WO2015146732A1 - Laminated film - Google Patents

Laminated film Download PDF

Info

Publication number
WO2015146732A1
WO2015146732A1 PCT/JP2015/058002 JP2015058002W WO2015146732A1 WO 2015146732 A1 WO2015146732 A1 WO 2015146732A1 JP 2015058002 W JP2015058002 W JP 2015058002W WO 2015146732 A1 WO2015146732 A1 WO 2015146732A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
film
resin
laminated film
coating
Prior art date
Application number
PCT/JP2015/058002
Other languages
French (fr)
Japanese (ja)
Inventor
前川 茂俊
裕仁 内田
田中 照也
博門 仲村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167024564A priority Critical patent/KR102373640B1/en
Priority to JP2015522309A priority patent/JP6679930B2/en
Priority to CN201580015224.2A priority patent/CN106133560B/en
Publication of WO2015146732A1 publication Critical patent/WO2015146732A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to a laminated film provided with a coating layer containing particles, and a backlight unit using the laminated film.
  • the liquid crystal display uses a backlight that illuminates the liquid crystal cell.
  • a backlight that illuminates the liquid crystal cell.
  • a relatively small liquid crystal monitor employs an edge light type backlight
  • a relatively large liquid crystal television employs a direct type backlight.
  • a porous white film formed of bubbles is generally used (Patent Document 1).
  • Patent Documents 2 and 3 a white film in which an ultraviolet absorbing layer is laminated in order to prevent yellow discoloration of the film due to ultraviolet rays emitted from a cold cathode tube has been proposed.
  • a reflective film in which a layer containing soft beads is laminated on a base sheet layer has also been developed as being particularly suitable for use with a light guide plate having a prism shape added (Patent Documents 4 and 5).
  • LCD backlights Due to the thinning of LCD televisions, LCD backlights have adopted edge-lighted backlights, and at the same time, edge-lighted backlights have been actively developed. Furthermore, a light-emitting diode (hereinafter abbreviated as LED) is adopted as a light source in order to reduce power consumption and mercury-free.
  • LED light-emitting diode
  • LCD TVs unlike notebook computers and desktop monitors, require high brightness and require a large number of LEDs. Therefore, it was necessary to create a case using aluminum with a high thermal conductivity coefficient and take measures for heat dissipation. However, when aluminum is employed, the mechanical strength tends to decrease. Therefore, it has been necessary to form irregularities on the housing by, for example, drawing.
  • a light guide plate is indispensable as an optical member for an edge light type backlight.
  • the size up to about 25 inch type is sufficient for the conventional notebook personal computer and the desktop monitor, but the liquid crystal television needs 30 to 100 inch type. Therefore, a light guide plate having a convex portion, mainly having dot printing on an acrylic plate, a light guide plate having a concave portion by laser processing or UV transfer method, and the like have been developed.
  • Such a reflective plate adjusts the average particle size and burial rate of the soft beads on the surface in contact with the light guide plate to suppress the dropout of the beads, and a white spot defect caused by the close contact
  • a reflective film that suppresses the generation of light, a reflective film that suppresses the occurrence of uneven brightness and white spot defects by controlling the cushion ratio of the film, and a layer containing two types of beads of different hardness are laminated in a base sheet shape Reflected films have been developed (Patent Documents 6, 7, and 8).
  • a reflecting plate and an optical sheet A problem in which the light guide plate, the reflection plate, and the optical sheet are in intimate contact with each other and uneven brightness occurs.
  • the light guide plate surface is damaged.
  • the present invention is to provide a laminated film that can prevent unevenness in luminance due to adhesion, damage to the light guide plate, the reflection plate, and the optical sheet even when weighting or rubbing is applied to the optical sheet.
  • the laminated film of the present invention has the following configuration. (1) A coating layer containing particles (a) having a number average particle diameter of 4 ⁇ m or more made of resin (A) is provided on at least one surface of the film, and the number average particle diameter of 0 is formed on the surface of particles (a). A laminated film having particles (b) of 1 ⁇ m or more and 1 ⁇ m or less adhered thereto. (2) A coating layer containing particles (a) having a number average particle size of 4 ⁇ m or more made of resin (A) is provided on at least one surface of the white film, and the number average particle size is formed on the surfaces of the particles (a).
  • the laminated film according to any one of (1) to (10), wherein the number average particle size of the particles (b) is from 100 nm to 800 nm.
  • the laminated film of the present invention the (1) the light guide plate, the reflective plate, and the optical sheet are non-uniformly adhered to each other and the luminance unevenness is generated, and (2) the light guide plate and the reflective plate. And the optical sheet is in close contact, and the light expansion and contraction of the light guide plate causes wrinkles on the reflection plate and the optical sheet, resulting in uneven brightness. (3) The light guide plate surface is scratched and / or the reflection plate surface The beads of the optical sheet are scraped off, and the problem of causing uneven brightness can be prevented.
  • a coating layer containing particles (a) having a number average particle diameter of 4 ⁇ m or more made of resin (A) is provided on at least one surface of the film, and the number of particles (a) is several on the surface of particles (a).
  • the laminated film is characterized in that particles (b) having an average particle diameter of 0.1 ⁇ m or more and 1 ⁇ m or less are adhered.
  • the particles to be included in the coating layer of the present invention are composed of particles (a) to which particles (b) are attached.
  • the particle (b) having a small particle size to the surface of the particle (a)
  • the light guide plate is not thermally expanded and contracted to cause wrinkles on the reflecting plate or the optical sheet, thereby preventing uneven brightness.
  • the surface of the light guide plate is not damaged by rubbing the light guide plate and the reflection plate or the optical sheet, and / or the beads on the surface of the reflection plate or the optical sheet are scraped off.
  • a method for attaching the particle (b) to the surface of the particle (a) for example, a method using the heteroaggregation method described in “Elucidation of dispersion / aggregation and applied technology” issued by Techno System Co., Ltd. can be preferably exemplified. .
  • the pH of the coating liquid is adjusted to adjust the ⁇ potential of the inorganic particles and / or organic particles.
  • the pH is adjusted so that the signs are different, and small particles are attached around the large particles.
  • Preferred inorganic materials include metal oxides such as SiO 2 , TiO 2 , ⁇ -Al 2 O 3 and ZnO.
  • SiO 2 SiO 2
  • TiO 2 TiO 2
  • ⁇ -Al 2 O 3 ZnO
  • the particle size is as described in “Recent Chemical Engineering Special Powder Technology” edited by the Chemical Industry Association. Heteroaggregates can be obtained by increasing the difference in the surface potential of the particles.
  • the difference in ⁇ potential between the particles (a) and the particles (b) is preferably 20 mV or more, more preferably 30 mV or more, and further preferably 40 mV or more.
  • the ⁇ potential of each particle is preferably a combination in which the particle (a) is from ⁇ 30 mV to ⁇ 20 mV and the ⁇ potential of the particle (b) is from ⁇ 120 mV to 60 mV.
  • a method for setting the ⁇ potential of the particles in the above range there are cases where it can be achieved by adjusting the amounts of terminal COOH groups, phenolic OH groups and terminal NH 2 groups of the resin constituting the particles.
  • the negative ⁇ potential may be increased by the presence of these end groups on the surface of the particle.
  • An anionic surfactant may be used.
  • the ⁇ potential difference may be reduced by adsorbing organic ions or complex ions by adsorption, adsorbing a cationic surfactant, or forming a salt.
  • the number of particles (b) adhering to the surface per particle (a) is preferably 10 or more on average. More preferably, it is 50 or more, and most preferably 100 or more. By having 10 or more, the contact area of a light-guide plate and particle
  • the upper limit is estimated to be 500 or less. An excessively large particle coverage on the surface is not preferable because it becomes the same as a giant particle consisting of only the particles (b) and eventually sticks to the light guide plate and causes scratches and drops.
  • the number of particles (b) adhering to the surface per particle (a) to 10 or more, for example, by setting the difference in ⁇ potential between particles (a) and particles (b) to 20 mV or more.
  • the number of attached particles in the present invention refers to the number of particles (b) attached to the surface of one particle (a) when the surface is observed with an SEM.
  • Particle (a) consists of resin (A).
  • the type of the resin (A) is not particularly limited, but a polymethacrylic acid methyl acrylate resin, an acrylic styrene resin, a polymethyl methacrylate resin, a polybutyl methacrylate resin, a silicone resin, a polystyrene resin, a polycarbonate resin, a benzoguanamine resin, Examples include melamine resins, polyolefin resins, polyester resins, polyamide resins, polyimide resins, or polyfluorinated ethylene resins, and cross-linked products thereof.
  • an acrylic resin, a nylon resin, and a polyester resin are particularly preferable from the viewpoint of easily controlling the elasticity of the resin and having good affinity with the binder.
  • polyesters are aromatic polyesters and polyester elastomers such as polyethylene terephthalate and polybutylene terephthalate because the elasticity of the resin can be easily controlled.
  • polyester elastomer include various trade names such as “HYTREL” (registered trademark) manufactured by DuPont, “RITEFLEX” (registered trademark) manufactured by Ticona, and DSM. There are “ARNITEL” (registered trademark) manufactured by the company and sold by many companies.
  • the resin (A) constituting the particles (a) preferably has a flexural modulus of 500 MPa to 3000 MPa. More preferably, it is 1000 MPa or more and 2700 MPa or less.
  • the flexural modulus in the present invention refers to a value measured according to ASTM-D790-98.
  • the resin (A) was dried with hot air at 90 ° C. for 3 hours or more, and the dried pellets were used with an injection molding machine (Nissei Resin Kogyo NEX-1000) with a cylinder temperature of 240 ° C. and a mold.
  • a 127 ⁇ 12.7 ⁇ 6.4 mm bending test specimen obtained by molding under molding conditions of a temperature of 50 ° C.
  • a measurement sample is used as a measurement sample. If the flexural modulus is smaller than the above range, white spots may occur when applied on a white film and incorporated in a liquid crystal display as a reflector. If the flexural modulus is larger than the above range, the light guide plate may be damaged when the light guide plate and the reflective plate are rubbed together.
  • a long-chain polyalkylene glycol is copolymerized with an aromatic polyester.
  • Hytrel 7247 and Hytrel 8238 have a bending elastic modulus within the above range, and can be used.
  • a method for producing the particles (a) a method of obtaining spherical particles by spraying from a nozzle after heating and melting (Japanese Patent Publication No. 2-12975), cooling and precipitating after dissolving in a heating solvent.
  • a method for obtaining spherical particles Japanese Patent Laid-Open No. 51-79158
  • a method for obtaining spherical particles by forcibly dispersing a heat-melted resin in an incompatible heated polysiloxane Japanese Patent Laid-Open No. 2001-213970.
  • a method in which a polymer solution is phase-separated, an emulsion is formed, and fine particles are obtained by adding a poor solvent International Publication No.
  • the polymer solution is phase-separated to form an emulsion, A method of obtaining fine particles by adding a poor solvent is preferably used.
  • the number average particle diameter of the particles (a) is 4 ⁇ m or more, preferably 6 ⁇ m or more, and more preferably 8 ⁇ m or more.
  • the upper limit is preferably 60 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less. If it is less than 4 ⁇ m, white spots may occur when it is applied on a reflective film and incorporated in a liquid crystal display, and if it is greater than 60 ⁇ m, particles may fall off.
  • a known method can be used as a method of adjusting the particle diameter within the above range. Specific examples include the methods described in JP-A No. 2001-213970 and International Publication No. 2009/142231.
  • the particles (a) made of the resin (A) of the present invention preferably have a particle size distribution index of 1 to 3. More preferably, it is 1 to 2, and most preferably 1 to 1.5.
  • the particle size distribution index is within the above range, only a part of the particles having a large particle size are in close contact with the light guide plate and deformed when the reflector is pressed against the light guide plate. It can be prevented from becoming easy.
  • the particle size distribution index is larger than the above range (that is, when coarse particles are included), there is a case where, for example, a Mayer bar particle clogging described later occurs in the coating process, and coating stripes may be generated. May be undesirable.
  • the temperature for carrying out the emulsion formation and the micronization step is 100 ° C. or higher.
  • the upper limit is the temperature at which dissolution and phase separation occur, and there is no particular limitation as long as the desired fine particles can be obtained, but it is usually in the range of 100 ° C. to 300 ° C., preferably 100 ° C. to 280 ° C., More preferably, it is 120 ° C. to 260 ° C., further preferably 120 ° C. to 240 ° C., particularly preferably 120 ° C. to 220 ° C., and most preferably in the range of 120 ° C. to 200 ° C.
  • the particle size distribution index referred to in the present invention means a value obtained by dividing the volume average particle size (Dv) of the particles (a) by the number average particle size (Dn).
  • the particles (b) are preferably made of a resin (B) different from the resin (A) constituting the particles (a). If the resin (B) is the same as the resin (A), the particle (b) may not adhere to the surface of the particle (a).
  • the type of the resin (B) is not particularly limited as long as it is a combination different from the resin (A), but polymethacrylic acid methyl acrylate resin, acrylic styrene resin, polymethyl methacrylate resin, polybutyl methacrylate resin, silicone resin, polystyrene Resin, polycarbonate resin, benzoguanamine resin, melamine resin, polyolefin resin, polyester resin, polyamide resin, polyimide resin, polyfluoroethylene resin, and cross-linked products thereof.
  • the resin (A) is a polyester resin
  • a polystyrene resin or a nylon resin can be preferably selected as the resin (B).
  • the particles (b) may be inorganic particles.
  • the inorganic particles are preferably used in many cases because the particles (b) can be attached to the surfaces of the particles (a) by adjusting the pH of the coating solution.
  • the type of inorganic particles is not limited, but metal oxides are preferably used because they are easily controlled by the pH of the ⁇ potential.
  • Specific examples of inorganic particles include silica particles, aluminum oxide, titanium dioxide and the like.
  • the number average particle diameter of the particles (b) is from 0.1 ⁇ m to 1 ⁇ m, preferably from 100 nm to 800 nm, and most preferably from 200 nm to 500 nm. If it exceeds 1 ⁇ m, it may not adhere to the surface of the particles (a), which is not preferable. Further, if it is less than 100 nm, it may be smaller than the thickness of the coating film present on the surface of the particle (a), and it may not be possible to form protrusions on the surface of the particle (a).
  • organic particles having a number average particle size in the above range include various products such as true spherical polystyrene latex particles “DYNOSPHERES” manufactured by Soken Chemical Co., Ltd., cross-linked polymethyl methacrylate particles “Eposter (registered)” manufactured by Nippon Shokubai Co., Ltd. Trademark) MX ", acrylic submicron fine particles” Techpolymer (registered trademark) "manufactured by Sekisui Plastics Co., Ltd., etc., which are sold by many companies and can be used.
  • Specific examples of the inorganic particles include silica particles “Spherica Slurry” manufactured by Catalytic Chemical Industry Co., Ltd. and silica particles “Sea Hoster (registered trademark)” manufactured by Nippon Shokubai Co., Ltd., and these can be used.
  • the binder resin is preferably made of a water-soluble resin, and is preferably applied using a water-based coating liquid because it has little influence on the environment.
  • the water-soluble resin as used herein refers to a resin containing at least one functional group selected from sulfonic acid groups, carboxylic acid groups, hydroxyl groups, and salts thereof.
  • the water-soluble resin is preferably a resin in which a monomer having a functional group such as a sulfonic acid group, a sulfonic acid group, a carboxylic acid group, or a carboxylic acid group is copolymerized, and more preferably a carboxylic acid group and / or a carboxylic acid group.
  • a resin in which a monomer having a salt is copolymerized By being water-soluble, it is possible to form a coating layer having good affinity with the base film and the particles (a) and less dropping of the organic particles (a).
  • the binder resin since the binder resin is a water-soluble resin, it can be used in the state of a coating solution in which the binder resin and particles are dissolved or dispersed in water.
  • a binder resin and particles previously dissolved or dispersed separately in water may be arbitrarily mixed and used.
  • the use of a coating solution using water enables application in an in-line coating method, which is preferable from the viewpoint of cost saving.
  • the water-soluble resin is preferably formed from at least one selected from the group consisting of a polyester resin, an acrylic resin, and a polyurethane resin, and more preferably a polyester resin or an acrylic resin.
  • the binder resin has good adhesion to the base film and is preferably transparent, and the resin can satisfy these characteristics.
  • the product name “Watersol” (registered trademark) manufactured by DIC Corporation, “Pesresin” manufactured by Takamatsu Yushi Co., Ltd., and the like are available.
  • additives can be added to the binder resin forming the coating layer as long as the effects of the invention are not impaired.
  • an antioxidant for example, an antioxidant, a crosslinking agent, a fluorescent brightening agent, an antistatic agent, a coupling agent and the like can be used.
  • the adhesion to the base film can be further improved, and at the same time, the organic particles can be further prevented from falling off.
  • the crosslinking agent include an isocyanate crosslinking agent, a silicone crosslinking agent, and a polyolefin crosslinking agent.
  • the content of the crosslinking agent in the coating layer is preferably 5% by weight or less, more preferably 0.1 to 4% by weight, and further within the range of 0.5 to 3% by weight. Most preferably it is. If the content of the crosslinking agent is within such a preferable range, the effect can be sufficiently obtained, and the film can be prevented from curling after the coating layer is provided.
  • an antistatic agent By adding an antistatic agent, it is possible to prevent foreign matters such as dust from adhering to the film.
  • the antistatic agent include, but are not limited to, a surfactant, an ionic conductive polymer, an electron conductive polymer, a conductive metal oxide, and metals.
  • Specific examples of the surfactant and the ionic conductive polymer include the following.
  • Surfactants include cationic surfactants such as sulfonated compounds, N-acyl amino acids or salts thereof, anionic surfactants such as alkyl ether carboxylates, aliphatic amine salts, and aliphatic quaternary ammonium salts. , Amphoteric surfactants such as carboxybetaine, imidazolinium betaine, and aminocarboxylate.
  • sulfonated compounds are preferably applied, specifically sodium dodecylbenzenesulfonate, sodium stearylbenzenesulfonate, sodium octylbenzenesulfonate, potassium dodecylbenzenesulfonate, lithium dodecylbenzenesulfonate, lithium octylnaphthalenesulfonate, Sodium oxylnaphthalene sulfonate, sodium dodecyl naphthalene sulfonate, potassium dodecyl naphthalene sulfonate, sodium butyl sulfonate, sodium pentyl sulfonate, sodium hexyl sulfonate, sodium heptyl sulfonate, sodium octyl sulfonate, sodium nonyl sulfonate, decyl sulfone Acid sodium, sodium undecyl s
  • ionic conductive polymer examples include polystyrene sulfonates and their low molecular weight compounds represented by polystyrene sulfonates such as alkali metal salts and ammonium salts thereof, alkyl phosphate ester salts and alkyl ether phosphate ester salts. Examples thereof include a phosphoric acid polymer compound copolymerized as a monomer and a polyacrylic acid ester having an ionic functional group.
  • the coating thickness of the coating layer (d; the distance from the surface of the base film at the portion not including the particles (a) to the coating layer surface) is preferably less than 1 ⁇ m. More preferably, it is less than 500 nm, More preferably, it is less than 400 nm.
  • the coating thickness is preferably 50 nm. If the coating thickness is less than 50 nm, the organic particles may fall off.
  • a section including particles is cut, and observed with an SEM or a transmission electron microscope (TEM) to determine the coating thickness of the coating layer.
  • Examples of the method for setting the coating thickness of the coating layer in the above range include a method achieved by adjusting the binder resin concentration of the coating liquid and the coating thickness of the coating liquid.
  • the surface roughness (SRz; three-dimensional ten-point average roughness) of the coating layer surface is preferably 5 ⁇ m or more and 60 ⁇ m or less. More preferably, they are 10 micrometers or more and 30 micrometers or less. If the thickness is less than 5 ⁇ m, white spots may occur when a laminated film coated on a white film is incorporated as a reflector in a liquid crystal display, and if it is greater than 60 ⁇ m, particles may fall off.
  • Examples of the method of adjusting the surface roughness so as to be included in the above range include a method of adjusting the particle size of the organic particles, the binder resin concentration of the coating liquid, and the coating thickness of the coating liquid.
  • the particles (a) and particles (b) are preferably covered with a binder resin.
  • a binder resin By covering the particles with the binder resin, it can be made difficult to fall off.
  • the particles can be coated with a binder resin by improving the wettability of the particles by a known method. Moreover, about a coating state, it can confirm by SEM or TEM of a particle cross section. At this time, it can be confirmed more clearly by using ruthenium staining or the like.
  • the laminated film of the present invention it is preferred particle density of the organic particles in the coating layer surface is 5 pieces / mm 2 or more 100,000 / mm 2 or less. More preferably, they are 400 pieces / mm ⁇ 2 > or more and 100,000 pieces / mm ⁇ 2 > or less, More preferably, they are 1000 pieces / mm ⁇ 2 > or more and 100,000 pieces / mm ⁇ 2 > or less.
  • a laminated film having a particle density within the above numerical range is used as a reflection plate or a light diffusion film of a liquid crystal display, an appropriate light diffusibility can be obtained.
  • the amount of particles in the coating liquid, the thickness of the coating film, and when coating during film formation, by adjusting the stretching ratio in the stretching step after coating can be achieved.
