WO2015020223A1 - White reflective film - Google Patents
White reflective film Download PDFInfo
- Publication number
- WO2015020223A1 WO2015020223A1 PCT/JP2014/071129 JP2014071129W WO2015020223A1 WO 2015020223 A1 WO2015020223 A1 WO 2015020223A1 JP 2014071129 W JP2014071129 W JP 2014071129W WO 2015020223 A1 WO2015020223 A1 WO 2015020223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- layer
- film
- reflective film
- mass
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0284—Diffusing elements; Afocal elements characterized by the use used in reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/0825—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
- G02B5/0841—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising organic materials, e.g. polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/0031—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/12—Reflex reflectors
- G02B5/126—Reflex reflectors including curved refracting surface
- G02B5/128—Reflex reflectors including curved refracting surface transparent spheres being embedded in matrix
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0055—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0065—Manufacturing aspects; Material aspects
Definitions
- the present invention relates to a white reflective film.
- it is related with the white reflective film used for a liquid crystal display device.
- a backlight unit of a liquid crystal display device includes a direct type having a light source on the back of the liquid crystal display panel and a reflective film on the back, and a light guide plate having a reflector on the back of the liquid crystal display panel.
- a direct type (mainly direct type CCFL) is mainly used from the viewpoint of excellent brightness of a screen and uniformity of brightness in the screen.
- the type was often used for relatively small LCDs such as notebook PCs, but in recent years, with the development of light sources and light guide plates, the brightness and uniformity of brightness within the screen have been improved even in edge-light type backlight units.
- edge-light type backlight units have been used not only in relatively small but large LCDs. This is because there is a merit that the LCD can be thinned.
- the edge light type backlight unit the light guide plate and the reflective film are in direct contact with each other. Therefore, if the light guide plate and the reflective film are attached in such a structure, there is a problem that the luminance of the attached portion becomes abnormal and in-plane variation in luminance occurs. Therefore, it is necessary to have a gap between the light guide plate and the reflective film and keep this gap constant. For example, by having beads on the surface of the reflective film, the gap between the light guide plate and the reflective film can be kept constant, and sticking of these can be prevented.
- the objective of this invention is providing the white reflective film which can fully suppress sticking with a light-guide plate, and can fully suppress the damage
- the present invention adopts the following configuration in order to solve the above problems.
- a white reflective film having a reflective layer A and a surface layer B made of a resin composition containing particles, The surface layer B has protrusions formed of the particles on the surface opposite to the reflective layer A, and the number of protrusions having a height of 5 ⁇ m or more on the surface is 10 4 to 10 10 / m 2 ;
- the white reflective film, wherein the particles are non-spherical particles having an average particle diameter of 3 to 100 ⁇ m and a 10% compressive strength of 0.1 to 15 MPa. 2.
- FIG. 1 and 2 are examples of electron micrographs of protrusions formed by non-spherical particles in the present invention.
- FIG. 3 is a schematic diagram showing a method for evaluating damage of the light guide plate and evaluation of particle dropout according to the present invention.
- FIG. 4 is a schematic diagram showing a structure used for adhesion spot evaluation in the present invention.
- the white reflective film of the present invention has a reflective layer A and a surface layer B.
- the reflective layer A in the present invention is a layer that is composed of a thermoplastic resin and a void forming agent and contains a void forming agent so as to exhibit a white color.
- the void forming agent will be described in detail later.
- inorganic particles and a resin that is incompatible with the thermoplastic resin that constitutes the reflective layer A (hereinafter may be referred to as an incompatible resin). Can be used.
- the reflectance of the reflective layer A at a wavelength of 550 nm is preferably 95% or higher, more preferably 96% or higher, and particularly preferably 97% or higher.
- the reflection layer A has voids in the layer as described above, and the proportion of the void volume to the volume of the reflection layer A (void volume ratio) is 15% by volume or more and 70% by volume or less. Preferably there is.
- the improvement effect of a reflectance can be made high and it becomes easy to obtain the above reflectances.
- the improvement effect of film forming stretchability can be heightened.
- the void volume ratio in the reflective layer A is more preferably 30% by volume or more, and particularly preferably 40% by volume or more.
- the void volume ratio in the reflective layer A is more preferably 65% by volume or less, and particularly preferably 60% by volume or less.
- the void volume ratio can be achieved by adjusting the type, size, and amount of the void forming agent in the reflective layer A.
- thermoplastic resin examples include thermoplastic resins made of polyester, polyolefin, polystyrene, and acrylic. Among these, polyester is preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
- a polyester comprising a dicarboxylic acid component and a diol component.
- the dicarboxylic acid component include components derived from terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, sebacic acid, and the like.
- the diol component include components derived from ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and the like.
- aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable.
- the polyethylene terephthalate may be a homopolymer, but is preferably a copolymer from the viewpoint of suppressing the crystallization when the film is stretched uniaxially or biaxially and improving the film-forming stretchability.
- the copolymer component include the dicarboxylic acid component and the diol component described above. From the viewpoint of high heat resistance and a high effect of improving film-forming stretchability, an isophthalic acid component and a 2,6-naphthalenedicarboxylic acid component are used. preferable.
- the proportion of the copolymerization component is, for example, 1 to 20 mol%, preferably 2 to 18 mol%, more preferably 3 to 15 mol%, particularly preferably 7 to 11 based on 100 mol% of the total dicarboxylic acid component of the polyester. Mol%.
- By making the ratio of a copolymerization component into this range it is excellent in the improvement effect of film forming stretchability. Moreover, it is excellent in thermal dimensional stability.
- white inorganic particles include barium sulfate, titanium dioxide, silicon dioxide, and calcium carbonate particles.
- the reflectance of the reflective layer A or the white reflective film may be within a preferable range in the present invention.
- the void volume ratio in the reflection layer A become the preferable range in this invention.
- the average particle diameter of the inorganic particles is, for example, 0.2 to 3.0 ⁇ m, preferably 0.3 to 2.5 ⁇ m, and more preferably 0.4 to 2.0 ⁇ m.
- the content thereof is preferably 20 to 60% by mass, more preferably 25 to 55% by mass, and most preferably 31 to 53% by mass based on the mass of the reflective layer A.
- the inorganic particles may have any particle shape, for example, a plate shape or a spherical shape.
- the inorganic particles may be subjected to a surface treatment for improving dispersibility.
- the incompatible resin is not particularly limited as long as it is incompatible with the thermoplastic resin constituting the layer.
- thermoplastic resin is polyester, polyolefin, polystyrene, or the like is preferable. These may be in the form of particles.
- the content should just select an average particle diameter and content so that a white reflective film may have a suitable reflectance similarly to the case of an inorganic particle, These are not specifically limited.
- the reflectance of the reflective layer A or the white reflective film may be within a preferable range in the present invention.
- the void volume ratio in the reflection layer A become the preferable range in this invention.
- the content is preferably 10 to 50% by mass, more preferably 12 to 40% by mass, and most preferably 13 to 35% by mass based on the mass of the reflective layer A.
- the reflective layer A is made of other components such as UV absorbers, antioxidants, antistatic agents, fluorescent brighteners, waxes, particles and resins different from the void forming agents. Can be contained.
- the surface layer B in the present invention is a layer made of a resin composition containing particles in a resin and having protrusions formed on the surface by the particles. As such a resin, a thermoplastic resin is preferable. Moreover, you may have a crosslinked structure with a crosslinking agent.
- thermoplastic resin having a functional group capable of reacting with the reactive group of the crosslinking agent a crosslinked structure of the crosslinking agent and the thermoplastic resin may be formed, or the reactive group of the crosslinking agent and
- An embodiment having a thermoplastic resin matrix and a crosslinked structure matrix in which a crosslinking agent is crosslinked may be used by using a thermoplastic resin having no functional group capable of reacting.
- the strength of the surface layer B tends to be improved.
- the film recoverability tends to be inferior, for example, the amount of unmelted material increases when the film is recovered and regenerated. .
- the surface layer B can be formed by applying a coating solution during or after the production of the film.
- the surface layer B may be formed simultaneously with the reflective layer A by employing a coextrusion method or the like.
- the surface layer B is preferably formed by applying a coating liquid.
- the content of the crosslinking agent is preferably 35% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, in particular, based on the solid content constituting the coating liquid from the above viewpoint. Preferably it is 20 mass% or less.
- thermoplastic resin As the thermoplastic resin constituting the surface layer B, the same thermoplastic resin as the thermoplastic resin constituting the reflective layer A described above can be used. Among these, acrylic and polyester are preferable, and polyester is particularly preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability. As this polyester, the same polyester as the polyester in the reflective layer A described above can be used. Among these polyesters, aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
- Polyethylene terephthalate may be a homopolymer, but a copolymer is preferable from the viewpoint that the surface layer B is appropriately softened and an effect of suppressing particle dropout is obtained, and copolymerized polyethylene terephthalate is particularly preferable. As a result, even if an external force such as rubbing against the light guide plate is applied, the particles are difficult to drop off.
- the copolymer component include the dicarboxylic acid component and the diol component described above. From the viewpoint of high heat resistance and a high effect of improving the film-forming stretchability, the isophthalic acid component and the 2,6-naphthalenedicarboxylic acid component. Is preferred.
- the ratio of the copolymerization component is, for example, 1 to 20 mol%, preferably 2 to 18 mol%, more preferably 3 to 17 mol%, particularly preferably 12 to 16 mol% based on 100 mol% of the total dicarboxylic acid component of the polyester. Mol%.
- the ratio of a copolymerization component is excellent in the improvement effect of film forming stretchability.
- it is excellent in thermal dimensional stability.
- the side chains of these polyesters are used for the purpose of obtaining the above effects and for improving the stability of the coating liquid.
- the main chain preferably has a group having a function of improving solvophilicity.
- the group having a function of improving the solvophilicity include a sulfonic acid metal salt group (preferably sulfonic acid sodium salt), a hydroxyl group, an alkyl ether group, and a carboxylate group.
- the isophthalic acid component having a sulfonic acid metal salt group is particularly preferably 3 to 30 mol%, more preferably 5 to 20 mol%, based on 100 mol% of the total acid component of the polyester.
- the content is 5 to 15 mol%.
- Non-spherical particles In the present invention, the particles in the surface layer B are required to be non-spherical particles having an average particle diameter of 3 to 100 ⁇ m. When the average particle diameter is in the above range, it becomes easy to form an aspect of the number of protrusions described later, and it becomes easier to secure a gap. If the average particle size is too large, the particles are likely to fall off, causing a defect on the screen.
- the average particle size is too small, it is difficult to secure a gap with the light guide plate, which is the original purpose.
- it is more preferably 5 ⁇ m or more, further preferably 7 ⁇ m or more, particularly preferably 8 ⁇ m or more, more preferably 80 ⁇ m or less, still more preferably 70 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
- protrusion in the outermost layer surface can increase the damage suppression effect of a light-guide plate, ensuring a gap with a light-guide plate.
- the non-spherical particles are the maximum particle diameter Dx (assumed to be the x direction) and directions perpendicular to the x direction (the y direction and the z direction.
- the z direction is also a direction perpendicular to the y direction).
- Dx the maximum particle diameter
- Dy and Dz at least one of the maximum diameter differences in these directions (Dx ⁇ Dy, Dx ⁇ Dz, Dy ⁇ Dz) is Dx It shall mean more than 20%. It is considered that the above-described effects can be obtained by such non-spherical particles due to the following mechanism.
- the shape of the particles is non-spherical, it is considered that the contact area with the light guide plate is widened, and pressure dispersion occurs, so that scratches are less likely to occur.
- the shape of the particles is non-spherical as defined above, the particles will have a maximum diameter in a certain direction, but when contained in the surface layer B, the maximum diameter direction stochastically takes place on the surface. It tends to be a direction substantially parallel to the surface direction of the layer B. Therefore, the contact area between the protrusions formed from the particles and the light guide plate is widened, and the pressure is dispersed.
- the present invention has the specific particle mode as described above, so that the light guide plate is brought into contact with the light guide plate while maintaining the number of protrusions rather than concentrating on a narrow range of the apexes of the protrusions.
- the pressure distribution is achieved, and the number of contact points with the light guide plate is suitable. By doing so, the light guide plate is prevented from being damaged.
- the light guide plate is brought into contact with only a narrow range of the apexes of the protrusions, and the pressure applied to that portion becomes high, and it becomes easy to scrape.
- the average aspect ratio (major axis / minor axis) of the particles is 1.31 or more and 1.80 or less. Preferably there is. The aspect ratio is more preferably 1.35 or more, and more preferably 1.75 or less.
- a larger aspect ratio is preferable for the above effect, but if it is too large, it tends to be difficult to maintain the number of protrusions having a height of 5 ⁇ m or more on the outermost layer surface.
- an aspect ratio is calculated
- the maximum diameter of the particles in such observation is the major axis, and the maximum diameter in the direction orthogonal to the maximum diameter is the minor axis.
- there are moderate variations in the shape of the particles that is, the shapes of the particles are moderately irregular, it is assumed that it is difficult to apply pressure to the specific particles, and it is difficult to damage the light guide plate. .
- such particles preferably have a standard deviation of aspect ratio of 0.15 to 0.50. That is, this indicates that there is a moderate variation in the shape of each particle.
- By appropriately varying the shape of the particles forming the protrusions it is possible to further enhance the effect of suppressing damage to the light guide plate while ensuring a gap with the light guide plate. If the variation is small, the effect of improving the gap securing and the suppression of scratches becomes low. On the other hand, even if the variation is too large, defects are likely to occur when added to the surface layer B, and it is difficult to obtain the expected projection frequency, and as a result, it is difficult to achieve the effect of securing gaps and suppressing scratches. Become.
- the standard deviation of the aspect ratio of the particles is more preferably 0.16 or more, further preferably 0.17 or more, more preferably 0.45 or less, and further preferably 0.43 or less.
- the 10% compressive strength of the particles is required to be 0.1 to 15 MPa. As a result, a gap can be secured, and damage to the light guide plate can be suppressed. If the compressive strength is too low, it will be deformed too much against stress, making it difficult to ensure the gap with the light guide plate, which is the original purpose. On the other hand, if the compressive strength is too high, the light guide plate is likely to be damaged even with non-spherical particles.
- the 10% compressive strength is preferably 0.2 MPa or more, more preferably 0.3 MPa or more, further preferably 3 MPa or more, particularly preferably 8 MPa or more, and preferably 14 MPa or less, more preferably 13 MPa.
- it is more preferably 12 MPa or less.
- the content of the non-spherical particles in the surface layer B can be appropriately adjusted using the particles having the average particle diameter as described above so as to satisfy the aspect of the number of protrusions described later. For example, when the thickness of the surface layer B tends to be thin with respect to the average particle diameter of the particles, the protrusion may tend to be formed, so the content may be relatively low, and vice versa.
- the content is preferably larger, and can be appropriately adjusted in consideration of such a tendency.
- 1 to 70% by mass is preferable based on the mass of the surface layer B, more preferably 5% by mass or more, still more preferably 10% by mass or more, and particularly preferably 20% by mass or more. More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less, Most preferably, it is 30 mass% or less.
- the particles contained in the surface layer B may be organic particles, inorganic particles, or organic-inorganic composite particles regardless of their types.
- polymer particles made of a polymer such as acrylic, polyester, polyurethane, nylon, polyolefin, and polyether are preferable. More preferred are polyester and nylon, and a more suitable 10% compressive strength is easily obtained. Particularly preferred is polyester (especially polyethylene terephthalate), which has an advantage of excellent recovery film-forming properties.
- the method for achieving the above-mentioned particle shape is not particularly limited, but from the viewpoint of easily obtaining particles having a particularly preferable shape, and from the viewpoint of production cost and productivity, A method of pulverizing the polymer to obtain particles is preferred. The particles obtained by this process are referred to as pulverized polymer particles.
