0.5 to 10% from the viewpoint of securing a high reflectance.
  • the upper limit of the transmittance is preferably 10% or less, more preferably 7% or less, and particularly preferably 5% or less.
  • the lower limit of the transmittance is preferably 0.5% or more, more preferably 1.0% or more, still more preferably 1.2% or more, particularly 1.5% from the viewpoint of the material cost and productivity of the lower reflective sheet. % Or more is preferable.
  • the lower reflective sheet may be the same as the reflective film that can be used in the above-described reflective sheet of the present invention. However, it is not necessary to provide a transmission part, that is, an opening part. That is, a layer in which a layer (A layer) for supporting the B layer is laminated on at least one surface of a layer containing bubbles (B layer) can be used. In this embodiment, the A layer may be laminated only on one side of the B layer, or may be laminated on both sides of the B layer. That is, a two-layer configuration of A layer / B layer and a three-layer configuration of A1 layer / B layer / A2 layer can be mentioned.
  • A1 layer and the A2 layer are A layers, and the A1 layer and the A2 layer may have the same composition and thickness, or may have different compositions or thicknesses.
  • the surface of the A layer is a reflective part. That is, in the reflection film having a two-layer structure, the surface of the A layer is a reflection part, and in the reflection film having a three-layer structure, the surface of the A1 layer or the A2 layer is a reflection part.
  • the bead layer described above is not laminated on the reflective portion of the lower reflective sheet for the same reason as described above.
  • the above bead layer can be laminated on the surface of the lower reflective sheet opposite to the reflecting portion in order to improve the sliding property of the lower reflective sheet.
  • the surface light source device using the reflection sheet and the reflection unit of the present invention is suitable for use in a backlight unit such as a liquid crystal display.
  • a backlight unit such as a liquid crystal display.
  • an optical sheet such as a light diffusion film
  • the reflection unit for a surface light source device of the present invention can be widely used for lighting devices, electronic signboards, and the like.
  • the average reflectance was measured with a spectrophotometer U-3410 (Hitachi Ltd.) and a ⁇ 60 integrating sphere 130-0632 (Hitachi Ltd.) and a 10 ° C. inclined spacer attached.
  • the relative reflectance with respect to the standard white plate was measured in the wavelength range of 400 to 700 nm at intervals of 10 nm, and the average value thereof was calculated.
  • part number 210-0740 manufactured by Hitachi Sokki Service Co., Ltd. was used as the standard white plate, and three points were randomly measured to calculate an average value, and these average reflectances were adopted.
  • the average reflectance was measured on the A1 layer surface.
  • the total thickness of the reflection sheet was measured with a micrometer in accordance with JIS C2151 (2006).
  • the thickness of each layer is cut in the width direction (TD) without crushing the reflecting sheet in the thickness direction using a microtome to create a section sample, and the section of the obtained section sample is made by Hitachi, Ltd.
  • FE-SEM scanning electron microscope
  • Ra is larger than 20 nm
  • Ra is adopted.
  • the reflecting sheet is cut at an arbitrary position, and the cross section is magnified 1,000 to 50,000 times with an SEM (scanning electron microscope (Hitachi scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation)). Observed. The magnification was appropriately adjusted according to the particle size contained in the A layer. From the cross-sectional photograph obtained in this way, 30 particles were randomly selected, each particle size was measured, and the average value of these was taken as the average particle size of the particles.
  • the particle size of the particle is a square or rectangle that has the smallest area in contact with the particle on the four sides, and the length of one side is adopted for the square, and the length of the long side is adopted for the rectangle. did.
  • the particle size of each of 30 randomly selected particles was measured, and the number average value was taken as the average particle size of the particles.
  • the standard of the observation (photographing) magnification according to the particle diameter is as follows.
  • the simple surface light source device of FIG. 5 has the following configuration.
  • the upper opening surface is a square having a side length (L) of 100 mm and a depth (H) of 20 mm.
  • One LED light source and a lower reflective sheet are disposed at the center of the bottom surface of the casing, and the same reflective sheet as the lower reflective sheet is disposed on the side surface of the casing.
  • An upper reflective sheet is disposed so as to close the upper opening surface.
  • the reflective film produced in Example 1 was used for the lower reflective sheet and the side reflective sheet.
  • As the upper reflection sheet each of the reflection sheets prepared in each example was used.
  • a circular opening having a diameter of 2 mm is provided in the reflection film in the pattern of FIG. 4 as a transmission part.
  • the reflective surface of the lower reflective sheet and the side reflective sheet is A layer when the reflective sheet is composed of two layers of A layer and B layer, and A1 when the reflective sheet is composed of three layers of A1, B and A2. It was set as the surface of the layer, and the reflection part of the upper reflective sheet was also set as the surface of the A layer or the A1 layer.
  • Example 1 A reflective film was produced in the following manner, and the reflective sheet of the present invention was produced by providing an opening serving as a transmission part in the reflective film.
  • This reflective film has a three-layer structure of A1 layer / B layer / A2 layer, and the A1 layer and the A2 layer have the same composition.
  • the thickness of each layer was 8 ⁇ m for the A1 layer, 210 ⁇ m for the B layer, and 8 ⁇ m for the A2 layer.
  • addition amount X of polyethylene terephthalate copolymer of polybutylene terephthalate and polytetramethylene glycol (hereinafter referred to as PTMG)
  • PBT / PTMG trade name: Toray Copolymer polyethylene in which 0.5 parts by mass of “Hytrel” (registered trademark) manufactured by DuPont Co., Ltd. and 33 mol% of 1,4-cyclohexanedimethanol (hereinafter referred to as CHDM) is copolymerized with respect to the diol component.
  • terephthalate 33 mol% PET / CHDM copolymer
  • cycloolefin copolymer having a glass transition temperature of 210 ° C. trade name: “TOPAS” manufactured by Polyplastics Co., Ltd.
  • master chip containing titanium dioxide 50 mass of titanium dioxide having an average particle size of 0.25 ⁇ m) % Polyethylene-containing terephthalate master chip) (hereinafter referred to as addition amount Y) is prepared and mixed, dried at 180 ° C. for 3 hours, and then heated to 270-300 ° C. Feeded to Extruder B.
  • the composition (polymer) of the above B layer and A layer was laminated through a laminating apparatus so as to be A1 layer / B layer / A2 layer, and formed into a sheet form from a T die. Further, the unstretched film obtained by cooling and solidifying the film with a cooling drum having a surface temperature of 25 ° C. was led to a roll group heated to 85 to 98 ° C., stretched 3.4 times in the longitudinal direction, and cooled with a roll group at 21 ° C.
  • the film stretched in the longitudinal direction was guided to a tenter while being gripped by clips, and was stretched by 3.6 times in a direction perpendicular to the longitudinal direction in an atmosphere heated to 120 ° C.
  • heat setting at 190 ° C. is performed in a tenter, followed by a relaxation treatment of 6% in the width direction at the same temperature, and then uniformly cooled, cooled to room temperature, and biaxially stretched (reflective film) )
  • heat treatment was performed in an oven at 150 ° C. for 20 seconds.
  • Examples 2 to 4, 6 to 7 A reflective film was produced in the same manner as in Example 1 except that the B layer composition was changed as follows, and a reflective sheet was produced in the same manner as in Example 1.
  • addition amount X of polyethylene terephthalate in the B layer composition was adjusted such that the total amount with the addition amount Y of the titanium dioxide-containing master chip was 94 parts by mass.
  • Example 5 A reflective film was produced in the same manner as in Example 3 except that the A layer composition was changed as follows, and a reflective sheet was produced in the same manner as in Example 3.
  • a layer (A1 layer and A2 layer)> 72 parts by mass of polyethylene terephthalate, 8 parts by mass of a silicon dioxide-containing master chip (polyethylene terephthalate master chip containing 1% by mass of silicon dioxide having an average particle diameter of 1.2 ⁇ m), and 18 mol% of isophthalic acid were copolymerized with polyethylene terephthalate. 20 parts by mass (PET / I) was dried under reduced pressure at 180 ° C. for 3 hours, and then supplied to Extruder A heated to 280 ° C.
  • Example 8 A reflective film was produced in the same manner as in Example 6 except that the composition of layer A was changed as follows, and a reflective sheet was produced in the same manner as in Example 6.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

The purpose of the present invention is to minimize emission color irregularities by a surface light source device, caused by reflecting sheets. The present invention provides: a reflecting sheet arranged facing the light source of a surface light source device, wherein the reflecting sheet is characterized by having a reflecting part for reflecting light from the light source, and a transmitting part for transmitting light from the light source, and by having a transmitted yellow index (YI) or 50 or less; and a surface light source device having a light source, a lower side reflecting sheet for reflecting light, and an upper surface reflecting sheet comprising the reflecting sheet, wherein the lower side reflecting sheet is situated on the back surface of the light source, and the upper side reflecting sheet is situated facing the lower side reflecting sheet.