  • a coating layer containing particles (a) having a number average particle size of 4 ⁇ m or more made of resin (A) is provided on at least one surface of a white film. It is a laminated film characterized in that particles (b) having a number average particle size of 0.1 ⁇ m or more and 1 ⁇ m or less are attached to the surface of a), the third aspect is that the film is transparent, and the film Is a laminated film characterized by having a total light transmittance of 60% or more.
  • the film according to the laminated film of the present invention is a white film or a transparent film.
  • the white film constituting the laminated film according to the second aspect of the present invention has a high visible light reflectance when used as a backlight for a liquid crystal display or a reflector for lighting applications. Higher is better.
  • the reflectance is preferably 80% or more. More preferably, it is 90% or more, More preferably, it is 95% or more.
  • a film containing bubbles and / or incompatible particles therein is preferably used.
  • these white films are not limited, white films such as porous unstretched or biaxially stretched polyolefin films and porous unstretched or biaxially stretched polyester films are preferably used. .
  • a white polyester film is preferably used from the viewpoint of moldability and productivity.
  • the white polyolefin film and the white polyester film are disclosed in JP-A-4-239540, JP-A-8-262208, JP-A-2002-90515, JP-A-2002-138150, and JP-A-2004-330727.
  • the white film currently used is mentioned.
  • plastic resin constituting the white film examples include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and cyclic polyolefin, polystyrene, and acrylic resins. Polyester is preferably used from the viewpoint of moldability and productivity.
  • incompatible particles include inorganic particles made of titanium oxide, barium sulfate, silicon dioxide, calcium carbonate, and the like, and organic particles such as acrylic particles, nylon particles, polystyrene particles, and silicone particles.
  • an incompatible resin can be used for the thermoplastic resin constituting the white film, and the incompatible resin can be dispersed in an extruder.
  • incompatible resins include olefin resins such as polypropylene, polymethylpentene, and cyclic polyolefin, and polystyrene resins when the thermoplastic resin constituting the white film is polyester.
  • the white film may be a single layer film or a laminated film.
  • the thickness of the white film is not particularly limited as long as the application to be used is appropriately selected depending on the required properties.
  • a thickness of 250 ⁇ m or more and 600 ⁇ m or less is preferably used from the viewpoint of film rigidity.
  • 188 micrometers or more and 300 micrometers or less are used preferably.
  • the surface on which the coating layer containing the particles (a) and particles (b) of the laminated film of the present application is provided is the surface in contact with the light guide plate of the white film.
  • the transparent film constituting the laminated film of the present invention refers to a film having a total light transmittance of 60% or more.
  • the total light transmittance is preferably 70% or more, more preferably 90% or more.
  • grain inside, and the diffusion film which provided the diffusion layer containing a bead on the base film surface are used preferably.
  • the diffusion film having a diffusion layer on the surface include diffusion films disclosed in JP-A-2007-86730.
  • plastic resin constituting the transparent film examples include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and cyclic polyolefin, polystyrene, and acrylic resins. Polyester is preferably used from the viewpoint of moldability and productivity.
  • the thickness of the transparent film is not particularly limited as long as the application to be used is appropriately selected depending on the required properties.
  • liquid crystal TVs from 50 ⁇ m to 150 ⁇ m is preferably used from the viewpoint of film rigidity.
  • 30 to 100 ⁇ m is preferably used.
  • the surface on which the coating layer containing particles (a) and particles (b) of the laminated film of the present application is provided is preferably the surface in contact with the light guide plate of the transparent film.
  • the transparent film is a diffusion film
  • the surface is preferably different from the surface provided with the diffusion layer.
  • the transparent film is a prism sheet, the surface is preferably different from the prism surface.
  • a mixture containing a polyester resin and an incompatible component is sufficiently vacuumed as necessary. It dries and supplies to the heated extruder of the film forming apparatus which has an extruder (main extruder).
  • the incompatible component may be added using a master chip prepared by melt-kneading and mixing uniformly in advance, or may be directly supplied to a kneading extruder. It is preferable to use a master chip obtained by melt-kneading a mixture containing a polyester resin and an incompatible component uniformly in advance because dispersion of the incompatible component is promoted.
  • melt-extrude after filtering through a filter having a mesh of 40 ⁇ m or less, to introduce into a T-die die and obtain a molten sheet by extrusion molding.
  • the molten sheet is closely cooled and solidified by static electricity on a drum cooled to a surface temperature of 10 ° C. or more and 60 ° C. or less to produce an unstretched film.
  • a laminated film having a coating layer on the surface can be obtained by stretching and heat-treating this unstretched film according to an in-line coating method described later.
  • a polyester resin is fully vacuum-dried as needed, and has an extruder (main extruder). Feed to heated extruder of film forming apparatus.
  • melt-extrude after filtering through a filter having a mesh of 40 ⁇ m or less, to introduce into a T-die die and obtain a molten sheet by extrusion molding.
  • the molten sheet is closely cooled and solidified by static electricity on a drum cooled to a surface temperature of 10 ° C. or more and 60 ° C. or less to produce an unstretched film.
  • a laminated film having a coating layer on the surface can be obtained by stretching and heat-treating this unstretched film according to an in-line coating method described later.
  • a light diffusion layer is provided on one surface of the obtained laminated film, it is preferably formed by dispersing and fixing a large number of organic polymer fine particles with a binder.
  • the organic polymer fine particles are preferably particles made from an organic polymer such as a cross-linked acrylic resin and methacrylic resin, polyethylene, polypropylene, polystyrene, silicone resin, melamine resin, etc., and in particular, a cross-linked acrylic resin or methacrylic resin (PMMA). Resin).
  • the mass average particle diameter of the organic polymer fine particles is preferably 1 to 100 ⁇ m, and more preferably 1 to 25 ⁇ m.
  • an organic polymer binder is preferable, and as the organic polymer binder, for example, a homopolymer or a copolymer containing at least one of acrylic acid ester and methacrylic acid ester as one component of a monomer. (Meth) acrylic resin is particularly preferable. It is preferable to form the coating liquid prepared by adding and mixing the organic polymer binder and the organic polymer fine particles in a suitable solvent, and applying and drying on the laminated film.
  • the content of the organic polymer fine particles is preferably 100 to 500 parts by mass, more preferably 200 to 400 parts by mass with respect to 100 parts by mass of the binder.
  • the solvent is preferably an organic solvent having a boiling point of 150 ° C. or less from the viewpoint of easy drying after coating, and cyclohexanone, 1,4-dioxane, and ethylene glycol monomethyl ether acetate are particularly preferable.
  • Other organic solvents such as alcohol may be mixed with the organic solvents listed above, and methyl ethyl ketone is preferably used from the viewpoint of versatility.
  • Application to the laminated film can be performed using a known application means such as a spin coater, a roll coater, a bar coater, or a curtain coater.
  • the temperature in the drying step is preferably 90 to 130 ° C, more preferably 100 to 120 ° C.
  • the time is preferably 10 seconds to 5 minutes, more preferably 1 to 2 minutes.
  • the laminated film is provided with a coating layer containing particles (a) having a number average particle diameter of 4 ⁇ m or more made of resin (A). Particles (b) having a number average particle diameter of 0.1 ⁇ m or more and 1 ⁇ m or less are attached to the surface of a).
  • a method for forming the coating layer in addition to the method of applying the coating liquid to the base film after biaxial stretching (offline coating method), the method of stretching and heat-treating the film after applying the coating liquid (inline coating method) There is. From the viewpoint of adhesion between the coating layer and the base film and cost saving, an in-line coating method is preferable.
  • the in-line coating method a method in which a coating liquid is applied to the surface of an unstretched film and then stretched in a biaxial direction, or a direction (for example, uniaxial) that intersects the previous uniaxial stretching direction after the coating liquid is applied to a uniaxially stretched film surface
  • a direction for example, uniaxial
  • thermoplastic resin raw material is supplied to an extrusion device, melt extrusion is performed at a temperature equal to or higher than the melting point of the thermoplastic resin, and extruded as a molten sheet from a slit-shaped die onto a rotating cooling drum, and a glass transition is performed on the surface of the rotating cooling drum. Rapidly solidify to a temperature below the temperature to obtain an unstretched sheet in an amorphous state.
  • an electrostatic application adhesion method is preferably employed.
  • the stretching temperature is usually in the range of (the glass transition temperature of the thermoplastic resin constituting the base film ⁇ 5 ° C.) to (the glass transition temperature of the thermoplastic resin constituting the base film + 25 ° C.), and the stretching ratio is usually 3 to 6 Double the range. Stretching can be performed in one step or in two or more steps.
  • a coating solution is applied to at least one surface of the film.
  • a coating method of the coating liquid for example, a Mayer bar coater, a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, or any other coating apparatus can be used.
  • the coating layer may be formed on only one side of the film or on both sides.
  • the coated film is preheated to a temperature range of 90 to 150 ° C. in the preheating zone of the tenter and appropriately dried, and then stretched in the width direction (direction perpendicular to the longitudinal direction).
  • the stretching temperature is usually in the range of (the glass transition temperature of the thermoplastic resin constituting the base film ⁇ 5 ° C.) to (the glass transition temperature of the thermoplastic resin constituting the base film + 40 ° C.), and the stretching ratio is usually The range is 3 to 6 times, preferably 3.2 to 4.5 times.
  • the film Prior to the preheating, the film may be once cooled below the glass transition point.
  • heat treatment is performed for 1 second to 5 minutes under 20% elongation, contraction or constant length.
  • relaxation treatment is usually performed within 10%, preferably within 5% in the longitudinal direction and / or the width direction during or after the heat treatment step. You may do.
  • the heat treatment temperature varies depending on the stretching conditions, but is usually in the range of 180 to 250 ° C., preferably 190 to 230 ° C. When the heat treatment temperature exceeds 250 ° C., the orientation of the film tends to decrease, and a part of the coating layer may be thermally decomposed. On the other hand, when the heat treatment temperature is lower than 180 ° C., the thermal shrinkage rate of the film may become too large.
  • Examples of the method for adjusting the coating liquid include a method in which a binder resin and particles are dissolved or dispersed in order in water, and a method in which a binder resin and particles are separately dissolved and dispersed in water in advance.
  • the coating solution contains a binder resin, particles, and water, and it is preferable to adjust the water content to 50% by weight or more with respect to the coating solution in order to reduce coating stripes.
  • Measurement Method of Surface Roughness (SRz) Measurement was performed according to JIS-B-0601 (2001).
  • SRz Surface Roughness
  • a surface roughness meter model number: SE3500 manufactured by Kosaka Laboratory was used. The measurement conditions are as follows. ⁇ Feeding speed: 0.1mm / s ⁇ X pitch: 1.00 ⁇ m ⁇ Y pitch: 5.0 ⁇ m ⁇ Z measurement magnification: 20000 -Low frequency cut: 0.25 mm.
  • the coating state in the coating film of an organic particle was confirmed with the obtained cross-sectional photograph, and it determined as follows.
  • A When the particle surface area is covered by 80% or more and less than 10%: B
  • B When the particle surface area is more than 40% and less than 80%: C
  • D When the coating of the particle surface area is less than 40%:
  • the particle size distribution index (PDI) was calculated according to the following formula (1).
  • PDI Dv / Dn (1) Dn: number average particle diameter, Dv: volume average particle diameter, PDI: particle diameter distribution index.
  • a laminated film is installed in the backlight unit of an LED display (T240HW01) manufactured by AUO and installed so that the screen is horizontal.
  • the state when the center of the screen was pressed with a predetermined weight was evaluated according to the following criteria.
  • the measurement was performed as a reflector, and in the case of a laminated film having a transparent film as a base material, measurement was performed between the light guide plate and the optical sheet.
  • the used backlight is a side light type backlight, has a light guide plate and a light source (LED), and a light source is located in the edge part of a light guide plate.
  • LED light source
  • Class B 200 gf / cm 2 of but scratches is observed under load, under a load of 100 gf / cm 2, not seen wounds under a load of 50 gf / cm 2.
  • Class C 200gf / cm 2, but scratches observed under a load of 100 gf / cm 2, Under a load of 50 gf / cm 2, scratches can not be seen.
  • Class D Scratches are observed under a load of 50 gf / cm 2 . In addition, it was confirmed that the organic particles were removed from the reflective film.
  • Class A No dropout of particles is observed under any load.
  • Class B 200 gf / cm under 2 loads but particle shedding observed, under a load of 100 gf / cm 2, not seen particles falling in under a load of 50 gf / cm 2.
  • Class C 200gf / cm 2, but the particle shedding observed under a load of 100 gf / cm 2, not seen particles falling in under a load of 50 gf / cm 2.
  • Class D Dropping of particles is observed under a load of 50 gf / cm 2 .
  • Cyclic olefin copolymer resin As an incompatible component, a cyclic olefin resin “TOPAS” (registered trademark, polyplastics) having a glass transition temperature of 178 ° C. and an MVR (260 ° C./2.16 kg) of 4.5 ml / 10 min. Used).
  • TOPAS cyclic olefin resin
  • Polyester binder resin Pesresin A-215E (Takamatsu Yushi Co., Ltd., 30 wt% solution) was diluted with purified water to prepare a 25 wt% solution.
  • Surfactant “Novec” (registered trademark) FC-4430 (manufactured by Hishoe Chemical Co., Ltd., 5 wt% solution) was used.
  • Organic particles (Material D-3) An aqueous dispersion “DYNOSPHERES” having a solid content concentration of 1% of true spherical polystyrene particles having a particle diameter of 0.6 ⁇ m manufactured by Soken Chemical Co., Ltd. was used.
  • Organic particles (Material D-4) An aqueous dispersion “DYNOSPHERES” made of Souken Chemical Co., Ltd. with a spherical particle size of 0.9 ⁇ m and a solid content concentration of 1% was used.
  • ⁇ Inorganic particles (Material E) A 10% by weight aqueous dispersion of silica particles having a number average particle size of 0.3 ⁇ m mixed with distilled water was used.
  • ⁇ Organic particles (Material F-1) Polyetherester (“Hytrel” (registered trademark) 8238, DuPont, weight average molecular weight 27,000, bent) in a 1000 ml pressure glass autoclave (Hyperglaster TEM-V1000N, manufactured by Pressure Glass Industry Co., Ltd.) Elasticity 1100 MPa) 33.25 g, N-methyl-2-pyrrolidone 299.25 g, polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., PVA-1500, weight average molecular weight 29,000: sodium acetate content by washing with methanol) 17.5 g) was added and nitrogen substitution was performed, followed by heating to 180 ° C.
  • the obtained powder When the obtained powder was observed with a scanning electron microscope, it was a spherical fine particle, and polyether ester fine particles having a number average particle size of 12.0 ⁇ m, a volume average particle size of 14.7 ⁇ m, and a particle size distribution index of 1.23. Met.
  • the melting point of this polyether ester was 224 ° C., and the temperature-falling crystallization temperature of this polyether ester was 161 ° C.
  • the obtained particles were mixed with purified water to prepare a 40% by mass aqueous dispersion, which was designated as material F-1.
  • Organic particles (Material F-2) Except for adjusting the amount of the polyether ester, polyether ester fine particles having a number average particle diameter of 3.0 ⁇ m were obtained under the same conditions as the organic particles (material F). The obtained particles were mixed with purified water to prepare a 40% by mass aqueous dispersion.
  • Organic particles (Material F-3) Except for adjusting the amount of the polyether ester, polyether ester fine particles having a number average particle diameter of 5.0 ⁇ m were obtained under the same conditions as the organic particles (material F). The obtained particles were mixed with purified water to prepare a 40% by mass aqueous dispersion.
  • Organic particles (Material F-4) Except for adjusting the amount of the polyether ester, polyether ester fine particles having a number average particle diameter of 20.0 ⁇ m were obtained under the same conditions as for the organic particles (material F). The obtained particles were mixed with purified water to prepare a 40% by mass aqueous dispersion.
  • Example 1 (1) Preparation of coating liquid
  • the raw materials of the coating liquid were prepared in the order of 1) to 5) for the following materials, and stirred for 10 minutes with a universal stirrer to prepare a coating liquid.
  • the adjusted coating solution was adjusted to pH 6.5 using 0.1 N hydrochloric acid.
  • Material F 15.0 parts by weight
  • Film formation A mixture of 80 parts by weight of PET and 20 parts by weight of cyclic olefin copolymer resin was vacuum-dried at 180 ° C. for 3 hours and then supplied to Extruder A.
  • melt extrusion at a temperature of 280 ° C.
  • 100 parts by weight of PET was vacuum-dried at a temperature of 180 ° C. for 3 hours, then supplied to the extruder B and melt-extruded at a temperature of 280 ° C.
  • the resins from the respective extruders A and B were merged so as to be laminated in the thickness direction in the order of B / A / B, and then introduced into the T die die.
  • a melt-laminated sheet is formed by extrusion into a sheet form from the inside of the T die die, and the melt-laminated sheet is closely cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C.
  • a film was obtained.
  • the film surface in contact with the drum was defined as the back surface, and the surface in contact with the air was defined as the “front” surface.
  • the unstretched laminated film is preheated with a roll (preheated roll) group heated to a temperature of 80 ° C., and then stretched 3.5 times using the difference in peripheral speed of the roll in the longitudinal direction, and 25 ° C.
  • a uniaxially stretched film was obtained by cooling with a roll group at a temperature of 5 ° C.
  • the “front” surface of the uniaxially stretched film was subjected to corona discharge treatment in the air, and the coating layer forming coating solution was applied to the treated surface by a bar coating method using a Mayer bar.
  • FIG. 1 shows the result of observing organic particles contained in the coating layer of the laminated film obtained in this example with an SEM.
  • the organic particles (material D) are in a state of adhering to the surface of the organic particles (material F).
  • Example 2 to 11 Except that the composition of the coating layer-forming coating solution is as shown in Table 1 and the thickness of the coating layer is as shown in Table 2, film formation is performed under the same conditions as in Example 1, and the thickness is 188 ⁇ m. A laminated white film was obtained. Various properties of the film are shown in Table 2. In all cases, the coating appearance was good, and there was little dropout of particles.
  • Example 12 PET was vacuum-dried at a temperature of 180 ° C. for 3 hours, then supplied to the extruder A, and melt-extruded at a temperature of 280 ° C. The molten resin from the extruder A was introduced into the T die die.
  • a molten PET sheet is formed by extrusion into a sheet from the inside of the T die die, and the molten PET sheet is closely cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C.
  • a film was obtained.
  • the film surface in contact with the drum was defined as the back surface, and the surface in contact with the air was defined as the “front” surface.
  • the unstretched PET film was preheated with a roll (preheated roll) group heated to a temperature of 80 ° C., and then stretched 3.5 times using the difference in peripheral speed of the roll in the longitudinal direction, and 25 ° C.
  • a uniaxially stretched film was obtained by cooling with a roll group at a temperature of 5 ° C.
  • the “front” surface of the uniaxially stretched film was subjected to corona discharge treatment in the air, and the coating layer forming coating liquid shown in Table 1 was applied to the treated surface by a bar coating method using a Mayer bar. .
  • Example 1 The composition of the coating layer forming coating solution is the same as in Example 1 except that the conditions are as shown in Table 1, the thickness of the coating layer is as shown in Table 2, the pH is not adjusted, and the pH is maintained at 7.9. Film formation was carried out under the conditions described above to obtain a laminated white film having a thickness of 188 ⁇ m. The particles (b) did not adhere to the particles (a), and the particles dropped out on the film in the scratch test. Various properties of the film are shown in Table 2. Particles dropped from the film of Comparative Example 1.
  • the film of the present invention can be suitably used as a light reflecting plate or an optical sheet.
  • it can be suitably used as a light reflecting plate for a backlight.
  • it can be suitably used as a light reflecting plate for a sidelight type backlight.
  • the sidelight-type backlight has at least a light source, a light guide plate, and a reflection plate, but may include a housing or the like.
  • the type of the light source is not particularly limited, but a particularly great effect can be obtained when CCFL or LED is used as the light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

The present invention provides a laminated film that is characterized in that a coating layer that includes particles (a) comprising a resin (A) and having a number average particle size of 4 µm or more is provided on at least one surface of the film, and particles (b) having a number average particle size of 0.1-1 µm, inclusive, are adhered to the surface of said particles (a). Provided are a laminated reflective film and optical sheet with which it is possible to prevent luminance nonuniformity and damage to a light guide plate and reflector plate, said nonuniformity and damage being due to adhesion, even when the temperature inside a liquid crystal television becomes elevated, causing additional weight to be applied to the reflector plate due to warping of the light guide plate and greater friction to occur between the light guide plate and reflector plate due to thermal expansion and contraction of the light guide plate.