- such a step is preferably a method in which, after polymerization, for example, the pelletized polymer piece is crystallized, preferably by heat treatment, and pulverized at normal temperature or lower than normal temperature.
- pulverization is preferably performed at a temperature lower than normal temperature, and a method of cooling with liquid nitrogen is preferable as a method for obtaining such a low temperature.
- the desired pulverized polymer particles can also be produced by pulverizing a molded polymer composition, a formed polymer film, a formed polymer fiber, and the like.
- the mode of the polymer to be pulverized in this way including changing the size in the pellet, the thickness in the film, and the diameter in the fiber
- various non-spherical modes can be obtained.
- the particles can be obtained, and the variation (standard deviation) in the shape of the particles can be adjusted.
- the polymer of the pulverized polymer particles may be a copolymer or a blend of two kinds of polymers, and the pulverized polymer particles contain inorganic or organic particles having a smaller diameter, UV absorbers or slip agents. Etc. may be included.
- the surface layer B made of the resin composition containing the particles as described above forms at least one outermost layer of the white reflective film.
- the surface layer B that forms the outermost layer has protrusions formed of the particles on the surface opposite to the reflective layer A (hereinafter sometimes referred to as the outermost layer surface).
- Such protrusions need to have protrusions with an appropriate height at an appropriate frequency on the outermost layer surface from the viewpoint of securing a gap between the light guide plate and the film. Therefore, in the present invention, the number of protrusions having a height of 5 ⁇ m or more (protrusion frequency) is 10 on the outermost layer surface. 4 ⁇ 10 10 Pieces / m 2 Usually it is necessary. Thereby, the gap between the light guide plate and the film can be sufficiently secured, and the sticking suppression effect can be secured. If the projection frequency is too low, the sticking suppression effect is poor.
- the surface layer B may contain components other than the above-described constituent components as long as the object of the present invention is not impaired. Examples of such components include ultraviolet absorbers, antioxidants, antistatic agents, fluorescent brighteners, waxes, surfactants, particles and resins different from the above particles.
- the thickness of the reflective layer A in the present invention is preferably 80 to 350 ⁇ m. Thereby, the improvement effect of a reflectance can be made high. If it is too thin, the effect of improving the reflectance is low, while if it is too thick, it is inefficient.
- the thickness is more preferably 80 to 300 ⁇ m, still more preferably 100 to 320 ⁇ m, and particularly preferably 150 to 250 ⁇ m.
- the thickness of the surface layer B in the present invention is preferably 5 to 100 ⁇ m. More preferably, it is 5 to 80 ⁇ m.
- the thickness of the surface layer B is the sum of the particle diameter of the particles and the thickness of the resin portion covering the surface. Further, the thickness of the resin part holding the particles of the surface layer B is preferably 0.2 to 50 ⁇ m. Thereby, it becomes easy to make a protrusion frequency into a preferable aspect, and it becomes easy to ensure a gap with a light-guide plate.
- the thickness of the resin portion of the surface layer B is too thin, the particles in the protrusions formed on the surface of the surface layer B tend to fall off. On the other hand, if it is too thick, it tends to be difficult to obtain a preferable projection frequency. From this viewpoint, it is more preferably 0.3 ⁇ m or more, further preferably 0.5 ⁇ m or more, particularly preferably 1 ⁇ m or more, most preferably 2 ⁇ m or more, and more preferably 40 ⁇ m or less. Furthermore, when considering drop-off property, 1 ⁇ m or more is preferable, and 2 ⁇ m or more is preferable.
- the laminated structure of the white reflective film is a two-layer structure of B / A, a three-layer structure of B / A / B, and at least one of B A multilayer configuration of four or more layers arranged in the outermost layer can be exemplified.
- it further has a support layer C (denoted as C) for stabilizing the film-forming property, and has a three-layer structure of B / C / A and B / A / C, and 4 of B / C / A / C. It is a layer structure.
- the support layer C is preferably made of the same polyester as the reflective layer A, and has a relatively low void volume ratio (preferably not less than 0% by volume and less than 15% by volume, more preferably not more than 5% by volume, particularly preferably 3) or less) is preferred.
- the thickness of the support layer C is preferably 5 to 140 ⁇ m, and more preferably 20 to 140 ⁇ m.
- the present invention in addition to the reflective layer A, the surface layer B, and the support layer C, other layers may be included as long as the object of the present invention is not impaired.
- it may have a layer for imparting functions such as easy adhesion, winding property (sliding property), antistatic property, electrical conductivity, ultraviolet durability, and a layer for adjusting optical properties. Good.
- the reflective layer A obtained by a melt extrusion method or the like is applied to a melt resin coating method (including a melt extrusion resin coating method), a co-extrusion method and a lamination method, or a surface layer B.
- the surface layer B can be formed by a coating liquid coating method using the coating liquid for forming the film.
- the method of laminating the surface layer B by the coating liquid coating method on the one produced by laminating the reflective layer A and the support layer C by the coextrusion method is particularly preferable.
- the distribution state of the particles can be easily controlled by changing the drying conditions and the like, and the predetermined number of protrusions can be easily mass-produced at low cost. Further, even particles having a relatively small 10% compressive strength can be easily handled. Furthermore, the shape of the specific particle in the present invention is easily maintained, and the aspect of the protrusion is easily made a preferable aspect.
- polyester is adopted as the thermoplastic resin constituting the reflective layer A and the thermoplastic resin constituting the support layer C
- a coextrusion method is adopted as a method of laminating the reflective layer A and the support layer C
- stacking method is demonstrated, this invention is not limited to this manufacturing method, Moreover, it can manufacture similarly about another aspect with reference to the following.
- the extrusion step is not included, the following “melt extrusion temperature” may be read as, for example, “melt temperature”.
- the melting point of the polyester used is Tm (unit: ° C)
- the glass transition temperature is Tg (unit: ° C).
- a polyester composition for forming the reflective layer A is prepared by mixing polyester, a void forming agent, and other optional components.
- a polyester composition for forming the support layer C a mixture of polyester, optionally a void forming agent, and other optional components is prepared. These polyester compositions are used after drying to sufficiently remove moisture.
- the dried polyester composition is put into separate extruders and melt-extruded.
- the melt extrusion temperature needs to be Tm or higher, and may be about Tm + 40 ° C.
- the polyester composition used for the production of the film is filtered using a nonwoven fabric type filter having an average aperture of 10 to 100 ⁇ m made of stainless steel fine wires having a wire diameter of 15 ⁇ m or less. It is preferable. By performing this filtration, it is possible to suppress aggregation of particles that normally tend to aggregate into coarse aggregated particles, and to obtain a film with few coarse foreign matters.
- the average opening of the nonwoven fabric is preferably 20 to 50 ⁇ m, more preferably 15 to 40 ⁇ m.
- the filtered polyester composition is extruded in a multilayer state from a die by a simultaneous multilayer extrusion method (coextrusion method) using a feed block in a molten state to produce an unstretched laminated sheet.
- the unstretched laminated sheet extruded from the die is cooled and solidified with a casting drum to obtain an unstretched laminated film.
- this unstretched laminated film is heated by roll heating, infrared heating or the like, and stretched in the film forming machine axial direction (hereinafter sometimes referred to as the longitudinal direction or the longitudinal direction or MD) to obtain a longitudinally stretched film. .
- This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls.
- the film after the longitudinal stretching is then guided to a tenter and stretched in a direction perpendicular to the longitudinal direction and the thickness direction (hereinafter sometimes referred to as a transverse direction or a width direction or TD) to be biaxially stretched.
- the stretching temperature is preferably a temperature of Tg or more and preferably Tg + 30 ° C. or less of the polyester (preferably the polyester constituting the reflective layer A), excellent in film-forming stretchability, and voids are preferably formed.
- the stretching ratio is preferably 2.5 to 4.3 times, more preferably 2.7 to 4.2 times in both the vertical direction and the horizontal direction. If the draw ratio is too low, uneven thickness of the film tends to be worsened, and voids tend not to be formed.
- the second stage in this case, lateral stretching
- the second stage is made about 10 to 50 ° C. higher than the first stage stretching temperature. Things are preferable. This is due to the fact that the Tg as a uniaxial film is increased due to the orientation in the first stage of stretching.
- the pre-heat treatment for transverse stretching may start from a temperature higher than Tg + 5 ° C. of the polyester (preferably the polyester constituting the reflective layer A) and gradually increase the temperature.
- the temperature rise in the transverse stretching process may be continuous or stepwise (sequential), the temperature is usually raised sequentially.
- the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone.
- the film after biaxial stretching is subsequently subjected to heat-fixing and heat-relaxing treatments in order to obtain a biaxially oriented film.
- these treatments can also be performed while the film is running. it can.
- the biaxially stretched film has a constant width or a Tm-20 ° C.
- the polyester preferably the polyester constituting the reflective layer A
- heat-treat under a width reduction of 10% or less and heat-set to lower the heat shrinkage rate.
- the heat treatment temperature is too high, the flatness of the film tends to deteriorate, and the thickness unevenness tends to increase.
- the thermal shrinkage tends to increase.
- both ends of the film being held can be cut off, the take-up speed in the film vertical direction can be adjusted, and the film can be relaxed in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted.
- the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 2.5%, more preferably 0.2 to 2.3%, particularly preferably 0.3.
- the film is relaxed by carrying out a speed reduction of ⁇ 2.0% (this value is referred to as “relaxation rate”), and the longitudinal heat shrinkage rate is adjusted by controlling the relaxation rate. Further, the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, and a desired heat shrinkage rate can be obtained.
- a lateral-longitudinal sequential biaxial stretching method may be used in addition to the longitudinal-lateral sequential biaxial stretching method as described above. Moreover, it can also form into a film using a simultaneous biaxial stretching method.
- the stretching ratio is, for example, 2.7 to 4.3 times, preferably 2.8 to 4.2 times in both the longitudinal direction and the transverse direction.
- the surface layer B is coated with a coating liquid for forming the surface layer B on the longitudinally stretched film after the longitudinal stretching in the above-described process, and is dried and cured by heat applied in the preheating process, the lateral stretching process, the heat setting process, and the like. It can be formed by the so-called in-line coating method.
- the coating liquid can be obtained by mixing the components constituting the surface layer B and optionally diluting with a solvent so as to be easily applied. In this case, water is preferable as the solvent, and the amount of the volatile organic solvent described later can be reduced.
- the method for applying the coating liquid is not particularly limited, but preferred methods include reverse roll coating, gravure coating, die coating, and spray coating.
- the surface layer B may be formed on a biaxially oriented film obtained by biaxial stretching and heat setting by a so-called offline coating method.
- the off-line coating method it is difficult to apply high heat to drying because the film is deformed, and therefore, an organic solvent that is usually easily dried is used as the solvent.
- the in-line coating method is particularly preferable in the present invention.
- the white reflective film of the present invention can be obtained.
- the reflectance (reflectance at a wavelength of 550 nm) of the white reflective film of the present invention measured from the surface layer B side is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, and still more preferably 97. .5% or more, particularly preferably 98% or more.
- the reflectance is 95% or more or 96% or more, high luminance can be obtained when used in a liquid crystal display device, illumination, or the like.
- Such reflectivity is set to a preferable mode such as increasing the void volume ratio of the reflective layer A, the thickness of the reflective layer A is increased, the thickness of the surface layer B is decreased, and the like is set as a preferable mode. Etc. can be achieved.
- luminance measured from the surface layer B side is calculated
- the reflectance and brightness are values on the surface on the side of the light guide plate when used with the light guide plate in the white reflective film.
- the amount of volatile organic solvent measured by the method described later is preferably 10 ppm or less.
- the surface layer B is not formed by a coating method using an organic solvent.
- a self-recovery raw material is obtained and a film is formed using the self-recovery raw material, a gas mark is less likely to be generated, and film-forming stretchability (recovery film-forming property) is improved. From this viewpoint, it is more preferably 5 ppm or less, further preferably 3 ppm or less, and ideally 0 ppm.
- Each characteristic value was measured by the following method.
- An integrating sphere was attached to a spectrophotometer (UV-3101PC manufactured by Shimadzu Corporation), and BaSO 4 The reflectance when the white plate was 100% was measured at a wavelength of 550 nm, and this value was taken as the reflectance. The measurement was performed on the surface on the surface layer B side. In the case where the front and back surfaces have different surface layers B, the measurement was performed on the surface layer B surface on the light guide plate side.
- the z direction is also perpendicular to the y direction)
- the maximum diameters Dy and Dz (where Dy ⁇ Dz) are calculated, and average values are calculated for each, and Dxave, Dave, Dzave, and Dxave-Dave, Dxave-Dzave, Dyave-Dzave are obtained. When at least one of these exceeded 20% of Dx, it was determined as non-spherical, and when it was not, it was determined as spherical.
- Particle shape 2 (aspect ratio and standard deviation of aspect ratio) Lightly affix the particles to the conductive tape using a glass rod, fix it to the measurement stage, and use the S-4700 field emission scanning electron microscope manufactured by Hitachi, Ltd.
- the maximum diameter in the direction perpendicular to the maximum diameter is defined as the major axis, and the major axis / minor axis ( (Aspect ratio) was determined and the average value was taken as the average aspect ratio.
- the standard deviation of the aspect ratio was calculated from each aspect ratio value.
- the magnification was made high (for example, 1000 times), and it observed.
- Projection frequency on the film surface (number of protrusions)
- the projection profile on the film surface was measured with a three-dimensional roughness measuring device SE-3CKT (manufactured by Kosaka Laboratory Ltd.) with a cutoff of 0.25 mm, a measurement length of 1 mm, a scanning pitch of 2 ⁇ m, and a scanning number of 100.
- the projection profile was recorded at a height magnification of 1000 times and a scanning direction magnification of 200 times. From the obtained projection profile (horizontal axis: projection height, vertical axis: projection profile of the number of projections), the number of projections having a height of 5 ⁇ m or more (pieces / m 2 ) was calculated as the protrusion frequency.
- a three-dimensional roughness analyzer SPA-11 manufactured by Kosaka Laboratory Ltd.
- Void volume fraction 100 ⁇ (1 ⁇ (actual density / calculated density))
- the density of isophthalic acid copolymerized polyethylene terephthalate (after biaxial stretching) is 1.39 g / cm. 3
- the density of barium sulfate is 4.5 g / cm 3 It was. Moreover, only the layer which measures a void volume ratio was isolated, the mass per unit volume was calculated
- volume is 3cm in area of sample 2
- the thickness at that size was measured at 10 points with an electric micrometer (K-402B manufactured by Anritsu), and the average value was calculated as area ⁇ thickness.
- the mass was weighed with an electronic balance.
- the specific gravity of the particles including aggregated particles
- the value of bulk specific gravity obtained by the following graduated cylinder method was used. Fill a 1000 ml measuring cylinder with completely dry particles, measure the total weight, subtract the weight of the measuring cylinder from the total weight to obtain the weight of the particle, and measure the volume of the measuring cylinder. , The weight (g) of the particles to the volume (cm 3 ).
- the 25 mm portion remaining at both ends in the width direction of the reflective film is folded back to the back side of the iron plate, and the end portion of the reflective film (the portion where the blade is inserted with a knife or the like at the time of sampling) has the effect of scraping the light guide plate. Eliminated.
- a light guide plate (4, having a size of at least 400 mm ⁇ 200 mm) with a dot surface having dots (401) is fixed on a horizontal desk, and the reflection film fixed on the iron plate created above is evaluated.
- the biaxially stretched film obtained in the examples was pulverized, melt-extruded, and formed into chips to prepare a self-recovery raw material.
- a self-recovered raw material is added to the reflective layer A in an amount of 35% by mass based on the mass of the reflective layer A, and the mass ratio of the remaining polyester to the void forming agent is the same as that of the original film.
- a biaxially stretched film containing a self-recovery raw material was prepared in the same manner as the above film and evaluated according to the following criteria.
- ⁇ The film can be stably formed with a length of 1000 m or more and less than 2000 m.