Description

反射シート、面光源装置用反射ユニットおよび面光源装置Reflective sheet, reflection unit for surface light source device, and surface light source device
 本発明は、液晶ディスプレイのバックライト(LCDバックライト)、照明用看板、自動車、車両等の表示装置に用いられる面光源装置に使用される反射シートおよび面光源装置に関する。 The present invention relates to a reflective sheet and a surface light source device used for a surface light source device used in a display device such as a backlight of a liquid crystal display (LCD backlight), a signboard for illumination, an automobile, and a vehicle.
 液晶ディスプレイのバックライトユニットに用いられる面光源装置は、光源の背面に反射シートが設けられた構成が一般的である。そしてこの面光源装置を用いたバックライトユニットは、面光源装置の反射シートに対向する位置に光拡散フィルム等の光学シートが配置された構成が一般的に知られている。これらの面光源装置にはLED(発光ダイオード)光源が一般に用いられるが、このLED光源には光の指向性を強めるためのレンズが付設されていることからコスト増の要因となっていた。 A surface light source device used for a backlight unit of a liquid crystal display generally has a configuration in which a reflection sheet is provided on the back surface of the light source. And the backlight unit using this surface light source device generally has a configuration in which an optical sheet such as a light diffusion film is disposed at a position facing the reflection sheet of the surface light source device. An LED (light emitting diode) light source is generally used for these surface light source devices. However, since the LED light source is provided with a lens for enhancing the directivity of light, it has been a cause of cost increase.
 近年、LED光源をそのまま用いた面光源装置が提案されている。この面光源装置は光源の背面(面光源装置が光を出す方向とは逆の方向にある側)に反射シート(下側反射シート)が設けられ、前記光源および下側反射シートに対向して、光源から出射された光を反射させる反射部と、光を透過させる透過部とを有する上側反射シートが配置された構成になっている(特許文献1~3)。 Recently, surface light source devices using LED light sources as they are have been proposed. In this surface light source device, a reflection sheet (lower reflection sheet) is provided on the back surface of the light source (the side opposite to the direction in which the surface light source device emits light), and faces the light source and the lower reflection sheet. An upper reflection sheet having a reflection part that reflects light emitted from a light source and a transmission part that transmits light is arranged (Patent Documents 1 to 3).
 上記特許文献1~3では、上側反射シートとして、反射シートに光を透過させる複数の透過孔(開口部)からなる開口パターンを設けることにより光反射領域(反射部)と光透過領域(透過部)とが形成された反射シートが開示されている。 In Patent Documents 1 to 3, a light reflection region (reflection portion) and a light transmission region (transmission portion) are provided as an upper reflection sheet by providing an opening pattern composed of a plurality of transmission holes (openings) for transmitting light to the reflection sheet. ) Is formed.
特開2008-27886号公報JP 2008-27886 A 特開2009-4248号公報JP 2009-4248 A 特開2010-272245号公報JP 2010-272245 A
 面光源装置に用いられる反射シートは、現実的には反射シート自体の光透過率を0%にすることは、構成や材料コスト等の関係で困難であり、一般的には幾らかの光透過(例えば光透過率が0.5~20%程度)を有している。従来の面光源装置における反射シート(光源の背面に配置される反射シート)の場合は、反射シートを透過する光は使用されないので反射シートの透過色は考慮されることはなかった。 In reality, it is difficult for the reflection sheet used in the surface light source device to reduce the light transmittance of the reflection sheet itself to 0% because of the configuration, material cost, and the like. (For example, the light transmittance is about 0.5 to 20%). In the case of a reflection sheet in a conventional surface light source device (a reflection sheet disposed on the back surface of a light source), light transmitted through the reflection sheet is not used, and thus the transmission color of the reflection sheet is not considered.
 しかしながら、上記特許文献1~3で提案されているような面光源装置では、上側反射シートの光透過領域(透過部)を透過する光が面光源装置の主要光となるが、発光色むらが発生しやすかった。 However, in the surface light source devices as proposed in Patent Documents 1 to 3, the light transmitted through the light transmission region (transmission portion) of the upper reflection sheet becomes the main light of the surface light source device, but the emission color unevenness It was easy to occur.
 そこで、本発明の目的は、面光源装置の光源に対向配置される反射シートにおいて発光色むらが抑制された反射シートおよびこの反射シートを用いた面光源装置などを提供することにある。 Therefore, an object of the present invention is to provide a reflection sheet in which unevenness in emission color is suppressed in a reflection sheet disposed opposite to the light source of the surface light source device, a surface light source device using the reflection sheet, and the like.
 本発明は以下の構成からなる。
(1)面光源装置の光源に対向して配置される反射シートであって、該反射シートは光源からの光を反射する反射部と光源からの光を透過させる透過部とを有し、反射部の透過黄色度(YI)が50以下、特に好ましくは30以下である、反射シート。
The present invention has the following configuration.
(1) A reflection sheet disposed opposite to a light source of a surface light source device, the reflection sheet having a reflection part for reflecting light from the light source and a transmission part for transmitting light from the light source, and reflecting Reflective sheet having a transmitted yellowness (YI) of 50 parts or less, particularly preferably 30 or less.
 そして本発明の好ましい態様として、ここでは以下のものを開示する。
(2)前記透過部が貫通孔である、前記反射シート。
(3)前記反射部の全光線透過率が0.5~10%である、前記いずれかの反射シート。
(4)前記反射部の中心線平均粗さRaが100nm以下である、前記いずれかの反射シート。
(5)前記反射シートが、内部に気泡を含有する層(B層)の両面に前記B層を支持するための層(A層)が積層された反射フィルムに透過部を設けたものである、前記いずれかに記載の反射シート。
(6)A層が粒子を含有する、前記反射シート。
And as a preferable aspect of this invention, the following are disclosed here.
(2) The reflection sheet, wherein the transmission part is a through hole.
(3) Any of the reflection sheets described above, wherein the total light transmittance of the reflection portion is 0.5 to 10%.
(4) The reflection sheet according to any one of the above, wherein the center line average roughness Ra of the reflection part is 100 nm or less.
(5) The reflection sheet is a reflection film in which a layer (A layer) for supporting the B layer is laminated on both surfaces of a layer containing air bubbles (B layer). The reflective sheet according to any one of the above.
(6) The said reflection sheet in which A layer contains particle | grains.
 そして本発明の反射シートの好ましい使用方法として、ここでは以下のものを開示する。
(7)光を反射する下側反射シート、および前記下側反射シートに対向し、前記いずれかの反射シートである上面反射シートを有する面光源装置用ユニット。
(8)光源、光を反射する下側反射シート、および前記いずれかの反射シートである上面反射シートを有する面光源装置であって、光源の背面に下側反射シートが存在し、下側反射シートに対向して上側反射シートが存在する面光源装置。
And as a preferable usage method of the reflective sheet of this invention, the following are disclosed here.
(7) A unit for a surface light source device having a lower reflection sheet that reflects light, and an upper surface reflection sheet that is opposite to the lower reflection sheet and that is any of the reflection sheets.
(8) A surface light source device having a light source, a lower reflection sheet that reflects light, and an upper surface reflection sheet that is any one of the reflection sheets, wherein the lower reflection sheet exists on the rear surface of the light source, and lower reflection A surface light source device in which an upper reflective sheet exists opposite to the sheet.
 本発明の反射シート、面光源装置用反射ユニットおよび面光源装置を用いることにより、面光源装置の発光色むらを抑制することができる。本発明の好ましい態様によれば、明るさが均一な面光源装置を提供することができる。 By using the reflection sheet, the reflection unit for a surface light source device, and the surface light source device of the present invention, it is possible to suppress uneven emission color of the surface light source device. According to a preferred aspect of the present invention, a surface light source device with uniform brightness can be provided.
図1は本発明の反射シートが用いられる面光源装置の一例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of a surface light source device in which the reflection sheet of the present invention is used. 図2は本発明の反射シートの一例を示す平面模式図である。FIG. 2 is a schematic plan view showing an example of the reflection sheet of the present invention. 図3は図2の断面模式図である。FIG. 3 is a schematic cross-sectional view of FIG. 図4は本発明の反射シートの他の態様を示す平面模式図である。FIG. 4 is a schematic plan view showing another embodiment of the reflection sheet of the present invention. 実施例に用いられる簡易的面光源装置の断面模式図である。It is a cross-sectional schematic diagram of the simple surface light source device used for an Example.
 本発明の反射シートが用いられる面光源装置の一例を図1に示す。図1は面光源装置の主要部を示す断面模式図である。この面光源装置は、例えば液晶ディスプレイのバックライトユニットに用いられるものである。 An example of a surface light source device using the reflective sheet of the present invention is shown in FIG. FIG. 1 is a schematic cross-sectional view showing the main part of the surface light source device. This surface light source device is used for a backlight unit of a liquid crystal display, for example.
 図1において、面光源装置11では、ケーシング5内に、光源1、光を反射する下側反射シート2、光を反射する上側反射シート3、および光を反射する側面反射シート4が配置されている。下側反射シート2は光源1の背面に配置され、上側反射シート3は光源1に対して対向する位置に配置されている。下側反射シート2と上側反射シート3は、ほぼ全面が等間隔となるように平行に配置されている。下側反射シート2は側面反射シート4と一体成形されていてもよいし、別々の反射シートがそれぞれ配置されていてもよい。光源としては、LED(発光ダイオード)等の点光源が好ましく用いられる。 In FIG. 1, in the surface light source device 11, a light source 1, a lower reflective sheet 2 that reflects light, an upper reflective sheet 3 that reflects light, and a side reflective sheet 4 that reflects light are arranged in a casing 5. Yes. The lower reflective sheet 2 is disposed on the back surface of the light source 1, and the upper reflective sheet 3 is disposed at a position facing the light source 1. The lower reflective sheet 2 and the upper reflective sheet 3 are arranged in parallel so that almost the entire surface is equally spaced. The lower reflective sheet 2 may be integrally formed with the side reflective sheet 4, or separate reflective sheets may be arranged respectively. A point light source such as an LED (light emitting diode) is preferably used as the light source.
 ここで、上側反射シート3として本発明の反射シートが用いられる。以下の説明において、上側反射シートという用語は本発明の反射シートとして用いることがある。 Here, the reflective sheet of the present invention is used as the upper reflective sheet 3. In the following description, the term upper reflective sheet may be used as the reflective sheet of the present invention.
 上側反射シート3は、光源から出射された光を反射させる反射部6と光源1から出射された光を透過させる透過部7とを有する。透過部7は、例えば図2および図4に示すように複数の開口部で構成することができる。開口部は貫通操作により得られる貫通孔がよい。図2および図4において、透過部7以外の領域が反射部である。 The upper reflection sheet 3 has a reflection part 6 that reflects light emitted from the light source and a transmission part 7 that transmits light emitted from the light source 1. The transmission part 7 can be comprised by several opening part, for example, as shown in FIG.2 and FIG.4. The opening is preferably a through hole obtained by a penetrating operation. In FIG. 2 and FIG. 4, the area other than the transmission part 7 is a reflection part.
 光源1から出射された光(反射部6を透過する光を除く)の大部分もしくは全部は、面光源装置11内に配置された反射シート(下側反射シート2、上側反射シート3、および側面反射シート4)で反射されて、または下側反射シートと上側反射シートとの間で反射を繰り返しながら、上側反射シート3の透過部7を透過して上方に出射する。 Most or all of the light emitted from the light source 1 (excluding light transmitted through the reflecting portion 6) is a reflective sheet (the lower reflective sheet 2, the upper reflective sheet 3, and the side surface) disposed in the surface light source device 11. The light is reflected by the reflective sheet 4) or transmitted through the transmission part 7 of the upper reflective sheet 3 and emitted upward while repeating reflection between the lower reflective sheet and the upper reflective sheet.
 光源1から出射された光の一部は直接上側反射シート3の透過部7を透過するようにしてもよい。 A part of the light emitted from the light source 1 may be directly transmitted through the transmission part 7 of the upper reflection sheet 3.
 光源1から出射されて上側反射シート3の反射部6で反射された光は、下側反射シート2や側面反射シート4で反射されて、またはこれらの反射シート間で反射を繰り返しながら、上側反射シート3の透過部7を透過して上方に出射する。一方、上側反射シート3の反射部6に当たった光の一部は反射部6を透過して上方に出射する。つまり、上側反射シート3の透過部7を透過する光が面光源装置から出射する光の主要な光となるが、反射部6を透過する光もその一部を構成する。 The light emitted from the light source 1 and reflected by the reflecting portion 6 of the upper reflecting sheet 3 is reflected by the lower reflecting sheet 2 and the side reflecting sheet 4 or while being repeatedly reflected between these reflecting sheets. The light passes through the transmission part 7 of the sheet 3 and exits upward. On the other hand, a part of the light hitting the reflection part 6 of the upper reflection sheet 3 passes through the reflection part 6 and is emitted upward. That is, the light that passes through the transmissive part 7 of the upper reflective sheet 3 becomes the main light emitted from the surface light source device, but the light that passes through the reflective part 6 also constitutes a part thereof.
 このような面光源装置において、光源に対向配置される上側反射シート3の透過光の黄色度(YI:イエローインデックス)が大きくなると、発光色むらを引き起こすことが判明した。そこで、上側反射シートの反射部における透過黄色度(YI)を低くすることにより、上記課題が解決することを見出し本発明に至った。 In such a surface light source device, it has been found that when the yellowness (YI: yellow index) of the transmitted light of the upper reflection sheet 3 disposed to face the light source is increased, uneven emission color is caused. Then, it discovered that the said subject was solved by making low the transmission yellow degree (YI) in the reflection part of an upper side reflection sheet, and came to this invention.
 本発明の上側反射シートの反射部における透過黄色度(YI)は、50以下が好ましく、40以下がより好ましく、35以下がさらに好ましく、30以下が特に好ましい。反射部における透過黄色度(YI)は小さいほど好ましいが、現実的な下限は1程度である。 The transmission yellowness (YI) in the reflection part of the upper reflection sheet of the present invention is preferably 50 or less, more preferably 40 or less, still more preferably 35 or less, and particularly preferably 30 or less. The smaller the transmitted yellowness (YI) at the reflecting portion, the better, but the practical lower limit is about 1.
 本発明の反射シートの透過黄色度(YI)は、反射部を構成する材料、組成、厚み等によって変わってくるので、これらを調整することによって透過黄色度(YI)を制御することができる。詳細は後述する。 Since the transmission yellowness (YI) of the reflection sheet of the present invention varies depending on the material, composition, thickness and the like constituting the reflection portion, the transmission yellowness (YI) can be controlled by adjusting these. Details will be described later.
 本発明の反射シートの反射部は、幾らかの光透過を有する。具体的には、反射シートにおける反射部の全光線透過率は0.5~20%程度が一般的であるが、本発明の反射シートの全光線透過率は0.5~10%が好ましい。上述の面光源装置に適用する場合、全光線透過率が高くなりすぎると発光色むらの抑制効果が低減する場合がある。したがって、本発明の反射シートの反射部における全光線透過率は、10%以下が好ましく、7%以下がより好ましく、5%以下がさらに好ましい。一方、反射部における全光線透過率の下限は、0.5%以上が好ましいが、反射シートを透過した光量や透過色に適度なグラデーションをつけるという観点から1.2%以上がより好ましく、1.5%以上がさらに好ましく、特に2.0%以上が好ましく、3.0%以上が最も好ましい。適度なグラデーションをつけることにより、発光色むらを低減することができる。 The reflection part of the reflection sheet of the present invention has some light transmission. Specifically, the total light transmittance of the reflecting portion in the reflecting sheet is generally about 0.5 to 20%, but the total light transmittance of the reflecting sheet of the present invention is preferably 0.5 to 10%. When applied to the above-described surface light source device, if the total light transmittance becomes too high, the effect of suppressing unevenness in emission color may be reduced. Accordingly, the total light transmittance in the reflecting portion of the reflecting sheet of the present invention is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less. On the other hand, the lower limit of the total light transmittance in the reflecting portion is preferably 0.5% or more, but 1.2% or more is more preferable from the viewpoint of giving an appropriate gradation to the amount of light transmitted through the reflecting sheet and the transmitted color. 0.5% or more is more preferable, 2.0% or more is particularly preferable, and 3.0% or more is most preferable. By applying an appropriate gradation, emission color unevenness can be reduced.
 本発明の反射シートの反射部における波長400~700nmにおける平均反射率は、90%以上が好ましく、95%以上がより好ましく、100%以上が特に好ましい。平均反射率の上限は、150%程度である。反射シートの反射部における平均反射率が90%未満の場合には、バックライトユニットの輝度が不足する場合がある。 The average reflectance at a wavelength of 400 to 700 nm in the reflecting portion of the reflecting sheet of the present invention is preferably 90% or more, more preferably 95% or more, and particularly preferably 100% or more. The upper limit of the average reflectance is about 150%. When the average reflectance at the reflecting portion of the reflecting sheet is less than 90%, the luminance of the backlight unit may be insufficient.