Description

積層フィルムLaminated film
本発明は粒子を含む塗布層を設けた積層フィルム、およびこの積層フィルムを用いたバックライトユニットに関するものである。 The present invention relates to a laminated film provided with a coating layer containing particles, and a backlight unit using the laminated film.
 液晶ディスプレイには液晶セルを照らすバックライトが用いられている。従来、液晶ディスプレイの種類に応じて、比較的小さな液晶モニターではエッジライト方式のバックライト、それに対して比較的大きな液晶テレビでは直下型のバックライトが採用されていた。これらのバックライト用反射フィルムとしては、気泡により形成された多孔質の白色フィルムが一般的に用いられている(特許文献1)。 The liquid crystal display uses a backlight that illuminates the liquid crystal cell. Conventionally, depending on the type of liquid crystal display, a relatively small liquid crystal monitor employs an edge light type backlight, while a relatively large liquid crystal television employs a direct type backlight. As these reflective films for a backlight, a porous white film formed of bubbles is generally used (Patent Document 1).
 また、冷陰極管から放射される紫外線によるフィルムの黄変色を防ぐために紫外線吸収層を積層した白色フィルムも提案されている(特許文献2、3)。 In addition, a white film in which an ultraviolet absorbing layer is laminated in order to prevent yellow discoloration of the film due to ultraviolet rays emitted from a cold cathode tube has been proposed (Patent Documents 2 and 3).
 さらに、特にプリズム形状を付加した導光板とともに好適に用いられるものとして、軟質ビーズを含む層を基材シート層に積層した反射フィルムも開発されている(特許文献4、5)。 Furthermore, a reflective film in which a layer containing soft beads is laminated on a base sheet layer has also been developed as being particularly suitable for use with a light guide plate having a prism shape added (Patent Documents 4 and 5).
 液晶テレビの薄型化により、液晶テレビでもエッジライト方式のバックライトが採用され、それと同時にエッジライト方式のバックライトに関する開発が精力的に実施されている。さらに低消費電力化および水銀フリー化のため、発光ダイオード(以下、LEDと略する)が光源として採用されている。 Due to the thinning of LCD televisions, LCD backlights have adopted edge-lighted backlights, and at the same time, edge-lighted backlights have been actively developed. Furthermore, a light-emitting diode (hereinafter abbreviated as LED) is adopted as a light source in order to reduce power consumption and mercury-free.
 液晶テレビでは、ノートパソコンやディスクトップモニターと異なり、高い輝度が求められ、LEDを多数配置する必要がある。そのため、熱伝導係数の高いアルミニウムを使用した筐体を作成し、放熱対策を行う必要があった。しかし、アルミニウムを採用した場合、機械強度が低下しやすい。そのため、たとえば絞り成型により筐体に凹凸を形成する必要があった。 LCD TVs, unlike notebook computers and desktop monitors, require high brightness and require a large number of LEDs. Therefore, it was necessary to create a case using aluminum with a high thermal conductivity coefficient and take measures for heat dissipation. However, when aluminum is employed, the mechanical strength tends to decrease. Therefore, it has been necessary to form irregularities on the housing by, for example, drawing.
 さらに、エッジライトタイプのバックライトには、光学部材として導光板が必須である。導光板に関しては、従来のノートパソコンやディスクトップモニターでは、25インチ型程度までのサイズで十分であったが、液晶テレビは30~100インチ型が必要である。そのため、主にアクリル板にドット印刷を施した、凸状部を有する導光板、レーザー加工やUV転写法による凹状部を有する導光板等が開発されている。 Furthermore, a light guide plate is indispensable as an optical member for an edge light type backlight. As for the light guide plate, the size up to about 25 inch type is sufficient for the conventional notebook personal computer and the desktop monitor, but the liquid crystal television needs 30 to 100 inch type. Therefore, a light guide plate having a convex portion, mainly having dot printing on an acrylic plate, a light guide plate having a concave portion by laser processing or UV transfer method, and the like have been developed.
 そこで、導光板へのスクラッチや密着を防止するために、かかる反射板は導光板と接する面に軟質ビーズの平均粒径や埋没率を調整してビーズの脱落を抑制し密着により生じる白点欠点の発生を抑制した反射フィルムや、フィルムのクッション率を制御することで輝度ムラおよび白点欠点の発生を抑制する反射フィルム、異なる硬さの2種類のビーズを含む層を基材シート状に積層した反射フィルムが開発されている(特許文献6、7、8)。 Therefore, in order to prevent scratches and close contact with the light guide plate, such a reflective plate adjusts the average particle size and burial rate of the soft beads on the surface in contact with the light guide plate to suppress the dropout of the beads, and a white spot defect caused by the close contact A reflective film that suppresses the generation of light, a reflective film that suppresses the occurrence of uneven brightness and white spot defects by controlling the cushion ratio of the film, and a layer containing two types of beads of different hardness are laminated in a base sheet shape Reflected films have been developed (Patent Documents 6, 7, and 8).
 一方、光を拡散させる拡散シートや光の進む方向を制御するプリズムシートなどの光学シートを導光板と液晶パネルとの間に配置させることにより、導光板からの光出光の効率を向上させるとともに、輝度ムラの改善がなされている。これら光学シートも導光板に接するために、導光板と接する面にビーズコートを施し導光板へのスクラッチや密着を防止する技術が開発されている(特許文献9、10)。 On the other hand, by arranging an optical sheet such as a diffusion sheet for diffusing light and a prism sheet for controlling the light traveling direction between the light guide plate and the liquid crystal panel, the efficiency of light output from the light guide plate is improved, Brightness unevenness has been improved. Since these optical sheets are also in contact with the light guide plate, a technique has been developed in which a bead coat is applied to the surface in contact with the light guide plate to prevent scratches and adhesion to the light guide plate (Patent Documents 9 and 10).
特開平8-262208号公報JP-A-8-262208 特開2001-166295号公報JP 2001-166295 A 特開2002-90515号公報JP 2002-90515 A 特開2003-92018号公報Japanese Patent Laid-Open No. 2003-92018 特表2008-512719号公報Special table 2008-512719 特開2009-244509号公報JP 2009-244509 A 国際公開第2011/105294号International Publication No. 2011/105294 特開2012-242489号公報JP 2012-242489 A 特開2008-262147号公報JP 2008-262147 A 特開2007-86730号公報JP 2007-86730 A
 近年、省コスト化のために熱伝導率の低い鋼鈑や樹脂を用いた筐体を使用するため筐体内の温度が上がり、導光板が収縮や膨張を繰り返すために導光板が反り、部分的に反射板や光学シートと強くこすれ合う状況が生じている。 In recent years, because of the use of steel plates and resins with low thermal conductivity in order to save costs, the temperature inside the case has risen, and the light guide plate repeatedly contracts and expands. In other words, there is a situation in which the reflector and the optical sheet are rubbed strongly.
 そのために、反射板および光学シートには以下の課題点が挙げられる。
(1)導光板と反射板および光学シートが不均一に密着し輝度ムラを生じさせる問題。
(2)導光板と反射板および光学シートが密着し、導光板の熱膨張、収縮によって反射板および光学シートに皺が生じ、輝度ムラを生じさせる問題
(3)導光板表面に傷をつける、および/または反射板表面や光学シートのビーズが削りとられ、輝度ムラを生じさせる問題
 本発明は、液晶テレビ内の温度がこれまでより高温になり、これまで以上に導光板のそりによる反射板や光学シートへの加重やこすれが生じたとしても、密着による輝度ムラ、導光板および反射板や光学シートの損傷を防ぐことができる積層フィルムを提供せんとするものである。
Therefore, the following subjects are mentioned in a reflecting plate and an optical sheet.
(1) A problem in which the light guide plate, the reflection plate, and the optical sheet are in intimate contact with each other and uneven brightness occurs.
(2) A problem that the light guide plate and the reflection plate and the optical sheet are in close contact with each other, and the reflection plate and the optical sheet are wrinkled due to thermal expansion and contraction of the light guide plate, resulting in uneven brightness. (3) The light guide plate surface is damaged. And / or the problem that the surface of the reflector and the beads of the optical sheet are scraped off to cause luminance unevenness The present invention is that the temperature in the liquid crystal television becomes higher than before, and the reflector due to warpage of the light guide plate more than ever. In addition, the present invention is to provide a laminated film that can prevent unevenness in luminance due to adhesion, damage to the light guide plate, the reflection plate, and the optical sheet even when weighting or rubbing is applied to the optical sheet.
 かかる課題を解決するために、本発明の積層フィルムは以下の構成を有する。
(1)フィルムの少なくとも一方の表面に樹脂(A)からなる数平均粒径が4μm以上の粒子(a)を含む塗布層が設けられており、粒子(a)の表面に数平均粒径0.1μm以上1μm以下の粒子(b)が付着していることを特徴とする積層フィルム。
(2)白色フィルムの少なくとも一方の表面に樹脂(A)からなる数平均粒径が4μm以上の粒子(a)を含む塗布層が設けられており、粒子(a)の表面に数平均粒径が0.1μm以上1μm以下の粒子(b)が付着していることを特徴とする前記記載の積層フィルム。
(3)前記フィルムが透明であり、前記フィルムの全光線透過率が60%以上であることを特徴とする(1)に記載の積層フィルム。
(4)1つの粒子(a)の表面に粒子(b)が平均10個以上付着していることを特徴とする(1)または(3)に記載の積層フィルム。
(5)粒子(a)がポリエステル樹脂からなる(1)~(4)のいずれかに記載の積層フィルム。
(6)粒子(b)が樹脂(A)と異なる樹脂(B)からなる(1)~(5)のいずれかに記載の積層フィルム。
(7)粒子(b)が無機粒子である(1)~(5)のいずれかに記載の積層フィルム。
(8)塗布層の厚みが1μm未満である(1)~(7)のいずれかに記載の積層フィルム。
(9)塗布層の厚みが0.5μm未満である(1)~(7)のいずれかに記載の積層フィルム。
(10)粒子(a)の数平均粒径が4μm以上60μm以下である(1)~(9)のいずれかに記載の積層フィルム。
(11)粒子(b)の数平均粒径が100nm以上800nm以下である(1)~(10)のいずれかに記載の積層フィルム。
(12)エッジ型バックライトユニット用の反射板である(1)、(2)、または(4)~(11)のいずれかに記載の積層フィルム。
(13)(1)~(11)のいずれかに記載の積層フィルムを用いたエッジ型バックライトユニット。
In order to solve this problem, the laminated film of the present invention has the following configuration.
(1) A coating layer containing particles (a) having a number average particle diameter of 4 μm or more made of resin (A) is provided on at least one surface of the film, and the number average particle diameter of 0 is formed on the surface of particles (a). A laminated film having particles (b) of 1 μm or more and 1 μm or less adhered thereto.
(2) A coating layer containing particles (a) having a number average particle size of 4 μm or more made of resin (A) is provided on at least one surface of the white film, and the number average particle size is formed on the surfaces of the particles (a). The laminated film according to the above, wherein particles (b) having a particle size of 0.1 μm or more and 1 μm or less are adhered.
(3) The laminated film according to (1), wherein the film is transparent, and the total light transmittance of the film is 60% or more.
(4) The laminated film according to (1) or (3), wherein an average of 10 or more particles (b) are adhered to the surface of one particle (a).
(5) The laminated film according to any one of (1) to (4), wherein the particles (a) are made of a polyester resin.
(6) The laminated film according to any one of (1) to (5), wherein the particles (b) are made of a resin (B) different from the resin (A).
(7) The laminated film according to any one of (1) to (5), wherein the particles (b) are inorganic particles.
(8) The laminated film according to any one of (1) to (7), wherein the thickness of the coating layer is less than 1 μm.
(9) The laminated film according to any one of (1) to (7), wherein the thickness of the coating layer is less than 0.5 μm.
(10) The laminated film according to any one of (1) to (9), wherein the number average particle diameter of the particles (a) is 4 μm or more and 60 μm or less.
(11) The laminated film according to any one of (1) to (10), wherein the number average particle size of the particles (b) is from 100 nm to 800 nm.
(12) The laminated film according to any one of (1), (2), and (4) to (11), which is a reflector for an edge type backlight unit.
(13) An edge type backlight unit using the laminated film according to any one of (1) to (11).
 本発明の積層フィルムによれば、反射板、光学シートに係る、前記(1)導光板と反射板および光学シートが不均一に密着し輝度ムラを生じさせる問題、(2)導光板と反射板および光学シートが密着し、導光板の熱膨張、収縮によって反射板および光学シートに皺が生じ、輝度ムラを生じさせる問題、(3)導光板表面に傷をつける、および/または反射板表面や光学シートのビーズが削りとられ、輝度ムラを生じさせる問題を防ぐことができる。 According to the laminated film of the present invention, the (1) the light guide plate, the reflective plate, and the optical sheet are non-uniformly adhered to each other and the luminance unevenness is generated, and (2) the light guide plate and the reflective plate. And the optical sheet is in close contact, and the light expansion and contraction of the light guide plate causes wrinkles on the reflection plate and the optical sheet, resulting in uneven brightness. (3) The light guide plate surface is scratched and / or the reflection plate surface The beads of the optical sheet are scraped off, and the problem of causing uneven brightness can be prevented.
積層フィルム表面の粒子の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the particle | grains of the laminated | multilayer film surface.
 本発明の積層フィルムは、フィルムの少なくとも一方の表面に樹脂(A)からなる数平均粒径が4μm以上の粒子(a)を含む塗布層が設けられており、粒子(a)の表面に数平均粒径0.1μm以上1μm以下の粒子(b)が付着していることを特徴とする積層フィルムである。 In the laminated film of the present invention, a coating layer containing particles (a) having a number average particle diameter of 4 μm or more made of resin (A) is provided on at least one surface of the film, and the number of particles (a) is several on the surface of particles (a). The laminated film is characterized in that particles (b) having an average particle diameter of 0.1 μm or more and 1 μm or less are adhered.
 (1.1)積層フィルムの塗布層
 本発明の塗布層に含有せしめる粒子は粒子(b)が付着された粒子(a)からなる。粒径が小さい粒子(b)を粒子(a)の表面に付着させることによって、導光板の熱膨張、収縮によって、反射板または光学シートに皺が生じ輝度ムラを生じさせることがなくなる。また導光板と反射板または光学シートがこすれることによって導光板表面に傷がつくこと、および/または反射板または光学シート表面のビーズが削りとられ、その結果、輝度ムラを生じるということがなくなる。これら効果を有する機構の詳細は不明であるが、導光板と反射板または光学シートが圧着し、せん断力がかかったときに、小粒径の粒子(b)が粒子(a)の表面に設けられることにより、摩擦応力が低下し、粒子(a)が導光板に張り付くことがなく、導光板と反射板または光学シート間に大きな摩擦力が生じないためであると考えられる。
(1.1) Coating layer of laminated film The particles to be included in the coating layer of the present invention are composed of particles (a) to which particles (b) are attached. By attaching the particle (b) having a small particle size to the surface of the particle (a), the light guide plate is not thermally expanded and contracted to cause wrinkles on the reflecting plate or the optical sheet, thereby preventing uneven brightness. Further, the surface of the light guide plate is not damaged by rubbing the light guide plate and the reflection plate or the optical sheet, and / or the beads on the surface of the reflection plate or the optical sheet are scraped off. Details of the mechanism having these effects are unknown, but when the light guide plate and the reflecting plate or the optical sheet are pressure-bonded and a shearing force is applied, a particle (b) having a small particle diameter is provided on the surface of the particle (a). This is considered to be because the frictional stress decreases, the particles (a) do not stick to the light guide plate, and a large frictional force does not occur between the light guide plate and the reflecting plate or the optical sheet.
 粒子(b)を粒子(a)の表面に付着させる方法としては、例えば、株式会社テクノシステム発行の「分散・凝集の解明と応用技術」に記載のヘテロ凝集法を利用する方法が好ましく例示できる。具体的には、pHによりζ電位が変化するSiOに例示される無機粒子および/または有機粒子を塗液に含有せしめるにあたり塗液のpHを調整し無機粒子および/または有機粒子のζ電位の符号が異なるようにpHを調整し、大粒径の粒子の回りに小粒系の粒子を付着させる方法が挙げられる。この場合、粒子の粒径や表面状態により極めて限られたpH範囲である場合が多く、また有機粒子と無機粒子の組み合わせによってはヘテロ凝集する条件がない場合もある。好ましい無機物としてはSiO、TiO、γ-AlやZnOなどの金属酸化物が挙げられる。有機粒子と有機粒子の組み合わせの場合は、いずれのζ電位も同一符号となることが多く、ヘテロ凝集するためには化学工業協会編「最近の化学工学 特殊粉体技術」に記載のように粒子と粒子の表面電位の差を大きくすることによってヘテロ凝集体を得ることができる。特に粒子(a)と粒子(b)のζ電位の差は20mV以上が好ましく、より好ましくは30mV以上であり、さらに好ましくは40mV以上である。それぞれの粒子のζ電位は粒子(a)が-30mV以上-20mV以下であり粒子(b)のζ電位が-120mV以上60mV以下の組み合わせが好ましい。粒子のζ電位を上記範囲にする方法としては、粒子を構成する樹脂の末端COOH基、フェノール性OH基や末端NH基の量を調整することにより達成できる場合がある。具体的には粒子の表面にこれら末端基があることによって負のζ電位を大きくすることができる場合がある。また、アニオン性の界面活性剤を用いてもよい。また小さくする方法としては吸着により有機イオンや錯イオンを吸着させる、カチオン性界面活性剤を吸着させる、塩を形成する等によりζ電位差を小さくすることができる場合がある。 As a method for attaching the particle (b) to the surface of the particle (a), for example, a method using the heteroaggregation method described in “Elucidation of dispersion / aggregation and applied technology” issued by Techno System Co., Ltd. can be preferably exemplified. . Specifically, when inorganic particles and / or organic particles exemplified in SiO 2 whose ζ potential varies depending on pH are contained in the coating liquid, the pH of the coating liquid is adjusted to adjust the ζ potential of the inorganic particles and / or organic particles. There is a method in which the pH is adjusted so that the signs are different, and small particles are attached around the large particles. In this case, there are many cases where the pH range is extremely limited depending on the particle diameter and surface condition of the particles, and depending on the combination of organic particles and inorganic particles, there may be no condition for heteroaggregation. Preferred inorganic materials include metal oxides such as SiO 2 , TiO 2 , γ-Al 2 O 3 and ZnO. In the case of a combination of organic particles and organic particles, both ζ potentials often have the same sign, and in order to hetero-aggregate, the particle size is as described in “Recent Chemical Engineering Special Powder Technology” edited by the Chemical Industry Association. Heteroaggregates can be obtained by increasing the difference in the surface potential of the particles. In particular, the difference in ζ potential between the particles (a) and the particles (b) is preferably 20 mV or more, more preferably 30 mV or more, and further preferably 40 mV or more. The ζ potential of each particle is preferably a combination in which the particle (a) is from −30 mV to −20 mV and the ζ potential of the particle (b) is from −120 mV to 60 mV. As a method for setting the ζ potential of the particles in the above range, there are cases where it can be achieved by adjusting the amounts of terminal COOH groups, phenolic OH groups and terminal NH 2 groups of the resin constituting the particles. Specifically, the negative ζ potential may be increased by the presence of these end groups on the surface of the particle. An anionic surfactant may be used. As a method for reducing the potential, the ζ potential difference may be reduced by adsorbing organic ions or complex ions by adsorption, adsorbing a cationic surfactant, or forming a salt.
 粒子(a)1つあたりの表面に付着する粒子(b)の数は平均10個以上が好ましい。より好ましくは50個以上であり、もっとも好ましくは100個以上である。10個以上有することによって導光板と粒子(a)の接触面積が低下し傷つきを低下させることができる。上限は500個以下と推定される。表面の粒子被覆率が多くなりすぎると粒子(b)のみの巨大粒子と同じとなり、結局導光板と張り付いてしまい傷や脱落を生じるため好ましくない。粒子(a)1つあたりの表面に付着する粒子(b)の数を10個以上とするためには、例えば粒子(a)と粒子(b)のζ電位の差を20mV以上とすることによって調整しうる。また、500個以下とするためには粒子(b)の配合量を調節することによって調整することができる。本発明でいう付着した粒子の個数は表面をSEMで観察したときの1つの粒子(a)の表面に付着している粒子(b)の個数をいう。 The number of particles (b) adhering to the surface per particle (a) is preferably 10 or more on average. More preferably, it is 50 or more, and most preferably 100 or more. By having 10 or more, the contact area of a light-guide plate and particle | grains (a) falls, and it can reduce a damage. The upper limit is estimated to be 500 or less. An excessively large particle coverage on the surface is not preferable because it becomes the same as a giant particle consisting of only the particles (b) and eventually sticks to the light guide plate and causes scratches and drops. In order to set the number of particles (b) adhering to the surface per particle (a) to 10 or more, for example, by setting the difference in ζ potential between particles (a) and particles (b) to 20 mV or more. Can be adjusted. Moreover, in order to make it 500 or less, it can adjust by adjusting the compounding quantity of particle | grains (b). The number of attached particles in the present invention refers to the number of particles (b) attached to the surface of one particle (a) when the surface is observed with an SEM.