- ⁇ Production Example 2 Synthesis of isophthalic acid copolymerized polyethylene terephthalate 2> Except for changing to 129.0 parts by mass of dimethyl terephthalate and 21.0 parts by mass of dimethyl isophthalate (14 mol% with respect to 100 mol% of the total acid component of the resulting polyester), the same as in Production Example 1 above. Thus, isophthalic acid copolymerized polyethylene terephthalate 2 was obtained. The melting point of this polymer was 215 ° C.
- ⁇ Production Example 3 Preparation of particle master chip 1> Part of the isophthalic acid copolymerized polyethylene terephthalate 1 obtained above and barium sulfate particles having an average particle diameter of 1.0 ⁇ m as a void forming agent (in the table, BaSO 4 Is written. ) Using a NEX-T60 tandem extruder manufactured by Kobe Steel, so that the content of barium sulfate particles is 60% by mass with respect to the mass of the obtained master chip, and the resin temperature is set to 260 ° C. To produce a particle master chip 1 containing barium sulfate particles.
- ⁇ Production Example 4 Preparation of particle master chip 2> Using a part of the isophthalic acid copolymerized polyethylene terephthalate 2 obtained above and barium sulfate particles having an average particle size of 1.0 ⁇ m as a void forming agent, a NEX-T60 tandem extruder manufactured by Kobe Steel was used. The mixture was mixed so that the content of barium sulfate particles was 60% by mass with respect to the mass of the master chip, and extruded at a resin temperature of 260 ° C. to prepare particle master chip 2 containing barium sulfate particles.
- ⁇ Production Example 5 Creation of particles 1 used for surface layer B> 150 parts by mass of dimethyl terephthalate, 98 parts by mass of ethylene glycol, 1.0 part by mass of diethylene glycol, 0.05 part by mass of manganese acetate, 0.012 part by mass of lithium acetate were charged into a rectifying column and a flask equipped with a distillation condenser. While stirring, the mixture was heated to 150 to 240 ° C. to distill off methanol and conduct transesterification. After methanol was distilled, 0.03 parts by mass of trimethyl phosphate and 0.04 parts by mass of germanium dioxide were added, and the reaction product was transferred to the reactor.
- polyester particles having an average particle diameter of 60 ⁇ m were obtained. Furthermore, particles 1 (non-spherical particles) having an average particle diameter of 40 ⁇ m were obtained by air classification of the polyester particles.
- Particle 2 Non-spherical particles having an average particle size of 40 ⁇ m obtained by pulverization and classification in the same manner as in Production Example 5 except that pellets of nylon 66 resin CM3006 manufactured by Toray Industries, Inc. are used.
- Particle 3 Non-spherical particles having an average particle diameter of 10 ⁇ m obtained by pulverization and classification in the same manner as in Production Example 5 except that pellets of nylon 66 resin CM3006 manufactured by Toray Industries, Inc. are used.
- Particle 4 Non-spherical particles having an average particle diameter of 10 ⁇ m obtained by pulverization and classification in the same manner as in Production Example 5 except that pellets of nylon 6 resin CM1017 manufactured by Toray Industries, Inc. are used.
- Particle 5 MBX-40 manufactured by Sekisui Plastics Co., Ltd. (true spherical acrylic particles, average particle size 40 ⁇ m)
- Particle 6 Non-spherical particle having an average particle diameter of 10 ⁇ m obtained by pulverization and classification in the same manner as in Production Example 5 except that a pellet of poly (methyl methacrylate) (PMMA) resin Sumipex MGSS manufactured by Sumitomo Chemical Co., Ltd. is used. .
- Particle 7 SP-10 manufactured by Toray Industries, Inc.
- ⁇ Production Example 7 Creation of particles 9 used for surface layer B> Using the pellets obtained in Production Example 6 above, the conditions normally used for a biaxially stretched film of polyethylene terephthalate (longitudinal stretch ratio: 3.0 times, transverse stretch ratio: 4.0 times, heat setting temperature set at 220 ° C.) Thus, a transparent biaxially stretched polyethylene terephthalate film (thickness: 50 ⁇ m) was obtained. This was pulverized while cooling with liquid nitrogen in the same manner as in Production Example 6 above, followed by air classification to obtain particles 9 (non-spherical particles) having an average particle diameter of 52 ⁇ m.
- ⁇ Production Example 8 Creation of particles 10 used for surface layer B> Using the pellets obtained in Production Example 6 above, polyester fibers having a diameter of 35 ⁇ m were prepared by a conventional method, and this was crushed while cooling with liquid nitrogen in the same manner as in Production Example 6 to obtain particles 10 having an average particle diameter of 40 ⁇ m. (Non-spherical particles) were obtained.
- ⁇ Production Examples 9 and 10 Creation of particles 11 and 12 used for surface layer B> The pellets obtained in Production Example 6 were dried and crystallized, similarly pulverized, and subjected to air classification to obtain particles 11 (non-spherical particles) having an average particle diameter of 35 ⁇ m.
- the film obtained in Production Example 7 was similarly crushed and subjected to air classification to obtain particles 12 (non-spherical particles) having an average particle diameter of 50 ⁇ m.
- the air classification conditions were adjusted so that the particles obtained would be in the form shown in Table 3.
- Particle 13 Non-spherical particle having an average particle diameter of 40 ⁇ m obtained by pulverization and classification in the same manner as in Production Example 6 except that pellets of poly (methyl methacrylate) (PMMA) resin Sumipex MGSS manufactured by Sumitomo Chemical Co., Ltd. are used. .
- ⁇ Production Examples 11 and 12 Creation of particles 14 and 15 used for the surface layer B>
- the film thickness was changed to 75 ⁇ m, and pulverization and air classification were performed in the same manner as in Production Example 7 to obtain particles 14 (non-spherical particles).
- the film thickness was set to 100 ⁇ m, and similarly, particles 15 (non-spherical particles) were obtained.
- the air classification conditions were adjusted so that the particles obtained would be in the form shown in Table 3.
- ⁇ Production Examples 13 to 20 Creation of particles 16 to 23 used for the surface layer B>
- the pellets obtained in Production Example 6 were dried and crystallized, similarly crushed, and subjected to air classification to obtain particles 16 to 23 (non-spherical particles or spherical particles) each having the structure shown in Table 3.
- the air classification conditions were adjusted so that the particles obtained would be in the form shown in Table 3.
- Example 1-1 Manufacture of white reflective film
- the reflective layer A is used so that the content of the void forming agent is 49% by mass with respect to the mass of the reflective layer A, and the supporting layer C is 3% by mass of the void forming agent with respect to the mass of the supporting layer C.
- the layer A is melt extruded at a temperature of 255 ° C.
- the layer C is melt extruded at a temperature of 230 ° C.
- the layer configuration is C layer / A layer / C layer.
- a three-layer feed block device and the sheet was formed into a sheet from a die while maintaining the laminated state. At this time, it adjusted with the discharge amount of each extruder so that the thickness ratio of C layer / A layer / C layer might become 10/80/10 after biaxial stretching. Further, this sheet was an unstretched film cooled and solidified with a cooling drum having a surface temperature of 25 ° C. This unstretched film is led to a longitudinal stretching zone maintained at 92 ° C.
- Polymerized polyester is resin 1.
- the film was guided to a transverse stretching zone maintained at 130 ° C. through a preheating zone at 115 ° C.
- Example 1-4 The void forming agent of the reflective layer A was changed to a resin incompatible with polyester (cycloolefin, “TOPAS 6017S-04” manufactured by Polyplastics Co., Ltd.), and the content of the void forming agent with respect to the mass of the reflective layer A was 20 A biaxially stretched film was prepared and evaluated in the same manner as in Example 1-1 except that the mass% was used. The evaluation results are shown in Table 2. [Example 1-6] After the uniaxial stretching, the following surface layer (layer) was formed on the biaxially stretched film obtained in the same manner as in Example 1-1 except that the coating solution was not applied before the biaxial stretching.
- a coating liquid having the composition shown in the coating liquid 2 for forming B) is applied with a wet thickness of 15 g / m. 2 Then, the film was dried in an oven at 80 ° C. to obtain a film.
- Example 2-1 Manufacture of white reflective film
- the reflective layer A is used so that the content of the void forming agent is 49% by mass with respect to the mass of the reflective layer A, and the supporting layer C is 3% by mass of the void forming agent with respect to the mass of the supporting layer C.
- the layer A is melt extruded at a temperature of 265 ° C.
- the layer C is melt extruded at a temperature of 240 ° C.
- the layer configuration is C layer / A layer / C layer.
- a three-layer feed block device and the sheet was formed into a sheet from a die while maintaining the laminated state. At this time, it adjusted with the discharge amount of each extruder so that the thickness ratio of C layer / A layer / C layer might become 10/80/10 after biaxial stretching. Further, this sheet was an unstretched film cooled and solidified with a cooling drum having a surface temperature of 25 ° C. This unstretched film is led to a longitudinal stretching zone maintained at 92 ° C.
- the film was guided to a transverse stretching zone maintained at 130 ° C. through a preheating zone at 115 ° C. while holding both ends with clips, and stretched 3.6 times in the transverse direction. Then, heat setting is performed at 185 ° C.
- Example 4 shows the evaluation results of the obtained film.
- Examples 2-2 to 2-5, 2-8 to 2-15, Comparative Examples 2-1 to 2-5 A biaxially stretched film was obtained in the same manner as in Example 2-1, except that the aspect and layer structure of the particles used for the surface layer (B layer) were as shown in Table 3 and Table 4, respectively. Table 4 shows the evaluation results of the obtained film.
- Example 2-6 The void forming agent of the reflective layer A was changed to a resin incompatible with polyester (cycloolefin, “TOPAS 6017S-04” manufactured by Polyplastics Co., Ltd.), and the content of the void forming agent with respect to the mass of the reflective layer A was 20 A biaxially stretched film was prepared and evaluated in the same manner as in Example 2-1, except that the mass% was used. The evaluation results are shown in Table 4. [Example 2-7] After the uniaxial stretching, the following surface layer (layer) was formed on the biaxially stretched film obtained in the same manner as in Example 2-1, except that the coating solution was not applied before the biaxial stretching.
- a coating liquid having the composition shown in the coating liquid 4 for forming B) is applied with a wet thickness of 15 g / m. 2 Then, the film was dried in an oven at 80 ° C. to obtain a film.
- Crosslinking agent Coronate HL (crosslinking agent 1) manufactured by Nippon Polyurethane Industry Co., Ltd. 10% by mass Diluting solvent: butyl acetate 52.5% by mass
- the evaluation results of the obtained film were as shown in Table 4.
- the solid content ratio of each component in the coating liquid 4 is as follows. ⁇ Particles: 25% by mass -Acrylic resin (thermoplastic resin): 50% by mass ⁇ Crosslinking agent: 25% by mass.
- the invention's effect ADVANTAGE OF THE INVENTION According to this invention, the white reflective film which can fully suppress sticking with a light-guide plate, and can fully suppress the damage
- the white reflective film of the present invention can sufficiently suppress sticking to the light guide plate and sufficiently suppress scratches on the light guide plate, in particular, as a surface light source reflector including the light guide plate, for example, It can be suitably used as a reflective film used in an edge light type backlight unit used in a liquid crystal display device or the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Laminated Bodies (AREA)
- Planar Illumination Modules (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
エッジライト型バックライトユニットにおいては、導光板と反射フィルムとが直接接触する構造となる。そのため、かかる構造において導光板と反射フィルムとが貼り付いてしまうと、貼り付いた部分の輝度が異常となり、輝度の面内バラツキが生じてしまうという問題がある。そこで、導光板と反射フィルムとの間にギャップを有し、かかるギャップを一定に保つことが必要である。例えば、反射フィルムの表面にビーズを有することにより導光板と反射フィルムとの間のギャップを一定に保つことができ、これらの貼り付きを防ぐことができる。しかしながらこのとき、比較的柔らかい素材からなる導光板が反射フィルムと接すると、反射フィルムや表面のビーズにより導光板が傷付けられるという問題がある。この対策として、例えば特許文献1~3のように、反射フィルムの表面に塗布によりエラストマー系のビーズを含有する傷付き防止層を形成する報告がある。
しかしながら、特許文献1~3のような傷付き防止層では、導光板の傷付き抑制効果はある程度あるものの、そもそもの目的であるギャップ確保(貼り付き抑制)に劣る傾向にある。また、本発明者らの検討によれば、従来のように突起の個数のみに着目するだけでは、近年要求される導光板との貼り付き抑制および導光板の傷付き抑制の両方を満足させることに対して不十分な場合があることが分かった。
In the edge light type backlight unit, the light guide plate and the reflective film are in direct contact with each other. Therefore, if the light guide plate and the reflective film are attached in such a structure, there is a problem that the luminance of the attached portion becomes abnormal and in-plane variation in luminance occurs. Therefore, it is necessary to have a gap between the light guide plate and the reflective film and keep this gap constant. For example, by having beads on the surface of the reflective film, the gap between the light guide plate and the reflective film can be kept constant, and sticking of these can be prevented. However, at this time, when the light guide plate made of a relatively soft material comes into contact with the reflective film, there is a problem that the light guide plate is damaged by the reflective film or the beads on the surface. As countermeasures, for example, as in
However, the scratch-preventing layers as described in
本発明は、上記課題を解決するために、以下の構成を採用するものである。
1. 反射層Aと、粒子を含有する樹脂組成物からなる表面層Bとを有する白色反射フィルムであって、
表面層Bの反射層Aとは反対側の表面に上記粒子により形成された突起を有し、該表面における高さ5μm以上の突起個数が104~1010個/m2であり、
上記粒子は、平均粒子径が3~100μm、10%圧縮強度が0.1~15MPaの非球状粒子である、白色反射フィルム。
2. 上記粒子が、ポリマーを粉砕することによって得られた粉砕ポリマー粒子である、上記1に記載の白色反射フィルム。
3. 上記ポリマーがポリエステルである、上記2に記載の白色反射フィルム。
4. 上記粒子が、アスペクト比(長径/短径)の平均が1.31以上、1.80以下であり、かつ、アスペクト比の標準偏差が0.15~0.50である非球状粒子である、上記1~3のいずれか1に記載の白色反射フィルム。
5. 表面層B中の上記粒子の含有量が、表面層Bの質量を基準として1~70質量%である、上記1~3のいずれか1に記載の白色反射フィルム。
6. 揮発有機溶剤量が10ppm以下である、上記1~3のいずれか1に記載の白色反射フィルム。
7. 反射層Aがボイドを含有し、そのボイド体積率が15体積%以上、70体積%以下である、上記1~3のいずれか1に記載の白色反射フィルム。
8. さらにボイド体積率が0体積%以上、15体積%未満である支持層Cを有する、上記7に記載の白色反射フィルム。
9. 表面層Bが、塗液の塗布によって形成された層である、上記7に記載の白色反射フィルム。
10. 導光板を備える面光源反射板として用いられる、上記1~3のいずれか1に記載の白色反射フィルム。 The objective of this invention is providing the white reflective film which can fully suppress sticking with a light-guide plate, and can fully suppress the damage | wound of a light-guide plate simultaneously.
The present invention adopts the following configuration in order to solve the above problems.
1. A white reflective film having a reflective layer A and a surface layer B made of a resin composition containing particles,
The surface layer B has protrusions formed of the particles on the surface opposite to the reflective layer A, and the number of protrusions having a height of 5 μm or more on the surface is 10 4 to 10 10 / m 2 ;
The white reflective film, wherein the particles are non-spherical particles having an average particle diameter of 3 to 100 μm and a 10% compressive strength of 0.1 to 15 MPa.
2. 2. The white reflective film as described in 1 above, wherein the particles are ground polymer particles obtained by grinding a polymer.
3. 3. The white reflective film as described in 2 above, wherein the polymer is polyester.