 ここで、反射率とは標準白色板に対する相対的な反射率である。標準白色板には(株)日立計測器サービス製の部品番号210-0740を用いることができる。 Here, the reflectance is a relative reflectance with respect to the standard white plate. A part number 210-0740 manufactured by Hitachi Keiki Service Co., Ltd. can be used for the standard white plate.
 本発明の反射シートの好ましい態様は、全面が反射部である反射部材の一部に貫通孔を設け開口部とし、それを透過部としたものである。言い換えると、本発明の反射シートの好ましい態様は、透過部以外は反射部となる。 In a preferred embodiment of the reflection sheet of the present invention, a through-hole is provided in a part of a reflection member whose entire surface is a reflection portion to form an opening, which is used as a transmission portion. In other words, a preferred embodiment of the reflective sheet of the present invention is a reflective portion other than the transmissive portion.
 本発明の反射シートは、反射部と透過部とを有し、反射部の透過黄色度(YI)が特定値以下であれば、反射シートを構成する材料や組成は特に限定されない。 The reflective sheet of the present invention has a reflective part and a transmissive part, and the material and composition of the reflective sheet are not particularly limited as long as the transmission yellowness (YI) of the reflective part is not more than a specific value.
 また、本発明の反射シートの好ましい態様としては、上記したように全面が反射部である反射部材に開口部を設け、その開口部を透過部としたものが挙げられる。かかる反射部材として反射フィルムが好ましく用いられる。 Moreover, as a preferable aspect of the reflection sheet of the present invention, as described above, an opening is provided in a reflection member whose entire surface is a reflection portion, and the opening is used as a transmission portion. A reflective film is preferably used as such a reflective member.
 以下に、本発明の反射シートとして好ましく用いられる反射フィルムについて詳細に説明する。 Hereinafter, the reflective film preferably used as the reflective sheet of the present invention will be described in detail.
 反射フィルムとしては、内部に気泡を含有する層(以下、B層という。)の少なくとも一方の面に、上記B層を支持するための層(以下、A層という。)が積層しているものが挙げられる。この態様において、A層はB層の片面のみに積層していてもよいし、2層のA層(以下、それぞれをA1層、A2層という。)をB層の両面に積層していてもよい。つまり、A層/B層の2層構成、A1層/B層/A2層の3層構成が挙げられる。これらの中でも、良好な加工性(透過部の形成)を確保するという観点および高い剛性を得るという観点から、A1層/B層/A2層の3層構成が好ましい。ここで、A1層とA2層は同一組成や同一の厚みであってもよいし、異なるものであってもよい。 As the reflective film, a layer for supporting the B layer (hereinafter referred to as A layer) is laminated on at least one surface of a layer containing bubbles (hereinafter referred to as B layer). Is mentioned. In this embodiment, the A layer may be laminated only on one side of the B layer, or two A layers (hereinafter referred to as A1 layer and A2 layer, respectively) may be laminated on both sides of the B layer. Good. That is, a two-layer configuration of A layer / B layer and a three-layer configuration of A1 layer / B layer / A2 layer can be mentioned. Among these, a three-layer configuration of A1 layer / B layer / A2 layer is preferable from the viewpoint of ensuring good workability (formation of a transmission part) and obtaining high rigidity. Here, the A1 layer and the A2 layer may have the same composition and the same thickness, or may be different.
 これらの反射フィルムに透過部を形成して得られた反射シートは、A層の面が光源に対向するように配置される。つまり、A層/B層の2層構成の場合はA層の面が光源に対向配置されて反射部となり、A1層/B層/A2層の3層構成の場合はA1層またはA2層の面が光源に対向配置されて反射部となる。 The reflection sheet obtained by forming the transmission part on these reflection films is arranged so that the surface of the A layer faces the light source. In other words, in the case of the two-layer configuration of A layer / B layer, the surface of the A layer is disposed opposite to the light source to be a reflecting portion, and in the case of the three-layer configuration of A1 layer / B layer / A2 layer, The surface is arranged to face the light source and becomes a reflection portion.
 上記のように3層構成において、A1層とA2層は全く同一の組成で構成されていてもよいし、異なる組成で構成されていてもよいが、反射フィルムの生産性の観点から、A1層とA2層は全く同一の組成であることが好ましい。以下の説明において、A1層とA2層とを合わせて「A層」と称することがあり、「A層」なる表現には、2層構成の場合のA層、ならびに3層構成の場合のA1層およびA2層が含まれる。また、以下の説明においてA層が含有する各種材料の量は、2層構成の場合はA層、3層構成の場合はA1層およびA2層のいずれか一層当たりの量を指す。 As described above, in the three-layer configuration, the A1 layer and the A2 layer may be configured with exactly the same composition or may be configured with different compositions, but from the viewpoint of the productivity of the reflective film, the A1 layer And the A2 layer preferably have the same composition. In the following description, the A1 layer and the A2 layer may be collectively referred to as “A layer”, and the expression “A layer” includes the A layer in the case of the two-layer configuration and the A1 in the case of the three-layer configuration. Layers and A2 layers are included. In the following description, the amount of various materials contained in the A layer indicates the amount per one of the A layer and the A2 layer in the case of the A layer in the case of the two-layer configuration and the three-layer configuration.
 A層はB層を支持する機能を有し、更に後述するように反射部の中心線平均粗さRaを100nm以下に調整する機能を有することが好ましい。A層にこれらの機能を付与するという観点から、A層は樹脂を主な成分とする層であることが好ましい。ここで、A層が「樹脂を主な成分とする層」であるとは、A層の固形分総量100質量%に対して樹脂を50質量%以上含有することを意味する。更にA層は、樹脂を60質量%以上含有することが好ましく、70質量%以上含有することがより好ましく、特に80質量%以上含有することが好ましい。上限は99質量%程度である。 It is preferable that the A layer has a function of supporting the B layer, and further has a function of adjusting the center line average roughness Ra of the reflecting portion to 100 nm or less as described later. From the viewpoint of imparting these functions to the A layer, the A layer is preferably a layer containing a resin as a main component. Here, the layer A is “a layer containing a resin as a main component” means that the resin contains 50% by mass or more of resin with respect to 100% by mass of the total solid content of the A layer. Furthermore, the A layer preferably contains 60% by mass or more of resin, more preferably 70% by mass or more, and particularly preferably 80% by mass or more. The upper limit is about 99% by mass.
 A層を構成する樹脂としては、ポリエステル樹脂が好ましい。かかるポリエステル樹脂としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)が好ましい。また、このポリエステル樹脂の中には、公知の各種添加剤、例えば、酸化防止剤、帯電防止剤などが添加されていてもよい。A層を構成するポリエステル樹脂の含有量は、A層を構成する樹脂総量に対して50質量%以上が好ましく、60質量%以上がより好ましく、特に70質量%以上が好ましい。上限は99質量%程度である。 As the resin constituting the A layer, a polyester resin is preferable. As such a polyester resin, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable. In addition, various known additives such as an antioxidant and an antistatic agent may be added to the polyester resin. The content of the polyester resin constituting the A layer is preferably 50% by mass or more, more preferably 60% by mass or more, particularly preferably 70% by mass or more based on the total amount of the resin constituting the A layer. The upper limit is about 99% by mass.
 A層は粒子を含有することが好ましい。A層に粒子を含有させることによって反射フィルムに適度なすべり性を付与することができる。反射フィルムにすべり性が付与されることによりハンドリング性や貫通孔を作成するための加工性が良好となる。 The layer A preferably contains particles. By including particles in the A layer, an appropriate slip property can be imparted to the reflective film. By providing slip properties to the reflective film, handling properties and workability for creating through holes are improved.
 A層に含有される粒子としては、有機粒子や無機粒子を挙げることができる。有機粒子としては、例えばポリエステル樹脂、ベンゾグアナミンのようなポリアミド系樹脂、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、フッ素系樹脂、シリコーン樹脂などの樹脂からなる粒子、上記樹脂の2種以上の共重合体およびそれらの混合物からなる粒子が挙げられる。 Examples of the particles contained in the A layer include organic particles and inorganic particles. Examples of the organic particles include polyester resins, polyamide resins such as benzoguanamine, polyurethane resins, acrylic resins, methacrylic resins, polyamide resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyacetic acids. Examples thereof include particles made of a resin such as a vinyl resin, a fluorine-based resin, and a silicone resin, and particles made of two or more copolymers of the above resins and a mixture thereof.
 無機粒子としては、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛、酸化セリウム、酸化マグネシウム、硫酸バリウム、硫化亜鉛、リン酸カルシウム、シリカ、アルミナ、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウム、フッ化カルシウム等が挙げられる。 Inorganic particles include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, zinc sulfide, calcium phosphate, silica, alumina, mica, titanium mica, talc, clay, kaolin, fluoride. And lithium fluoride and calcium fluoride.
 上記した粒子の中でも無機粒子が好ましく、更に無機粒子の中でも、炭酸カルシウム、酸化チタン、硫酸バリウム、シリカが好ましく用いられる。 Among the above particles, inorganic particles are preferable, and among the inorganic particles, calcium carbonate, titanium oxide, barium sulfate, and silica are preferably used.
 粒子の平均粒子径は、0.05~10μmの範囲が適当であり、0.1~5μmの範囲が好ましく、0.2~3μmの範囲がより好ましい。 The average particle diameter of the particles is suitably in the range of 0.05 to 10 μm, preferably in the range of 0.1 to 5 μm, and more preferably in the range of 0.2 to 3 μm.
 A層における粒子の含有量は、A層の固形分総量に対して0.005質量%以上であることが好ましく、0.01質量%以上であることがより好ましい。上限の含有量は、A層の固形分総量に対して20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。粒子の含有量が0.005質量%未満では、良好なすべり性が得られない場合がある。一方、粒子の含有量が20質量%を超えると製膜性が低下する場合がある。 The content of particles in the A layer is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more with respect to the total solid content of the A layer. The upper limit content is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less, based on the total solid content of the A layer. When the content of the particles is less than 0.005% by mass, good sliding properties may not be obtained. On the other hand, when the content of the particles exceeds 20% by mass, the film forming property may be deteriorated.
 前述したように、反射フィルムに透過部を形成して得られた反射シートは、A層の面が光源に対向するように配置される。つまり、2層構成の場合はA層の面が反射部となり、3層構成の場合はA1層またはA2層が反射部となる。 As described above, the reflection sheet obtained by forming the transmission part on the reflection film is arranged so that the surface of the A layer faces the light source. That is, in the case of a two-layer configuration, the surface of the A layer is a reflection portion, and in the case of a three-layer configuration, the A1 layer or the A2 layer is a reflection portion.
 本発明の反射シートにおける反射部は、その平滑性は高い方が好ましい。反射部の平滑性を高くすることにより、反射シートの反射部で反射される光の乱反射が抑制されるので、光源から遠く離れた領域の光量低下が抑制される。その結果、光源の真上部分と周辺部分の明るさが均一となる。 The reflective part of the reflective sheet of the present invention preferably has a higher smoothness. By increasing the smoothness of the reflecting portion, the irregular reflection of the light reflected by the reflecting portion of the reflecting sheet is suppressed, so that a decrease in the amount of light in a region far from the light source is suppressed. As a result, the brightness of the portion directly above the light source and the peripheral portion is uniform.
 反射部の平滑性は中心線平均粗さRaで表すことができる。本発明の反射シートにおける反射部の中心線平均粗さRaは、100nm以下が好ましく、50nm以下がより好ましく、特に30nm以下が好ましい。 The smoothness of the reflective part can be expressed by the centerline average roughness Ra. The center line average roughness Ra of the reflecting portion in the reflecting sheet of the present invention is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
 一方、前述したように反射シートやその材料となる反射フィルムに適度なすべり性を付与するという観点からは、ある程度の凹凸を有していることが好ましく、反射部の中心線平均粗さRaは5nm以上が好ましく、10nm以上がより好ましい。 On the other hand, as described above, from the viewpoint of imparting appropriate slipperiness to the reflective sheet and the reflective film as a material thereof, it is preferable to have a certain degree of unevenness, and the center line average roughness Ra of the reflective portion is 5 nm or more is preferable and 10 nm or more is more preferable.
 このような平滑性を確保するために、反射部となるA層に含有させる粒子の平均粒子径や含有量を制御することが好ましい。つまり、反射部となるA層に含有される粒子の平均粒子径(D)は、A層の膜厚(T)より十分に小さいことが好ましい。粒子の平均粒子径(D)とA層の膜厚(T)の比率(D/T)は、0.7以下が好ましく、0.5以下がより好ましく、特に0.3以下が好ましい。 In order to ensure such smoothness, it is preferable to control the average particle diameter and the content of the particles to be contained in the A layer serving as the reflective portion. That is, it is preferable that the average particle diameter (D) of the particles contained in the A layer serving as the reflective portion is sufficiently smaller than the film thickness (T) of the A layer. The ratio (D / T) of the average particle diameter (D) of the particles to the film thickness (T) of the A layer is preferably 0.7 or less, more preferably 0.5 or less, and particularly preferably 0.3 or less.
 一方、反射シートおよび反射フィルムに適度なすべり性を付与するという観点からは、ある程度の凹凸を有していることが好ましく、この観点から、反射部となるA層に含有させる粒子の平均粒子径(D)とA層の膜厚(T)の比率(D/T)は、0.01以上が好ましく、0.03以上がより好ましく、特に0.05以上が好ましい。 On the other hand, from the viewpoint of imparting appropriate slipperiness to the reflective sheet and the reflective film, it is preferable to have a certain degree of unevenness. The ratio (D / T) between the thickness (T) of (D) and the A layer is preferably 0.01 or more, more preferably 0.03 or more, and particularly preferably 0.05 or more.
 反射部となるA層に含有させる粒子の平均粒子径(D)は、上述の平滑性とすべり性を確保するという観点から、具体的には3μm以下が好ましく、2μm以下がより好ましく、特に1μm以下が好ましい。また0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上が特に好ましい。また、反射部となるA層に含有させる粒子の含有量は、A層の固形分総量100質量%に対して0.005~10質量%の範囲が好ましく、0.01~5質量%の範囲がより好ましく、特に0.02~3質量%の範囲が好ましい。 Specifically, the average particle diameter (D) of the particles to be contained in the A layer serving as the reflective portion is preferably 3 μm or less, more preferably 2 μm or less, particularly 1 μm, from the viewpoint of ensuring the smoothness and slipperiness described above. The following is preferred. Moreover, 0.1 micrometer or more is preferable, 0.2 micrometer or more is more preferable, and 0.3 micrometer or more is especially preferable. Further, the content of the particles to be contained in the A layer serving as the reflective portion is preferably in the range of 0.005 to 10% by mass, and in the range of 0.01 to 5% by mass with respect to 100% by mass of the solid content of the A layer. Is more preferable, and the range of 0.02 to 3% by mass is particularly preferable.
 B層は層内部に気泡を含有することが好ましい。B層はフィルムであることが好ましく、多孔質の未延伸または二軸延伸ポリプロピレンフィルム、多孔質の未延伸あるいは延伸ポリエチレンテレフタレートフィルムが好ましく用いられる。この内部に気泡を含有させるための方法は、例えば特開平8-262208号公報(対応するものとして、欧州特許出願公開第0724181号明細書)、特開2002-90515号公報(対応するものとして、欧州特許出願公開第1302788号明細書)、特開2002-138150号公報に詳細に開示されており、本発明に用いることができる。 B layer preferably contains bubbles inside the layer. The B layer is preferably a film, and a porous unstretched or biaxially stretched polypropylene film or a porous unstretched or stretched polyethylene terephthalate film is preferably used. For example, JP-A-8-262208 (correspondingly, European Patent Application Publication No. 0724181), JP-A-2002-90515 (correspondingly) European Patent Application Publication No. 1302788) and Japanese Patent Application Laid-Open No. 2002-138150 are disclosed in detail and can be used in the present invention.
 B層は、ポリプロピレン樹脂やポリエステル樹脂で構成されていることが好ましく、特にポリエステル樹脂で構成されていることが好ましい。B層を構成するポリエステル樹脂としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)が好ましい。 The B layer is preferably made of a polypropylene resin or a polyester resin, and particularly preferably made of a polyester resin. As the polyester resin constituting the B layer, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable.
 また、このポリエステル樹脂の中には、各種添加剤、例えば、酸化防止剤、帯電防止剤などが添加されていてもよい。B層を構成するポリエステル樹脂の含有量は、B層の固形分総量に対して50質量%以上が好ましく、60質量%以上がより好ましく、特に70質量%以上が好ましい。上限は95質量%程度である。 In addition, various additives such as an antioxidant and an antistatic agent may be added to the polyester resin. The content of the polyester resin constituting the B layer is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more with respect to the total solid content of the B layer. The upper limit is about 95% by mass.
 B層における気泡の形成は、例えば、フィルム基材であるポリエステルフィルム中に、ポリエステル樹脂とは非相溶な樹脂を細かく分散させ、それを一軸または二軸の延伸することにより達成できる。 Formation of bubbles in the B layer can be achieved, for example, by finely dispersing a resin incompatible with the polyester resin in a polyester film that is a film base material and stretching it uniaxially or biaxially.