 (1.2)粒子(a) 
 粒子(a)は樹脂(A)からなる。樹脂(A)の種類は特に限定されないが、ポリメタアクリル酸メチルアクリレート樹脂、アクリルスチレン系樹脂、ポリメチルメタクリレート樹脂、ポリブチルメタクリレート樹脂、シリコーン系樹脂、ポリスチレン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、またはポリ弗化エチレン系樹脂、およびこれらの架橋物等を挙げることが出来る。
(1.2) Particle (a)
Particle (a) consists of resin (A). The type of the resin (A) is not particularly limited, but a polymethacrylic acid methyl acrylate resin, an acrylic styrene resin, a polymethyl methacrylate resin, a polybutyl methacrylate resin, a silicone resin, a polystyrene resin, a polycarbonate resin, a benzoguanamine resin, Examples include melamine resins, polyolefin resins, polyester resins, polyamide resins, polyimide resins, or polyfluorinated ethylene resins, and cross-linked products thereof.
 本発明では特に、樹脂の弾性をコントロールしやすく、バインダーと親和性が良い観点からアクリル系樹脂、ナイロン系樹脂、ポリエステル系樹脂であることが好ましい。 In the present invention, an acrylic resin, a nylon resin, and a polyester resin are particularly preferable from the viewpoint of easily controlling the elasticity of the resin and having good affinity with the binder.
 特に好ましくは熱可塑性のポリエステル系樹脂である。好ましいポリエステルとしては、樹脂の弾性をコントロールしやすいことからポリエチレンテレフタレートやポリブチレンテレフタレートなどの芳香族ポリエステルやポリエステルエラストマーが好ましい。ポリエステルエラストマーの具体例としては、種々の商品名、例えば、デュポン社製の「ハイトレル(HYTREL)」(登録商標)、チコナ(Ticona)社製の「リテフレックス(RITEFLEX)」(登録商標)およびDSM社製の「アーニテル(ARNITEL)」(登録商標)などがあり、多くの会社から販売されている。 Particularly preferred is a thermoplastic polyester resin. Preferred polyesters are aromatic polyesters and polyester elastomers such as polyethylene terephthalate and polybutylene terephthalate because the elasticity of the resin can be easily controlled. Specific examples of the polyester elastomer include various trade names such as “HYTREL” (registered trademark) manufactured by DuPont, “RITEFLEX” (registered trademark) manufactured by Ticona, and DSM. There are “ARNITEL” (registered trademark) manufactured by the company and sold by many companies.
 粒子(a)を構成する樹脂(A)はその曲げ弾性率が500MPa以上3000MPa以下であることが好ましい。より好ましくは1000MPa以上2700MPa以下である。本発明での曲げ弾性率とは、ASTM-D790-98に準じて測定された値をいう。このときの測定には、樹脂(A)を90℃で3時間以上熱風乾燥し、乾燥後のペレットを射出成形機(日精樹脂工業製 NEX-1000)を用いて、シリンダー温度240℃、金型温度50℃の成形条件で成形して得られる、127×12.7×6.4mmの曲げ試験片を測定サンプルとして使用するものとする。曲げ弾性率が上記範囲より小さいと、白色フィルム上に塗布し反射板として液晶ディスプレイに組み込んだときに白点が生じる場合がある。曲げ弾性率が上記範囲より大きいと、導光板と反射板がこすれ合ったときに導光板に傷が生じる場合がある。熱可塑性樹脂の曲げ弾性率を上記範囲内に調整するためには、例えば、芳香族ポリエステルに長鎖のポリアルキレングリコールを共重合させることが挙げられる。また、デュポン社製の「ハイトレル(HYTREL)」(登録商標)ではハイトレル7247やハイトレル8238が上記範囲内の曲げ弾性率を有するのでこれを用いることができる。 The resin (A) constituting the particles (a) preferably has a flexural modulus of 500 MPa to 3000 MPa. More preferably, it is 1000 MPa or more and 2700 MPa or less. The flexural modulus in the present invention refers to a value measured according to ASTM-D790-98. For the measurement at this time, the resin (A) was dried with hot air at 90 ° C. for 3 hours or more, and the dried pellets were used with an injection molding machine (Nissei Resin Kogyo NEX-1000) with a cylinder temperature of 240 ° C. and a mold. A 127 × 12.7 × 6.4 mm bending test specimen obtained by molding under molding conditions of a temperature of 50 ° C. is used as a measurement sample. If the flexural modulus is smaller than the above range, white spots may occur when applied on a white film and incorporated in a liquid crystal display as a reflector. If the flexural modulus is larger than the above range, the light guide plate may be damaged when the light guide plate and the reflective plate are rubbed together. In order to adjust the flexural modulus of the thermoplastic resin within the above range, for example, a long-chain polyalkylene glycol is copolymerized with an aromatic polyester. In addition, in the case of “HYTREL” (registered trademark) manufactured by DuPont, Hytrel 7247 and Hytrel 8238 have a bending elastic modulus within the above range, and can be used.
 粒子(a)を製造する方法としては、加熱溶融させた後に、ノズルからスプレー噴霧して球状粒子を得る方法(特公平2-12975号公報)、加熱溶媒に溶解させた後に冷却して析出させ球状粒子を得る方法(特開昭51-79158号公報)、加熱溶融させた樹脂を非相溶の加熱したポリシロキサン中に強制分散させることにより球状粒子を得る方法(特開2001-213970号公報)、高分子溶液を相分離させ、エマルションを形成させ、貧溶媒を添加することで微粒子を得る方法(国際公開第2009/142231号)などが、適用可能な方法として挙げられる。粒径を制御しやすく、粒子径分布指数を小さくすることが容易であり、溶融による熱劣化に起因する粒子の黄変が生じにくい観点から、高分子溶液を相分離させ、エマルションを形成させ、貧溶媒を添加することで微粒子を得る手法が好ましく用いられる。 As a method for producing the particles (a), a method of obtaining spherical particles by spraying from a nozzle after heating and melting (Japanese Patent Publication No. 2-12975), cooling and precipitating after dissolving in a heating solvent. A method for obtaining spherical particles (Japanese Patent Laid-Open No. 51-79158), and a method for obtaining spherical particles by forcibly dispersing a heat-melted resin in an incompatible heated polysiloxane (Japanese Patent Laid-Open No. 2001-213970). ), A method in which a polymer solution is phase-separated, an emulsion is formed, and fine particles are obtained by adding a poor solvent (International Publication No. 2009/142231). From the viewpoint of easily controlling the particle size, making it easy to reduce the particle size distribution index, and less likely to cause yellowing of the particles due to thermal degradation due to melting, the polymer solution is phase-separated to form an emulsion, A method of obtaining fine particles by adding a poor solvent is preferably used.
 粒子(a)の数平均粒径は4μm以上であり、6μm以上が好ましく、8μm以上がより好ましい。上限は60μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることがさらに好ましい。4μm未満であると、反射フィルム上に塗布し液晶ディスプレイに組み込んだときに白点が生じる場合があり、また60μmより大きいと粒子が脱落する場合がある。上記範囲に粒径を調整する方法としては、公知の方法を用いることができる。具体的には特開2001-213970号公報や国際公開第2009/142231号に記載の方法が挙げられる。 The number average particle diameter of the particles (a) is 4 μm or more, preferably 6 μm or more, and more preferably 8 μm or more. The upper limit is preferably 60 μm or less, more preferably 20 μm or less, and even more preferably 15 μm or less. If it is less than 4 μm, white spots may occur when it is applied on a reflective film and incorporated in a liquid crystal display, and if it is greater than 60 μm, particles may fall off. As a method of adjusting the particle diameter within the above range, a known method can be used. Specific examples include the methods described in JP-A No. 2001-213970 and International Publication No. 2009/142231.
 本発明の樹脂(A)からなる粒子(a)はその粒子径分布指数が1~3であることが好ましい。より好ましくは1~2であり、最も好ましくは1~1.5である。粒子径分布指数が上記範囲にあることによって、導光板に反射板が押し付けられる状況下において、一部の粒径が大きな粒子のみが導光板に密着および粒子が変形することによって、白点が生じやすくなることを防ぐことが出来る。また、粒子径分布指数が上記範囲より大きい場合(つまり、粗大粒子を含む場合)、塗布工程において例えば後記するメイヤーバーの粒子詰まりが起こり、塗布スジが発生する場合等があり、塗布外観の観点から好ましくない場合がある。粒子径分布指数を上記範囲にする方法としては、高分子を相分離させエマルションを形成させる方法において、エマルション形成および微粒子化工程を実施する温度が100℃以上にすることが好ましい。上限としては溶解し、相分離する温度であって、所望の微粒子が得られるならば特に制限はないが、通常100℃~300℃の範囲であり、好ましくは、100℃~280℃であり、より好ましくは、120℃~260℃であり、さらに好ましくは、120℃~240℃であり、特に好ましくは、120℃~220℃であり、最も好ましくは、120℃~200℃の範囲である。 The particles (a) made of the resin (A) of the present invention preferably have a particle size distribution index of 1 to 3. More preferably, it is 1 to 2, and most preferably 1 to 1.5. When the particle size distribution index is within the above range, only a part of the particles having a large particle size are in close contact with the light guide plate and deformed when the reflector is pressed against the light guide plate. It can be prevented from becoming easy. In addition, when the particle size distribution index is larger than the above range (that is, when coarse particles are included), there is a case where, for example, a Mayer bar particle clogging described later occurs in the coating process, and coating stripes may be generated. May be undesirable. As a method for setting the particle size distribution index in the above range, in the method of forming an emulsion by phase-separating a polymer, it is preferable that the temperature for carrying out the emulsion formation and the micronization step is 100 ° C. or higher. The upper limit is the temperature at which dissolution and phase separation occur, and there is no particular limitation as long as the desired fine particles can be obtained, but it is usually in the range of 100 ° C. to 300 ° C., preferably 100 ° C. to 280 ° C., More preferably, it is 120 ° C. to 260 ° C., further preferably 120 ° C. to 240 ° C., particularly preferably 120 ° C. to 220 ° C., and most preferably in the range of 120 ° C. to 200 ° C.
 なお、本発明でいう粒子径分布指数とは粒子(a)の体積平均粒径(Dv)を数平均粒径(Dn)で割った値をいう。 The particle size distribution index referred to in the present invention means a value obtained by dividing the volume average particle size (Dv) of the particles (a) by the number average particle size (Dn).
 (1.3)粒子(b)
 粒子(b)は粒子(a)を構成する樹脂(A)とは異なる樹脂(B)からなることが好ましい。樹脂(B)が樹脂(A)と同一であると粒子(a)の表面に粒子(b)が付着できない場合があり好ましくない。樹脂(B)の種類は樹脂(A)と異なる組み合わせであれば特に限定されないが、ポリメタアクリル酸メチルアクリレート樹脂、アクリルスチレン系樹脂、ポリメチルメタクリレート樹脂、ポリブチルメタクリレート樹脂、シリコーン系樹脂、ポリスチレン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、またはポリ弗化エチレン系樹脂、およびこれらの架橋物等を挙げることが出来る。
(1.3) Particle (b)
The particles (b) are preferably made of a resin (B) different from the resin (A) constituting the particles (a). If the resin (B) is the same as the resin (A), the particle (b) may not adhere to the surface of the particle (a). The type of the resin (B) is not particularly limited as long as it is a combination different from the resin (A), but polymethacrylic acid methyl acrylate resin, acrylic styrene resin, polymethyl methacrylate resin, polybutyl methacrylate resin, silicone resin, polystyrene Resin, polycarbonate resin, benzoguanamine resin, melamine resin, polyolefin resin, polyester resin, polyamide resin, polyimide resin, polyfluoroethylene resin, and cross-linked products thereof.
 本発明では塗布液のpHによってζ電位の変化が粒子(a)と異なる樹脂を選定することが好ましい。樹脂(A)がポリエステル樹脂の場合は樹脂(B)としてポリスチレン樹脂やナイロン樹脂などを好ましく選定することができる。 In the present invention, it is preferable to select a resin having a change in ζ potential different from that of the particles (a) depending on the pH of the coating solution. When the resin (A) is a polyester resin, a polystyrene resin or a nylon resin can be preferably selected as the resin (B).
 粒子(b)は無機粒子であっても良い。無機粒子であることによって、塗布液のpH調整により粒子(a)の表面に粒子(b)を付着できる場合が多く好ましく用いられる。無機粒子の種類は限定されないが、金属酸化物がζ電位のpHによりコントロールを行いやすいため好ましく用いられる。無機粒子の具体例としてはシリカ粒子、酸化アルミニウム、二酸化チタンなどが好ましく挙げられる。 The particles (b) may be inorganic particles. The inorganic particles are preferably used in many cases because the particles (b) can be attached to the surfaces of the particles (a) by adjusting the pH of the coating solution. The type of inorganic particles is not limited, but metal oxides are preferably used because they are easily controlled by the pH of the ζ potential. Specific examples of inorganic particles include silica particles, aluminum oxide, titanium dioxide and the like.
 粒子(b)の数平均粒径は0.1μm以上1μm以下であり、100nm以上800nm以下が好ましく、200nm以上500nm以下が最も好ましい。1μmを越えると、粒子(a)の表面に付着しない場合があり好ましくない。また100nm未満であると粒子(a)表面に存在する塗布膜の厚みより小さくなる場合があり粒子(a)の表面に突起を形成できなくなる場合があるため好ましくない。上記範囲の数平均粒径である有機粒子の具体例としては、種々の商品、例えば総研化学社製の真球状ポリスチレンラテックス粒子「DYNOSPHERES」、日本触媒社製架橋ポリメタクリル酸メチル粒子「エポスター(登録商標)MX」、積水化成品社製アクリル系のサブミクロン微粒子「テクポリマー(登録商標)」などあり、多くの会社から販売されており、これらを用いることができる。また、無機粒子の具体例としては、触媒化成工業社製シリカ粒子「スフェリカスラリー」や日本触媒社製シリカ粒子「シーホスター(登録商標)」などを挙げることができ、これらを用いることができる。 The number average particle diameter of the particles (b) is from 0.1 μm to 1 μm, preferably from 100 nm to 800 nm, and most preferably from 200 nm to 500 nm. If it exceeds 1 μm, it may not adhere to the surface of the particles (a), which is not preferable. Further, if it is less than 100 nm, it may be smaller than the thickness of the coating film present on the surface of the particle (a), and it may not be possible to form protrusions on the surface of the particle (a). Specific examples of organic particles having a number average particle size in the above range include various products such as true spherical polystyrene latex particles “DYNOSPHERES” manufactured by Soken Chemical Co., Ltd., cross-linked polymethyl methacrylate particles “Eposter (registered)” manufactured by Nippon Shokubai Co., Ltd. Trademark) MX ", acrylic submicron fine particles" Techpolymer (registered trademark) "manufactured by Sekisui Plastics Co., Ltd., etc., which are sold by many companies and can be used. Specific examples of the inorganic particles include silica particles “Spherica Slurry” manufactured by Catalytic Chemical Industry Co., Ltd. and silica particles “Sea Hoster (registered trademark)” manufactured by Nippon Shokubai Co., Ltd., and these can be used.
 (1.4)バインダー樹脂
 バインダー樹脂は水溶性樹脂からなり水系の塗布液を用いて塗布することが環境への影響が少ないことから好ましい。ここでいう水溶性樹脂とは、スルホン酸基、カルボン酸基、水酸基およびそれらの塩から選ばれた少なくとも1種の官能基を含有する樹脂を示す。水溶性樹脂は、好ましくはスルホン酸基、スルホン酸塩基、カルボン酸基、カルボン酸塩基等の官能基を有するモノマーが共重合された樹脂であり、さらに好ましくはカルボン酸基および/またはカルボン酸基塩を有するモノマーが共重合された樹脂である。水溶性であることによって、基材フィルムおよび粒子(a)との親和性がよく、有機粒子(a)の脱落が少ない塗布層を形成することができる。また、バインダー樹脂が水溶性樹脂であることにより、バインダー樹脂および粒子を水に溶解又は分散させた塗液状態にして使用することができる。もちろん、バインダー樹脂と粒子を予め別々に水に溶解または分散させたものを任意に混合して使用してもよい。また、水を用いた塗液を用いることによって、インラインコーティング法において塗布が可能となるため省コストの観点からも好ましい。バインダー樹脂に上記の官能基を有するモノマーを共重合する方法は公知の方法をとることができる。水溶性樹脂はポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂からなる群より選ばれる少なくとも一種から形成されることが好ましく、ポリエステル樹脂またはアクリル樹脂であることがより好ましい。バインダー樹脂は、基材フィルムとの密着性がよく、また透明であることが好ましく、上記樹脂はこれらの特性を満たすことができる。これら水溶性樹脂としては、DIC(株)製の製品名「ウォーターゾール」(登録商標)や高松油脂(株)の「ペスレジン」等が入手可能である。
(1.4) Binder resin The binder resin is preferably made of a water-soluble resin, and is preferably applied using a water-based coating liquid because it has little influence on the environment. The water-soluble resin as used herein refers to a resin containing at least one functional group selected from sulfonic acid groups, carboxylic acid groups, hydroxyl groups, and salts thereof. The water-soluble resin is preferably a resin in which a monomer having a functional group such as a sulfonic acid group, a sulfonic acid group, a carboxylic acid group, or a carboxylic acid group is copolymerized, and more preferably a carboxylic acid group and / or a carboxylic acid group. A resin in which a monomer having a salt is copolymerized. By being water-soluble, it is possible to form a coating layer having good affinity with the base film and the particles (a) and less dropping of the organic particles (a). In addition, since the binder resin is a water-soluble resin, it can be used in the state of a coating solution in which the binder resin and particles are dissolved or dispersed in water. Of course, a binder resin and particles previously dissolved or dispersed separately in water may be arbitrarily mixed and used. In addition, the use of a coating solution using water enables application in an in-line coating method, which is preferable from the viewpoint of cost saving. As a method of copolymerizing the monomer having the above functional group with the binder resin, a known method can be used. The water-soluble resin is preferably formed from at least one selected from the group consisting of a polyester resin, an acrylic resin, and a polyurethane resin, and more preferably a polyester resin or an acrylic resin. The binder resin has good adhesion to the base film and is preferably transparent, and the resin can satisfy these characteristics. As these water-soluble resins, the product name “Watersol” (registered trademark) manufactured by DIC Corporation, “Pesresin” manufactured by Takamatsu Yushi Co., Ltd., and the like are available.
 また塗布層を形成するバインダー樹脂には、発明の効果を阻害しない範囲内で各種の添加剤を添加することが出来る。添加剤としては、例えば、酸化防止剤、架橋剤、蛍光増白剤、帯電防止剤、カップリング剤などを用いることができる。  Further, various additives can be added to the binder resin forming the coating layer as long as the effects of the invention are not impaired. As the additive, for example, an antioxidant, a crosslinking agent, a fluorescent brightening agent, an antistatic agent, a coupling agent and the like can be used.
 例えば、塗布層中に架橋剤を添加することにより、基材フィルムへの密着性をさらに向上させることができるのと同時に有機粒子の脱落をもさらに少なくすることができる。架橋剤としては、例えば、イソシアネート架橋剤、シリコーン架橋剤、ポリオレフィン架橋剤などが挙げられる。また、塗布層中の架橋剤の含有量は、5重量%以下であることが好ましく、0.1~4重量%であることがより好ましく、さらには0.5~3重量%の範囲内であることが最も好ましい。架橋剤の含有量がかかる好ましい範囲内にあれば、その効果が十分得られ、また、塗布層を設けた後にフィルムがカールすることも防止可能である。  For example, by adding a crosslinking agent to the coating layer, the adhesion to the base film can be further improved, and at the same time, the organic particles can be further prevented from falling off. Examples of the crosslinking agent include an isocyanate crosslinking agent, a silicone crosslinking agent, and a polyolefin crosslinking agent. The content of the crosslinking agent in the coating layer is preferably 5% by weight or less, more preferably 0.1 to 4% by weight, and further within the range of 0.5 to 3% by weight. Most preferably it is. If the content of the crosslinking agent is within such a preferable range, the effect can be sufficiently obtained, and the film can be prevented from curling after the coating layer is provided.
 また、帯電防止剤を添加することにより、フィルムへゴミなどの異物が付着するのを防止することができる。帯電防止剤としては、例えば界面活性剤、イオン系導電性ポリマー、電子伝導性ポリマー、導電性金属酸化物、金属類などが挙げられるが、これに限られることはない。また界面活性剤、イオン系導電性ポリマーとしては、具体的には下記の様なものが挙げられる。    Further, by adding an antistatic agent, it is possible to prevent foreign matters such as dust from adhering to the film. Examples of the antistatic agent include, but are not limited to, a surfactant, an ionic conductive polymer, an electron conductive polymer, a conductive metal oxide, and metals. Specific examples of the surfactant and the ionic conductive polymer include the following.