4). The particles are non-spherical particles having an average aspect ratio (major axis / minor axis) of 1.31 or more and 1.80 or less, and a standard deviation of the aspect ratio of 0.15 to 0.50. 4. The white reflective film as described in any one of 1 to 3 above.
5. 4. The white reflective film as described in any one of 1 to 3 above, wherein the content of the particles in the surface layer B is 1 to 70% by mass based on the mass of the surface layer B.
6). 4. The white reflective film as described in any one of 1 to 3 above, wherein the volatile organic solvent amount is 10 ppm or less.
7). 4. The white reflective film as described in any one of 1 to 3 above, wherein the reflective layer A contains voids, and the void volume ratio is 15% by volume or more and 70% by volume or less.
8). Furthermore, the white reflective film of said 7 which has the support layer C whose void volume ratio is 0 volume% or more and less than 15 volume%.
9. 8. The white reflective film as described in 7 above, wherein the surface layer B is a layer formed by applying a coating liquid.
10. 4. The white reflective film as described in any one of 1 to 3 above, which is used as a surface light source reflector provided with a light guide plate.
図3は、本発明における導光板の傷つき評価および粒子の脱落評価の方法を示す模式図である。
図4は、本発明における密着斑評価に用いる構成体を示す模式図である。 1 and 2 are examples of electron micrographs of protrusions formed by non-spherical particles in the present invention.
FIG. 3 is a schematic diagram showing a method for evaluating damage of the light guide plate and evaluation of particle dropout according to the present invention.
FIG. 4 is a schematic diagram showing a structure used for adhesion spot evaluation in the present invention.
以下、本発明を構成する各構成成分について詳細に説明する。
[反射層A]
本発明における反射層Aは、熱可塑性樹脂とボイド形成剤とからなり、ボイド形成剤を含有させることによって層中にボイドを含有し、白色を呈するようにした層である。かかるボイド形成剤としては、詳細は後述するが、例えば無機粒子、該反射層Aを構成する熱可塑性樹脂とは非相溶の樹脂(以下、非相溶樹脂と呼称する場合がある。)を用いることができる。また、反射層Aの波長550nmにおける反射率は、好ましくは95%以上、さらに好ましくは96%以上、特に好ましくは97%以上である。これにより白色反射フィルムの反射率を好ましい範囲としやすくなる。
反射層Aは、上述のとおり層中にボイドを有するものであるが、かかるボイドの体積が反射層Aの体積に対して占める割合(ボイド体積率)は15体積%以上、70体積%以下であることが好ましい。このような範囲とすることで反射率の向上効果を高くすることができ、上記のような反射率が得やすくなる。また、製膜延伸性の向上効果を高くすることができる。ボイド体積率が低すぎる場合は、好ましい反射率が得難くなる傾向にある。このような観点から、反射層Aにおけるボイド体積率は、さらに好ましくは30体積%以上、特に好ましくは40体積%以上である。他方、高すぎる場合は、製膜延伸性の向上効果が低くなる傾向にある。このような観点から、反射層Aにおけるボイド体積率は、さらに好ましくは65体積%以下、特に好ましくは60体積%以下である。
ボイド体積率は、反射層Aにおけるボイド形成剤の種類や大きさ、量を調整することにより達成することができる。
(熱可塑性樹脂)
反射層Aを構成する熱可塑性樹脂としては、例えばポリエステル、ポリオレフィン、ポリスチレン、アクリルからなる熱可塑性樹脂を挙げることができる。中でも、機械的特性および熱安定性に優れた白色反射フィルムを得る観点から、ポリエステルが好ましい。
かかるポリエステルとしては、ジカルボン酸成分とジオール成分とからなるポリエステルを用いることが好ましい。このジカルボン酸成分としては、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、アジピン酸、セバシン酸等に由来する成分を挙げることができる。ジオール成分としては、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール等に由来する成分を挙げることができる。これらのポリエステルのなかでも芳香族ポリエステルが好ましく、特にポリエチレンテレフタレートが好ましい。ポリエチレンテレフタレートはホモポリマーであってもよいが、フィルムを1軸あるいは2軸に延伸する際に結晶化が抑制されて製膜延伸性の向上効果が高くなる観点から、共重合ポリマーが好ましい。共重合成分としては、上記のジカルボン酸成分やジオール成分が挙げられるが、耐熱性が高く、製膜延伸性の向上効果が高いという観点から、イソフタル酸成分、2,6−ナフタレンジカルボン酸成分が好ましい。共重合成分の割合は、ポリエステルの全ジカルボン酸成分100モル%を基準として、例えば1~20モル%、好ましくは2~18モル%、さらに好ましくは3~15モル%、特に好ましくは7~11モル%である。共重合成分の割合をこの範囲とすることによって、製膜延伸性の向上効果に優れる。また、熱寸法安定性に優れる。
(ボイド形成剤)
反射層Aにおいて、ボイド形成剤として無機粒子を用いる場合、無機粒子としては白色無機粒子が好ましい。この白色無機粒子としては、硫酸バリウム、二酸化チタン、二酸化珪素、炭酸カルシウムの粒子を例示することができる。これら無機粒子は、白色反射フィルムが適切な反射率を有するように平均粒子径や含有量を選択すればよく、これらは特に限定はされない。好ましくは、反射層Aや白色反射フィルムの反射率が本発明における好ましい範囲となるようにすればよい。また、反射層Aにおけるボイド体積率が本発明における好ましい範囲となるようにすればよい。これらのことを勘案して、無機粒子の平均粒子径は、例えば0.2~3.0μm、好ましくは0.3~2.5μm、さら好ましくは0.4~2.0μmである。またその含有量は、反射層Aの質量を基準として、20~60質量%が好ましく、25~55質量%がさらに好ましく、最も好ましくは31~53質量%である。また、上述のような粒子の態様を採用することにより、粒子をポリエステル中で適度に分散させることが可能であり、粒子の凝集が起こり難く、粗大突起のないフィルムを得ることができる。また、粗大粒子が起点となる延伸時の破断も抑制される。無機粒子は、どのような粒子形状でもあってもよく、例えば、板状、球状であってもよい。無機粒子は、分散性を向上させるための表面処理を行ってあってもよい。
ボイド形成剤として非相溶樹脂を用いる場合、非相溶樹脂としては、層を構成する熱可塑性樹脂と非相溶であれば特に限定されない。例えば、かかる熱可塑性樹脂がポリエステルである場合は、ポリオレフィン、ポリスチレンなどが好ましい。これらは粒子の態様でもよい。またその含有量は、無機粒子の場合と同様に、白色反射フィルムが適切な反射率を有するように、平均粒子径や含有量を選択すればよく、これらは特に限定はされない。好ましくは、反射層Aや白色反射フィルムの反射率が本発明における好ましい範囲となるようにすればよい。また、反射層Aにおけるボイド体積率が本発明における好ましい範囲となるようにすればよい。これらのことを勘案して、含有量は、反射層Aの質量を基準として、10~50質量%が好ましく、12~40質量%が更に好ましく、最も好ましくは13~35質量%である。
(その他の成分)
反射層Aは、本発明の目的を阻害しない限りにおいて、その他の成分、例えば紫外線吸収剤、酸化防止剤、帯電防止剤、蛍光増白剤、ワックス、ボイド形成剤とは異なる粒子や樹脂等を含有することができる。
[表面層B]
本発明における表面層Bは、樹脂に粒子を含有する樹脂組成物からなり、該粒子により表面に突起が形成された層である。かかる樹脂としては、熱可塑性樹脂が好ましい。また、架橋剤によって架橋構造を有していてもよい。その場合は、架橋剤の反応性基と反応し得る官能基を有する熱可塑性樹脂を用いて、架橋剤と熱可塑性樹脂とによる架橋構造を形成してもよいし、架橋剤の反応性基と反応し得る官能基を有しない熱可塑性樹脂を用いて、熱可塑性樹脂のマトリックスと、架橋剤が架橋した架橋構造のマトリックスとを有する態様でもよい。架橋構造を有すると、表面層Bの強度が向上する傾向にある。一方、架橋構造を多く有しすぎると、フィルムを回収再生した際に未溶融物が多くなるなどフィルムの回収性に劣る傾向が見られ、かかる観点においては架橋構造を多くし過ぎないことが好ましい。
表面層Bは、フィルムの製造中あるいは製造後に塗液の塗布によって形成することもできるし、例えば共押出法等を採用し、反射層Aと同時に形成してもよい。上述のように表面層Bが架橋構造を有するには、塗液の塗布によって形成するのが好ましい。架橋剤の含有量としては、上記のような観点から、塗液を構成する固形分を基準として、好ましくは35質量%以下、より好ましくは30質量%以下、さらに好ましくは25質量%以下、特に好ましくは20質量%以下である。また、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上、特に好ましくは5質量%以上である。
(熱可塑性樹脂)
表面層Bを構成する熱可塑性樹脂としては、上述した反射層Aを構成する熱可塑性樹脂と同様の熱可塑性樹脂を用いることができる。中でも、アクリル、ポリエステルが好ましく、特に機械的特性および熱安定性に優れた白色反射フィルムを得る観点から、ポリエステルが好ましい。
かかるポリエステルとしては、上述の反射層Aにおけるポリエステルと同様のポリエステルを用いることができる。これらのポリエステルのなかでも、機械的特性および熱安定性に優れる白色反射フィルムを得る観点から、芳香族ポリエステルが好ましく、特にポリエチレンテレフタレートが好ましい。ポリエチレンテレフタレートはホモポリマーであってもよいが、表面層Bを適度に軟らかくし、粒子脱落を抑制する効果が得られる点から、共重合ポリマーが好ましく、特に共重合ポリエチレンテレフタレートが好ましい。これにより導光板と擦れる等の外力が加わったとしても、粒子が脱落し難くなる。かかる共重合成分としては、上記のジカルボン酸成分やジオール成分が挙げられるが、耐熱性が高く、製膜延伸性の向上効果が高いという観点から、イソフタル酸成分、2,6−ナフタレンジカルボン酸成分が好ましい。共重合成分の割合は、ポリエステルの全ジカルボン酸成分100モル%を基準として、例えば1~20モル%、好ましくは2~18モル%、さらに好ましくは3~17モル%、特に好ましくは12~16モル%である。共重合成分の割合をこの範囲とすることによって、製膜延伸性の向上効果に優れる。また、熱寸法安定性に優れる。
また、フィルムの製造中あるいは製造後の塗液の塗布によって表面層Bを形成する場合については、上記効果を得る目的において、また、塗液の安定性を向上する目的において、これらポリエステルの側鎖あるいは主鎖に親溶媒性を向上させる機能を有する基を有することが好ましい。ここで親溶媒性を向上させる機能を有する基としては、スルフォン酸金属塩の基(好ましくはスルフォン酸ナトリウム塩)、水酸基、アルキルエーテルの基、カルボン酸塩の基等が好ましく挙げられる。本発明において特に好ましくは、スルフォン酸金属塩の基を有するイソフタル酸成分を、ポリエステルの全酸成分100モル%に対して、好ましくは3~30モル%、より好ましくは5~20モル%、さらに好ましくは5~15モル%含有する態様である。また、ジエチレングリコール成分を含有することも同様の観点から好ましく、かかる成分を、ポリエステルの全酸成分100モル%に対して、好ましくは3~30モル%、より好ましくは5~20モル%、さらに好ましくは5~15モル%含有する態様が好ましい。
(非球状粒子)
本発明においては、表面層Bにおける粒子が、平均粒子径3~100μmの非球状粒子であることが必要である。平均粒子径が上記範囲にあることによって、後述する突起個数の態様を形成し易くなり、ギャップ確保がよりし易くなる。平均粒子径が大きすぎると、粒子脱落が起こり易く、画面上の欠点の原因となる。他方、平均粒子径が小さすぎると、そもそもの目的である導光板とのギャップ確保が困難となる。かかる観点から、より好ましくは5μm以上、さらに好ましくは7μm以上、特に好ましくは8μm以上であり、また、より好ましくは80μm以下、さらに好ましくは70μm以下、特に好ましくは50μm以下である。
また、最外層表面において突起を形成する粒子が非球状粒子であることによって、導光板とのギャップ確保をしつつ、導光板の傷付き抑制効果を高めることができる。ここで本発明において非球状粒子とは、粒子の最大径Dx(x方向とする)、および、x方向に垂直な方向(y方向およびz方向とする。z方向はy方向にも垂直な方向である。)における最大径DyおよびDz(ただしDy≧Dzとする)として、これら各方向における最大径の差(Dx−Dy、Dx−Dz、Dy−Dz)の少なくともいずれか1つが、Dxの20%を超えるものをいうこととする。
このような非球状粒子によって上記のような効果が得られるのは、次のメカニズムによるものと考えられる。すなわち、粒子の形状を非球状とすることで、導光板との接触面積が広くなり、圧力分散が起こることで傷が入りにくくなると考えられる。粒子の形状が上記のように定められる非球状であると、粒子はある一方向に最大径を有することになるが、表面層B中に含有される場合、確率的にかかる最大径方向は表面層Bの面方向と略平行な方向となり易い。そのため、かかる粒子から形成される突起と導光板との接触面積が広くなり、圧力が分散されるということである。対して、粒子が球状の場合は、導光板と接触する部分の面積が狭くなってしまうため、圧力が集中し傷が入りやすい。そうすると、たとえ柔らかい粒子を用いたとしても、球状であることにより導光板への傷付きが生じ易くなる。
本発明は、表面層Bにおいて上述したような特定の粒子の態様を具備することによって、突起の頂点の狭い範囲に集中して導光板が接触するよりもむしろ、突起数は保持しながら、突起と導光板との接触面積を増やすことで圧力分散される態様とし、導光板との接触点の数としては適しているためにギャップ確保を達成しながら、各突起による導光板への圧力を小さくすることで、導光板の傷付きを抑制するというものである。上記範囲にないと、例えば突起の頂点の狭い範囲だけに集中して導光板が接触する態様となり、その部分にかかる圧力が高くなり、削れ易くなってしまう。
本発明においては、導光板の傷付き抑制効果および導光板との貼り付き抑制効果をさらに高めるために、粒子のアスペクト比(長径/短径)の平均が1.31以上、1.80以下であることが好ましい。かかるアスペクト比は、より好ましくは1.35以上、また、より好ましくは1.75以下である。上記効果の為にはアスペクト比は大きい方が好ましいが、大きすぎると最外層表面における高さ5μm以上の突起個数を維持するのが困難となる傾向にある。なお、ここでアスペクト比は、後述する電子顕微鏡を用いた観測によって求められるものである。また、かかる観測における粒子の最大径を長径とし、かかる最大径に直交する方向における最大径を短径とする。
また同時に、粒子の形状に適度なばらつきがあると、すなわち粒子の形状が適度に不揃いであることとなり、それにより特定の粒子に圧力がかかり難くなり、導光板に傷を付け難くなると推測される。