 B層は、B層を構成するポリエステル樹脂に非相溶な樹脂(以下、単に非相溶樹脂と略すこともある)を混合して、B層に含有させることが好ましい。非相溶樹脂を含有することにより、延伸時に非相溶樹脂を核として空洞が生まれ、樹脂と空洞との界面により光反射が起きる。ポリエステル樹脂に非相溶な樹脂としては、単独重合体であっても共重合体であってもよく、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン樹脂、環状ポリオレフィン樹脂、ポリスチレン樹脂、ポリアクリレート樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、ポリフェニレンスルフィド樹脂、フッ素樹脂などが好適に用いられる。これらは2種以上を併用してもよい。 The B layer is preferably mixed with the polyester resin constituting the B layer in an incompatible resin (hereinafter sometimes simply referred to as an incompatible resin) and contained in the B layer. By containing the incompatible resin, a cavity is created with the incompatible resin as a core during stretching, and light reflection occurs at the interface between the resin and the cavity. The resin incompatible with the polyester resin may be a homopolymer or a copolymer. Polyolefin resin such as polyethylene, polypropylene, polybutene, polymethylpentene, cyclic polyolefin resin, polystyrene resin, polyacrylate Resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, fluororesins, and the like are preferably used. Two or more of these may be used in combination.
 特にポリエステル樹脂との臨界表面張力差が大きく、延伸後の熱処理によって変形しにくい樹脂が好ましい。具体的には、ポリオレフィン系樹脂が好ましい。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン樹脂、環状ポリオレフィン樹脂、および、これらの共重合体を挙げることができる。これらの中でも特に環状オレフィン共重合体であるエチレンとビシクロアルケンの共重合体が好ましい。 Particularly preferred is a resin that has a large difference in critical surface tension with a polyester resin and is not easily deformed by heat treatment after stretching. Specifically, polyolefin resin is preferable. Examples of the polyolefin resin include polyolefin resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, cyclic polyolefin resins, and copolymers thereof. Among these, a copolymer of ethylene and bicycloalkene, which is a cyclic olefin copolymer, is particularly preferable.
 B層に含有させる非相溶樹脂の好ましい含有量は、B層の固形分総量に対して5質量%以上25質量%以下である。また、B層中に含有させる非相溶樹脂は、ポリエステル樹脂からなるマトリックス中に数平均粒子径が0.4μm以上3.0μm以下で分散していることが、適切な反射界面数やフィルム強度を得る上で好ましい。さらに非相溶樹脂の数平均粒子径は、0.5μm以上1.5μm以下の範囲であることが好ましい。 The preferable content of the incompatible resin to be contained in the B layer is 5% by mass or more and 25% by mass or less with respect to the total solid content of the B layer. In addition, the incompatible resin contained in the B layer is dispersed in a matrix made of a polyester resin with a number average particle diameter of 0.4 μm or more and 3.0 μm or less. It is preferable in obtaining. Furthermore, the number average particle size of the incompatible resin is preferably in the range of 0.5 μm to 1.5 μm.
 B層には、更に有機粒子や無機粒子などの粒子を含有させることが好ましい。かかる粒子としては前述のA層に含有させることができる粒子と同様のものが挙げられる。これらの粒子の中でも、波長400~700nmの可視光域において吸収の少ない炭酸カルシウム、硫酸バリウム、二酸化チタンの無機粒子が反射特性や隠蔽性、製造コスト等の観点で好ましい。本発明において、フィルムの巻き取り性、長時間の製膜安定性、反射特性向上の観点から、硫酸バリウム、二酸化チタンが最も好ましい。粒子の平均粒子径としては、0.1~3μmの範囲が好ましく、このような無機粒子を使用することによって反射性や隠蔽性が向上する。 It is preferable that the layer B further contains particles such as organic particles and inorganic particles. Examples of such particles include the same particles as those that can be contained in the A layer. Among these particles, inorganic particles such as calcium carbonate, barium sulfate, and titanium dioxide that absorb less in the visible light range of wavelength 400 to 700 nm are preferable from the viewpoints of reflection characteristics, concealability, production cost, and the like. In the present invention, barium sulfate and titanium dioxide are most preferable from the viewpoints of film winding property, long-term film-forming stability, and improvement in reflection characteristics. The average particle diameter of the particles is preferably in the range of 0.1 to 3 μm, and the use of such inorganic particles improves the reflectivity and concealability.
 B層における無機粒子の含有量は、良好な反射特性や隠蔽性を確保するという観点から、B層の固形分総量に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましく、特に1質量%以上が好ましい。一方、このような無機粒子の含有量が多くなると、反射シートの透過黄色度(YI)が高くなる傾向にあるので、無機粒子の上限の含有量は、10質量%以下が好ましく、5質量%以下がより好ましく、特に3質量%以下が好ましい。 The content of the inorganic particles in the B layer is preferably 0.1% by mass or more, more preferably 0.5% by mass or more with respect to the total solid content of the B layer, from the viewpoint of ensuring good reflection characteristics and concealment. 1% by mass or more is particularly preferable. On the other hand, when the content of such inorganic particles increases, the transmission yellowness (YI) of the reflective sheet tends to increase. Therefore, the upper limit content of the inorganic particles is preferably 10% by mass or less, and 5% by mass. The following is more preferable, and 3% by mass or less is particularly preferable.
 B層には、更に共重合ポリエステルを含有することが好ましい。B層に共重合ポリエステルを含有させることにより、B層に比較的高濃度の無機粒子を含有させる場合であっても安定して製膜することができる。共重合ポリエステルは、B層中の非相溶樹脂の分散剤としての役割も有する。 It is preferable that the B layer further contains a copolyester. By containing the copolyester in the B layer, it is possible to stably form a film even when the B layer contains a relatively high concentration of inorganic particles. The copolyester also has a role as a dispersant for the incompatible resin in the B layer.
 かかる共重合ポリエステルとしては、ポリエチレンテレフタレートとイソフタル酸との共重合体、ポリエチレンテレフタレートとシクロヘキサンジメタノールとの共重合体、ポリブチレンテレフタレートとポリテトラメチレンテレフタレートとの共重合体等が挙げられる。本発明では、これらの共重合ポリエステルからなる群の中から選ばれる少なくとも2種類を含有することが好ましい。 Examples of such a copolyester include a copolymer of polyethylene terephthalate and isophthalic acid, a copolymer of polyethylene terephthalate and cyclohexanedimethanol, a copolymer of polybutylene terephthalate and polytetramethylene terephthalate, and the like. In this invention, it is preferable to contain at least 2 types chosen from the group which consists of these copolyesters.
 反射フィルムが2層構成である場合の各層の厚み比率は、高い反射率を維持しながら、透過黄色度(YI)を低くするという観点から、A層:B層=2:98~20:80の範囲が好ましく、更に、A層:B層=3:97~10:90の範囲がより好ましい。 In the case where the reflective film has a two-layer structure, the thickness ratio of each layer is such that A layer: B layer = 2: 98 to 20:80 from the viewpoint of reducing the transmission yellowness (YI) while maintaining high reflectance. The range of A layer: B layer = 3: 97 to 10:90 is more preferable.
 また、A層の一層当たりの厚み(2層構成の場合はA層の厚みを意味し、3層構成の場合にはA1層およびA2層のそれぞれの厚みを意味する)は、B層を支持するという観点から、3μm以上が好ましく、5μm以上がより好ましく、6μm以上が特に好ましい。上限の厚みは30μm以下が好ましく、20μm以下がより好ましく、15μm以下が特に好ましい。 In addition, the thickness per layer of A layer (in the case of a two-layer configuration means the thickness of the A layer, and in the case of a three-layer configuration means the thickness of each of the A1 layer and the A2 layer) supports the B layer. From the viewpoint of achieving, it is preferably 3 μm or more, more preferably 5 μm or more, and particularly preferably 6 μm or more. The upper limit thickness is preferably 30 μm or less, more preferably 20 μm or less, and particularly preferably 15 μm or less.
 B層の厚みは、高い反射率を確保するという観点から50μm以上が好ましく、70μm以上がより好ましく、90μm以上が特に好ましい。上限の厚みは440μm以下が好ましく、350μm以下がより好ましく、300μm以下が特に好ましい。 The thickness of the B layer is preferably 50 μm or more, more preferably 70 μm or more, and particularly preferably 90 μm or more from the viewpoint of ensuring high reflectance. The upper limit thickness is preferably 440 μm or less, more preferably 350 μm or less, and particularly preferably 300 μm or less.
 反射フィルムが3層構成である場合の各層の厚み比率は、高い反射率を維持しながら、透過黄色度(YI)を50以下に調整するという観点から、A1層:B層:A2層=1:98:1~15:70:15の範囲が好ましく、更に、A1層:B層:A2層=2:96:2~10:80:10の範囲がより好ましい。 When the reflective film has a three-layer structure, the thickness ratio of each layer is as follows: A1 layer: B layer: A2 layer = 1 from the viewpoint of adjusting the transmission yellowness (YI) to 50 or less while maintaining high reflectance. : The range of 98: 1 to 15:70:15 is preferable, and the range of A1 layer: B layer: A2 layer = 2: 96: 2 to 10:80:10 is more preferable.
 A層は、B層を支持するという観点から実質的に気泡を含有しない層であることが好ましい。実質的に気泡を含有しないとは、空隙率が10%未満である層状態をいう。A層の厚みは、断面を電子顕微鏡観察したときに表面から実質的に気泡が含有されていない断面方向深さまでの厚みとして求まり、実質的に気泡が含有されていない層の厚みをA層厚みとする。 The A layer is preferably a layer that substantially does not contain bubbles from the viewpoint of supporting the B layer. “Contains substantially no bubbles” means a layer state having a porosity of less than 10%. The thickness of the A layer is determined as the thickness from the surface to the depth in the cross-section direction in which bubbles are not substantially contained when the cross section is observed with an electron microscope. And
 本発明の反射シート用途に使用される反射フィルムは、反射部となる面にはビーズ層は設けないことが好ましい。このビーズ層はバインダーと球状粒子を含有する塗布層によって形成され、反射フィルムに当たって反射した光を拡散させる役目がある。反射フィルムにビーズ層を設けた反射シートは、導光板タイプのバックライトユニットとして広く用いられているが、本発明の反射シートの反射部となる面には適用しないことが好ましい。一方、本発明の反射シートの反射部とは反対面に、本発明の目的・効果を阻害しない範囲でまたは反射シートのすべり性向上のために上記ビーズ層を適用することができる。 In the reflective film used for the reflective sheet of the present invention, it is preferable that a bead layer is not provided on the surface to be a reflective portion. This bead layer is formed by a coating layer containing a binder and spherical particles, and has a function of diffusing the light reflected by the reflection film. A reflection sheet provided with a bead layer on a reflection film is widely used as a light guide plate type backlight unit, but is preferably not applied to a surface to be a reflection portion of the reflection sheet of the present invention. On the other hand, the above-mentioned bead layer can be applied to the surface opposite to the reflecting portion of the reflecting sheet of the present invention within a range that does not impair the objects and effects of the present invention or for improving the slipperiness of the reflecting sheet.
 反射部となる面にビーズ層が存在すると、その中心線平均粗さRaは通常500nm以上となり反射部の平滑性が低下し、その結果光源真上の中央部と周辺部の明るさが不均一となる場合がある。 When a bead layer is present on the surface to be a reflective part, the center line average roughness Ra is usually 500 nm or more, and the smoothness of the reflective part is deteriorated. As a result, the brightness of the central part and the peripheral part directly above the light source is uneven. It may become.
 本発明の反射シートの厚みは、高い反射率を得るという観点および高い剛性を得るという観点から100μm以上が好ましく、150μm以上が好ましい。特に本発明の反射シートは透過部を有するため反射シート自体の剛性が低下する傾向にあるので、高い剛性を確保するという観点から、反射シートの厚みは大きい方が好ましい。 The thickness of the reflective sheet of the present invention is preferably 100 μm or more, and preferably 150 μm or more from the viewpoint of obtaining high reflectivity and high rigidity. In particular, since the reflection sheet of the present invention has a transmission part and the rigidity of the reflection sheet itself tends to be reduced, the thickness of the reflection sheet is preferably larger from the viewpoint of ensuring high rigidity.
 一方、反射シートの厚みの上限は、透過部形成のための加工性、取り扱い性、生産性、コストの観点から、500μm以下が好ましく、350μm以下がより好ましい。 On the other hand, the upper limit of the thickness of the reflective sheet is preferably 500 μm or less, and more preferably 350 μm or less, from the viewpoints of workability for forming the transmission part, handling property, productivity, and cost.
 本発明の反射シートは、反射部の透過黄色度(YI)が50以下、40以下がより好ましく、35以下がさらに好ましく、特に30以下であることが好ましい。上述した反射フィルムは、透過黄色度(YI)が大きくなる傾向にあるが、透過黄色度(YI)に影響を与えると考えられる、粒子の種類、粒子のサイズ、粒子の含有量、樹脂の種類や含有量、A層とB層の厚み比率等を調整することによって、反射部の透過黄色度(YI)が低くなるように制御することができる。 In the reflective sheet of the present invention, the transmission yellowness (YI) of the reflective part is more preferably 50 or less, 40 or less, further preferably 35 or less, and particularly preferably 30 or less. The above-described reflective film tends to increase the transmission yellowness (YI), but is considered to affect the transmission yellowness (YI), the type of particles, the size of particles, the content of particles, the type of resin In addition, by adjusting the content, the thickness ratio of the A layer and the B layer, etc., the transmission yellowness (YI) of the reflective portion can be controlled to be low.
 例えば、無機粒子として用いられる酸化チタンや硫酸バリウムは透過黄色度(YI)を大きくする傾向にあるので、その含有量を調整することが好ましい。また、共重合ポリエステル樹脂も、共重合成分の種類にもよるが透過黄色度(YI)を大きくする傾向にあるので、その含有量を調整することが好ましい。また、B層はA層に比べて厚みが大きく、また通常は各種添加剤も多く含有することから、A層に比べて透過黄色度(YI)への影響が大きくなることが考えられるので、B層の厚みを調整することが好ましい。 For example, since titanium oxide and barium sulfate used as inorganic particles tend to increase the transmission yellowness (YI), it is preferable to adjust the content thereof. Further, the copolymerized polyester resin also tends to increase the transmission yellowness (YI), although it depends on the type of the copolymer component, and therefore the content thereof is preferably adjusted. In addition, since the B layer is thicker than the A layer and usually contains a large amount of various additives, it is considered that the influence on the transmission yellowness (YI) is larger than that of the A layer. It is preferable to adjust the thickness of the B layer.
 本発明の反射シートは、反射部と透過部とを有する。本発明の反射シートは、例えば、前述したように反射フィルムなどの反射部材に透過部(開口部)を設けることによって得ることができる。この開口部(貫通孔)は、レーザー加工や打ち抜き加工によって形成することができる。 The reflection sheet of the present invention has a reflection part and a transmission part. The reflection sheet of the present invention can be obtained, for example, by providing a transmission part (opening) on a reflection member such as a reflection film as described above. This opening (through hole) can be formed by laser processing or punching.
 透過部は孔としていることが好ましく、その形状としては、円形、三角形、矩形、多角形(例えば5~12角形)、および内部と外部とが一部でつながっている環状などが挙げられる。これらの中でも、楕円形、円形、矩形、多角形が好ましく、更に楕円形、円形がより好ましく、特に真円が好ましい。 The permeation part is preferably a hole, and examples of the shape include a circle, a triangle, a rectangle, a polygon (for example, 5 to 12 squares), and a ring in which the inside and the outside are partially connected. Among these, an ellipse, a circle, a rectangle, and a polygon are preferable, an ellipse and a circle are more preferable, and a perfect circle is particularly preferable.
 本発明の反射シートにおいて、透過部は独立した複数の開口部で構成されることが好ましい。本明細書において「透過部」は、個々の開口部を指す場合と、複数の開口部を含めた透過領域を指す場合とがある。 In the reflective sheet of the present invention, it is preferable that the transmission part is composed of a plurality of independent openings. In the present specification, the “transmission portion” may indicate an individual opening portion or a transmission region including a plurality of opening portions.
 本発明の反射シートにおける透過部は、複数の独立した開口部を特定パターンで配置することができる。透過部の開口パターンは、光源の1個当たりの光量や配置される光源の個数等によって適宜選択することができる。 The transmission part in the reflection sheet of the present invention can arrange a plurality of independent openings in a specific pattern. The opening pattern of the transmissive part can be appropriately selected depending on the light amount per light source, the number of light sources arranged, and the like.
 透過部の開口部の配置パターンとしては、特開2010-272245号公報の図3および図6のパターンが例示されるが、本発明はこれらのパターンに限定されない。これらのパターンは、点光源毎、あるいは隣接する複数の点光源を1ユニットとするユニット毎に配置することができる。 Examples of the arrangement pattern of the openings of the transmission part include the patterns shown in FIGS. 3 and 6 of JP 2010-272245 A, but the present invention is not limited to these patterns. These patterns can be arranged for each point light source or for each unit including a plurality of adjacent point light sources as one unit.
 以下、透過部の配置パターンがLEDなど光源毎に設けられた態様について説明する。この態様として、例えば、上側反射シートの光源の真上に位置する領域から周辺に遠ざかるにしたがい透過部から透過する光量が漸増するように透過部を配置する態様が挙げられる。 Hereinafter, a mode in which the arrangement pattern of the transmission part is provided for each light source such as an LED will be described. As this aspect, the aspect which arrange | positions a transmission part so that the light quantity which permeate | transmits from a transmission part gradually increases as it distances from the area | region located right above the light source of an upper side reflection sheet, for example can be mentioned.