 界面活性剤としては、スルホン酸塩化化合物、N-アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩などの陰イオン界面活性剤、脂肪族アミン塩、脂肪族4級アンモニウム塩などの陽イオン界面活性剤、カルボキシベタイン、イミダゾリニウムベタイン、アミノカルボン酸塩などの両性界面活性剤などが挙げられる。中でもスルホン酸塩化化合物は好ましく適用され、具体的にはドデシルベンゼンスルホン酸ナトリウム、ステアリルベンゼンスルホン酸ナトリウム、オクチルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸リチウム、オクチルナフタレンスルホン酸リチウム、オキシルナフタレンスルホン酸ナトリウム、ドデシルナフタレンスルホン酸ナトリウム、ドデシルナフタレンスルホン酸カリウム、ブチルスルホン酸ナトリウム、ペンチルスルホン酸ナトリウム、ヘキシルスルホン酸ナトリウム、ヘプチルスルホン酸ナトリウム、オクチルスルホン酸ナトリウム、ノニルスルホン酸ナトリウム、デシルスルホン酸ナトリウム、ウンデシルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、トリデシルスルホン酸ナトリウム、テトラデシルスルホン酸ナトリウム、テトラデシルスルホン酸ナトリウム、ペンタデシルスルホン酸ナトリウム、ヘキサデシルスルホン酸ナトリウム、ヘプタデシルスルホン酸ナトリウム、オクタデシルスルホン酸ナトリウム、デシルスルホン酸カリウム、ドデシルスルホン酸カリウム、オクタデシルスルホン酸カリウムなどが適用可能である。    Surfactants include cationic surfactants such as sulfonated compounds, N-acyl amino acids or salts thereof, anionic surfactants such as alkyl ether carboxylates, aliphatic amine salts, and aliphatic quaternary ammonium salts. , Amphoteric surfactants such as carboxybetaine, imidazolinium betaine, and aminocarboxylate. Among them, sulfonated compounds are preferably applied, specifically sodium dodecylbenzenesulfonate, sodium stearylbenzenesulfonate, sodium octylbenzenesulfonate, potassium dodecylbenzenesulfonate, lithium dodecylbenzenesulfonate, lithium octylnaphthalenesulfonate, Sodium oxylnaphthalene sulfonate, sodium dodecyl naphthalene sulfonate, potassium dodecyl naphthalene sulfonate, sodium butyl sulfonate, sodium pentyl sulfonate, sodium hexyl sulfonate, sodium heptyl sulfonate, sodium octyl sulfonate, sodium nonyl sulfonate, decyl sulfone Acid sodium, sodium undecyl sulfonate, sodium dodecyl sulfonate, Sodium Ridecyl sulfonate, Sodium tetradecyl sulfonate, Sodium tetradecyl sulfonate, Sodium pentadecyl sulfonate, Sodium hexadecyl sulfonate, Sodium heptadecyl sulfonate, Sodium octadecyl sulfonate, Potassium decyl sulfonate, Potassium dodecyl sulfonate In addition, potassium octadecyl sulfonate is applicable.
 イオン系導電性ポリマーとしては、ポリスチレンスルホン酸およびそのアルカリ金属塩、アンモニウム塩などのポリスチレンスルホン酸塩類、アルキルリン酸エステル塩やアルキルエーテルリン酸エステル塩に代表されるリン酸塩系低分子化合物をモノマーとして共重合したリン酸高分子化合物、イオン性官能基を有するポリアクリル酸エステルなどが挙げられる。 Examples of the ionic conductive polymer include polystyrene sulfonates and their low molecular weight compounds represented by polystyrene sulfonates such as alkali metal salts and ammonium salts thereof, alkyl phosphate ester salts and alkyl ether phosphate ester salts. Examples thereof include a phosphoric acid polymer compound copolymerized as a monomer and a polyacrylic acid ester having an ionic functional group.
 塗布層の塗布厚み(d;粒子(a)を含まない部分の基材フィルム表面から塗布層表面までの距離)は1μm未満であることが好ましい。より好ましくは500nm未満であり、さらに好ましくは400nm未満である。塗布厚みを上記の範囲内とすることによって、バインダー樹脂の使用量を少なく出来るばかりでなく、インラインコーティング法での塗布が可能となり大幅にコストを削減することができる。また、塗布厚みが1μm以上の場合、塗布ムラ等の塗布外観が著しく低下する場合があり好ましくない。塗布厚みの下限は50nmであることが好ましい。塗布厚みが50nm未満であると有機粒子が脱落する場合がある。塗布層の塗布厚みの測定方法としては、粒子を含んだ断面を切削し、SEMまたは透過型電子顕微鏡(TEM)にて観察しその塗布層の塗布厚みを求めることができる。塗布層の塗布厚みを上記範囲にする方法としては、例えば、塗液のバインダー樹脂濃度と塗液の塗り厚みを調整することによって達成する方法などを挙げることができる。 The coating thickness of the coating layer (d; the distance from the surface of the base film at the portion not including the particles (a) to the coating layer surface) is preferably less than 1 μm. More preferably, it is less than 500 nm, More preferably, it is less than 400 nm. By setting the coating thickness within the above range, not only the amount of the binder resin used can be reduced, but also the coating by the in-line coating method becomes possible, and the cost can be greatly reduced. Moreover, when the coating thickness is 1 μm or more, the coating appearance such as coating unevenness may be remarkably deteriorated. The lower limit of the coating thickness is preferably 50 nm. If the coating thickness is less than 50 nm, the organic particles may fall off. As a method for measuring the coating thickness of the coating layer, a section including particles is cut, and observed with an SEM or a transmission electron microscope (TEM) to determine the coating thickness of the coating layer. Examples of the method for setting the coating thickness of the coating layer in the above range include a method achieved by adjusting the binder resin concentration of the coating liquid and the coating thickness of the coating liquid.
 塗布層表面の表面粗さ(SRz;三次元十点平均粗さ)は5μm以上60μm以下であることが好ましい。より好ましくは10μm以上30μm以下である。5μm未満であると、白色フィルム上に塗布した積層フィルムを液晶ディスプレイに反射板として組み込んだときに白点が生じる場合があり、また60μmより大きいと粒子が脱落する場合がある。上記範囲に含まれるように表面粗さを調整する方法としては、例えば、有機粒子の粒径および塗液のバインダー樹脂濃度と塗液の塗り厚みを調整する方法などが挙げられる。 The surface roughness (SRz; three-dimensional ten-point average roughness) of the coating layer surface is preferably 5 μm or more and 60 μm or less. More preferably, they are 10 micrometers or more and 30 micrometers or less. If the thickness is less than 5 μm, white spots may occur when a laminated film coated on a white film is incorporated as a reflector in a liquid crystal display, and if it is greater than 60 μm, particles may fall off. Examples of the method of adjusting the surface roughness so as to be included in the above range include a method of adjusting the particle size of the organic particles, the binder resin concentration of the coating liquid, and the coating thickness of the coating liquid.
 粒子(a)および粒子(b)はバインダー樹脂によって被覆されていることが好ましい。粒子がバインダー樹脂によって被覆されることで、脱落しにくくすることができる。粒子の濡れ性を公知の方法で改良することによって粒子をバインダー樹脂によって被覆させることができる。また、被覆状態については、粒子断面のSEMもしくはTEMにより確認することができる。このときルテニウム染色などを用いることによってより明確に確認することができる。 The particles (a) and particles (b) are preferably covered with a binder resin. By covering the particles with the binder resin, it can be made difficult to fall off. The particles can be coated with a binder resin by improving the wettability of the particles by a known method. Moreover, about a coating state, it can confirm by SEM or TEM of a particle cross section. At this time, it can be confirmed more clearly by using ruthenium staining or the like.
 本発明の積層フィルムは、塗布層表面における有機粒子の粒子密度が5個/mm以上100000個/mm以下である事が好ましい。より好ましくは400個/mm以上100000個/mm以下であり、更に好ましくは1000個/mm以上100000個/mm以下である。粒子密度が上記数値範囲内である積層フィルムを、液晶ディスプレイの反射板もしくは光拡散フィルムとして用いると、適度な光拡散性を得ることが出来る。塗布層表面の粒子密度を上記の数値範囲内にする方法としては、塗液中の粒子量、塗布膜厚み、製膜中に塗布する場合は塗布後の延伸工程における延伸倍率を調整することによって達成できる。 The laminated film of the present invention, it is preferred particle density of the organic particles in the coating layer surface is 5 pieces / mm 2 or more 100,000 / mm 2 or less. More preferably, they are 400 pieces / mm < 2 > or more and 100,000 pieces / mm < 2 > or less, More preferably, they are 1000 pieces / mm < 2 > or more and 100,000 pieces / mm < 2 > or less. When a laminated film having a particle density within the above numerical range is used as a reflection plate or a light diffusion film of a liquid crystal display, an appropriate light diffusibility can be obtained. As a method of bringing the particle density of the coating layer surface within the above numerical range, the amount of particles in the coating liquid, the thickness of the coating film, and when coating during film formation, by adjusting the stretching ratio in the stretching step after coating Can be achieved.
 本発明の積層フィルムの第二の態様は、白色フィルムの少なくとも一方の表面に樹脂(A)からなる数平均粒径が4μm以上の粒子(a)を含む塗布層が設けられており、粒子(a)の表面に数平均粒径0.1μm以上1μm以下の粒子(b)が付着していることを特徴とする積層フィルムであり、第三の態様は、前記フィルムが透明であり、前記フィルムの全光線透過率が60%以上であることを特徴とする積層フィルムである。 In the second aspect of the laminated film of the present invention, a coating layer containing particles (a) having a number average particle size of 4 μm or more made of resin (A) is provided on at least one surface of a white film. It is a laminated film characterized in that particles (b) having a number average particle size of 0.1 μm or more and 1 μm or less are attached to the surface of a), the third aspect is that the film is transparent, and the film Is a laminated film characterized by having a total light transmittance of 60% or more.
 本発明の積層フィルムに係るフィルムは、白色フィルムまたは透明フィルムである。 The film according to the laminated film of the present invention is a white film or a transparent film.
 (2.1)白色フィルムの構成
 本発明の第二の態様に係る積層フィルムを構成する白色フィルムは、液晶ディスプレイ用バックライトや照明用途の反射板として使用する場合には可視光線反射率が高ければ高いほうが良い。反射率は80%以上が好ましい。より好ましくは90%以上であり、さらに好ましくは95%以上である。このため、内部に気泡および/または非相溶の粒子を含有するフィルムが好ましく使用される。これらの白色フィルムとしては限定されるものではないが、多孔質の未延伸あるいは二軸延伸されたポリオレフィンフィルムや、多孔質の未延伸あるいは二軸延伸されたポリエステルフィルムなどの白色フィルムが好ましく用いられる。特に成形性や生産性の点から白色ポリエステルフィルムが好ましく用いられる。白色ポリオレフィンフィルムおよび白色ポリエステルフィルムとしては特開平4-239540号公報、特開平8-262208号公報、特開2002-90515号公報、特開2002-138150号公報や特開2004-330727号公報に開示されている白色フィルムが挙げられる。
(2.1) Configuration of white film The white film constituting the laminated film according to the second aspect of the present invention has a high visible light reflectance when used as a backlight for a liquid crystal display or a reflector for lighting applications. Higher is better. The reflectance is preferably 80% or more. More preferably, it is 90% or more, More preferably, it is 95% or more. For this reason, a film containing bubbles and / or incompatible particles therein is preferably used. Although these white films are not limited, white films such as porous unstretched or biaxially stretched polyolefin films and porous unstretched or biaxially stretched polyester films are preferably used. . In particular, a white polyester film is preferably used from the viewpoint of moldability and productivity. The white polyolefin film and the white polyester film are disclosed in JP-A-4-239540, JP-A-8-262208, JP-A-2002-90515, JP-A-2002-138150, and JP-A-2004-330727. The white film currently used is mentioned.
 白色フィルムを構成する可塑性樹脂としては例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル、ポリプロピレンや環状ポリオレフィンなどのポリオレフィン、ポリスチレン、アクリル樹脂などを挙げることができる。成形性や生産性の観点からポリエステルが好ましく使用される。 Examples of the plastic resin constituting the white film include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and cyclic polyolefin, polystyrene, and acrylic resins. Polyester is preferably used from the viewpoint of moldability and productivity.
 また、非相溶の粒子としては、例えば酸化チタン、硫酸バリウム、二酸化珪素や炭酸カルシウムなどからなる無機粒子、アクリル粒子、ナイロン粒子、ポリスチレン粒子やシリコーン粒子などの有機粒子が挙げられる。また白色フィルムを構成する熱可塑性樹脂とは非相溶の樹脂を用い押出機の中で非相溶の樹脂を分散させて使用することもできる。非相溶の樹脂としては、白色フィルムを構成する熱可塑性樹脂がポリエステルの場合、ポリプロピレン、ポリメチルペンテンや環状ポリオレフィンなどのオレフィン樹脂やポリスチレン樹脂などが挙げられる。 Examples of incompatible particles include inorganic particles made of titanium oxide, barium sulfate, silicon dioxide, calcium carbonate, and the like, and organic particles such as acrylic particles, nylon particles, polystyrene particles, and silicone particles. Further, an incompatible resin can be used for the thermoplastic resin constituting the white film, and the incompatible resin can be dispersed in an extruder. Examples of incompatible resins include olefin resins such as polypropylene, polymethylpentene, and cyclic polyolefin, and polystyrene resins when the thermoplastic resin constituting the white film is polyester.
 白色フィルムは単層フィルムであっても積層フィルムであっても良い。 The white film may be a single layer film or a laminated film.
 白色フィルムの厚みは、使用する用途は要求する特性により適宜選択すればよく特に限定されるものではない。液晶TV用においてはフィルムの剛性の観点から250μm以上600μm以下が好ましく用いられる。また、液晶モニター用途においては188μm以上300μm以下が好ましく用いられる。 The thickness of the white film is not particularly limited as long as the application to be used is appropriately selected depending on the required properties. For liquid crystal TVs, a thickness of 250 μm or more and 600 μm or less is preferably used from the viewpoint of film rigidity. Moreover, in a liquid crystal monitor use, 188 micrometers or more and 300 micrometers or less are used preferably.
 本願の積層フィルムの粒子(a)および粒子(b)を含む塗布層を設ける面は、上記白色フィルムの導光板に接する方の面であることが好ましい。 It is preferable that the surface on which the coating layer containing the particles (a) and particles (b) of the laminated film of the present application is provided is the surface in contact with the light guide plate of the white film.
 (2.2)透明フィルムの構成
 本発明の積層フィルムを構成する透明フィルムは全光線透過率60%以上のフィルムをいう。液晶ディスプレイ用バックライトにおいて拡散シートとして使用する場合には全光線透過率が70%以上が好ましく、より好ましくは90%以上である。このため、内部に非相溶の粒子を含有する内部拡散フィルムや基材フィルム表面にビーズを含む拡散層を設けた拡散フィルムが好ましく使用される。表面に拡散層を設けた拡散フィルムとしては特開2007-86730号公報に開示されている拡散フィルムが挙げられる。
(2.2) Structure of transparent film The transparent film constituting the laminated film of the present invention refers to a film having a total light transmittance of 60% or more. When used as a diffusion sheet in a backlight for liquid crystal display, the total light transmittance is preferably 70% or more, more preferably 90% or more. For this reason, the internal diffusion film which contains an incompatible particle | grain inside, and the diffusion film which provided the diffusion layer containing a bead on the base film surface are used preferably. Examples of the diffusion film having a diffusion layer on the surface include diffusion films disclosed in JP-A-2007-86730.
 透明フィルムを構成する可塑性樹脂としては例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル、ポリプロピレンや環状ポリオレフィンなどのポリオレフィン、ポリスチレン、アクリル樹脂などを挙げることができる。成形性や生産性の観点からポリエステルが好ましく使用される。 Examples of the plastic resin constituting the transparent film include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polypropylene and cyclic polyolefin, polystyrene, and acrylic resins. Polyester is preferably used from the viewpoint of moldability and productivity.
 透明フィルムの厚みは、使用する用途は要求する特性により適宜選択すればよく特に限定されるものではない。液晶TV用においてはフィルムの剛性の観点から50μm以上150μm以下が好ましく用いられる。また、液晶モニター用途においては30μm以上100μm以下が好ましく用いられる。 The thickness of the transparent film is not particularly limited as long as the application to be used is appropriately selected depending on the required properties. For liquid crystal TVs, from 50 μm to 150 μm is preferably used from the viewpoint of film rigidity. Moreover, in the liquid crystal monitor use, 30 to 100 μm is preferably used.
 本願の積層フィルムの粒子(a)および粒子(b)を含む塗布層を設ける面は、上記透明フィルムの導光板に接する方の面であることが好ましい。透明フィルムが拡散フィルムの場合は拡散層を設けられた面と異なる面であることが好ましく、透明フィルムがプリズムシートの場合はプリズム面と異なる面であることが好ましい。 The surface on which the coating layer containing particles (a) and particles (b) of the laminated film of the present application is provided is preferably the surface in contact with the light guide plate of the transparent film. When the transparent film is a diffusion film, the surface is preferably different from the surface provided with the diffusion layer. When the transparent film is a prism sheet, the surface is preferably different from the prism surface.
 (3)製造方法
 本発明の第二の態様である、白色フィルムの少なくとも一方の表面に塗布層を形成する場合、例えば、ポリエステル樹脂と非相溶性成分を含む混合物を、必要に応じて十分真空乾燥を行い、押出機(主押出機)を有する製膜装置の加熱された押出機に供給する。非相溶性成分の添加は、事前に均一に溶融混練して配合させて作製されたマスターチップを用いても、もしくは直接混練押出機に供給するなどしてもよい。事前に均一にポリエステル樹脂と非相溶成分を含む混合物を溶融混練したマスターチップを用いるほうが、非相溶成分の分散が促進されるので好ましい。
(3) Manufacturing method When forming an application layer on at least one surface of the white film, which is the second aspect of the present invention, for example, a mixture containing a polyester resin and an incompatible component is sufficiently vacuumed as necessary. It dries and supplies to the heated extruder of the film forming apparatus which has an extruder (main extruder). The incompatible component may be added using a master chip prepared by melt-kneading and mixing uniformly in advance, or may be directly supplied to a kneading extruder. It is preferable to use a master chip obtained by melt-kneading a mixture containing a polyester resin and an incompatible component uniformly in advance because dispersion of the incompatible component is promoted.
 また、溶融押出に際してはメッシュ40μm以下のフィルターにて濾過した後に、Tダイ口金内に導入し押出成形により溶融シートを得ることが好ましい。この溶融シートを表面温度10℃以上60℃以下に冷却されたドラム上で静電気により密着冷却固化し、未延伸フィルムを作製する。 In addition, it is preferable to melt-extrude, after filtering through a filter having a mesh of 40 μm or less, to introduce into a T-die die and obtain a molten sheet by extrusion molding. The molten sheet is closely cooled and solidified by static electricity on a drum cooled to a surface temperature of 10 ° C. or more and 60 ° C. or less to produce an unstretched film.
 この未延伸フィルムを後述するインラインコーティング法に従い、延伸および熱処理を行うことで表面に塗布層を有する積層フィルムを得ることができる。 A laminated film having a coating layer on the surface can be obtained by stretching and heat-treating this unstretched film according to an in-line coating method described later.
 また、本発明の第三の態様である透明フィルムの少なくとも一方の表面に塗布層を形成する場合、例えば、ポリエステル樹脂を必要に応じて十分真空乾燥を行い、押出機(主押出機)を有する製膜装置の加熱された押出機に供給する。 Moreover, when forming a coating layer in the at least one surface of the transparent film which is the 3rd aspect of this invention, for example, a polyester resin is fully vacuum-dried as needed, and has an extruder (main extruder). Feed to heated extruder of film forming apparatus.
 また、溶融押出に際してはメッシュ40μm以下のフィルターにて濾過した後に、Tダイ口金内に導入し押出成形により溶融シートを得ることが好ましい。この溶融シートを表面温度10℃以上60℃以下に冷却されたドラム上で静電気により密着冷却固化し、未延伸フィルムを作製する。 In addition, it is preferable to melt-extrude, after filtering through a filter having a mesh of 40 μm or less, to introduce into a T-die die and obtain a molten sheet by extrusion molding. The molten sheet is closely cooled and solidified by static electricity on a drum cooled to a surface temperature of 10 ° C. or more and 60 ° C. or less to produce an unstretched film.
 この未延伸フィルムを後述するインラインコーティング法に従い、延伸および熱処理を行うことで表面に塗布層を有する積層フィルムを得ることができる。 A laminated film having a coating layer on the surface can be obtained by stretching and heat-treating this unstretched film according to an in-line coating method described later.
 得られた積層フィルムの一方の表面に光拡散層を設ける場合は、多数の有機ポリマー微粒子をバインダーで分散固定して形成することが好ましい。前記有機ポリマー微粒子としては、架橋タイプのアクリル樹脂及びメタクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、シリコーン樹脂、メラミン樹脂等の有機ポリマーから作られた粒子が好ましく、特に架橋タイプのアクリル樹脂又はメタクリル樹脂(PMMA樹脂)が好ましい。前記有機ポリマー微粒子の質量平均粒径は1~100μmが好ましく、1~25μmがより好ましい。前記光拡散層のバインダーとしては、有機ポリマーバインダーが好ましく、該有機ポリマーバインダーとしては、例えば、アクリル酸エステル及びメタクリル酸エステルの少なくともいずれかをモノマーの一成分として含む、単独重合体又は共重合体が挙げられ、(メタ)アクリル樹脂が特に好ましい。有機ポリマーバインダーと有機ポリマー微粒子とを適当な溶剤中に添加混合して調製した塗布液を、上記積層フィルム上に塗布し、乾燥することによって形成することが好ましい。 In the case where a light diffusion layer is provided on one surface of the obtained laminated film, it is preferably formed by dispersing and fixing a large number of organic polymer fine particles with a binder. The organic polymer fine particles are preferably particles made from an organic polymer such as a cross-linked acrylic resin and methacrylic resin, polyethylene, polypropylene, polystyrene, silicone resin, melamine resin, etc., and in particular, a cross-linked acrylic resin or methacrylic resin (PMMA). Resin). The mass average particle diameter of the organic polymer fine particles is preferably 1 to 100 μm, and more preferably 1 to 25 μm. As the binder of the light diffusion layer, an organic polymer binder is preferable, and as the organic polymer binder, for example, a homopolymer or a copolymer containing at least one of acrylic acid ester and methacrylic acid ester as one component of a monomer. (Meth) acrylic resin is particularly preferable. It is preferable to form the coating liquid prepared by adding and mixing the organic polymer binder and the organic polymer fine particles in a suitable solvent, and applying and drying on the laminated film.