そこで、かかる粒子は、アスペクト比の標準偏差が0.15~0.50であることが好ましい。すなわちこれは、各々の粒子の形状に適度なばらつきがあることを表わす。突起を形成する粒子の形状が適度にばらついていることによって、導光板とのギャップ確保をしつつ、導光板の傷付き抑制効果をさらに高めることができる。ばらつきが少ないと、ギャップ確保と傷付き抑制の向上効果が低くなる。他方、ばらつきが大きすぎても、表面層Bへ添加の際に不具合が生じ易くなり、想定する突起頻度が得られ難くなる傾向となり、結果としてギャップ確保や傷付き抑制の向上効果が奏され難くなる。かかる観点から、粒子のアスペクト比の標準偏差は、より好ましくは0.16以上、さらに好ましくは0.17以上であり、また、より好ましくは0.45以下、さらに好ましくは0.43以下である。
また、本発明においては、上記粒子の10%圧縮強度が0.1~15MPaであることが必要である。これによりギャップ確保ができ、また、導光板への傷付きを抑制することができる。圧縮強度が低すぎると、応力に対して変形しすぎてしまうため、本来の目的である導光板とのギャップ確保が困難となる。他方、圧縮強度が高すぎると、非球状粒子であっても導光板に傷がつきやすくなってしまう。かかる観点から、10%圧縮強度は、好ましくは0.2MPa以上、より好ましくは0.3MPa以上、さらに好ましくは3MPa以上、特に好ましくは8MPa以上であり、また、好ましくは14MPa以下、より好ましくは13MPa以下、さらに好ましくは12MPa以下である。
本発明における、表面層B中の非球状粒子の含有量は、上述したような平均粒子径の粒子を用いて、後述する突起個数の態様を満足するように適宜調整することができる。例えば、粒子の平均粒子径に対して表面層B厚みが薄い傾向にある場合は、突起が形成され易い傾向にあるため、含有量は比較的少なめであってもよいし、その逆である場合は、含有量は多めの方が好ましく、このような傾向を勘案して適宜調整することができる。具体的には、表面層Bの質量を基準として、1~70質量%が好ましく、より好ましくは5質量%以上、さらに好ましくは10質量%以上、特に好ましくは20質量%以上であり、また、より好ましくは60質量%以下、さらに好ましくは50質量%以下、特に好ましくは30質量%以下である。
本発明において表面層Bが含有する粒子は、その種類を問わず有機粒子であっても、無機粒子であっても、有機無機複合粒子であってもよい。上述のような粒子の態様を満足しやすいという観点から、アクリル、ポリエステル、ポリウレタン、ナイロン、ポリオレフィン、ポリエーテル等のポリマーからなるポリマー粒子が好ましい。より好ましくはポリエステル、ナイロンであり、より適した10%圧縮強度が得易い。特に好ましくはポリエステル(中でもポリエチレンテレフタレート)であり、回収製膜性に優れるという利点がある。
また、本発明においては、上述の粒子の形状を達成する方法としては特に限定されるものではないが、特に好ましい形状を有する粒子が得易い観点、および、製造コストや生産性の観点から、固体のポリマーを粉砕して粒子を得る方法が好ましい。かかる工程によって得られた粒子を粉砕ポリマー粒子ということとする。かかる工程は、より具体的には、重合後、例えばペレット化されたポリマー片を、好ましくは熱処理によって結晶化させ、常温ないし常温よりも低温にて粉砕する方法が好ましい。より粉砕し易い観点からは、常温よりも低温で粉砕することが好ましく、かかる低温を得る方法として液体窒素により冷却する方法を好ましく挙げることができる。
また、上述したペレット化されたポリマー片以外にも、成型されたポリマー組成物、製膜されたポリマーフィルム、製糸されたポリマーファイバーなどを粉砕しても目的とする粉砕ポリマー粒子を作成できる。このように粉砕するポリマーの態様を選択する(例えばペレットにおいては大きさ、フィルムにおいては厚み、ファイバーにおいては径を変更することを含む。)ことによって、種々の非球状の態様(アスペクト比)を具備する粒子を得ることができ、また、粒子の形状のばらつき(標準偏差)も調整する事が可能となる。
粉砕ポリマー粒子のポリマーは、共重合や2種のポリマーのブレンド体でも良く、また、粉砕ポリマー粒子内部に、それよりも小さい径の無機粒子や有機粒子を含んでいたり、紫外線吸収剤や滑り剤などを含んでいても良い。
(表面層Bの態様)
本発明においては、上述したような粒子を含有する樹脂組成物からなる表面層Bが、白色反射フィルムの少なくとも一方の最外層を形成する。そして、かかる最外層を形成する表面層Bの反射層Aとは反対側の表面(以下、最外層表面と呼称する場合がある。)には、上記粒子により形成された突起を有する。そしてかかる突起は、導光板とフィルムとのギャップ確保の観点から、最外層表面において適度な高さの突起を適度な頻度で有することが必要である。
そこで本発明においては、最外層表面において、高さ5μm以上の突起個数(突起頻度)が104~1010個/m2であることが通常必要である。これにより導光板とフィルムとのギャップを十分に確保することができ、貼り付き抑制効果を確保できる。突起頻度が少なすぎると貼り付き抑制効果に劣る。他方、突起頻度が多すぎると、粒子脱落の確率が向上したり、また反射率が低下したりする傾向にある。
(その他の成分)
表面層Bは、上記構成成分以外の成分を、本発明の目的を阻害しない範囲において含有していてもよい。かかる成分としては、例えば紫外線吸収剤、酸化防止剤、帯電防止剤、蛍光増白剤、ワックス、界面活性剤、上記粒子とは異なる粒子や樹脂等を挙げることができる。
[層構成]
本発明における反射層Aの厚みは、80~350μmであることが好ましい。これにより反射率の向上効果を高くすることができる。薄すぎると反射率の向上効果が低く、他方厚すぎることは非効率である。このような観点から、より好ましくは80~300μm、さらに好ましくは100~320μm、特に好ましくは150~250μmである。
本発明における表面層Bの厚みは、5~100μmであることが好ましい。より好ましくは5~80μmである。この場合、表面層Bの厚みは、粒子の粒子径とその表面を被覆する樹脂部の厚みの和となる。
また、表面層Bの粒子を保持している樹脂部の厚みは0.2~50μmであることが好ましい。これにより、突起頻度を好ましい態様とし易くなり、導光板とのギャップ確保がし易くなる。表面層Bの上記樹脂部の厚みが薄すぎると、表面層Bの表面に形成した突起中の粒子脱落が発生しやすくなる傾向にある。他方、厚すぎると好ましい突起頻度が得難くなる傾向にある。かかる観点から、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上、特に好ましくは1μm以上、最も好ましくは2μm以上であり、また、より好ましくは40μm以下である。さらに脱落性を考慮すると、1μm以上が好ましく、2μm以上が好ましい。
白色反射フィルムの積層構成は、反射層AをA、表面層BをBと表わした際に、B/Aの2層構成、B/A/Bの3層構成、またBを少なくともいずれか片方の最外層に配した4層以上の多層構成を挙げることができる。特に好ましくは、さらに製膜性安定化のための支持層C(Cと表わす)を有し、B/C/AやB/A/Cの3層構成、B/C/A/Cの4層構成である。最も好ましくはB/C/A/Cの4層構成であり、製膜延伸性により優れる。また、カール等の問題が生じ難い。本発明においては、このような支持層Cを有する態様が好ましい。かかる支持層Cとしては、好ましくは反射層Aと同様のポリエステルからなり、ボイド体積率の比較的低い(好ましくは0体積%以上、15体積%未満、さらに好ましくは5体積%以下、特に好ましくは3体積%以下である)態様が好ましい。また、かかる支持層Cの厚み(複数有する場合は合計の厚み)としては、5~140μmが好ましく、20~140μmがより好ましい。
本発明においては、反射層A、表面層B、および支持層C以外に、本発明の目的を損なわない限りにおいて他の層を有していてもよい。例えば、易接着性、巻き取り性(滑り性)、帯電防止性、導電性、紫外線耐久性等の機能を付与するための層や、光学特性の調整をするための層を有していてもよい。
[フィルムの製造方法]
以下、本発明の白色反射フィルムを製造する方法の一例を説明する。
本発明の白色反射フィルムを製造するに際しては、溶融押出法等によって得られた反射層Aに、溶融樹脂コーティング法(溶融押出樹脂コーティング法を含む)、共押出法およびラミネート法、また表面層Bを形成するための塗液を用いて、塗液コーティング法によって表面層Bを形成することができる。なかでも、反射層Aと支持層Cとを共押出法により積層して製造されたものに、塗液コーティング法によって表面層Bを積層する方法が特に好ましい。塗液コーティング法で表面層Bを積層することによって、乾燥条件等の変更により粒子の分布状態を制御しやすく、所定の突起個数を安価にまた容易に量産できる。また、10%圧縮強度の比較的小さい粒子であっても取り扱うことが容易となる。さらに、本発明における特定の粒子の形状が保持されやすくなり、突起の態様を好ましい態様とし易くなる。
以下に、反射層Aを構成する熱可塑性樹脂および支持層Cを構成する熱可塑性樹脂としてポリエステルを採用し、反射層Aと支持層Cの積層方法として共押出法を採用し、表面層Bの積層方法として塗液コーティング法を採用した場合の製法について説明するが、本発明はかかる製法に限定はされず、また下記を参考に他の態様についても同様に製造することができる。その際、押出工程を含まない場合は、以下の「溶融押出温度」は、例えば「溶融温度」と読み替えればよい。なお、ここで、用いるポリエステルの融点をTm(単位:℃)、ガラス転移温度をTg(単位:℃)とする。
まず、反射層Aを形成するためのポリエステル組成物として、ポリエステルと、ボイド形成剤と、他の任意成分を混合したものを用意する。また、支持層Cを形成するためのポリエステル組成物として、ポリエステルと、任意にボイド形成剤と、他の任意成分を混合したものを用意する。これらポリエステル組成物は、乾燥して十分に水分を除去して用いる。
次に、乾燥したポリエステル組成物を、それぞれ別の押出機に投入し、溶融押出する。溶融押出温度は、Tm以上が必要であり、Tm+40℃程度とすればよい。
またこのとき、フィルムの製造に用いるポリエステル組成物、特に反射層Aに用いるポリエステル組成物は、線径15μm以下のステンレス鋼細線よりなる平均目開き10~100μmの不織布型フィルターを用いて濾過を行うことが好ましい。この濾過を行うことで、通常は凝集して粗大凝集粒子となりやすい粒子の凝集を抑え、粗大異物の少ないフィルムを得ることができる。なお、不織布の平均目開きは、好ましくは20~50μm、さらに好ましくは15~40μmである。濾過したポリエステル組成物は、溶融した状態でフィードブロックを用いた同時多層押出法(共押出法)により、ダイから多層状態で押し出し、未延伸積層シートを製造する。ダイより押し出された未延伸積層シートを、キャスティングドラムで冷却固化し、未延伸積層フィルムとする。
次いで、この未延伸積層フィルムをロール加熱、赤外線加熱等で加熱し、製膜機械軸方向(以下、縦方向または長手方向またはMDと呼称する場合がある。)に延伸して縦延伸フィルムを得る。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。縦延伸後のフィルムは、続いてテンターに導かれ、縦方向と厚み方向とに垂直な方向(以下、横方向または幅方向またはTDと呼称する場合がある。)に延伸して、二軸延伸フィルムとする。
延伸温度としては、ポリエステル(好ましくは反射層Aを構成するポリエステル)のTg以上、Tg+30℃以下の温度で行うことが好ましく、製膜延伸性により優れ、またボイドが好ましく形成されやすい。また、延伸倍率としては、縦方向、横方向ともに、好ましくは2.5~4.3倍、さらに好ましくは2.7~4.2倍である。延伸倍率が低すぎるとフィルムの厚み斑が悪くなる傾向にあり、またボイドが形成され難い傾向にあり、他方高すぎると製膜中に破断が発生し易くなる傾向にある。なお、縦延伸を実施しその後横延伸を行うような逐次2軸延伸の際には、2段目(この場合は、横延伸)は1段目の延伸温度よりも10~50℃程度高くする事が好ましい。これは1段目の延伸で配向した事により1軸フィルムとしてのTgがアップしている事に起因する。
また、各延伸の前にはフィルムを予熱することが好ましい。例えば横延伸の予熱処理はポリエステル(好ましくは反射層Aを構成するポリエステル)のTg+5℃より高い温度から始めて、徐々に昇温するとよい。横延伸過程での昇温は連続的でも段階的(逐次的)でもよいが通常逐次的に昇温する。例えばテンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。
二軸延伸後のフィルムは、続いて、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、溶融押出から延伸に引き続いて、これらの処理もフィルムを走行させながら行うことができる。
二軸延伸後のフィルムは、クリップで両端を把持したままポリエステル(好ましくは反射層Aを構成するポリエステル)の融点をTmとして(Tm−20℃)~(Tm−100℃)で、定幅または10%以下の幅減少下で熱処理して、熱固定し、熱収縮率を低下させるのがよい。かかる熱処理温度が高すぎるとフィルムの平面性が悪くなる傾向にあり、厚み斑が大きくなる傾向にある。他方低すぎると熱収縮率が大きくなる傾向にある。
また、熱収縮量を調整するために、把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる。弛緩させる手段としてはテンター出側のロール群の速度を調整する。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1~2.5%、さらに好ましくは0.2~2.3%、特に好ましくは0.3~2.0%の速度ダウンを実施してフィルムを弛緩(この値を「弛緩率」という)して、弛緩率をコントロールすることによって縦方向の熱収縮率を調整する。また、フィルム横方向は両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることができる。
なお、二軸延伸に際しては、上記のような縦−横の逐次二軸延伸法以外にも、横−縦の逐次二軸延伸法でもよい。また、同時二軸延伸法を用いて製膜することもできる。同時二軸延伸法の場合、延伸倍率は、縦方向、横方向ともに例えば2.7~4.3倍、好ましくは2.8~4.2倍である。
表面層Bは、上述の工程の縦延伸の後、縦延伸フィルムに表面層Bを形成するための塗液を塗布し、予熱工程、横延伸工程、熱固定工程等においてかかる熱により乾燥・硬化を行う、いわゆるインライン塗布法により形成することができ、好ましい。塗液は、表面層Bを構成する成分を混合し、塗布し易いように任意に溶媒で希釈して得ることができる。この際、溶媒としては水が好ましく、後述する揮発有機溶剤量を低減することができる。塗液の塗布方法としては特に限定はされないが、好ましい方法として、リバースロールコート法、グラビアコート法、ダイコート法、スプレーコート法等を挙げることができる。また、表面層Bは、二軸延伸し、熱固定して得られた二軸配向フィルムに、いわゆるオフライン塗布法により形成してもよい。なお、オフライン塗布法では、フィルムが変形してしまう等の理由により乾燥に高い熱をかけることが困難であるため、溶媒としては通常乾燥させやすい有機溶剤が用いられる。しかしながらそうすると、後述する揮発有機溶剤量が多くなる傾向にあるため、本発明においては、インライン塗布法が特に好ましい。
かくして本発明の白色反射フィルムを得ることができる。
[白色反射フィルムの特性]
(反射率、輝度)
本発明の白色反射フィルムの、表面層B側から測定した反射率(波長550nmにおける反射率)は、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらに好ましくは97.5%以上、特に好ましくは98%以上である。反射率が95%以上や96%以上であることによって、液晶表示装置や照明等に用いた場合には、高い輝度を得ることができる。かかる反射率は、反射層Aのボイド体積率を高くする等好ましい態様としたり、反射層Aの厚みを厚くしたり、表面層Bの厚みを薄くしたり等各層の態様を好ましい態様とすること等により達成できる。
また、表面層B側から測定した輝度は、後述する測定方法により求められるが、5400cd/m2以上が好ましく、5450cd/m2以上がさらに好ましく、5500cd/m2以上が特に好ましい。
上記反射率および輝度は、白色反射フィルムにおいて、導光板と用いるに際しては、導光板側となる側の面における値である。
(揮発有機溶剤量)
本発明の白色反射フィルムは、後述の方法にて測定した揮発有機溶剤量が、好ましくは10ppm以下である。これにより、表面層Bが有機溶剤を用いた塗布法により形成されたものではないことを示すことができる。また、自己回収原料を得て、それを用いてフィルムを製膜するに際して、ガスマークが発生し難くなり、製膜延伸性(回収製膜性)が向上する。かかる観点から、より好ましくは5ppm以下、さらに好ましくは3ppm以下であり、理想的には0ppmである。本発明においては、揮発有機溶剤量を少なくするために、表面層Bの形成において、有機溶剤を用いた溶液コーティング法を採用せずに、上述した方法を採用することが好ましい。 The white reflective film of the present invention has a reflective layer A and a surface layer B.
Hereafter, each structural component which comprises this invention is demonstrated in detail.