 LEDのような指向性のある光源は、中心位置から周辺に遠ざかるにしたがい光量が減少する傾向にある。したがって、上記のように上側反射シートの光源の真上に位置する領域から周辺に遠ざかるにしたがい透過部から透過する光量が漸増するように透過部を配置することによって、輝度むらが抑制された均一な光量を得ることができる。 A directional light source such as an LED tends to decrease in light quantity as it moves away from the center position. Therefore, by arranging the transmissive part so that the amount of light transmitted from the transmissive part gradually increases as it moves away from the region located directly above the light source of the upper reflective sheet as described above, the luminance unevenness is suppressed and uniform. A sufficient amount of light can be obtained.
 図2は、本発明の反射シートの一例を示す模式平面図(光源と開口パターンの位置関係を示す模式平面図)であり、図3は図2の模式断面図である。上側反射シート3には、多数の透過部7が設けられている。そして、上側反射シート3の光源1の真上に位置する領域10から周辺に遠ざかるにしたがい透過部7(円形開口部)の1個当たりの開口面積が大きくなっている。つまり、図2の態様は、上側反射シートの光源の真上に位置する領域から周辺に遠ざかるにしたがい透過部から透過する光量が漸増するように、透過部が配置されている。 FIG. 2 is a schematic plan view (schematic plan view showing a positional relationship between a light source and an opening pattern) showing an example of the reflection sheet of the present invention, and FIG. 3 is a schematic cross-sectional view of FIG. The upper reflection sheet 3 is provided with a large number of transmission parts 7. As the distance from the region 10 located directly above the light source 1 of the upper reflective sheet 3 increases, the opening area per one transmission portion 7 (circular opening) increases. That is, in the aspect of FIG. 2, the transmissive part is arranged so that the amount of light transmitted from the transmissive part gradually increases as it moves away from the region located directly above the light source of the upper reflective sheet.
 図4は、本発明の反射シートの他の態様(他の開口パターン)を示す模式平面図である。図4の開口パターンも、図2と同様に上側反射シートの光源の真上に位置する領域から周辺に遠ざかるにしたがい透過部から透過する光量を漸増させるパターンである。図4は、1個当たりの開口面積がほぼ同一の透過部7を多数設けた態様であり、上側反射シート3の光源1の真上に位置する領域10から周辺に遠ざかるにしたがい透過部7の個数が多くなるように配置されている。 FIG. 4 is a schematic plan view showing another aspect (another opening pattern) of the reflection sheet of the present invention. The opening pattern of FIG. 4 is also a pattern that gradually increases the amount of light transmitted from the transmissive portion as it moves away from the region located directly above the light source of the upper reflective sheet, as in FIG. FIG. 4 is a mode in which a large number of transmission parts 7 having substantially the same opening area per one are provided, and the transmission parts 7 are arranged as they move away from the region 10 located directly above the light source 1 of the upper reflection sheet 3. It arrange | positions so that the number may increase.
 図1に示すように、本発明の反射シートが上側反射シートとして用いられる面光源装置は、光源1の背面に下側反射シート2が配置されている。下側反射シート2と上側反射シート3は、それぞれの反射部が対向するように空間(空気層)を介して平行に配置されている。ここで、下側反射シート2の上側反射シート3に対向する面のほとんどが反射部である。但し、光源1を設置するところ、および光源1を接続するために必要なところは反射部である必要はない。 As shown in FIG. 1, in a surface light source device in which the reflection sheet of the present invention is used as an upper reflection sheet, a lower reflection sheet 2 is disposed on the back surface of a light source 1. The lower reflection sheet 2 and the upper reflection sheet 3 are arranged in parallel via a space (air layer) so that the respective reflection portions face each other. Here, most of the surface of the lower reflective sheet 2 that faces the upper reflective sheet 3 is a reflective portion. However, the place where the light source 1 is installed and the place necessary for connecting the light source 1 do not need to be a reflecting portion.
 本発明の反射シートは、発光色むらが抑制された以下の面光源装置用反射ユニットおよび面光源用装置を提供する。 
光を反射する下側反射シートおよび前記下側反射シートに対向した上述の反射シートからなる上面反射シートを有する面光源装置用ユニット。ならびに
光源、光を反射する下側反射シートおよび上述の反射シートからなる上面反射シートを有する面光源装置であって、光源の背面に下側反射シートが存在し、下側反射シートに対向して上側反射シートが存在する面光源装置。
The reflection sheet of the present invention provides the following reflection unit for a surface light source device and an apparatus for a surface light source in which uneven emission color is suppressed.
A unit for a surface light source device, comprising: a lower reflective sheet that reflects light; and an upper reflective sheet composed of the above-described reflective sheet facing the lower reflective sheet. And a surface light source device having a light source, a lower reflective sheet for reflecting light, and an upper reflective sheet composed of the above-described reflective sheet, wherein the lower reflective sheet is present on the back surface of the light source and faces the lower reflective sheet A surface light source device having an upper reflective sheet.
 下側反射シートは、上側反射シートと対向する面の全面が反射部であることが好ましい。但し、光源を設置あるいは接続するための開口部があってもよい。 The lower reflective sheet preferably has a reflective portion on the entire surface facing the upper reflective sheet. However, there may be an opening for installing or connecting the light source.
 下側反射シートは、高い反射率を有していることが好ましい。本発明の面光源装置用反射ユニットおよび面光源装置は、上側反射シートと下側反射シートとの間で反射を繰り返しながら上側反射シートの透過部を透過して上方に出射する光も多く含まれている。したがって反射を繰り返す過程で光量が低下することはなるべく避けたい。 It is preferable that the lower reflective sheet has a high reflectance. The reflection unit for a surface light source device and the surface light source device of the present invention include a large amount of light that passes through the transmission part of the upper reflection sheet and emits upward while repeating reflection between the upper reflection sheet and the lower reflection sheet. ing. Therefore, it is desirable to avoid as much as possible the decrease in the light quantity in the process of repeating reflection.
 したがって、下側反射シートの反射部における波長400~700nmにおける平均反射率は、90%以上が好ましく、95%以上がより好ましく、100%以上が特に好ましい。上限の平均反射率は、150%程度である。下側反射シートの反射部における平均反射率が低い場合には、バックライトユニットの輝度が不足する場合がある。 Therefore, the average reflectance at a wavelength of 400 to 700 nm in the reflecting portion of the lower reflective sheet is preferably 90% or more, more preferably 95% or more, and particularly preferably 100% or more. The upper limit average reflectance is about 150%. When the average reflectance at the reflecting portion of the lower reflective sheet is low, the luminance of the backlight unit may be insufficient.
 下側反射シートにおける反射部は、その平滑性は高い方が好ましい。下側反射シートの反射部の平滑性を高くすることにより、下側反射シートの反射部で反射される光の乱反射が抑制されるので、光源から遠く離れた領域の光量低下が抑制される。その結果、光源の真上部分と真上から離れた周辺部分の明るさが均一となる。すなわち明るさの均一性が向上することになる。 The reflective part of the lower reflective sheet preferably has higher smoothness. By increasing the smoothness of the reflection part of the lower reflection sheet, the irregular reflection of the light reflected by the reflection part of the lower reflection sheet is suppressed, so that a decrease in the amount of light in a region far from the light source is suppressed. As a result, the brightness of the portion directly above the light source and the peripheral portion away from directly above are uniform. That is, the uniformity of brightness is improved.
 下側反射シートの反射部の平滑性は中心線平均粗さRaで表すことができる。下側反射シートの反射部の中心線平均粗さRaは、100nm以下が好ましく、50nm以下がより好ましく、特に30nm以下が好ましい。一方、下側反射シートに適度なすべり性を付与するという観点からは、ある程度の凹凸を有していることが好ましく、下側反射シートの反射部の中心線平均粗さRaは5nm以上が好ましく、10nm以上がより好ましい。 The smoothness of the reflective part of the lower reflective sheet can be expressed by the centerline average roughness Ra. The center line average roughness Ra of the reflective portion of the lower reflective sheet is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. On the other hand, from the viewpoint of imparting appropriate slipperiness to the lower reflective sheet, it is preferable to have some unevenness, and the center line average roughness Ra of the reflective portion of the lower reflective sheet is preferably 5 nm or more. 10 nm or more is more preferable.
 下側反射シートの全光線透過率は、高い反射率を確保するという観点から0.5~10%が好ましい。透過率の上限は10%以下が好ましく、7%以下がより好ましく、特に5%以下が好ましい。透過率の下限は、下側反射シートの材料コストや生産性の観点から、0.5%以上が好ましく、1.0%以上がより好ましく、更に1.2%以上が好ましく、特に1.5%以上が好ましい。 The total light transmittance of the lower reflective sheet is preferably 0.5 to 10% from the viewpoint of securing a high reflectance. The upper limit of the transmittance is preferably 10% or less, more preferably 7% or less, and particularly preferably 5% or less. The lower limit of the transmittance is preferably 0.5% or more, more preferably 1.0% or more, still more preferably 1.2% or more, particularly 1.5% from the viewpoint of the material cost and productivity of the lower reflective sheet. % Or more is preferable.
 下側反射シートは、前述の本発明の反射シートに用いることができる反射フィルムと同様のものを用いることができる。ただし透過部、すなわち開口部を設ける必要はない。つまり、内部に気泡を含有する層(B層)の少なくとも一方の面に、上記B層を支持するための層(A層)が積層されたものを用いることができる。この態様において、A層はB層の片面のみに積層されていてもよいし、B層の両面に積層されていてもよい。つまり、A層/B層の2層構成、A1層/B層/A2層の3層構成が挙げられる。これらの中でも、A1層/B層/A2層の3層構成が好ましい。ここで、A1層とA2層はA層であり、A1層とA2層は組成および厚みが同一である構成であってもよいし、組成または厚みが異なる構成であってもよい。 The lower reflective sheet may be the same as the reflective film that can be used in the above-described reflective sheet of the present invention. However, it is not necessary to provide a transmission part, that is, an opening part. That is, a layer in which a layer (A layer) for supporting the B layer is laminated on at least one surface of a layer containing bubbles (B layer) can be used. In this embodiment, the A layer may be laminated only on one side of the B layer, or may be laminated on both sides of the B layer. That is, a two-layer configuration of A layer / B layer and a three-layer configuration of A1 layer / B layer / A2 layer can be mentioned. Among these, a three-layer configuration of A1 layer / B layer / A2 layer is preferable. Here, the A1 layer and the A2 layer are A layers, and the A1 layer and the A2 layer may have the same composition and thickness, or may have different compositions or thicknesses.
 下側反射シートとして上記の反射フィルムを用いる場合、A層の面が反射部となる。つまり、2層構成の反射フィルムではA層の面が反射部となり、3層構成の反射フィルムではA1層またはA2層の面が反射部となる。 When using the above-described reflective film as the lower reflective sheet, the surface of the A layer is a reflective part. That is, in the reflection film having a two-layer structure, the surface of the A layer is a reflection part, and in the reflection film having a three-layer structure, the surface of the A1 layer or the A2 layer is a reflection part.
 下側反射シートの反射部には、前述したビーズ層は前述した理由と同様な理由から積層しないことが好ましい。一方、下側反射シートの反射部とは反対面には、下側反射シートのすべり性を向上させるために上記ビーズ層を積層することができる。 It is preferable that the bead layer described above is not laminated on the reflective portion of the lower reflective sheet for the same reason as described above. On the other hand, the above bead layer can be laminated on the surface of the lower reflective sheet opposite to the reflecting portion in order to improve the sliding property of the lower reflective sheet.
 [用途]
 本発明の反射シートおよび反射ユニットを用いた面光源装置は、液晶ディスプレイなどのバックライトユニット用途に好適である。図1の面光源装置の上側反射シート3の上方に、光拡散フィルムなどの光学シート(図示せず)を配置することによってバックライトユニットとすることができる。また、本発明の面光源装置用反射ユニットは照明装置、電子看板等に広く用いることができる。
[Usage]
The surface light source device using the reflection sheet and the reflection unit of the present invention is suitable for use in a backlight unit such as a liquid crystal display. By arranging an optical sheet (not shown) such as a light diffusion film above the upper reflection sheet 3 of the surface light source device of FIG. 1, a backlight unit can be obtained. Further, the reflection unit for a surface light source device of the present invention can be widely used for lighting devices, electronic signboards, and the like.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、本実施例における、測定方法、評価方法および使用材料を以下に示す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. The measurement method, evaluation method, and materials used in this example are shown below.
 [測定方法および評価方法]
 (1)透過黄色度(YI)の測定
 分光光度計(島津製作所製UV-3150)で求めた透過スペクトルからJIS K7373(2006)にしたがってC光源(2度視野)での反射部の透過黄色度(YI)を算出した。なお、透過黄色度(YI)は反射シートのいずれの表面から測定しても同様の値となる。無作為に3箇所測定し、それらの平均値を透過黄色度(YI)とした。
[Measurement method and evaluation method]
(1) Measurement of transmission yellowness (YI) Transmission yellowness of a reflection part at a C light source (2-degree visual field) from a transmission spectrum obtained by a spectrophotometer (UV-3150 manufactured by Shimadzu Corporation) according to JIS K7373 (2006) (YI) was calculated. The transmitted yellowness (YI) is the same value when measured from any surface of the reflective sheet. Three points were measured at random, and the average value was taken as the transmission yellowness (YI).
 (2)全光線透過率の測定
 JIS K7105(1981)に準じて、ヘイズメーター(スガ試験器製:IS-2B)を用いて反射部の全光線透過率を測定した。なお、光線入射面はA1層の面とした。無作為に3箇所について測定し、それらの平均値を全光線透過率とした。
(2) Measurement of total light transmittance In accordance with JIS K7105 (1981), the total light transmittance of the reflecting portion was measured using a haze meter (manufactured by Suga Test Instruments: IS-2B). The light incident surface was the surface of the A1 layer. Measurements were made at three locations at random, and the average value was taken as the total light transmittance.
 (3)平均反射率の測定
 平均反射率は、分光光度計U-3410((株)日立製作所)にφ60積分球130-0632((株)日立製作所)および10℃傾斜スペーサーを取りつけた状態で、波長400~700nmの範囲、10nm間隔で、標準白色板に対する相対的な反射率を測定し、それらの平均値を算出することで求めた。なお、標準白色板には(株)日立計測器サービス製の部品番号210-0740を用い、無作為に3箇所を測定し平均値を算出し、これらの平均反射率を採用した。なお、平均反射率はA1層面で測定した。
(3) Measurement of average reflectance The average reflectance was measured with a spectrophotometer U-3410 (Hitachi Ltd.) and a φ60 integrating sphere 130-0632 (Hitachi Ltd.) and a 10 ° C. inclined spacer attached. The relative reflectance with respect to the standard white plate was measured in the wavelength range of 400 to 700 nm at intervals of 10 nm, and the average value thereof was calculated. In addition, part number 210-0740 manufactured by Hitachi Sokki Service Co., Ltd. was used as the standard white plate, and three points were randomly measured to calculate an average value, and these average reflectances were adopted. The average reflectance was measured on the A1 layer surface.
 (4)反射シートの総厚みの測定
 反射シートの総厚みは、JIS C2151(2006)に準じてマイクロメーターで測定した。また、各層の厚みは、反射シートをミクロトームを用いて厚み方向に潰すことなく、幅方向(TD)に切断し、切片サンプルを作成し、得られた切片サンプルの断面を(株)日立製作所製走査型電子顕微鏡(FE-SEM)S-2100A形を用いて、3,000倍の倍率で撮像し、撮像から各層厚みを採寸した。無作為に3箇所について測定し、それらの平均値を層厚みとした。
(4) Measurement of total thickness of reflection sheet The total thickness of the reflection sheet was measured with a micrometer in accordance with JIS C2151 (2006). In addition, the thickness of each layer is cut in the width direction (TD) without crushing the reflecting sheet in the thickness direction using a microtome to create a section sample, and the section of the obtained section sample is made by Hitachi, Ltd. Using a scanning electron microscope (FE-SEM) model S-2100A, an image was taken at a magnification of 3,000 times, and the thickness of each layer was measured from the image. Measurements were made at three locations at random, and the average value was taken as the layer thickness.
 (5)中心線平均粗さRaの測定
 JIS B0601(1982)に基づき、触針式表面粗さ測定器SE-3400((株)小坂研究所製)を用いて反射部の中心線平均粗さRaを測定した。無作為に選んだ3箇所を測定し、それらの平均値を中心線平均粗さRaとした。
(5) Measurement of centerline average roughness Ra Based on JIS B0601 (1982), the centerline average roughness of the reflecting part was measured using a stylus type surface roughness measuring instrument SE-3400 (manufactured by Kosaka Laboratory Ltd.). Ra was measured. Three places selected at random were measured, and the average value thereof was defined as the centerline average roughness Ra.
 <測定条件>
 送り速さ;0.5mm/s
 評価長さ;8mm
 カットオフ値λc:
  Raが20nm以下の場合、λc=0.08mm
  Raが20nmより大きく100nm以下の場合、λc=0.25mm
  Raが100nmより大きく2,000nm以下の場合、λc=0.8mm
 なお、上記測定条件で測定するに際し、まずカットオフ値λc=0.8mmで測定し、その結果、Raが100nmより大きい場合はそのRaを採用する。一方、上記測定の結果、Raが100nm以下の場合は、λc=0.25mmで再測定し、その結果、Raが20nmより大きい場合は、そのRaを採用する。一方、上記の再測定の結果、Raが20nm以下の場合は、λc=0.08mmで再測定し、そのRaを採用する。
<Measurement conditions>
Feeding speed: 0.5mm / s
Evaluation length: 8mm
Cut-off value λc:
When Ra is 20 nm or less, λc = 0.08 mm
When Ra is greater than 20 nm and less than or equal to 100 nm, λc = 0.25 mm
When Ra is greater than 100 nm and less than or equal to 2,000 nm, λc = 0.8 mm