 前記有機ポリマー微粒子の含有量は、前記バインダー100質量部に対し100~500質量部が好ましく、200~400質量部がより好ましい。 The content of the organic polymer fine particles is preferably 100 to 500 parts by mass, more preferably 200 to 400 parts by mass with respect to 100 parts by mass of the binder.
 溶媒は塗布後に乾燥しやすい観点から、沸点150℃以下の有機溶媒が好ましく、シクロヘキサノン、1,4-ジオキサン、エチレングリコールモノメチルエーテルアセテートが特に好ましい。上記列挙した有機溶媒に混合してアルコールなどの他の有機溶媒を混合しても良く、汎用性の観点から、メチルエチルケトンが好ましく用いられる。 The solvent is preferably an organic solvent having a boiling point of 150 ° C. or less from the viewpoint of easy drying after coating, and cyclohexanone, 1,4-dioxane, and ethylene glycol monomethyl ether acetate are particularly preferable. Other organic solvents such as alcohol may be mixed with the organic solvents listed above, and methyl ethyl ketone is preferably used from the viewpoint of versatility.
 前記積層フィルムへの塗布は、スピンコーター、ロールコーター、バーコーター、カーテンコーター等の公知の塗布手段を用いて行うことができる。乾燥工程での温度は、90~130℃が好ましく、100~120℃が好ましい。時間は10秒間~5分間が好ましく、1~2分間がより好ましい。 Application to the laminated film can be performed using a known application means such as a spin coater, a roll coater, a bar coater, or a curtain coater. The temperature in the drying step is preferably 90 to 130 ° C, more preferably 100 to 120 ° C. The time is preferably 10 seconds to 5 minutes, more preferably 1 to 2 minutes.
 本願の第一、第二および第三の態様においては、積層フィルムには、樹脂(A)からなる数平均粒径が4μm以上の粒子(a)を含む塗布層が設けられており、粒子(a)の表面には数平均粒径0.1μm以上1μm以下の粒子(b)が付着している。塗布層を形成する方法としては、二軸延伸後の基材フィルムに塗液を塗布する方法(オフラインコーティング法)のほか、塗液の塗布後にフィルムを延伸して熱処理する方法(インラインコーティング法)がある。塗布層と基材フィルムとの密着性および省コストの観点からは、インラインコーティング法が好ましい。インラインコーティング法としては、未延伸フィルム表面に塗液を塗布した後に二軸方向に延伸する方法、または、一軸延伸フィルム表面に塗液を塗布した後に先の一軸延伸方向と交差する方向(例えば一軸延伸方向と直交する方向)にさらに延伸する方法などが挙げられるが、後者が好ましい。 In the first, second and third embodiments of the present application, the laminated film is provided with a coating layer containing particles (a) having a number average particle diameter of 4 μm or more made of resin (A). Particles (b) having a number average particle diameter of 0.1 μm or more and 1 μm or less are attached to the surface of a). As a method for forming the coating layer, in addition to the method of applying the coating liquid to the base film after biaxial stretching (offline coating method), the method of stretching and heat-treating the film after applying the coating liquid (inline coating method) There is. From the viewpoint of adhesion between the coating layer and the base film and cost saving, an in-line coating method is preferable. As the in-line coating method, a method in which a coating liquid is applied to the surface of an unstretched film and then stretched in a biaxial direction, or a direction (for example, uniaxial) that intersects the previous uniaxial stretching direction after the coating liquid is applied to a uniaxially stretched film surface Although the method of extending | stretching further in the direction orthogonal to the extending | stretching direction etc. is mentioned, the latter is preferable.
 後者の、一軸延伸フィルム表面に塗布剤を塗布した後に先の一軸延伸方向と交差する方向にさらに延伸する方法は、具体的には次のように行うのが好ましい。まず、押出装置に熱可塑性樹脂原料を供給し、熱可塑性樹脂の融点以上の温度で溶融押出を行ってスリット状のダイから回転冷却ドラム上に溶融シートとして押し出し、回転冷却ドラム表面上でガラス転移温度以下の温度になるように急冷固化し、非晶状態の未延伸シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法が好ましく採用される。 The latter method, in which the coating agent is applied to the surface of the uniaxially stretched film and then further stretched in the direction crossing the previous uniaxially stretched direction, is preferably carried out as follows. First, a thermoplastic resin raw material is supplied to an extrusion device, melt extrusion is performed at a temperature equal to or higher than the melting point of the thermoplastic resin, and extruded as a molten sheet from a slit-shaped die onto a rotating cooling drum, and a glass transition is performed on the surface of the rotating cooling drum. Rapidly solidify to a temperature below the temperature to obtain an unstretched sheet in an amorphous state. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method is preferably employed.
 次いで、上記の未延伸シートを長手方向に延伸する。延伸温度は通常(基材フィルムを構成する熱可塑性樹脂のガラス転移温度-5℃)~(基材フィルムを構成する熱可塑性樹脂のガラス転移温度+25℃)の範囲、延伸倍率は通常3~6倍の範囲である。延伸は一段階または二段階以上で行うことができる。次いで、フィルムの少なくとも一方の表面に塗液を塗布する。塗液の塗布方法としては、例えば、メイヤーバーコーター、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクターコーターまたはこれら以外の塗布装置を使用することができる。塗布層は、フィルムの片面だけに形成してもよいし、両面に形成してもよい。片面にのみ形成した場合、その反対面には必要に応じて上記の塗布層と異なる塗布層を形成して他の特性を付与することもできる。なお、塗液のフィルムへの塗布性や接着性を改良するため、塗布前にフィルムに化学処理や放電処理を施してもよい。 Next, the unstretched sheet is stretched in the longitudinal direction. The stretching temperature is usually in the range of (the glass transition temperature of the thermoplastic resin constituting the base film −5 ° C.) to (the glass transition temperature of the thermoplastic resin constituting the base film + 25 ° C.), and the stretching ratio is usually 3 to 6 Double the range. Stretching can be performed in one step or in two or more steps. Next, a coating solution is applied to at least one surface of the film. As a coating method of the coating liquid, for example, a Mayer bar coater, a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, or any other coating apparatus can be used. The coating layer may be formed on only one side of the film or on both sides. When formed only on one side, other characteristics can be imparted by forming a coating layer different from the above-mentioned coating layer on the opposite surface as necessary. In addition, in order to improve the applicability | paintability and adhesiveness to the film of a coating liquid, you may give a chemical process and an electrical discharge process to a film before application | coating.
 塗布したフィルムはテンターの予熱ゾーンにおいて90~150℃の温度範囲に予熱し適度な乾燥を行った後に、幅方向(長手方向と直交する方向)に延伸する。延伸温度は通常(基材フィルムを構成する熱可塑性樹脂のガラス転移温度-5℃)~(基材フィルムを構成する熱可塑性樹脂のガラス転移温度+40℃)の範囲であり、延伸倍率は、通常3~6倍、好ましくは3.2~4.5倍の範囲である。なお、上記の予熱に先立ち一旦ガラス転移点以下にフィルムを冷却してもよい。 The coated film is preheated to a temperature range of 90 to 150 ° C. in the preheating zone of the tenter and appropriately dried, and then stretched in the width direction (direction perpendicular to the longitudinal direction). The stretching temperature is usually in the range of (the glass transition temperature of the thermoplastic resin constituting the base film −5 ° C.) to (the glass transition temperature of the thermoplastic resin constituting the base film + 40 ° C.), and the stretching ratio is usually The range is 3 to 6 times, preferably 3.2 to 4.5 times. Prior to the preheating, the film may be once cooled below the glass transition point.
 次いで、20%以内の伸長、収縮または定長下で1秒~5分間の熱処理を行う。この際、特に長手方向および/または幅方向の熱収縮率を好適な範囲とするため、熱処理工程内または熱処理後に長手方向および/または幅方向に通常10%以内、好ましくは5%以内の弛緩処理をしてもよい。熱処理温度は、延伸条件によって異なるが、通常180~250℃、好ましくは190~230℃の範囲である。熱処理温度が250℃を超える場合には、フィルムの配向が低下する傾向があり、また、塗布層の一部が熱分解を生ずる場合もある。一方、熱処理温度が180℃未満の場合には、フィルムの熱収縮率が大きくなり過ぎる場合がある。 Next, heat treatment is performed for 1 second to 5 minutes under 20% elongation, contraction or constant length. At this time, in order to make the heat shrinkage rate in the longitudinal direction and / or the width direction particularly suitable, relaxation treatment is usually performed within 10%, preferably within 5% in the longitudinal direction and / or the width direction during or after the heat treatment step. You may do. The heat treatment temperature varies depending on the stretching conditions, but is usually in the range of 180 to 250 ° C., preferably 190 to 230 ° C. When the heat treatment temperature exceeds 250 ° C., the orientation of the film tends to decrease, and a part of the coating layer may be thermally decomposed. On the other hand, when the heat treatment temperature is lower than 180 ° C., the thermal shrinkage rate of the film may become too large.
 塗布液の調整方法は水にバインダー樹脂、粒子の順に溶解又は分散させる方法や、バインダー樹脂と粒子を予め別々に水に溶解および分散させたものを任意に混合する方法を挙げることができる。塗布液は、バインダー樹脂、粒子及び水を含み、塗布液に対する水の含有量が50重量%以上に調整することが塗布スジを軽減するために好ましい。  Examples of the method for adjusting the coating liquid include a method in which a binder resin and particles are dissolved or dispersed in order in water, and a method in which a binder resin and particles are separately dissolved and dispersed in water in advance. The coating solution contains a binder resin, particles, and water, and it is preferable to adjust the water content to 50% by weight or more with respect to the coating solution in order to reduce coating stripes. *
 (4)測定・評価方法
 (4.1)表面粗さ(SRz)の測定方法
 JIS-B-0601(2001)に準じて測定を実施した。測定器としては、小坂研究所製、表面粗さ計(型番:SE3500)を用いた。測定条件は下記の通りである。
・送り速度:0.1mm/s
・Xピッチ:1.00μm
・Yピッチ:5.0μm
・Z測定倍率:20000
・低域カット:0.25mm。
(4) Measurement / Evaluation Method (4.1) Measurement Method of Surface Roughness (SRz) Measurement was performed according to JIS-B-0601 (2001). As the measuring instrument, a surface roughness meter (model number: SE3500) manufactured by Kosaka Laboratory was used. The measurement conditions are as follows.
・ Feeding speed: 0.1mm / s
・ X pitch: 1.00μm
・ Y pitch: 5.0μm
・ Z measurement magnification: 20000
-Low frequency cut: 0.25 mm.
 (4.2)塗布層の厚み(d)の測定方法および有機粒子の塗膜内被覆状態の評価方法
 積層フィルムを断面方向にミクロトームにて70~100nmの厚みの切片を切り出し、四酸化ルテニウムで染色した。染色した切片を透過型電子顕微鏡”TEM2010”(日本電子(株)製)を用いて500~10,000倍に拡大観察して撮影した断面写真より、有機粒子の無い部分の塗布層の厚みを計測して求めた。無作為に選んだ10ヶ所で計測を行い、その平均値を塗布層の厚みとした。
(4.2) Method for measuring thickness (d) of coating layer and method for evaluating coating state of organic particles in coating film A section of 70 to 100 nm in thickness is cut out with a microtome in the cross-sectional direction, and ruthenium tetroxide is used. Stained. From the cross-sectional photograph taken by magnifying the stained section with a transmission electron microscope “TEM2010” (manufactured by JEOL Ltd.) at a magnification of 500 to 10,000 times, the thickness of the coating layer where there is no organic particle is shown. Measured and determined. Measurement was performed at 10 randomly selected locations, and the average value was taken as the thickness of the coating layer.
 また、得られた断面写真により有機粒子の塗膜内被覆状態を確認し、以下のように判定した。
粒子表面積の全部を塗膜が被覆している場合:A
粒子表面積の塗膜による被覆が8割以上10割未満の場合:B
粒子表面積の塗膜による被覆が4割以上8割未満の場合:C
粒子表面積の塗膜による被覆が4割未満の場合:D。
Moreover, the coating state in the coating film of an organic particle was confirmed with the obtained cross-sectional photograph, and it determined as follows.
When the coating film covers the entire surface area of the particles: A
When the particle surface area is covered by 80% or more and less than 10%: B
When the particle surface area is more than 40% and less than 80%: C
When the coating of the particle surface area is less than 40%: D.
 (4.3)塗布層における粒子の数平均粒径R、粒子径分布指数の測定方法
 走査型電子顕微鏡(日本電子社製走査型電子顕微鏡JSM-6301NF)にて、積層フィルムの表面に設けられた塗布層の粒子を観察し、粒径を測定した。なお、粒子が真円でない場合には、長径をその粒径として測定した。また、数平均粒径R(Dn)および体積平均粒径(Dv)は、無作為に選んだ100個の粒子について測定した上記粒径の値から求めた。
(4.3) Measuring method of number average particle size R of particle in coating layer, particle size distribution index It was provided on the surface of the laminated film with a scanning electron microscope (JEOL Ltd. scanning electron microscope JSM-6301NF). The particles in the coated layer were observed and the particle size was measured. When the particle was not a perfect circle, the major axis was measured as its particle size. Further, the number average particle diameter R (Dn) and the volume average particle diameter (Dv) were determined from the above particle diameter values measured for 100 randomly selected particles.
 粒子径分布指数(PDI)は、下記数式(1)に従い、算出した。 The particle size distribution index (PDI) was calculated according to the following formula (1).
 PDI=Dv/Dn ・・・(1)
 尚、Dn:数平均粒径、Dv:体積平均粒径、PDI:粒子径分布指数とする。
PDI = Dv / Dn (1)
Dn: number average particle diameter, Dv: volume average particle diameter, PDI: particle diameter distribution index.
 (4.4)粒子(a)に付着している粒子(b)の個数
 走査型電子顕微鏡(日本電子社製走査型電子顕微鏡JSM-6301NF)にて、積層フィルムの表面に設けられた塗布層の粒子を観察し、粒子(a)に付着している粒子(b)の個数を数えた。粒子(a)20個につき付着している粒子(b)の個数を数え、粒子(a)の1個あたりの平均付着数を粒子(a)に付着した粒子(b)の個数とした。
(4.4) Number of particles (b) adhering to particles (a) Coating layer provided on the surface of the laminated film using a scanning electron microscope (JEOL scanning electron microscope JSM-6301NF) The number of particles (b) adhering to the particles (a) was counted. The number of particles (b) adhering to 20 particles (a) was counted, and the average number of particles per particle (a) was taken as the number of particles (b) adhering to particles (a).
 (4.5)ディスプレイ白点の評価方法
 AUO社製LEDディスプレイ(T240HW01)のバックライトユニットに積層フィルムを組み込み画面が水平になるように設置し点灯する。所定の重さの重りで画面中央を押さえたときの状態について、以下の基準で評価を行った。このとき白色フィルムを基材とした積層フィルムの場合は反射板として、透明フィルムを基材とした積層フィルムの場合は導光板と光学シートの間に組み込み測定した。
(4.5) Display White Point Evaluation Method A laminated film is installed in the backlight unit of an LED display (T240HW01) manufactured by AUO and installed so that the screen is horizontal. The state when the center of the screen was pressed with a predetermined weight was evaluated according to the following criteria. At this time, in the case of a laminated film having a white film as a base material, the measurement was performed as a reflector, and in the case of a laminated film having a transparent film as a base material, measurement was performed between the light guide plate and the optical sheet.
 重りなしで白点が発生する場合:F
 0.5kgの重りで白点が発生する場合:E
 1.0kgの重りで白点が発生する場合:D
 1.5kgの重りで白点が発生する場合:C
 2.0kgの重りで白点が発生する場合:B
 2.0kgの重りで白点が発生しない場合:A
 なお、用いたバックライトは、サイドライト型バックライトであり、導光板および光源(LED)を有し、光源が導光板のエッジ部に位置するものである。この白点評価方法においては、白点が発生しない場合と白点が発生する場合とを明確に区別できる。
When white spots occur without weight: F
When white spots occur with a weight of 0.5 kg: E
When white spots occur with a weight of 1.0 kg: D
When white spots occur with a weight of 1.5 kg: C
When white spots occur with a weight of 2.0 kg: B
When a white spot does not occur with a weight of 2.0 kg: A
In addition, the used backlight is a side light type backlight, has a light guide plate and a light source (LED), and a light source is located in the edge part of a light guide plate. In this white point evaluation method, it is possible to clearly distinguish between a case where no white point occurs and a case where a white point occurs.
 (4.6)有機粒子の粒子密度の測定方法
積層フィルムの表面を走査型電子顕微鏡(日本電子社製走査型電子顕微鏡JSM-6301NF)にて観察し、250μm×400μmの10視野において粒子の個数を数えその数Nを有機粒子の粒子密度(個/mm)とした。なお、そのとき粒子(a)に付着している粒子(b)は個数はカウントしない。
(4.6) Measuring method of particle density of organic particles The surface of the laminated film was observed with a scanning electron microscope (JEM-6301NF, manufactured by JEOL Ltd.), and the number of particles in 10 fields of 250 μm × 400 μm. And the number N was defined as the particle density of the organic particles (pieces / mm 2 ). At this time, the number of particles (b) adhering to the particles (a) is not counted.
 (4.7)導光板削れおよび反射フィルム上の粒子脱落の評価   
 40インチ液晶テレビ(Samsung社製、PAVV UN40B7000WF)を分解して得られた導光板上に積層フィルムの凸部が接触されるように積層させた後、200gf/cm2(0.0196MPa)、100gf/cm2(0.0098MPa)及び50gf/cm2(0.0049MPa)の荷重下で反射シート試料を1m/minの線速度で引き上げ、前記導光板の表面上に発生したスクラッチの程度を肉眼で確認して下記のように評価した。同サンプルについて各々の荷重にて3回実施し、目視判定した。   
A級:いずれの荷重下においても傷が見られない。   
B級:200gf/cm2の荷重下では傷が見られるが、100gf/cm2の荷重下、50gf/cm2の荷重下においては傷が見られない。   
C級:200gf/cm2、100gf/cm2の荷重下では傷が見られるが、50gf/cm2の荷重下においては、傷は見られない。   
D級:50gf/cm2の荷重下において傷が見られる。  
また、反射フィルムにおいても有機粒子の脱落を確認した。
A級:いずれの荷重下においても粒子脱落が見られない。   
B級:200gf/cm2の荷重下では粒子脱落が見られるが、100gf/cm2の荷重下、50gf/cm2の荷重下においては粒子脱落が見られない。   
C級:200gf/cm2、100gf/cm2の荷重下では粒子脱落が見られるが、50gf/cm2の荷重下においては粒子脱落が見られない。   
D級:50gf/cm2の荷重下において粒子脱落が見られる。
(4.7) Evaluation of shaving of light guide plate and dropout of particles on reflection film
After laminating a 40-inch liquid crystal television (manufactured by Samsung, PAVV UN40B7000WF) so that the convex portions of the laminated film are in contact with each other, 200 gf / cm 2 (0.0196 MPa), 100 gf / cm 2 the reflective sheet sample under a load of (0.0098MPa) and 50gf / cm 2 (0.0049MPa) pulling at a linear velocity of 1 m / min, the degree of scratches occurring on the surface of the light guide plate with the naked eye It confirmed and evaluated as follows. About the same sample, it implemented by each load 3 times and evaluated visually.
Class A: No scratches are seen under any load.
Class B: 200 gf / cm 2 of but scratches is observed under load, under a load of 100 gf / cm 2, not seen wounds under a load of 50 gf / cm 2.
Class C: 200gf / cm 2, but scratches observed under a load of 100 gf / cm 2, Under a load of 50 gf / cm 2, scratches can not be seen.
Class D: Scratches are observed under a load of 50 gf / cm 2 .
In addition, it was confirmed that the organic particles were removed from the reflective film.
Class A: No dropout of particles is observed under any load.
Class B: 200 gf / cm under 2 loads but particle shedding observed, under a load of 100 gf / cm 2, not seen particles falling in under a load of 50 gf / cm 2.
Class C: 200gf / cm 2, but the particle shedding observed under a load of 100 gf / cm 2, not seen particles falling in under a load of 50 gf / cm 2.
Class D: Dropping of particles is observed under a load of 50 gf / cm 2 .
 (4.8)積層フィルムの反射率
 分光光度計U-3410((株)日立製作所)に、φ60積分球130-0632((株)日立製作所)(内面が硫酸バリウム製)および10°傾斜スペーサーを取りつけた状態で560nmの光反射率を求めた。なお、光反射率は積層フィルムの塗布面側から計測して求めた値を当該白色フィルムの反射率とした。標準白色板には(株)日立計測器サービス製の部品番号210-0740(酸化アルミニウム)を用いた。5サンプル測定し、その平均を反射率とした。
(4.8) Reflectivity of laminated film A spectrophotometer U-3410 (Hitachi, Ltd.), φ60 integrating sphere 130-0632 (Hitachi, Ltd.) (inner surface made of barium sulfate) and 10 ° tilt spacer The light reflectivity of 560 nm was determined in a state of mounting. In addition, the value which measured and calculated | required the light reflectance from the application surface side of a laminated film was made into the reflectance of the said white film. Part No. 210-0740 (aluminum oxide) manufactured by Hitachi Instrument Service Co., Ltd. was used as the standard white plate. Five samples were measured and the average was taken as the reflectance.
 (4.9)積層フィルムの全光線透過率
 JIS K7361-1997に従い、ヘイズメーター(NDH7000、日本電色工業株式会社製)を使用して測定した。そのとき、塗布面を光源側に設置し測定した。5サンプル測定し、その平均を全光線透過率とした。