[Reflection layer A]
The reflective layer A in the present invention is a layer that is composed of a thermoplastic resin and a void forming agent and contains a void forming agent so as to exhibit a white color. The void forming agent will be described in detail later. For example, inorganic particles and a resin that is incompatible with the thermoplastic resin that constitutes the reflective layer A (hereinafter may be referred to as an incompatible resin). Can be used. The reflectance of the reflective layer A at a wavelength of 550 nm is preferably 95% or higher, more preferably 96% or higher, and particularly preferably 97% or higher. Thereby, it becomes easy to make the reflectance of a white reflective film into a preferable range.
The reflection layer A has voids in the layer as described above, and the proportion of the void volume to the volume of the reflection layer A (void volume ratio) is 15% by volume or more and 70% by volume or less. Preferably there is. By setting it as such a range, the improvement effect of a reflectance can be made high and it becomes easy to obtain the above reflectances. Moreover, the improvement effect of film forming stretchability can be heightened. When the void volume ratio is too low, a preferable reflectance tends to be difficult to obtain. From such a viewpoint, the void volume ratio in the reflective layer A is more preferably 30% by volume or more, and particularly preferably 40% by volume or more. On the other hand, if it is too high, the effect of improving the film-forming stretchability tends to be low. From such a viewpoint, the void volume ratio in the reflective layer A is more preferably 65% by volume or less, and particularly preferably 60% by volume or less.
The void volume ratio can be achieved by adjusting the type, size, and amount of the void forming agent in the reflective layer A.
(Thermoplastic resin)
Examples of the thermoplastic resin constituting the reflective layer A include thermoplastic resins made of polyester, polyolefin, polystyrene, and acrylic. Among these, polyester is preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
As such a polyester, it is preferable to use a polyester comprising a dicarboxylic acid component and a diol component. Examples of the dicarboxylic acid component include components derived from terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, sebacic acid, and the like. Examples of the diol component include components derived from ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and the like. Among these polyesters, aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable. The polyethylene terephthalate may be a homopolymer, but is preferably a copolymer from the viewpoint of suppressing the crystallization when the film is stretched uniaxially or biaxially and improving the film-forming stretchability. Examples of the copolymer component include the dicarboxylic acid component and the diol component described above. From the viewpoint of high heat resistance and a high effect of improving film-forming stretchability, an isophthalic acid component and a 2,6-naphthalenedicarboxylic acid component are used. preferable. The proportion of the copolymerization component is, for example, 1 to 20 mol%, preferably 2 to 18 mol%, more preferably 3 to 15 mol%, particularly preferably 7 to 11 based on 100 mol% of the total dicarboxylic acid component of the polyester. Mol%. By making the ratio of a copolymerization component into this range, it is excellent in the improvement effect of film forming stretchability. Moreover, it is excellent in thermal dimensional stability.
(Void forming agent)
In the reflective layer A, when inorganic particles are used as the void forming agent, white inorganic particles are preferable as the inorganic particles. Examples of the white inorganic particles include barium sulfate, titanium dioxide, silicon dioxide, and calcium carbonate particles. These inorganic particles should just select an average particle diameter and content so that a white reflective film may have an appropriate reflectance, and these are not specifically limited. Preferably, the reflectance of the reflective layer A or the white reflective film may be within a preferable range in the present invention. Moreover, what is necessary is just to make it the void volume ratio in the reflection layer A become the preferable range in this invention. Considering these facts, the average particle diameter of the inorganic particles is, for example, 0.2 to 3.0 μm, preferably 0.3 to 2.5 μm, and more preferably 0.4 to 2.0 μm. The content thereof is preferably 20 to 60% by mass, more preferably 25 to 55% by mass, and most preferably 31 to 53% by mass based on the mass of the reflective layer A. In addition, by adopting the above-described particle mode, it is possible to appropriately disperse the particles in the polyester, and it is difficult for the particles to aggregate and a film without coarse protrusions can be obtained. Moreover, the fracture | rupture at the time of extending | stretching from which a coarse particle starts is also suppressed. The inorganic particles may have any particle shape, for example, a plate shape or a spherical shape. The inorganic particles may be subjected to a surface treatment for improving dispersibility.
When an incompatible resin is used as the void forming agent, the incompatible resin is not particularly limited as long as it is incompatible with the thermoplastic resin constituting the layer. For example, when the thermoplastic resin is polyester, polyolefin, polystyrene, or the like is preferable. These may be in the form of particles. Moreover, the content should just select an average particle diameter and content so that a white reflective film may have a suitable reflectance similarly to the case of an inorganic particle, These are not specifically limited. Preferably, the reflectance of the reflective layer A or the white reflective film may be within a preferable range in the present invention. Moreover, what is necessary is just to make it the void volume ratio in the reflection layer A become the preferable range in this invention. Considering these facts, the content is preferably 10 to 50% by mass, more preferably 12 to 40% by mass, and most preferably 13 to 35% by mass based on the mass of the reflective layer A.
(Other ingredients)
As long as the purpose of the present invention is not hindered, the reflective layer A is made of other components such as UV absorbers, antioxidants, antistatic agents, fluorescent brighteners, waxes, particles and resins different from the void forming agents. Can be contained.
[Surface layer B]
The surface layer B in the present invention is a layer made of a resin composition containing particles in a resin and having protrusions formed on the surface by the particles. As such a resin, a thermoplastic resin is preferable. Moreover, you may have a crosslinked structure with a crosslinking agent. In that case, using a thermoplastic resin having a functional group capable of reacting with the reactive group of the crosslinking agent, a crosslinked structure of the crosslinking agent and the thermoplastic resin may be formed, or the reactive group of the crosslinking agent and An embodiment having a thermoplastic resin matrix and a crosslinked structure matrix in which a crosslinking agent is crosslinked may be used by using a thermoplastic resin having no functional group capable of reacting. When it has a crosslinked structure, the strength of the surface layer B tends to be improved. On the other hand, when there are too many cross-linked structures, there is a tendency that the film recoverability tends to be inferior, for example, the amount of unmelted material increases when the film is recovered and regenerated. .
The surface layer B can be formed by applying a coating solution during or after the production of the film. For example, the surface layer B may be formed simultaneously with the reflective layer A by employing a coextrusion method or the like. As described above, in order for the surface layer B to have a crosslinked structure, it is preferably formed by applying a coating liquid. The content of the crosslinking agent is preferably 35% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, in particular, based on the solid content constituting the coating liquid from the above viewpoint. Preferably it is 20 mass% or less. Moreover, it is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 3% by mass or more, and particularly preferably 5% by mass or more.
(Thermoplastic resin)
As the thermoplastic resin constituting the surface layer B, the same thermoplastic resin as the thermoplastic resin constituting the reflective layer A described above can be used. Among these, acrylic and polyester are preferable, and polyester is particularly preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability.
As this polyester, the same polyester as the polyester in the reflective layer A described above can be used. Among these polyesters, aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable from the viewpoint of obtaining a white reflective film excellent in mechanical properties and thermal stability. Polyethylene terephthalate may be a homopolymer, but a copolymer is preferable from the viewpoint that the surface layer B is appropriately softened and an effect of suppressing particle dropout is obtained, and copolymerized polyethylene terephthalate is particularly preferable. As a result, even if an external force such as rubbing against the light guide plate is applied, the particles are difficult to drop off. Examples of the copolymer component include the dicarboxylic acid component and the diol component described above. From the viewpoint of high heat resistance and a high effect of improving the film-forming stretchability, the isophthalic acid component and the 2,6-naphthalenedicarboxylic acid component. Is preferred. The ratio of the copolymerization component is, for example, 1 to 20 mol%, preferably 2 to 18 mol%, more preferably 3 to 17 mol%, particularly preferably 12 to 16 mol% based on 100 mol% of the total dicarboxylic acid component of the polyester. Mol%. By making the ratio of a copolymerization component into this range, it is excellent in the improvement effect of film forming stretchability. Moreover, it is excellent in thermal dimensional stability.
In the case of forming the surface layer B during the production of the film or by the application of the coating liquid after the production, the side chains of these polyesters are used for the purpose of obtaining the above effects and for improving the stability of the coating liquid. Alternatively, the main chain preferably has a group having a function of improving solvophilicity. Examples of the group having a function of improving the solvophilicity include a sulfonic acid metal salt group (preferably sulfonic acid sodium salt), a hydroxyl group, an alkyl ether group, and a carboxylate group. In the present invention, the isophthalic acid component having a sulfonic acid metal salt group is particularly preferably 3 to 30 mol%, more preferably 5 to 20 mol%, based on 100 mol% of the total acid component of the polyester. Preferably, the content is 5 to 15 mol%. It is also preferable to contain a diethylene glycol component from the same viewpoint, and such a component is preferably 3 to 30 mol%, more preferably 5 to 20 mol%, still more preferably based on 100 mol% of the total acid component of the polyester. Is preferably 5 to 15 mol%.
(Non-spherical particles)
In the present invention, the particles in the surface layer B are required to be non-spherical particles having an average particle diameter of 3 to 100 μm. When the average particle diameter is in the above range, it becomes easy to form an aspect of the number of protrusions described later, and it becomes easier to secure a gap. If the average particle size is too large, the particles are likely to fall off, causing a defect on the screen. On the other hand, if the average particle size is too small, it is difficult to secure a gap with the light guide plate, which is the original purpose. From this viewpoint, it is more preferably 5 μm or more, further preferably 7 μm or more, particularly preferably 8 μm or more, more preferably 80 μm or less, still more preferably 70 μm or less, and particularly preferably 50 μm or less.
Moreover, the particle | grains which form a processus | protrusion in the outermost layer surface can increase the damage suppression effect of a light-guide plate, ensuring a gap with a light-guide plate. Here, in the present invention, the non-spherical particles are the maximum particle diameter Dx (assumed to be the x direction) and directions perpendicular to the x direction (the y direction and the z direction. The z direction is also a direction perpendicular to the y direction). As the maximum diameters Dy and Dz (where Dy ≧ Dz), at least one of the maximum diameter differences in these directions (Dx−Dy, Dx−Dz, Dy−Dz) is Dx It shall mean more than 20%.
It is considered that the above-described effects can be obtained by such non-spherical particles due to the following mechanism. That is, by making the shape of the particles non-spherical, it is considered that the contact area with the light guide plate is widened, and pressure dispersion occurs, so that scratches are less likely to occur. If the shape of the particles is non-spherical as defined above, the particles will have a maximum diameter in a certain direction, but when contained in the surface layer B, the maximum diameter direction stochastically takes place on the surface. It tends to be a direction substantially parallel to the surface direction of the layer B. Therefore, the contact area between the protrusions formed from the particles and the light guide plate is widened, and the pressure is dispersed. On the other hand, when the particles are spherical, the area of the portion that comes into contact with the light guide plate is narrowed, so that pressure is concentrated and scratches are likely to occur. Then, even if soft particles are used, the light guide plate is easily damaged due to the spherical shape.
In the surface layer B, the present invention has the specific particle mode as described above, so that the light guide plate is brought into contact with the light guide plate while maintaining the number of protrusions rather than concentrating on a narrow range of the apexes of the protrusions. By increasing the contact area between the light guide plate and the light guide plate, the pressure distribution is achieved, and the number of contact points with the light guide plate is suitable. By doing so, the light guide plate is prevented from being damaged. If it is not in the above range, for example, the light guide plate is brought into contact with only a narrow range of the apexes of the protrusions, and the pressure applied to that portion becomes high, and it becomes easy to scrape.
In the present invention, in order to further enhance the effect of suppressing damage to the light guide plate and the effect of suppressing adhesion to the light guide plate, the average aspect ratio (major axis / minor axis) of the particles is 1.31 or more and 1.80 or less. Preferably there is. The aspect ratio is more preferably 1.35 or more, and more preferably 1.75 or less. A larger aspect ratio is preferable for the above effect, but if it is too large, it tends to be difficult to maintain the number of protrusions having a height of 5 μm or more on the outermost layer surface. In addition, an aspect ratio is calculated | required by observation using the electron microscope mentioned later here. In addition, the maximum diameter of the particles in such observation is the major axis, and the maximum diameter in the direction orthogonal to the maximum diameter is the minor axis.
At the same time, if there are moderate variations in the shape of the particles, that is, the shapes of the particles are moderately irregular, it is assumed that it is difficult to apply pressure to the specific particles, and it is difficult to damage the light guide plate. .
Therefore, such particles preferably have a standard deviation of aspect ratio of 0.15 to 0.50. That is, this indicates that there is a moderate variation in the shape of each particle. By appropriately varying the shape of the particles forming the protrusions, it is possible to further enhance the effect of suppressing damage to the light guide plate while ensuring a gap with the light guide plate. If the variation is small, the effect of improving the gap securing and the suppression of scratches becomes low. On the other hand, even if the variation is too large, defects are likely to occur when added to the surface layer B, and it is difficult to obtain the expected projection frequency, and as a result, it is difficult to achieve the effect of securing gaps and suppressing scratches. Become. From such a viewpoint, the standard deviation of the aspect ratio of the particles is more preferably 0.16 or more, further preferably 0.17 or more, more preferably 0.45 or less, and further preferably 0.43 or less. .
In the present invention, the 10% compressive strength of the particles is required to be 0.1 to 15 MPa. As a result, a gap can be secured, and damage to the light guide plate can be suppressed. If the compressive strength is too low, it will be deformed too much against stress, making it difficult to ensure the gap with the light guide plate, which is the original purpose. On the other hand, if the compressive strength is too high, the light guide plate is likely to be damaged even with non-spherical particles. From this viewpoint, the 10% compressive strength is preferably 0.2 MPa or more, more preferably 0.3 MPa or more, further preferably 3 MPa or more, particularly preferably 8 MPa or more, and preferably 14 MPa or less, more preferably 13 MPa. Hereinafter, it is more preferably 12 MPa or less.
In the present invention, the content of the non-spherical particles in the surface layer B can be appropriately adjusted using the particles having the average particle diameter as described above so as to satisfy the aspect of the number of protrusions described later. For example, when the thickness of the surface layer B tends to be thin with respect to the average particle diameter of the particles, the protrusion may tend to be formed, so the content may be relatively low, and vice versa. The content is preferably larger, and can be appropriately adjusted in consideration of such a tendency. Specifically, 1 to 70% by mass is preferable based on the mass of the surface layer B, more preferably 5% by mass or more, still more preferably 10% by mass or more, and particularly preferably 20% by mass or more. More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less, Most preferably, it is 30 mass% or less.
In the present invention, the particles contained in the surface layer B may be organic particles, inorganic particles, or organic-inorganic composite particles regardless of their types. From the viewpoint of easily satisfying the above-described particle mode, polymer particles made of a polymer such as acrylic, polyester, polyurethane, nylon, polyolefin, and polyether are preferable. More preferred are polyester and nylon, and a more suitable 10% compressive strength is easily obtained. Particularly preferred is polyester (especially polyethylene terephthalate), which has an advantage of excellent recovery film-forming properties.
Further, in the present invention, the method for achieving the above-mentioned particle shape is not particularly limited, but from the viewpoint of easily obtaining particles having a particularly preferable shape, and from the viewpoint of production cost and productivity, A method of pulverizing the polymer to obtain particles is preferred. The particles obtained by this process are referred to as pulverized polymer particles. More specifically, such a step is preferably a method in which, after polymerization, for example, the pelletized polymer piece is crystallized, preferably by heat treatment, and pulverized at normal temperature or lower than normal temperature. From the viewpoint of easier pulverization, pulverization is preferably performed at a temperature lower than normal temperature, and a method of cooling with liquid nitrogen is preferable as a method for obtaining such a low temperature.
In addition to the above-described pelletized polymer pieces, the desired pulverized polymer particles can also be produced by pulverizing a molded polymer composition, a formed polymer film, a formed polymer fiber, and the like. By selecting the mode of the polymer to be pulverized in this way (including changing the size in the pellet, the thickness in the film, and the diameter in the fiber), various non-spherical modes (aspect ratios) can be obtained. The particles can be obtained, and the variation (standard deviation) in the shape of the particles can be adjusted.