In the measurement under the above measurement conditions, first, measurement is performed with a cutoff value λc = 0.8 mm, and when Ra is larger than 100 nm, Ra is adopted. On the other hand, if Ra is 100 nm or less as a result of the above measurement, the measurement is performed again at λc = 0.25 mm. If Ra is larger than 20 nm, Ra is adopted. On the other hand, if Ra is 20 nm or less as a result of the above re-measurement, the re-measurement is performed at λc = 0.08 mm, and the Ra is adopted.
 (6)A層(A1層および/またはA2層)に含有される粒子の平均粒子径の測定
 反射シートの断面を電子顕微鏡で観察し、その断面写真から、A層に含有される粒子の平均粒子径を算出した。具体的には以下の測定により平均粒子径を算出した。
(6) Measurement of average particle diameter of particles contained in layer A (A1 layer and / or A2 layer) The cross section of the reflection sheet was observed with an electron microscope, and from the cross-sectional photograph, the average of the particles contained in layer A The particle size was calculated. Specifically, the average particle size was calculated by the following measurement.
 反射シートを任意の位置で切断し、SEM(走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製の日立走査電子顕微鏡 S-3400N))にて、断面を倍率1,000倍~50,000倍にて観察した。なお倍率はA層に含有される粒子径に応じて適宜調整した。このようにして得られた断面写真から、無作為に30個の粒子を選択し、それぞれの粒子径を計測し、それらを平均した値を粒子の平均粒子径とした。 The reflecting sheet is cut at an arbitrary position, and the cross section is magnified 1,000 to 50,000 times with an SEM (scanning electron microscope (Hitachi scanning electron microscope S-3400N manufactured by Hitachi High-Technologies Corporation)). Observed. The magnification was appropriately adjusted according to the particle size contained in the A layer. From the cross-sectional photograph obtained in this way, 30 particles were randomly selected, each particle size was measured, and the average value of these was taken as the average particle size of the particles.
 ここで、粒子の粒径は、、4辺に粒子が内接し面積が最も小さくなる正方形または長方形を描き、正方形の場合は1辺の長さ、長方形の場合は長辺の長さをを採用した。この方法により、無作為に選んだ30個の粒子についてそれぞれの粒径を測定し、その数平均値を粒子の平均粒子径とした。 Here, the particle size of the particle is a square or rectangle that has the smallest area in contact with the particle on the four sides, and the length of one side is adopted for the square, and the length of the long side is adopted for the rectangle. did. By this method, the particle size of each of 30 randomly selected particles was measured, and the number average value was taken as the average particle size of the particles.
 なお、1画像中に粒子が30個観察されない場合は、さらに反射シートの異なる位置で切断した別の断面の画像を撮影し、合計30個の粒子の粒径を測定した。 In addition, when 30 particles were not observed in one image, another cross-sectional image cut at a different position of the reflection sheet was taken, and the particle size of a total of 30 particles was measured.
 粒子径に応じた観察(撮影)倍率の目安は以下のとおりである。
(a)倍率1,000倍
 観察に適した粒子の粒径:5μm以上10μm以下
(b)倍率5,000倍
  観察に適した粒子の粒径:1μm以上5μm未満
(c)倍率10,000倍
  観察に適した粒子の粒径:500nm以上1μm未満
(d)倍率20,000倍
  観察に適した粒子の粒径:100nm以上500nm未満
(e)倍率50,000倍
  観察に適した粒子の粒径:100nm未満。
The standard of the observation (photographing) magnification according to the particle diameter is as follows.
(A) Magnification 1,000 times Particle size suitable for observation: 5 μm or more and 10 μm or less (b) Magnification 5,000 times Particle size suitable for observation: 1 μm or more and less than 5 μm (c) Magnification 10,000 times Particle size suitable for observation: 500 nm or more and less than 1 μm (d) magnification 20,000 times Particle size suitable for observation: 100 nm or more and less than 500 nm (e) Particle size 50,000 times Particle size suitable for observation : Less than 100 nm.
 (7)面光源装置における発光色むらの官能評価
 図5に示す簡易的な面光源装置を用いて、反射シート(上側反射シート)から通過および透過する光の発光色むらを目視で観察し、発光色むらの程度に応じて4段階(最良、良、やや良、不良)で評価した。1サンプルを作成し、その評価結果を採用した。
(7) Sensory evaluation of emission color unevenness in surface light source device Using a simple surface light source device shown in FIG. 5, the light emission color unevenness of light passing through and passing through the reflection sheet (upper reflection sheet) is visually observed, The evaluation was made in four stages (best, good, slightly good, and bad) depending on the degree of unevenness of the emission color. One sample was prepared and the evaluation result was adopted.
 <簡易的面光源装置>
 図5の簡易的面光源装置は以下の構成である。上部開口面が、1辺長さ(L)が100mmの正方形で、深さ(H)が20mmのケーシングからなる。このケーシングの底面の中央部に1個のLED光源と下側反射シートが配置され、ケーシングの側面に下側反射シートと同じ反射シートが配置される。上部開口面を塞ぐように上側反射シートが配置されている。
<Simple surface light source device>
The simple surface light source device of FIG. 5 has the following configuration. The upper opening surface is a square having a side length (L) of 100 mm and a depth (H) of 20 mm. One LED light source and a lower reflective sheet are disposed at the center of the bottom surface of the casing, and the same reflective sheet as the lower reflective sheet is disposed on the side surface of the casing. An upper reflective sheet is disposed so as to close the upper opening surface.
 下側反射シートと側面の反射シートは実施例1で作製した反射フィルムを用いた。上側反射シートは各実施例で作製したそれぞれの反射シートを用いた。上側反射シートは、反射フィルムに直径が2mmの円形開口部が透過部として図4のパターンで設けらている。 The reflective film produced in Example 1 was used for the lower reflective sheet and the side reflective sheet. As the upper reflection sheet, each of the reflection sheets prepared in each example was used. In the upper reflection sheet, a circular opening having a diameter of 2 mm is provided in the reflection film in the pattern of FIG. 4 as a transmission part.
 なお、下側反射シートおよび側面反射シートの反射面は反射シートがA層とB層の2層からなる場合はA層とし、A1層、B層、A2層の3層からなる場合は、A1層の面とし、上側反射シートの反射部についても同様にA層またはA1層の面とした。 The reflective surface of the lower reflective sheet and the side reflective sheet is A layer when the reflective sheet is composed of two layers of A layer and B layer, and A1 when the reflective sheet is composed of three layers of A1, B and A2. It was set as the surface of the layer, and the reflection part of the upper reflective sheet was also set as the surface of the A layer or the A1 layer.
 (8)明るさの均一性の官能評価
 上記(7)と同様にして簡易的面光源装置を作製し、反射シート(上側反射シート)を介して通過および透過する光の明るさが上部開口面に相当する全領域(100mm×100mm)で、明るさが均一かどうかを目視で評価した。
最良:均一である。
良 :中央部に比べて周辺部の明るさがやや低いが許容されるレベルである。
不良:中央部に比べて周辺部の明るさが明らかに低い。
1サンプルを作成し、その評価結果を採用した。
(8) Sensory evaluation of brightness uniformity A simple surface light source device is produced in the same manner as in (7) above, and the brightness of light passing through and passing through the reflective sheet (upper reflective sheet) is the upper aperture surface. It was visually evaluated whether or not the brightness was uniform in the entire area corresponding to (100 mm × 100 mm).
Best: uniform.
Good: Although the brightness of the peripheral part is slightly lower than that of the central part, it is an acceptable level.
Defect: The brightness of the peripheral part is clearly lower than that of the central part.
One sample was prepared and the evaluation result was adopted.
 [実施例1]
 以下の要領で反射フィルムを作製し、この反射フィルムに透過部となる開口部を設けることによって本発明の反射シートを作製した。
[Example 1]
A reflective film was produced in the following manner, and the reflective sheet of the present invention was produced by providing an opening serving as a transmission part in the reflective film.
 この反射フィルムは、A1層/B層/A2層の3層構成であり、A1層とA2層は同一組成である。各層の厚みは、A1層が8μm、B層が210μm、A2層が8μmであった。 This reflective film has a three-layer structure of A1 layer / B layer / A2 layer, and the A1 layer and the A2 layer have the same composition. The thickness of each layer was 8 μm for the A1 layer, 210 μm for the B layer, and 8 μm for the A2 layer.
 <反射フィルム>
 <B層の組成>
 重合後のポリエチレンテレフタレートの色調(JIS K7105(1981)、刺激値直読方法で測定)がL値62.8、b値0.5、ヘイズ0.2%であるポリエチレンテレフタレートを使用し、このポリエチレンテレフタレート84質量部(以下、このポリエチレンテレフタレートの添加量を添加量Xとする)、ポリブチレンテレフタレートとポリテトラメチレングリコール(以下、PTMGと表記する)の共重合物(PBT/PTMG:商品名:東レ・デュポン(株)製、“ハイトレル”(登録商標))を0.5質量部、ジオール成分に対し1,4-シクロヘキサンジメタノール(以下、CHDMと表記する)が33mol%共重合された共重合ポリエチレンテレフタレート(33mol%PET/CHDM共重合)0.5質量部、ガラス転移温度が210℃であるシクロオレフィン系コポリマー(商品名:ポリプラスチックス(株)製“TOPAS”)5質量部、二酸化チタン含有マスターチップ(平均粒子径が0.25μmの二酸化チタンを50質量%含有するポリエチレンテレフタレートマスターチップ)10質量部(以下、このポリエチレンテレフタレートの添加量を添加量Yとする)を調製混合し、180℃で3時間乾燥させた後、270~300℃に加熱された押出機Bに供給した。
<Reflection film>
<B layer composition>
Polyethylene terephthalate having a color tone of polyethylene terephthalate after polymerization (measured by JIS K7105 (1981), stimulus value direct reading method) having an L value of 62.8, a b value of 0.5, and a haze of 0.2% is used. 84 parts by mass (hereinafter referred to as addition amount X of polyethylene terephthalate), copolymer of polybutylene terephthalate and polytetramethylene glycol (hereinafter referred to as PTMG) (PBT / PTMG: trade name: Toray Copolymer polyethylene in which 0.5 parts by mass of “Hytrel” (registered trademark) manufactured by DuPont Co., Ltd. and 33 mol% of 1,4-cyclohexanedimethanol (hereinafter referred to as CHDM) is copolymerized with respect to the diol component. 0.5 parts by mass of terephthalate (33 mol% PET / CHDM copolymer), 5 parts by mass of cycloolefin copolymer having a glass transition temperature of 210 ° C. (trade name: “TOPAS” manufactured by Polyplastics Co., Ltd.), master chip containing titanium dioxide (50 mass of titanium dioxide having an average particle size of 0.25 μm) % Polyethylene-containing terephthalate master chip) (hereinafter referred to as addition amount Y) is prepared and mixed, dried at 180 ° C. for 3 hours, and then heated to 270-300 ° C. Feeded to Extruder B.
 <A層(A1層およびA2層)の組成>
 ポリエチレンテレフタレート77質量部と、二酸化珪素含有マスターチップ(平均粒子径が0.6μmの二酸化珪素を1質量%含有するポリエチレンテレフタレートマスターチップ)3質量部と、ポリエチレンテレフタレートにイソフタル酸を18mol%共重合したもの(以下、PET/Iと表記する)20質量部とを180℃で3時間減圧乾燥した後、280℃に加熱された押出機Aに供給した。
<Composition of A layer (A1 layer and A2 layer)>
77 parts by mass of polyethylene terephthalate, 3 parts by mass of a silicon dioxide-containing master chip (polyethylene terephthalate master chip containing 1% by mass of silicon dioxide having an average particle diameter of 0.6 μm), and 18 mol% of isophthalic acid were copolymerized with polyethylene terephthalate. 20 parts by mass (hereinafter referred to as “PET / I”) were dried under reduced pressure at 180 ° C. for 3 hours, and then supplied to an extruder A heated to 280 ° C.
 <反射フィルムの製造>
 上記のB層とA層の組成物(ポリマー)をA1層/B層/A2層となるように積層装置を通して積層し、Tダイよりシート状に成形した。さらにこのフィルムを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムを85~98℃に加熱したロール群に導き、長手方向に3.4倍延伸し、21℃のロール群で冷却した。続いて、長手方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き120℃に加熱された雰囲気中で長手方向に垂直な方向に3.6倍横延伸した。その後テンター内で190℃の熱固定を行い、続いて同温度にて幅方向に6%の弛緩処理を施し、その後均一に徐冷後、室温まで冷却し二軸延伸された積層フィルム(反射フィルム)を得た。その後、25℃にて24時間据置処理した後、オーブンにて150℃、20秒の条件で熱処理を加えた。
<Manufacture of reflective film>
The composition (polymer) of the above B layer and A layer was laminated through a laminating apparatus so as to be A1 layer / B layer / A2 layer, and formed into a sheet form from a T die. Further, the unstretched film obtained by cooling and solidifying the film with a cooling drum having a surface temperature of 25 ° C. was led to a roll group heated to 85 to 98 ° C., stretched 3.4 times in the longitudinal direction, and cooled with a roll group at 21 ° C. Subsequently, the film stretched in the longitudinal direction was guided to a tenter while being gripped by clips, and was stretched by 3.6 times in a direction perpendicular to the longitudinal direction in an atmosphere heated to 120 ° C. Thereafter, heat setting at 190 ° C. is performed in a tenter, followed by a relaxation treatment of 6% in the width direction at the same temperature, and then uniformly cooled, cooled to room temperature, and biaxially stretched (reflective film) ) Then, after standing at 25 ° C. for 24 hours, heat treatment was performed in an oven at 150 ° C. for 20 seconds.
 <反射シートの作製>
 上記で作製した反射フィルムに、多数の円形開口部(直径が2mmの円形貫通孔)を図4に示されているパターンで透過部を設けた。透過部は打ち抜き加工によって貫通孔を設けることで形成した。
<Production of reflection sheet>
In the reflective film produced above, a large number of circular openings (circular through-holes having a diameter of 2 mm) were provided with transmission portions in the pattern shown in FIG. The transmission part was formed by providing a through hole by punching.
 [実施例2~4、6~7]
 B層組成を以下のように変更する以外は、実施例1と同様に反射フィルムを作製し、更に実施例1と同様にして反射シートを作製した。
[Examples 2 to 4, 6 to 7]
A reflective film was produced in the same manner as in Example 1 except that the B layer composition was changed as follows, and a reflective sheet was produced in the same manner as in Example 1.
 <B層組成>
 B層組成における二酸化チタン含有マスターチップの添加量Yを表1に示す量とし、表1に示す透過黄色度(YI)を有する反射フィルムをそれぞれ作製した。上記以外のB層組成は実施例1と同じである。
<B layer composition>
Reflective films having the transmission yellowness (YI) shown in Table 1 were prepared with the addition amount Y of the titanium dioxide-containing master chip in the B layer composition as shown in Table 1. The B layer composition other than the above is the same as in Example 1.
 なお、B層組成におけるポリエチレンテレフタレートの添加量Xは、二酸化チタン含有マスターチップの添加量Yとの合計が94質量部となるように調整した。 In addition, the addition amount X of polyethylene terephthalate in the B layer composition was adjusted such that the total amount with the addition amount Y of the titanium dioxide-containing master chip was 94 parts by mass.
 [実施例5]
 A層組成を以下のように変更する以外は、実施例3と同様に反射フィルムを作製し、更に実施例3と同様に反射シートを作製した。
[Example 5]
A reflective film was produced in the same manner as in Example 3 except that the A layer composition was changed as follows, and a reflective sheet was produced in the same manner as in Example 3.
 <A層(A1層とA2層)の組成>
 ポリエチレンテレフタレート72質量部と、二酸化珪素含有マスターチップ(平均粒子径が1.2μmの二酸化珪素を1質量%含有するポリエチレンテレフタレートマスターチップ)8質量部と、ポリエチレンテレフタレートにイソフタル酸を18mol%共重合したもの(PET/I)20質量部とを180℃で3時間減圧乾燥した後、280℃に加熱された押出機Aに供給した。
<Composition of A layer (A1 layer and A2 layer)>
72 parts by mass of polyethylene terephthalate, 8 parts by mass of a silicon dioxide-containing master chip (polyethylene terephthalate master chip containing 1% by mass of silicon dioxide having an average particle diameter of 1.2 μm), and 18 mol% of isophthalic acid were copolymerized with polyethylene terephthalate. 20 parts by mass (PET / I) was dried under reduced pressure at 180 ° C. for 3 hours, and then supplied to Extruder A heated to 280 ° C.
 [実施例8]
 A層組成を以下のように変更する以外は、実施例6と同様に反射フィルムを作製し、更に実施例6と同様に反射シートを作製した。
[Example 8]
A reflective film was produced in the same manner as in Example 6 except that the composition of layer A was changed as follows, and a reflective sheet was produced in the same manner as in Example 6.
 <A層(A1層とA2層)の組成>
 ポリエチレンテレフタレート65質量部と、二酸化珪素含有マスターチップ(平均粒子径が3.5μmの二酸化珪素を6質量%含有するポリエチレンテレフタレートマスターチップ)15質量部と、ポリエチレンテレフタレートにイソフタル酸を18mol%共重合したもの(PET/I)20質量部とを180℃で3時間減圧乾燥した後、280℃に加熱された押出機Aに供給した。
<Composition of A layer (A1 layer and A2 layer)>
65 parts by mass of polyethylene terephthalate, 15 parts by mass of a silicon dioxide-containing master chip (polyethylene terephthalate master chip containing 6% by mass of silicon dioxide having an average particle diameter of 3.5 μm), and 18 mol% of isophthalic acid were copolymerized with polyethylene terephthalate. 20 parts by mass (PET / I) was dried under reduced pressure at 180 ° C. for 3 hours, and then supplied to Extruder A heated to 280 ° C.
 [評価]
 上記の実施例で作製した反射シートについて、前述した測定および評価を行った。その結果を表1に示す。各実施例のうち本発明に含まれる反射シートは発光色むらが小さい。また明るさの均一性も良好である。
[Evaluation]
The above-described measurements and evaluations were performed on the reflective sheets prepared in the above examples. The results are shown in Table 1. In each of the examples, the reflective sheet included in the present invention has little uneven emission color. Also, the uniformity of brightness is good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1 光源
 2 下側反射シート
 3 上側反射シート
 4 側面反射シート
 5 ケーシング
 6 上側反射シートの反射部
 7 上側反射シートの透過部
 10 上側反射シート3の光源1の真上に位置する領域
 11 面光源装置
DESCRIPTION OF SYMBOLS 1 Light source 2 Lower reflection sheet 3 Upper reflection sheet 4 Side reflection sheet 5 Casing 6 Reflection part of upper reflection sheet 7 Transmission part of upper reflection sheet 10 Area | region located just above the light source 1 of the upper reflection sheet 11 Surface light source device