(4.9) Total light transmittance of laminated film It was measured using a haze meter (NDH7000, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K7361-1997. At that time, the coated surface was placed on the light source side and measured. Five samples were measured, and the average was taken as the total light transmittance.
 以下、実施例等によって発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
[原料]
 (1)基材フィルムとしての白色フィルム、透明フィルム用樹脂
・PET(ポリエチレンテレフタレート)樹脂
 酸成分としてテレフタル酸を、グリコール成分としてエチレングリコールを用い、三酸化アンチモン(重合触媒)を得られるポリエステルペレットに対してアンチモン原子換算で300ppmとなるように添加し、重縮合反応を行い、極限粘度0.63dl/gのポリエチレンテレフタレートペレット(PET)樹脂を得た。得られたPET樹脂のガラス転移温度は80℃であった。
・環状オレフィン共重合体樹脂
 非相溶性成分として、ガラス転移温度が178℃、MVR(260℃/2.16kg)が4.5ml/10minである環状オレフィン樹脂「TOPAS」(登録商標、ポリプラスチックス社製)を用いた。
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further more concretely, this invention is not limited to this.
[material]
(1) White film as a base film, resin for transparent film / PET (polyethylene terephthalate) resin Polyester pellets using terephthalic acid as acid component and ethylene glycol as glycol component to obtain antimony trioxide (polymerization catalyst) On the other hand, it was added so as to be 300 ppm in terms of antimony atoms, and a polycondensation reaction was performed to obtain a polyethylene terephthalate pellet (PET) resin having an intrinsic viscosity of 0.63 dl / g. The glass transition temperature of the obtained PET resin was 80 ° C.
Cyclic olefin copolymer resin As an incompatible component, a cyclic olefin resin “TOPAS” (registered trademark, polyplastics) having a glass transition temperature of 178 ° C. and an MVR (260 ° C./2.16 kg) of 4.5 ml / 10 min. Used).
 (2)塗布層を形成するための塗液
・ポリエステル系バインダー樹脂(材料A)
 ペスレジン A-215E(高松油脂(株)製、30重量%溶液)を精製水で希釈し、25重量%溶液を調製した。
・界面活性剤(材料B)
 「ノベック」(登録商標)FC-4430(菱江化学(株)製、5重量%溶液)を用いた。
・架橋剤(材料C)
 「エポクロス」WS-500(日本触媒社製)
・有機粒子(材料D-1)
 総研化学社製の粒径0.05μmの真球ポリスチレン粒子の固形分濃度1%の水分散体「DYNOSPHERES」を用いた。
・有機粒子(材料D-2)
 総研化学社製の粒径0.3μmの真球ポリスチレン粒子の固形分濃度1%の水分散体「DYNOSPHERES」を用いた。
・有機粒子(材料D-3)
 総研化学社製の粒径0.6μmの真球ポリスチレン粒子の固形分濃度1%の水分散体「DYNOSPHERES」を用いた。
・有機粒子(材料D-4)
 総研化学社製の粒径0.9μmの真球ポリスチレン粒子の固形分濃度1%の水分散体「DYNOSPHERES」を用いた。
・有機粒子(材料D-5)
 総研化学社製の粒径1.2μmの真球ポリスチレン粒子の固形分濃度1%の水分散体「DYNOSPHERES」を用いた。
・有機粒子(材料D-6)
 総研化学社製の粒径0.2μmの真球ポリスチレン粒子の固形分濃度1%の水分散体「DYNOSPHERES」を用いた。
・無機粒子(材料E)
 数平均粒径0.3μmのシリカ粒子を蒸留水に混合した10重量%溶液の水分散体を用いた。
・有機粒子(材料F-1)
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)製、ハイパーグラスターTEM-V1000N)の中に、ポリエーテルエステル(“ハイトレル”(登録商標)8238、デュポン株式会社製、重量平均分子量27,000、曲げ弾性率1100MPa)33.25g、N-メチル-2-ピロリドン299.25g、ポリビニルアルコール(和光純薬工業株式会社製、PVA-1500、重量平均分子量29,000:メタノールでの洗浄により、酢酸ナトリウム含量を0.05質量%に低減したもの)17.5gを加え、窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで4時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液をろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃で10時間真空乾燥させ、白色固体28.3gを得た。得られた粉体を走査型電子顕微鏡にて観察したところ真球状の微粒子であり、数平均粒径12.0μm、体積平均粒径14.7μm、粒子径分布指数1.23のポリエーテルエステル微粒子であった。このポリエーテルエステルの融点は、224℃であり、このポリエーテルエステルの降温結晶化温度は、161℃であった。得られた粒子を精製水に混合し、40質量%の水分散液を作成しこれを材料F-1とした。
・有機粒子(材料F-2)
 ポリエーテルエステルの量を調整した以外は有機粒子(材料F)と同様の条件で、数平均粒子径3.0μmのポリエーテルエステル微粒子を得た。得られた粒子を精製水に混合し、40質量%の水分散液を作成した。
・有機粒子(材料F-3)
 ポリエーテルエステルの量を調整した以外は有機粒子(材料F)と同様の条件で、数平均粒子径5.0μmのポリエーテルエステル微粒子を得た。得られた粒子を精製水に混合し、40質量%の水分散液を作成した。
・有機粒子(材料F-4)
 ポリエーテルエステルの量を調整した以外は有機粒子(材料F)と同様の条件で、数平均粒子径20.0μmのポリエーテルエステル微粒子を得た。得られた粒子を精製水に混合し、40質量%の水分散液を作成した。
(2) Coating liquid for forming the coating layer / Polyester binder resin (Material A)
Pesresin A-215E (Takamatsu Yushi Co., Ltd., 30 wt% solution) was diluted with purified water to prepare a 25 wt% solution.
・ Surfactant (Material B)
“Novec” (registered trademark) FC-4430 (manufactured by Hishoe Chemical Co., Ltd., 5 wt% solution) was used.
・ Crosslinking agent (Material C)
“Epocross” WS-500 (manufactured by Nippon Shokubai Co., Ltd.)
・ Organic particles (Material D-1)
An aqueous dispersion “DYNOSPHERES” made of Souken Chemical Co., Ltd. with a spherical concentration of 0.05 μm and a solid content concentration of 1% was used.
・ Organic particles (Material D-2)
An aqueous dispersion “DYNOSPHERES” having a solid concentration of 1% made of true spherical polystyrene particles having a particle diameter of 0.3 μm manufactured by Soken Chemical Co., Ltd. was used.
・ Organic particles (Material D-3)
An aqueous dispersion “DYNOSPHERES” having a solid content concentration of 1% of true spherical polystyrene particles having a particle diameter of 0.6 μm manufactured by Soken Chemical Co., Ltd. was used.
・ Organic particles (Material D-4)
An aqueous dispersion “DYNOSPHERES” made of Souken Chemical Co., Ltd. with a spherical particle size of 0.9 μm and a solid content concentration of 1% was used.
・ Organic particles (Material D-5)
An aqueous dispersion “DYNOSPHERES” having a solid concentration of 1% made of true spherical polystyrene particles having a particle diameter of 1.2 μm manufactured by Soken Chemical Co., Ltd. was used.
・ Organic particles (Material D-6)
An aqueous dispersion “DYNOSPHERES” having a solid content concentration of 1% of true spherical polystyrene particles having a particle diameter of 0.2 μm manufactured by Soken Chemical Co., Ltd. was used.
・ Inorganic particles (Material E)
A 10% by weight aqueous dispersion of silica particles having a number average particle size of 0.3 μm mixed with distilled water was used.
・ Organic particles (Material F-1)
Polyetherester (“Hytrel” (registered trademark) 8238, DuPont, weight average molecular weight 27,000, bent) in a 1000 ml pressure glass autoclave (Hyperglaster TEM-V1000N, manufactured by Pressure Glass Industry Co., Ltd.) Elasticity 1100 MPa) 33.25 g, N-methyl-2-pyrrolidone 299.25 g, polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., PVA-1500, weight average molecular weight 29,000: sodium acetate content by washing with methanol) 17.5 g) was added and nitrogen substitution was performed, followed by heating to 180 ° C. and stirring for 4 hours until the polymer was dissolved. Thereafter, 350 g of ion-exchanged water as a poor solvent was dropped at a speed of 2.92 g / min via a liquid feed pump. After the entire amount of water has been added, the temperature is lowered while stirring, and the resulting suspension is filtered, washed with 700 g of ion exchange water and reslurried, and the filtered product is vacuum dried at 80 ° C. for 10 hours. As a result, 28.3 g of a white solid was obtained. When the obtained powder was observed with a scanning electron microscope, it was a spherical fine particle, and polyether ester fine particles having a number average particle size of 12.0 μm, a volume average particle size of 14.7 μm, and a particle size distribution index of 1.23. Met. The melting point of this polyether ester was 224 ° C., and the temperature-falling crystallization temperature of this polyether ester was 161 ° C. The obtained particles were mixed with purified water to prepare a 40% by mass aqueous dispersion, which was designated as material F-1.
・ Organic particles (Material F-2)
Except for adjusting the amount of the polyether ester, polyether ester fine particles having a number average particle diameter of 3.0 μm were obtained under the same conditions as the organic particles (material F). The obtained particles were mixed with purified water to prepare a 40% by mass aqueous dispersion.
・ Organic particles (Material F-3)
Except for adjusting the amount of the polyether ester, polyether ester fine particles having a number average particle diameter of 5.0 μm were obtained under the same conditions as the organic particles (material F). The obtained particles were mixed with purified water to prepare a 40% by mass aqueous dispersion.
・ Organic particles (Material F-4)
Except for adjusting the amount of the polyether ester, polyether ester fine particles having a number average particle diameter of 20.0 μm were obtained under the same conditions as for the organic particles (material F). The obtained particles were mixed with purified water to prepare a 40% by mass aqueous dispersion.
 〔実施例1〕
 (1)塗液の調製
 下記材料を、1)から5)の順番にて塗液の原料を調合し、万能攪拌機にて10分間攪拌して塗液を調製した。調整した塗布液を0.1規定の塩酸を用い、pH6.5に調整した。
1)精製水:33.3重量部
2)材料A:17.1重量部
3)材料B: 0.6重量部
4)材料C: 4.0重量部
5)材料D-2:30.0重量部
6)材料F:15.0重量部
 (2)製膜
 PET80重量部と環状オレフィン共重合体樹脂20重量部との混合物を180℃の温度で3時間真空乾燥した後に押出機Aに供給し、280℃の温度で溶融押出した。また、PET100重量部を180℃の温度で3時間真空乾燥した後に押出機Bに供給し280℃の温度で溶融押出した。それぞれの押出機A、Bからの樹脂を厚み方向にB/A/Bの順に積層するように合流させた後、Tダイ口金に導入した。
[Example 1]
(1) Preparation of coating liquid The raw materials of the coating liquid were prepared in the order of 1) to 5) for the following materials, and stirred for 10 minutes with a universal stirrer to prepare a coating liquid. The adjusted coating solution was adjusted to pH 6.5 using 0.1 N hydrochloric acid.
1) Purified water: 33.3 parts by weight 2) Material A: 17.1 parts by weight 3) Material B: 0.6 parts by weight 4) Material C: 4.0 parts by weight 5) Material D-2: 30.0 Part by weight 6) Material F: 15.0 parts by weight (2) Film formation A mixture of 80 parts by weight of PET and 20 parts by weight of cyclic olefin copolymer resin was vacuum-dried at 180 ° C. for 3 hours and then supplied to Extruder A. And melt extrusion at a temperature of 280 ° C. Further, 100 parts by weight of PET was vacuum-dried at a temperature of 180 ° C. for 3 hours, then supplied to the extruder B and melt-extruded at a temperature of 280 ° C. The resins from the respective extruders A and B were merged so as to be laminated in the thickness direction in the order of B / A / B, and then introduced into the T die die.
 次いで、Tダイ口金内より、シート状に押出して溶融積層シートを形成し、該溶融積層シートを、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて未延伸積層フィルムを得た。このとき、ドラムに接しているフィルム面を裏面、空気に接している面を「おもて」面とした。続いて、該未延伸積層フィルムを80℃の温度に加熱したロール(予熱ロール)群で予熱した後、長手方向にロールの周速差を利用して、3.5倍延伸を行い、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。 Next, a melt-laminated sheet is formed by extrusion into a sheet form from the inside of the T die die, and the melt-laminated sheet is closely cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C. A film was obtained. At this time, the film surface in contact with the drum was defined as the back surface, and the surface in contact with the air was defined as the “front” surface. Subsequently, the unstretched laminated film is preheated with a roll (preheated roll) group heated to a temperature of 80 ° C., and then stretched 3.5 times using the difference in peripheral speed of the roll in the longitudinal direction, and 25 ° C. A uniaxially stretched film was obtained by cooling with a roll group at a temperature of 5 ° C.
 さらに続いて一軸延伸フィルムの「おもて」面に空気中でコロナ放電処理を施し、その処理面に上記塗布層形成塗液をメイヤーバーを用いたバーコート方式にて塗布した。 Subsequently, the “front” surface of the uniaxially stretched film was subjected to corona discharge treatment in the air, and the coating layer forming coating solution was applied to the treated surface by a bar coating method using a Mayer bar.
 上記の塗布層形成塗液が塗布された一軸延伸フィルムの両端をクリップで把持しながらテンター内の100℃の予熱ゾーンに導き乾燥後、引き続き連続的に100℃の加熱ゾーンで長手方向に垂直な方向(横方向)に3.5倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで190℃の熱処理を施し、さらに190℃で6%横方向に弛緩処理を行った後、次いで均一に徐冷後に巻き取って、厚み188μmのフィルム上に、厚み200nmの塗布層が設けられた白色の積層フィルムを得た。B層の膜厚は10μmであった。塗液組成、得られた積層フィルムの物性の評価結果を表1、表2に示す。 The both ends of the uniaxially stretched film coated with the coating layer forming coating solution are guided to a 100 ° C. preheating zone in the tenter while being held by clips and dried, and then continuously continuous in the heating zone at 100 ° C. in the direction perpendicular to the longitudinal direction. The film was stretched 3.5 times in the direction (lateral direction). Subsequently, after performing a heat treatment at 190 ° C. in the heat treatment zone in the tenter and further performing a relaxation treatment in the transverse direction at 190 ° C. by 6%, the film was then uniformly cooled and wound up, and on a film having a thickness of 188 μm, A white laminated film provided with a coating layer having a thickness of 200 nm was obtained. The film thickness of the B layer was 10 μm. Tables 1 and 2 show the evaluation results of the coating liquid composition and the physical properties of the obtained laminated film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1は、本実施例において得られた積層フィルムの塗布層に含まれる有機粒子をSEMで観察した結果を示している。有機粒子(材料F)の表面に有機粒子(材料D)が付着した状態にある。 FIG. 1 shows the result of observing organic particles contained in the coating layer of the laminated film obtained in this example with an SEM. The organic particles (material D) are in a state of adhering to the surface of the organic particles (material F).
 〔実施例2~11〕
 塗布層形成塗液の組成を表1に示した条件とし、塗布層の厚みを表2に示した条件とした以外は、実施例1と同様の条件にて製膜を行い、厚さ188μmの積層の白色フィルムを得た。フィルムの各種特性を表2に示す。いずれも塗布外観よく、また粒子の脱落も少なかった。
[Examples 2 to 11]
Except that the composition of the coating layer-forming coating solution is as shown in Table 1 and the thickness of the coating layer is as shown in Table 2, film formation is performed under the same conditions as in Example 1, and the thickness is 188 μm. A laminated white film was obtained. Various properties of the film are shown in Table 2. In all cases, the coating appearance was good, and there was little dropout of particles.
 〔実施例12〕
 PETを180℃の温度で3時間真空乾燥した後に押出機Aに供給し、280℃の温度で溶融押出した。押出機Aから溶融した樹脂をTダイ口金に導入した。
Example 12
PET was vacuum-dried at a temperature of 180 ° C. for 3 hours, then supplied to the extruder A, and melt-extruded at a temperature of 280 ° C. The molten resin from the extruder A was introduced into the T die die.
 次いで、Tダイ口金内より、シート状に押出して溶融PETシートを形成し、該溶融PETシートを、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて未延伸PETフィルムを得た。このとき、ドラムに接しているフィルム面を裏面、空気に接している面を「おもて」面とした。続いて、該未延伸PETフィルムを80℃の温度に加熱したロール(予熱ロール)群で予熱した後、長手方向にロールの周速差を利用して、3.5倍延伸を行い、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。 Next, a molten PET sheet is formed by extrusion into a sheet from the inside of the T die die, and the molten PET sheet is closely cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C. A film was obtained. At this time, the film surface in contact with the drum was defined as the back surface, and the surface in contact with the air was defined as the “front” surface. Subsequently, the unstretched PET film was preheated with a roll (preheated roll) group heated to a temperature of 80 ° C., and then stretched 3.5 times using the difference in peripheral speed of the roll in the longitudinal direction, and 25 ° C. A uniaxially stretched film was obtained by cooling with a roll group at a temperature of 5 ° C.
 さらに続いて一軸延伸フィルムの「おもて」面に空気中でコロナ放電処理を施し、その処理面に表1に示す塗布層形成塗液を、メイヤーバーを用いたバーコート方式にて塗布した。 Subsequently, the “front” surface of the uniaxially stretched film was subjected to corona discharge treatment in the air, and the coating layer forming coating liquid shown in Table 1 was applied to the treated surface by a bar coating method using a Mayer bar. .
 上記の塗布層形成塗液が塗布された一軸延伸フィルムの両端をクリップで把持しながらテンター内の100℃の予熱ゾーンに導き乾燥後、引き続き連続的に100℃の加熱ゾーンで長手方向に垂直な方向(横方向)に3.5倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで190℃の熱処理を施し、さらに190℃で6%横方向に弛緩処理を行った後、次いで均一に徐冷後に巻き取って、厚み188μmのフィルム上に、厚み200nmの塗布層が設けられた積層フィルムを得た。塗液組成、得られた積層フィルムの物性の評価結果を表1、表2に示す。 The both ends of the uniaxially stretched film coated with the coating layer forming coating solution are guided to a 100 ° C. preheating zone in the tenter while being held by clips and dried, and then continuously continuous in the heating zone at 100 ° C. in the direction perpendicular to the longitudinal direction. The film was stretched 3.5 times in the direction (lateral direction). Subsequently, after performing a heat treatment at 190 ° C. in the heat treatment zone in the tenter and further performing a relaxation treatment in the transverse direction at 190 ° C. by 6%, the film was then uniformly cooled and wound up, and on a film having a thickness of 188 μm, A laminated film provided with a coating layer having a thickness of 200 nm was obtained. Tables 1 and 2 show the evaluation results of the coating liquid composition and the physical properties of the obtained laminated film.
 〔比較例1〕
 塗布層形成塗液の組成を表1に示した条件とし、塗布層の厚みを表2に示した条件とし、pHを調整せず、pH7.9のままとした以外は、実施例1と同様の条件にて製膜を行い、厚さ188μmの積層白色フィルムを得た。粒子(a)に粒子(b)が付着しておらず、スクラッチテストにおいてフィルム上に粒子脱落が生じた。フィルムの各種特性を表2に示す。比較例1のフィルムからは粒子が脱落した。
[Comparative Example 1]
The composition of the coating layer forming coating solution is the same as in Example 1 except that the conditions are as shown in Table 1, the thickness of the coating layer is as shown in Table 2, the pH is not adjusted, and the pH is maintained at 7.9. Film formation was carried out under the conditions described above to obtain a laminated white film having a thickness of 188 μm. The particles (b) did not adhere to the particles (a), and the particles dropped out on the film in the scratch test. Various properties of the film are shown in Table 2. Particles dropped from the film of Comparative Example 1.
 〔比較例2~4〕
 塗布層形成塗液の組成を表1に示した条件とし、塗布層の厚みを表2に示した条件とした以外は、実施例1と同様の条件にて製膜を行い、厚さ188μmの積層白色フィルムを得た。フィルムの各種特性を表2に示す。比較例1のフィルムからは粒子が脱落した。
[Comparative Examples 2 to 4]
Except that the composition of the coating layer-forming coating solution is as shown in Table 1 and the thickness of the coating layer is as shown in Table 2, film formation is performed under the same conditions as in Example 1, and the thickness is 188 μm. A laminated white film was obtained. Various properties of the film are shown in Table 2. Particles dropped from the film of Comparative Example 1.
 本発明のフィルムは、光反射板、光学シートとして好適に用いることができる。特に、バックライト用の光反射板として好適に用いることができる。中でも、サイドライト型のバックライト用の光反射板として好適に用いることができる。ここで、サイドライト型のバックライトとは、光源と導光板と反射板を少なくとも有するものであるが、筐体などを含んでいてもよい。なお、光源の種類は特に問われないが、光源としてCCFLやLEDを用いた場合に、特に大きな効果が得られる。 The film of the present invention can be suitably used as a light reflecting plate or an optical sheet. In particular, it can be suitably used as a light reflecting plate for a backlight. Among them, it can be suitably used as a light reflecting plate for a sidelight type backlight. Here, the sidelight-type backlight has at least a light source, a light guide plate, and a reflection plate, but may include a housing or the like. The type of the light source is not particularly limited, but a particularly great effect can be obtained when CCFL or LED is used as the light source.
11:粒子12の表面上に付着する粒子
12:粒子
13:バインダー樹脂
 