The polymer of the pulverized polymer particles may be a copolymer or a blend of two kinds of polymers, and the pulverized polymer particles contain inorganic or organic particles having a smaller diameter, UV absorbers or slip agents. Etc. may be included.
(Aspect of surface layer B)
In the present invention, the surface layer B made of the resin composition containing the particles as described above forms at least one outermost layer of the white reflective film. The surface layer B that forms the outermost layer has protrusions formed of the particles on the surface opposite to the reflective layer A (hereinafter sometimes referred to as the outermost layer surface). Such protrusions need to have protrusions with an appropriate height at an appropriate frequency on the outermost layer surface from the viewpoint of securing a gap between the light guide plate and the film.
Therefore, in the present invention, the number of protrusions having a height of 5 μm or more (protrusion frequency) is 10 on the outermost layer surface. 4 ~ 10 10 Pieces / m 2 Usually it is necessary. Thereby, the gap between the light guide plate and the film can be sufficiently secured, and the sticking suppression effect can be secured. If the projection frequency is too low, the sticking suppression effect is poor. On the other hand, if the protrusion frequency is too high, the probability of particle dropout tends to improve and the reflectance tends to decrease.
(Other ingredients)
The surface layer B may contain components other than the above-described constituent components as long as the object of the present invention is not impaired. Examples of such components include ultraviolet absorbers, antioxidants, antistatic agents, fluorescent brighteners, waxes, surfactants, particles and resins different from the above particles.
[Layer structure]
The thickness of the reflective layer A in the present invention is preferably 80 to 350 μm. Thereby, the improvement effect of a reflectance can be made high. If it is too thin, the effect of improving the reflectance is low, while if it is too thick, it is inefficient. From such a viewpoint, the thickness is more preferably 80 to 300 μm, still more preferably 100 to 320 μm, and particularly preferably 150 to 250 μm.
The thickness of the surface layer B in the present invention is preferably 5 to 100 μm. More preferably, it is 5 to 80 μm. In this case, the thickness of the surface layer B is the sum of the particle diameter of the particles and the thickness of the resin portion covering the surface.
Further, the thickness of the resin part holding the particles of the surface layer B is preferably 0.2 to 50 μm. Thereby, it becomes easy to make a protrusion frequency into a preferable aspect, and it becomes easy to ensure a gap with a light-guide plate. If the thickness of the resin portion of the surface layer B is too thin, the particles in the protrusions formed on the surface of the surface layer B tend to fall off. On the other hand, if it is too thick, it tends to be difficult to obtain a preferable projection frequency. From this viewpoint, it is more preferably 0.3 μm or more, further preferably 0.5 μm or more, particularly preferably 1 μm or more, most preferably 2 μm or more, and more preferably 40 μm or less. Furthermore, when considering drop-off property, 1 μm or more is preferable, and 2 μm or more is preferable.
When the reflective layer A is represented as A and the surface layer B is represented as B, the laminated structure of the white reflective film is a two-layer structure of B / A, a three-layer structure of B / A / B, and at least one of B A multilayer configuration of four or more layers arranged in the outermost layer can be exemplified. Particularly preferably, it further has a support layer C (denoted as C) for stabilizing the film-forming property, and has a three-layer structure of B / C / A and B / A / C, and 4 of B / C / A / C. It is a layer structure. Most preferably, it has a four-layer structure of B / C / A / C, and is excellent in film-forming stretchability. Further, problems such as curling are unlikely to occur. In this invention, the aspect which has such a support layer C is preferable. The support layer C is preferably made of the same polyester as the reflective layer A, and has a relatively low void volume ratio (preferably not less than 0% by volume and less than 15% by volume, more preferably not more than 5% by volume, particularly preferably 3) or less) is preferred. In addition, the thickness of the support layer C (the total thickness when there are a plurality of the support layers C) is preferably 5 to 140 μm, and more preferably 20 to 140 μm.
In the present invention, in addition to the reflective layer A, the surface layer B, and the support layer C, other layers may be included as long as the object of the present invention is not impaired. For example, it may have a layer for imparting functions such as easy adhesion, winding property (sliding property), antistatic property, electrical conductivity, ultraviolet durability, and a layer for adjusting optical properties. Good.
[Film Production Method]
Hereinafter, an example of the method for producing the white reflective film of the present invention will be described.
In producing the white reflective film of the present invention, the reflective layer A obtained by a melt extrusion method or the like is applied to a melt resin coating method (including a melt extrusion resin coating method), a co-extrusion method and a lamination method, or a surface layer B. The surface layer B can be formed by a coating liquid coating method using the coating liquid for forming the film. Among these, the method of laminating the surface layer B by the coating liquid coating method on the one produced by laminating the reflective layer A and the support layer C by the coextrusion method is particularly preferable. By laminating the surface layer B by the coating liquid coating method, the distribution state of the particles can be easily controlled by changing the drying conditions and the like, and the predetermined number of protrusions can be easily mass-produced at low cost. Further, even particles having a relatively small 10% compressive strength can be easily handled. Furthermore, the shape of the specific particle in the present invention is easily maintained, and the aspect of the protrusion is easily made a preferable aspect.
Below, polyester is adopted as the thermoplastic resin constituting the reflective layer A and the thermoplastic resin constituting the support layer C, a coextrusion method is adopted as a method of laminating the reflective layer A and the support layer C, and the surface layer B Although the manufacturing method at the time of employ | adopting the coating liquid coating method as a lamination | stacking method is demonstrated, this invention is not limited to this manufacturing method, Moreover, it can manufacture similarly about another aspect with reference to the following. At that time, when the extrusion step is not included, the following “melt extrusion temperature” may be read as, for example, “melt temperature”. Here, the melting point of the polyester used is Tm (unit: ° C), and the glass transition temperature is Tg (unit: ° C).
First, a polyester composition for forming the reflective layer A is prepared by mixing polyester, a void forming agent, and other optional components. In addition, as the polyester composition for forming the support layer C, a mixture of polyester, optionally a void forming agent, and other optional components is prepared. These polyester compositions are used after drying to sufficiently remove moisture.
Next, the dried polyester composition is put into separate extruders and melt-extruded. The melt extrusion temperature needs to be Tm or higher, and may be about Tm + 40 ° C.
At this time, the polyester composition used for the production of the film, particularly the polyester composition used for the reflective layer A, is filtered using a nonwoven fabric type filter having an average aperture of 10 to 100 μm made of stainless steel fine wires having a wire diameter of 15 μm or less. It is preferable. By performing this filtration, it is possible to suppress aggregation of particles that normally tend to aggregate into coarse aggregated particles, and to obtain a film with few coarse foreign matters. The average opening of the nonwoven fabric is preferably 20 to 50 μm, more preferably 15 to 40 μm. The filtered polyester composition is extruded in a multilayer state from a die by a simultaneous multilayer extrusion method (coextrusion method) using a feed block in a molten state to produce an unstretched laminated sheet. The unstretched laminated sheet extruded from the die is cooled and solidified with a casting drum to obtain an unstretched laminated film.
Next, this unstretched laminated film is heated by roll heating, infrared heating or the like, and stretched in the film forming machine axial direction (hereinafter sometimes referred to as the longitudinal direction or the longitudinal direction or MD) to obtain a longitudinally stretched film. . This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The film after the longitudinal stretching is then guided to a tenter and stretched in a direction perpendicular to the longitudinal direction and the thickness direction (hereinafter sometimes referred to as a transverse direction or a width direction or TD) to be biaxially stretched. A film.
The stretching temperature is preferably a temperature of Tg or more and preferably Tg + 30 ° C. or less of the polyester (preferably the polyester constituting the reflective layer A), excellent in film-forming stretchability, and voids are preferably formed. The stretching ratio is preferably 2.5 to 4.3 times, more preferably 2.7 to 4.2 times in both the vertical direction and the horizontal direction. If the draw ratio is too low, uneven thickness of the film tends to be worsened, and voids tend not to be formed. On the other hand, if it is too high, breakage tends to occur during film formation. In the case of sequential biaxial stretching in which longitudinal stretching is performed and then lateral stretching is performed, the second stage (in this case, lateral stretching) is made about 10 to 50 ° C. higher than the first stage stretching temperature. Things are preferable. This is due to the fact that the Tg as a uniaxial film is increased due to the orientation in the first stage of stretching.
Moreover, it is preferable to preheat a film before each extending | stretching. For example, the pre-heat treatment for transverse stretching may start from a temperature higher than Tg + 5 ° C. of the polyester (preferably the polyester constituting the reflective layer A) and gradually increase the temperature. Although the temperature rise in the transverse stretching process may be continuous or stepwise (sequential), the temperature is usually raised sequentially. For example, the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone.
The film after biaxial stretching is subsequently subjected to heat-fixing and heat-relaxing treatments in order to obtain a biaxially oriented film. However, following melt-extrusion to stretching, these treatments can also be performed while the film is running. it can.
The biaxially stretched film has a constant width or a Tm-20 ° C. to (Tm−100 ° C.) melting point of the polyester (preferably the polyester constituting the reflective layer A) while holding both ends with clips. It is preferable to heat-treat under a width reduction of 10% or less and heat-set to lower the heat shrinkage rate. When the heat treatment temperature is too high, the flatness of the film tends to deteriorate, and the thickness unevenness tends to increase. On the other hand, if it is too low, the thermal shrinkage tends to increase.
Further, in order to adjust the heat shrinkage, both ends of the film being held can be cut off, the take-up speed in the film vertical direction can be adjusted, and the film can be relaxed in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 2.5%, more preferably 0.2 to 2.3%, particularly preferably 0.3. The film is relaxed by carrying out a speed reduction of ˜2.0% (this value is referred to as “relaxation rate”), and the longitudinal heat shrinkage rate is adjusted by controlling the relaxation rate. Further, the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, and a desired heat shrinkage rate can be obtained.
In the biaxial stretching, a lateral-longitudinal sequential biaxial stretching method may be used in addition to the longitudinal-lateral sequential biaxial stretching method as described above. Moreover, it can also form into a film using a simultaneous biaxial stretching method. In the case of the simultaneous biaxial stretching method, the stretching ratio is, for example, 2.7 to 4.3 times, preferably 2.8 to 4.2 times in both the longitudinal direction and the transverse direction.
The surface layer B is coated with a coating liquid for forming the surface layer B on the longitudinally stretched film after the longitudinal stretching in the above-described process, and is dried and cured by heat applied in the preheating process, the lateral stretching process, the heat setting process, and the like. It can be formed by the so-called in-line coating method. The coating liquid can be obtained by mixing the components constituting the surface layer B and optionally diluting with a solvent so as to be easily applied. In this case, water is preferable as the solvent, and the amount of the volatile organic solvent described later can be reduced. The method for applying the coating liquid is not particularly limited, but preferred methods include reverse roll coating, gravure coating, die coating, and spray coating. Further, the surface layer B may be formed on a biaxially oriented film obtained by biaxial stretching and heat setting by a so-called offline coating method. In the off-line coating method, it is difficult to apply high heat to drying because the film is deformed, and therefore, an organic solvent that is usually easily dried is used as the solvent. However, in this case, since the amount of the volatile organic solvent described later tends to increase, the in-line coating method is particularly preferable in the present invention.
Thus, the white reflective film of the present invention can be obtained.
[Characteristics of white reflective film]
(Reflectance, brightness)
The reflectance (reflectance at a wavelength of 550 nm) of the white reflective film of the present invention measured from the surface layer B side is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, and still more preferably 97. .5% or more, particularly preferably 98% or more. When the reflectance is 95% or more or 96% or more, high luminance can be obtained when used in a liquid crystal display device, illumination, or the like. Such reflectivity is set to a preferable mode such as increasing the void volume ratio of the reflective layer A, the thickness of the reflective layer A is increased, the thickness of the surface layer B is decreased, and the like is set as a preferable mode. Etc. can be achieved.
Moreover, although the brightness | luminance measured from the surface layer B side is calculated | required by the measuring method mentioned later, it is 5400 cd / m. 2 Or more, preferably 5450 cd / m 2 More preferably, 5500 cd / m 2 The above is particularly preferable.
The reflectance and brightness are values on the surface on the side of the light guide plate when used with the light guide plate in the white reflective film.
(Amount of volatile organic solvent)
In the white reflective film of the present invention, the amount of volatile organic solvent measured by the method described later is preferably 10 ppm or less. Thereby, it can be shown that the surface layer B is not formed by a coating method using an organic solvent. Further, when a self-recovery raw material is obtained and a film is formed using the self-recovery raw material, a gas mark is less likely to be generated, and film-forming stretchability (recovery film-forming property) is improved. From this viewpoint, it is more preferably 5 ppm or less, further preferably 3 ppm or less, and ideally 0 ppm. In the present invention, in order to reduce the amount of the volatile organic solvent, it is preferable to employ the above-described method in forming the surface layer B without adopting the solution coating method using the organic solvent.