Claims (8)

  1.  面光源装置の光源に対向して配置される反射シートであって、該反射シートは光源からの光を反射する反射部と光源からの光を透過させる透過部とを有し、反射部の透過黄色度(YI)が30以下である、反射シート。 A reflection sheet disposed opposite to a light source of a surface light source device, the reflection sheet having a reflection part that reflects light from the light source and a transmission part that transmits light from the light source, and is transmitted through the reflection part. A reflective sheet having a yellowness (YI) of 30 or less.
  2.  前記透過部が貫通孔である、請求項1に記載の反射シート。 The reflection sheet according to claim 1, wherein the transmission part is a through hole.
  3.  前記反射部の全光線透過率が0.5~10%である、請求項1または2に記載の反射シート。 The reflecting sheet according to claim 1 or 2, wherein the total light transmittance of the reflecting portion is 0.5 to 10%.
  4.  前記反射部の中心線平均粗さRaが100nm以下である、請求項1~3いずれかに記載の反射シート。 The reflecting sheet according to any one of claims 1 to 3, wherein the center line average roughness Ra of the reflecting portion is 100 nm or less.
  5.  前記反射シートが、内部に気泡を含有する層(B層)の両面に前記B層を支持するための層(A層)が積層された反射フィルムに透過部を設けたものである、請求項1~4のいずれかに記載の反射シート。 The said reflective sheet provides a transmission part in the reflective film by which the layer (A layer) for supporting the said B layer was laminated | stacked on both surfaces of the layer (B layer) which contains a bubble inside. 5. The reflection sheet according to any one of 1 to 4.
  6.  前記A層が粒子を含有する、請求項5に記載の反射シート。 The reflective sheet according to claim 5, wherein the A layer contains particles.
  7. 光を反射する下側反射シート、および前記下側反射シートに対向し、請求項1~6いずれかの反射シートである上面反射シートを有する面光源装置用ユニット。 A unit for a surface light source device, comprising: a lower reflective sheet that reflects light; and an upper reflective sheet that is opposed to the lower reflective sheet and that is the reflective sheet according to any one of claims 1 to 6.
  8.  光源、光を反射する下側反射シート、および請求項1~6いずれかの反射シートである上面反射シートを有する面光源装置であって、光源の背面に下側反射シートが存在し、下側反射シートに対向して上側反射シートが存在する面光源装置。 A surface light source device having a light source, a lower reflective sheet for reflecting light, and an upper reflective sheet as a reflective sheet according to any one of claims 1 to 6, wherein the lower reflective sheet exists on the rear surface of the light source, A surface light source device in which an upper reflective sheet exists opposite to the reflective sheet.
PCT/JP2015/058853 2014-03-27 2015-03-24 Reflecting sheet, reflection unit for surface light source device, and surface light source device WO2015146959A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015532239A JP6540508B2 (en) 2014-03-27 2015-03-24 Unit for surface light source device and surface light source device
KR1020167028302A KR102362100B1 (en) 2014-03-27 2015-03-24 Reflecting sheet, reflection unit for surface light source device, and surface light source device
CN201580015615.4A CN106133561B (en) 2014-03-27 2015-03-24 Reflector plate, planar light source device reflector element and planar light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014065355 2014-03-27
JP2014-065355 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146959A1 true WO2015146959A1 (en) 2015-10-01