11: Particle 12 adhering to the surface of particle 12: Particle 13: Binder resin

Claims (13)

  1. フィルムの少なくとも一方の表面に樹脂(A)からなる数平均粒径が4μm以上の粒子(a)を含む塗布層が設けられており、粒子(a)の表面に数平均粒径0.1μm以上1μm以下の粒子(b)が付着していることを特徴とする積層フィルム。 At least one surface of the film is provided with a coating layer containing particles (a) having a number average particle size of 4 μm or more made of resin (A), and the number average particle size of 0.1 μm or more is formed on the surface of the particles (a). A laminated film having particles (b) of 1 μm or less adhered thereto.
  2. 白色フィルムの少なくとも一方の表面に樹脂(A)からなる数平均粒径が4μm以上の粒子(a)を含む塗布層が設けられており、粒子(a)の表面に数平均粒径0.1μm以上1μm以下の粒子(b)が付着していることを特徴とする請求項1に記載の積層フィルム。 At least one surface of the white film is provided with a coating layer containing particles (a) having a number average particle size of 4 μm or more, which is made of resin (A), and the number average particle size is 0.1 μm on the surface of the particles (a). The laminated film according to claim 1, wherein particles (b) having a particle size of 1 μm or less are adhered thereto.
  3. 前記フィルムが透明であり、前記フィルムの全光線透過率が60%以上であることを特徴とする請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the film is transparent, and the total light transmittance of the film is 60% or more.
  4. 1つの粒子(a)の表面に粒子(b)が平均10個以上付着していることを特徴とする請求項1~3のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein an average of 10 or more particles (b) are adhered to the surface of one particle (a).
  5. 粒子(a)がポリエステル樹脂からなる請求項1~4のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 4, wherein the particles (a) comprise a polyester resin.
  6. 粒子(b)が樹脂(A)と異なる樹脂(B)からなる請求項1~4のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 4, wherein the particles (b) comprise a resin (B) different from the resin (A).
  7. 粒子(b)が無機粒子である請求項1~5のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 5, wherein the particles (b) are inorganic particles.
  8. 塗布層の厚みが1μm未満である請求項1~7のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, wherein the thickness of the coating layer is less than 1 µm.
  9. 塗布層の厚みが0.5μm未満である請求項1~7のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, wherein the thickness of the coating layer is less than 0.5 µm.
  10. 粒子(a)の数平均粒径が4μm以上60μm以下である請求項1~9のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 9, wherein the number average particle diameter of the particles (a) is from 4 袖 m to 60 袖 m.
  11. 粒子(b)の数平均粒径が100nm以上800nm以下である請求項1~10のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 10, wherein the number average particle diameter of the particles (b) is from 100 nm to 800 nm.
  12. エッジ型バックライトユニット用の反射板である請求項1、2または4~11のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1, 2, and 4 to 11, which is a reflector for an edge type backlight unit.
  13. 請求項1~11のいずれかに記載の積層フィルムを用いたエッジ型バックライトユニット。
     
    An edge type backlight unit using the laminated film according to any one of claims 1 to 11.
PCT/JP2015/058002 2014-03-27 2015-03-18 Laminated film WO2015146732A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167024564A KR102373640B1 (en) 2014-03-27 2015-03-18 Laminated film
JP2015522309A JP6679930B2 (en) 2014-03-27 2015-03-18 Laminated film
CN201580015224.2A CN106133560B (en) 2014-03-27 2015-03-18 Stacked film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014065351 2014-03-27
JP2014-065351 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146732A1 true WO2015146732A1 (en) 2015-10-01

Family

ID=54195254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058002 WO2015146732A1 (en) 2014-03-27 2015-03-18 Laminated film

Country Status (5)

Country Link
JP (1) JP6679930B2 (en)
KR (1) KR102373640B1 (en)
CN (1) CN106133560B (en)
TW (1) TWI676551B (en)
WO (1) WO2015146732A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131030A1 (en) * 2016-01-26 2017-08-03 東レ株式会社 Reflective film for edge-light-type backlight, and liquid crystal display backlight using same
CN108710168A (en) * 2018-05-22 2018-10-26 安徽智博新材料科技有限公司 A kind of preparation method of application type reflectance coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272261A (en) * 2017-07-28 2017-10-20 张家港康得新光电材料有限公司 A kind of diffusion barrier and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090515A (en) * 2000-07-12 2002-03-27 Toray Ind Inc White film for reflecting member of surface light source
JP2013209126A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Lid material and hermetic container hermetically sealed using the lid material
JP2014026122A (en) * 2012-07-26 2014-02-06 Dainippon Printing Co Ltd Antiglare film, polarizing plate and image display device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683965B2 (en) 1995-01-27 2005-08-17 三井化学株式会社 Light reflector and light reflector using the same
JP2001166295A (en) 1999-12-03 2001-06-22 Cosmo Tec:Kk Lamp reflector for back light of liquid crystal display device
JP4712252B2 (en) 2001-09-19 2011-06-29 恵和株式会社 Reflective sheet and backlight unit using the same
JP2008512719A (en) 2004-09-13 2008-04-24 エスケーシー ハース ディスプレイ フィルムズ カンパニー,リミテッド Reflective sheet and backlight unit using the same
JP2007086730A (en) 2005-08-23 2007-04-05 Fujifilm Corp Optical compensation sheet
KR100773718B1 (en) * 2006-05-22 2007-11-06 태산엘시디 주식회사 Method for manufacturing a light guide plate of the backlight unit
KR100895335B1 (en) 2007-04-13 2009-05-07 주식회사 상보 Optical multi-layer film for multi-function using light diffusing agent
JP2009080256A (en) * 2007-09-26 2009-04-16 Dainippon Printing Co Ltd Antiglare film
JP2009244509A (en) 2008-03-31 2009-10-22 Mitsubishi Rayon Co Ltd Reflective sheet
KR20170109696A (en) 2010-02-24 2017-09-29 도레이 카부시키가이샤 White reflective film for edge-lit backlight and backlight using the aforementioned
MY177968A (en) * 2011-03-18 2020-09-28 Toray Industries Laminated film and method for manufacturing same
JP5771064B2 (en) 2011-05-17 2015-08-26 帝人デュポンフィルム株式会社 Reflective film
KR20120136894A (en) * 2011-06-10 2012-12-20 도레이첨단소재 주식회사 High luminance reflective film for light guide plate, light source assembly and liquid crystal display using the same
CN202815248U (en) * 2012-08-22 2013-03-20 宁波东旭成化学有限公司 Reflective film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090515A (en) * 2000-07-12 2002-03-27 Toray Ind Inc White film for reflecting member of surface light source
JP2013209126A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Lid material and hermetic container hermetically sealed using the lid material
JP2014026122A (en) * 2012-07-26 2014-02-06 Dainippon Printing Co Ltd Antiglare film, polarizing plate and image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131030A1 (en) * 2016-01-26 2017-08-03 東レ株式会社 Reflective film for edge-light-type backlight, and liquid crystal display backlight using same
CN108710168A (en) * 2018-05-22 2018-10-26 安徽智博新材料科技有限公司 A kind of preparation method of application type reflectance coating
CN108710168B (en) * 2018-05-22 2023-08-22 广州市虹烨光电有限公司 Preparation method of coating type reflecting film

Also Published As

Publication number Publication date
CN106133560B (en) 2019-11-19
CN106133560A (en) 2016-11-16
JPWO2015146732A1 (en) 2017-04-13
TW201540499A (en) 2015-11-01
KR20160137992A (en) 2016-12-02
JP6679930B2 (en) 2020-04-15
TWI676551B (en) 2019-11-11
KR102373640B1 (en) 2022-03-14

Similar Documents

Publication Publication Date Title
KR101086551B1 (en) Diffuser for flat panel display
JP5023471B2 (en) Light reflection film and image display backlight device using the same
KR20090095461A (en) Optical laminated sheet and image display device
TW200829962A (en) White polyester film for light reflecting plate
JP5739178B2 (en) Reflective film
WO2015020223A1 (en) White reflective film
WO2016104055A1 (en) Transparent film, transparent screen provided with same, and image projection device provided with same
JP2010217844A (en) Polarizing plate set, liquid crystal panel using the same, and liquid crystal display device
JP2009169389A (en) Set of polarizing plate, liquid crystal panel using the same and liquid crystal display device
WO2015146732A1 (en) Laminated film
JP5915524B2 (en) Laminated film and method for producing the same
KR20170137016A (en) A set of polarizer, and a liquid crystal panel and a liquid display apparatus using the set of polarizer
EP3170660B1 (en) Uniaxially stretched multilayer laminate film, and optical member comprising same
TW201739802A (en) Liquid crystal display device
JP6211923B2 (en) White reflective film
JP2009237435A (en) Light-reflective film and backlight device for image display using the same
JP6211918B2 (en) White reflective film
JP2007156287A (en) Polyester film for prism sheet
JP6211917B2 (en) White reflective film
JP2014052595A (en) Light diffusion sheet
JP2018125117A (en) White reflection film for edge light type backlight, and backlight for liquid crystal display using the same
TWI612341B (en) Light reflecting film and edge-light type backlight
JP2015208864A (en) Biaxially oriented laminate polyester film
JP2012081646A (en) Optical polyester film
JP2007140216A (en) Light diffusion member and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015522309

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167024564

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768120

Country of ref document: EP

Kind code of ref document: A1