Family

ID=54195472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058853 WO2015146959A1 (en) 2014-03-27 2015-03-24 Reflecting sheet, reflection unit for surface light source device, and surface light source device

Country Status (5)

Country Link
JP (1) JP6540508B2 (en)
KR (1) KR102362100B1 (en)
CN (1) CN106133561B (en)
TW (1) TWI662333B (en)
WO (1) WO2015146959A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195352A (en) * 2016-04-14 2017-10-26 大日本印刷株式会社 Light emitting diode mounting module
JP2017199737A (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Light emitting diode-mounted module, and light reflective member for light emitting diode-mounted module
KR20210061493A (en) * 2019-11-19 2021-05-28 성균관대학교산학협력단 Spectral measurement apparatus for estimating characteristic of solar panel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869638B1 (en) * 2017-03-03 2024-06-19 Nichia Corporation Optical component
CN108131643A (en) * 2017-12-26 2018-06-08 汉舟四川环保科技有限公司 A kind of reflector plate with polymer
TWI686651B (en) * 2018-11-23 2020-03-01 友達光電股份有限公司 Backlight module
JP7543702B2 (en) 2020-05-22 2024-09-03 東レ株式会社 Reflector and laminate having reflector
CN112526786B (en) * 2020-11-27 2022-09-27 北海惠科光电技术有限公司 Color film substrate, display panel and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139926A (en) * 2001-10-31 2003-05-14 Toray Ind Inc Optical reflection film and backlight device for image display using the same
JP2005181825A (en) * 2003-12-22 2005-07-07 Mitsubishi Rayon Co Ltd Light diffusive resin plate-like object and method for manufacturing the same
JP2008058670A (en) * 2006-08-31 2008-03-13 Asahi Kasei Chemicals Corp Finely foamed sheet for reflector excellent in durability
JP2009042421A (en) * 2007-08-08 2009-02-26 Toray Ind Inc White polyester film for liquid crystal display reflector
JP2009231128A (en) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Led illuminating device
JP2012174634A (en) * 2011-02-24 2012-09-10 Sharp Corp Light source module and optical member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2580476Y (en) * 2002-11-19 2003-10-15 鸿富锦精密工业(深圳)有限公司 Surface light source device
JP4280283B2 (en) 2006-01-27 2009-06-17 株式会社オプトデザイン Surface illumination light source device and surface illumination device using the same
JP4764962B2 (en) 2007-06-22 2011-09-07 株式会社オプトデザイン Surface illumination light source device and surface illumination device
KR101181076B1 (en) * 2007-09-12 2012-09-07 코오롱인더스트리 주식회사 Colorless polyimide film
JP2010272245A (en) 2009-05-19 2010-12-02 Toshiba Corp Backlight unit and liquid crystal display equipped with this
JP2012048015A (en) * 2010-08-27 2012-03-08 Toyobo Co Ltd Reflection sheet
JP5710294B2 (en) * 2011-01-31 2015-04-30 住友化学株式会社 UV curable inkjet ink for light guide plate and light guide plate using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139926A (en) * 2001-10-31 2003-05-14 Toray Ind Inc Optical reflection film and backlight device for image display using the same
JP2005181825A (en) * 2003-12-22 2005-07-07 Mitsubishi Rayon Co Ltd Light diffusive resin plate-like object and method for manufacturing the same
JP2008058670A (en) * 2006-08-31 2008-03-13 Asahi Kasei Chemicals Corp Finely foamed sheet for reflector excellent in durability
JP2009042421A (en) * 2007-08-08 2009-02-26 Toray Ind Inc White polyester film for liquid crystal display reflector
JP2009231128A (en) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Led illuminating device
JP2012174634A (en) * 2011-02-24 2012-09-10 Sharp Corp Light source module and optical member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195352A (en) * 2016-04-14 2017-10-26 大日本印刷株式会社 Light emitting diode mounting module
JP2017199737A (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Light emitting diode-mounted module, and light reflective member for light emitting diode-mounted module
KR20210061493A (en) * 2019-11-19 2021-05-28 성균관대학교산학협력단 Spectral measurement apparatus for estimating characteristic of solar panel
KR102284260B1 (en) 2019-11-19 2021-08-04 성균관대학교산학협력단 Spectral measurement apparatus for estimating characteristic of solar panel

Also Published As

Publication number Publication date
JPWO2015146959A1 (en) 2017-04-13
TW201539089A (en) 2015-10-16
KR102362100B1 (en) 2022-02-11
KR20160137574A (en) 2016-11-30
JP6540508B2 (en) 2019-07-10
TWI662333B (en) 2019-06-11
CN106133561A (en) 2016-11-16
CN106133561B (en) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2015146959A1 (en) Reflecting sheet, reflection unit for surface light source device, and surface light source device
TWI757208B (en) Backlight unit and liquid crystal display device
JP6485758B2 (en) White reflective film for edge light type backlight of liquid crystal display and backlight using the same
KR101172411B1 (en) Surface formed complex polymer lenses for visible light diffusion
JP5338319B2 (en) Optical sheet, surface light source device, display device, and optical sheet manufacturing method
KR20090073148A (en) White polyester film for light reflective plate
JP2006072347A (en) Light reflecting film and surface light source using the same
JP5464997B2 (en) Light reflector and surface light source device
JP2019101142A (en) Light reflection sheet and optical member
JP6926474B2 (en) Reflective film and reflective unit for surface light source device
JP5270409B2 (en) Light reflector and surface light source device and illumination device using the same
JP5532799B2 (en) White reflective film
JP2010211010A (en) Light diffusion film, and backlight unit and liquid crystal display device using the same
TW202120315A (en) Light diffusion film
JP2013218092A (en) Light diffusion laminate, surface light source device, and display device and illumination device using surface light source device
JP2014126638A (en) Reflective film for liquid crystal display
JP2015031893A (en) Lens film laminate for lighting equipment
JP6880521B2 (en) Light reflective film and edge light type backlight
JP2010231143A (en) Reflected light diffusion film for liquid crystal display
JP2017090560A (en) Reflective film and edge-light backlight unit having the same
JP2014200958A (en) White polyester film
JP2013218093A (en) Light diffusion laminate, surface light source device, and display device and illumination device using surface light source device
JP2017100288A (en) Biaxially stretched polyester film
WO2015163363A1 (en) Edge light-type backlight reflection film and backlight using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015532239

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167028302

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15768298

Country of ref document: EP

Kind code of ref document: A1