(1)光線反射率
分光光度計(島津製作所製UV−3101PC)に積分球を取り付け、BaSO4白板を100%とした時の反射率を波長550nmで測定し、この値を反射率とした。なお、測定は、表面層B側の表面において行った。表裏に異なる表面層Bを有する場合は、導光板側となる表面層B表面において測定した。
(2)粒子の平均粒子径
レーザー散乱型粒度分布測定機(島津製作所製SALD−7000)にて、粒子の粒度分布(粒径の標準偏差)を求め、d50での粒子径(体積分布基準で小さい側から50%の分布となる粒子径)を平均粒子径とした。
(3)粒子形状
(3−1)粒子形状1
粒子粉体を測定用ステージに導電性テープで固定し、日立製作所製S−4700形電界放出形走査電子顕微鏡を用いて倍率1000倍にて観測し、粒子の形状を観察した。無作為に選んだ30個の粒子について、粒子の最大径Dx(x方向とする)、および、x方向に垂直な方向(y方向およびz方向とする。z方向はy方向にも垂直な方向である。)における最大径DyおよびDz(ただしDy≧Dzとする)を求め、それぞれについて平均値を算出し、Dxave、Dyave、Dzaveとし、Dxave−Dyave、Dxave−Dzave、Dyave−Dzaveを求め、これらの少なくとも1つがDxの20%を超えるものを非球状と判定し、そうでないものを球状と判定した。
(3−2)粒子形状2(アスペクト比とアスペクト比の標準偏差)
粒子をガラス棒を用いて導電性テープに軽く貼り付け、それを測定用ステージに固定し、日立製作所製S−4700形電界放出形走査電子顕微鏡を用いて真正面から(傾斜角は付けずに)倍率100倍にて観測し、無作為に選んだ30個の粒子について、粒子の最大径を長径としてかかる最大径に直交する方向における最大径を短径として、それぞれの粒子について長径/短径(アスペクト比)を求めて、平均値をとってアスペクト比の平均値とした。また、各々のアスペクト比の値からアスペクト比の標準偏差を算出した。
なお、平均粒子径が小さいもの(例えば3μm以下であることが想定されるもの)については、倍率を高くして(例えば1000倍にして)観測した。
(4)フィルム表面の突起頻度(突起個数)
フィルム表面の突起プロファイルを、三次元粗さ測定装置SE−3CKT(株式会社小坂研究所製)にて、カットオフ0.25mm、測定長1mm、走査ピッチ2μm、走査本数100本で測定し、高さ倍率1000倍、走査方向倍率200倍にて突起プロファイルを記録した。得られた突起プロファイル(横軸:突起高さ、縦軸:突起個数の突起プロファイル)から、高さ5μm以上の突起個数(個/m2)を求め、突起頻度とした。尚、解析には三次元粗さ解析装置SPA−11(株式会社小坂研究所製)を用いた。
(5)10%圧縮強度
エリオニクス社製微小硬度計ENT−1100aを用いて、加重3gfでの各粒子の圧縮強度を測定し、10%変形時の圧縮強度(MPa)を採用した。5回の測定の平均値を用いた。
(6)揮発有機溶剤量
室温(23℃)において、1gのフィルムサンプルを10Lのフッ素樹脂製バッグに入れ、その中を純窒素でパージして密封した。次いで、直ちにかかるバッグの中の窒素から、0.2L/分の流量で、2本の分析用TENAX−TA捕集管にそれぞれ0.2L、1.0Lの窒素を採取し、これらを用いて、HPLCおよびGCMSにより、採取した窒素中に含まれる有機溶剤成分の質量を定量した。得られた値を窒素10L中の量に換算して、1gのフィルムサンプルから10Lの窒素中に揮発した有機溶剤の質量を求め、揮発有機溶剤量(単位:ppm、フィルムサンプルの質量基準)とした。なお、アルデヒド類は、アセトニトリルでアルデヒド誘導体化物を捕集管から溶出し、HPLCにより定量した。また、HPLCとGCMSとで値が異なる場合は、多く検出した方の値を採用した。
(7)フィルム厚みおよび層構成
白色反射フィルムをミクロトームにてスライスして断面出しを行い、かかる断面について日立製作所製S−4700形電界放出形走査電子顕微鏡を用いて、倍率500倍にて観測し、フィルム全体、反射層A、表面層B、支持層Cの厚みをそれぞれ求めた。なお、表面層Bについては、粒子が存在する部分の厚みを任意に10点採取し、それらの平均値を厚みとした。
(8)ボイド体積率の算出
ボイド体積率を求める層のポリマー、添加粒子、その他各成分の密度と配合割合から計算密度を求めた。同時に、当該層を剥離する等して単離し、質量および体積を計測し、これらから実密度を算出し、計算密度と実密度とから下記式により求めた。
ボイド体積率=100×(1−(実密度/計算密度))
なお、イソフタル酸共重合ポリエチレンテレフタレート(2軸延伸後)の密度を1.39g/cm3、硫酸バリウムの密度を4.5g/cm3とした。
また、ボイド体積率を測定する層のみを単離し、単位体積あたりの質量を求めて実密度を求めた。体積は、サンプルを面積3cm2に切り出し、そのサイズでの厚みをエレクトリックマイクロメーター(アンリツ製 K−402B)にて10点測定した平均値を厚みとし、面積×厚みとして算出した。質量は、電子天秤にて秤量した。
なお、粒子(凝集粒子含む)の比重としては、以下のメスシリンダー法にて求めた嵩比重の値を用いた。容積1000mlのメスシリンダーに絶乾状態の粒子を充填して、全体の重量を測定し、該全体の重量からメスシリンダーの重量を差引いて該粒子の重量を求め、該メスシリンダーの容積を測定し、該粒子の重量(g)を該容積(cm3)で割ることによって求められる。
(9)融点、カラス転移温度
示差走査熱量測定装置(TA Instruments 2100 DSC)を用い、昇温速度20℃/分で測定して求めた。
(10)輝度
LG社製のLED液晶テレビ(LG42LE5310AKR)から反射フィルムを取り出し、実施例に記載の各種反射フィルムの表面層B側を画面側(導光板に接する側)に設置し、バックライトユニットの状態にて輝度計(大塚電子製Model MC−940)を用いて、バックライトの中心を真正面より測定距離500mmで輝度を測定した。
(11)導光板の傷付き評価(削れ性評価)
(11−1)傷付き評価1
図3のように、取っ手部分(1)の端に幅200mm×長さ200mm×厚み3mmの鉄板(2、重さ約200g)を固く貼り付け、その上に、評価面を上にした幅250mm×長さ200mmの反射フィルム(3)を幅方向の両端からそれぞれ25mmの部分が鉄板からはみ出すようにして、(中央の200mm×200mmの部分が鉄板と重なるようにして)貼り付けた。この際、反射フィルムの評価面(表面層面)が外側になるようにした。また、反射フィルムの幅方向の両端で余った25mmの部分は、鉄板の裏側に折り返して、反射フィルムの端部(サンプリング時にナイフ等により刃を入れた部分)が導光板を削ってしまう影響を排除した。
次に、ドット(401)を有するドット面を上にした導光板(4、少なくとも400mm×200mmのサイズのもの)を水平な机上に固定し、上記で作成した鉄板に固定した反射フィルムを、評価面と導光板とが接触するように反射フィルム側の面を下向きにして導光板の上に置き、さらにその上に500gの重り(5)を載せて、距離200mmで(400mm×200mmの領域で鉄板に固定した反射フィルムを動かすことになる)1往復約5~10秒の速度で15往復動かした。その後、導光板表面において、その削れ具合と、反射フィルムから脱落した粒子の有無について20倍のルーペを用いて観察し、以下の基準で評価した。
導光板上の擦られた400mm×200mmの全範囲において、20往復動かした後にルーペで観察できるキズがない場合は「削れない」(削れ評価○)とし、10往復動かした後は観察できるキズがなかったが、20往復動かした後に観察できるキズがある場合は「削れにくい」(削れ評価△)とし、10往復した後に観察できるキズがある場合は「削れる」(削れ評価×)とした。
なお、上記評価にあたっては、ドットサイズの影響を極力抑えるべく、導光板において、極力ドットサイズの大きな領域を選択し、各評価サンプルで揃えて行った。
(11−2)傷付き評価2
上記(11−1)において、鉄板(2)の大きさを400mm×200mmとし(それに合わせて反射フィルムは400mm×250mmとし、導光板は少なくとも400mm×400mmのサイズのものを使用した。400mm×400mmの領域で鉄板に固定した反射フィルムを動かすことになり、観察範囲もかかる範囲となる。)、重り(5)の重さを1000g(圧力としては上記(11−1)と同じになる。)とした以外は、同様にして評価した。
(12)白点評価
(12−1)白点評価1
上記(11−1)の評価で用いた反射フィルムと導光板を用いて、机上に、表面層面を上向きとなるように反射フィルムを置き、その上にドット面が下向きになるように導光板を置き、導光板の四辺のそれぞれに各300gの重りを置き固定し、LG社製のLED液晶テレビ(LG42LE5310AKR)のバックライト光源を用いて、導光板の側面から光を入射して、目視で観察できる導光板ドット以外の明るい点があれば白点発生(評価△)とした。他方、目視で観察できる異常な明るい点がなければ白点発生しない(評価○)とした。
(12−2)白点評価2
上記(11−2)の評価で用いた反射フィルムと導光板を用いて、評価基準を、目視で観察できる導光板ドット以外の明るい点があれば白点発生(評価×)とし、目視で観察できる異常な明るい点がなければ白点発生しない(評価○)とし、目視で観察できる導光板ドット以外の明るい点があるが薄いものは、白点が若干発生(評価△)とする以外は、上記(12−1)と同様にして評価した。
(13)密着斑評価(貼り付き評価)
(13−1)貼り付き評価1
図4のように、LG社製のLED液晶テレビ(47インチサイズ)からシャーシ(6)を取り出し、テレビ内部側が上向きとなるように水平な机上に置き、その上に、シャーシとほぼ同じ大きさの反射フィルムを、表面層面が上向きとなるように置き、さらにその上に、元々テレビに備えられていた導光板および光学シート3枚(7、拡散フィルム2枚、プリズム1枚)を置いた。次いで、その面内で、シャーシの凹凸の最も激しい部分を含む領域に、図4に示すごとく直径5mmの円柱状足を三本備える正三角形型の台(801)を置き、その上に更に10kgの重り(802)を乗せて、かかる三本の足に囲まれた領域を目視で観測し、異常に明るい部分がなければ「密着斑がなし」(密着斑評価○)とした。また、異常に明るい部分があった場合は、光学シート3枚の上にさらに、元々テレビに備わっていたDBEFシートを置き、同様に目視で観測し、異常に明るい部分が直らなければ、「密着斑があり」(評価×)とし、異常に明るい部分がなくなれば、「密着斑が殆どなし」(評価△)とした。なお、三つ足に囲まれた領域は、各辺の長さが10cmの略正三角形とした。
(13−2)貼り付き評価2
上記(13−1)において、重り(802)の重さを15kgとした以外は、同様にして評価した。
(14)回収製膜性評価
実施例で得られた二軸延伸フィルムを、粉砕し、溶融押出してチップ化することで自己回収原料を作成した。かかる自己回収原料を、反射層Aに、反射層Aの質量を基準として35質量%添加し、その余のポリエステルとボイド形成剤との質量比率は元のフィルムと同じになるようにして、元のフィルムと同様にして自己回収原料含有の二軸延伸フィルムを作成し、以下の基準で評価した。
◎:長さ2000m以上安定に製膜できる。
○:長さ1000m以上、2000m未満、安定に製膜できる。
△:長さ1000m未満に1度切断が生じた。
×:長さ1000m未満に2度以上切断が生じた。
<製造例1:イソフタル酸共重合ポリエチレンテレフタレート1の合成>
テレフタル酸ジメチル136.5質量部、イソフタル酸ジメチル13.5質量部(得られるポリエステルの全酸成分100モル%に対して9モル%となる)、エチレングリコール98質量部、ジエチレングリコール1.0質量部、酢酸マンガン0.05質量部、酢酸リチウム0.012質量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150~240℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03質量部、二酸化ゲルマニウム0.04質量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.3mmHgまで減圧するとともに292℃まで昇温し、重縮合反応を行い、イソフタル酸共重合ポリエチレンテレフタレート1を得た。このポリマーの融点は235℃であった。
<製造例2:イソフタル酸共重合ポリエチレンテレフタレート2の合成>
テレフタル酸ジメチル129.0質量部、イソフタル酸ジメチル21.0質量部(得られるポリエステルの全酸成分100モル%に対して14モル%となる)に変更した他は、上記製造例1と同様にして、イソフタル酸共重合ポリエチレンテレフタレート2を得た。このポリマーの融点は215℃であった。
<製造例3:粒子マスターチップ1の作成>
上記で得られたイソフタル酸共重合ポリエチレンテレフタレート1の一部、およびボイド形成剤として平均粒子径1.0μmの硫酸バリウム粒子(表中、BaSO4と表記する。)を用いて、神戸製鋼社製NEX−T60タンデム式押出機にて、得られるマスターチップの質量に対して硫酸バリウム粒子の含有量が60質量%となるように混合し、樹脂温度260℃にて押し出し、硫酸バリウム粒子含有の粒子マスターチップ1を作成した。
<製造例4:粒子マスターチップ2の作成>
上記で得られたイソフタル酸共重合ポリエチレンテレフタレート2の一部、およびボイド形成剤として平均粒子径1.0μmの硫酸バリウム粒子を用いて、神戸製鋼社製NEX−T60タンデム式押出機にて、得られるマスターチップの質量に対して硫酸バリウム粒子の含有量が60質量%となるように混合し、樹脂温度260℃にて押し出し、硫酸バリウム粒子含有の粒子マスターチップ2を作成した。
<製造例5:表面層Bに用いる粒子1の作成>
テレフタル酸ジメチル150質量部、エチレングリコール98質量部、ジエチレングリコール1.0質量部、酢酸マンガン0.05質量部、酢酸リチウム0.012質量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150~240℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03質量部、二酸化ゲルマニウム0.04質量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.3mmHgまで減圧するとともに292℃まで昇温し、重縮合反応を行い、ポリエチレンテレフタレート3を得た。得られたポリエチレンテレフタレート3をストランドダイから押出し、冷却後に断裁することによってペレット状とした。次いで、得られたペレットをオーブン内で170℃で3時間加熱することによって乾燥結晶化させた後に、株式会社マツボー製のアトマイザーミル TAP−1を用いて液体窒素で冷却しながら粉砕を行うことで平均粒子径60μmのポリエステル粒子を得た。さらにこのポリエステル粒子を風力分級することによって平均粒子径40μmの粒子1(非球状粒子)を得た。
粒子2:東レ株式会社製ナイロン66樹脂CM3006のペレットを用いる以外は、上記製造例5と同様に粉砕・分級を行い得られた平均粒子径40μmの非球状粒子。
粒子3:東レ株式会社製ナイロン66樹脂CM3006のペレットを用いる以外は、上記製造例5と同様に粉砕・分級を行い得られた平均粒子径10μmの非球状粒子。
粒子4:東レ株式会社製ナイロン6樹脂CM1017のペレットを用いる以外は、上記製造例5と同様に粉砕・分級を行い得られた平均粒子径10μmの非球状粒子。
粒子5:積水化成品工業社製 MBX−40(真球状アクリル粒子、平均粒子径40μm)
粒子6:住友化学株式会社製ポリ(メチルメタクリレート)(PMMA)樹脂スミペックスMGSSのペレットを用いる以外は、上記製造例5と同様に粉砕・分級を行って得られた平均粒子径10μmの非球状粒子。
粒子7:東レ株式会社製SP−10(真球状ナイロン粒子、平均粒子径10μm)
<製造例6:表面層Bに用いる粒子8の作成>
上記製造例5と同様にして、ポリエチレンテレフタレート3をストランドダイから押出し、冷却後に断裁することによってペレット状とした。ストランドの形状を調整した結果、このペレットの形状はほぼ直方体の形状で形状の平均が4mm×3mm×2mmのものであった。次いで、上記製造例5と同様にして平均粒子径60μmのポリエステル粒子を得た。さらにこのポリエステル粒子を風力分級することによって平均粒子径43μmの粒子8(非球状粒子)を得た。
<製造例7:表面層Bに用いる粒子9の作成>
上記製造例6で得られたペレットを用い、ポリエチレンテレフタレートの2軸延伸フィルムの通常用いられる条件(縦延伸倍率3.0倍、横延伸倍率4.0倍、熱固定温度を220℃に設定)にて、配向結晶化させた透明2軸延伸ポリエチレンテレフタレートフィルム(厚み50μm)を得た。これを上記製造例6と同様にして液体窒素で冷却しながら粉砕し、その後風力分級を行い平均粒子径52μmの粒子9(非球状粒子)を得た。
<製造例8:表面層Bに用いる粒子10の作成>
上記製造例6で得られたペレットを用い、常法により直径が35μmのポリエステルファイバーを作成し、これを上記製造例6と同様にして液体窒素で冷却しながら粉砕し平均粒子径40μmの粒子10(非球状粒子)を得た。
<製造例9、10:表面層Bに用いる粒子11、12の作成>
製造例6で得られたペレットを乾燥結晶化し、同様に粉砕し、風力分級を行い平均粒子径35μmの粒子11(非球状粒子)を得た。また製造例7で得られたフィルムを同様に粉砕し、風力分級を行い平均粒子径50μmの粒子12(非球状粒子)を得た。上記においては、得られる粒子が表3に示す態様となるように、風力分級の条件を調整した。
粒子13:住友化学株式会社製ポリ(メチルメタクリレート)(PMMA)樹脂スミペックスMGSSのペレットを用いる以外は、上記製造例6と同様に粉砕・分級を行って得られた平均粒子径40μmの非球状粒子。
<製造例11、12:表面層Bに用いる粒子14、15の作成>
上記製造例7においてフィルム厚みを75μmに変更し、製造例7と同様にして粉砕、風力分級を行うことで粒子14(非球状粒子)を得た。また、フィルム厚みを100μmとして同様に粒子15(非球状粒子)を得た。上記においては、得られる粒子が表3に示す態様となるように、風力分級の条件を調整した。
<製造例13~20:表面層Bに用いる粒子16~23の作成>
製造例6で得られたペレットを乾燥結晶化し、同様に粉砕し、風力分級を行い、各々表3に示す構成を有する粒子16~23(非球状粒子または球状粒子)を得た。上記においては、得られる粒子が表3に示す態様となるように、風力分級の条件を調整した。
[実施例1−1]
(白色反射フィルムの製造)
上記で得たイソフタル酸共重合ポリエチレンテレフタレート1と粒子マスターチップ1を反射層(A層)の原料として、イソフタル酸共重合ポリエチレンテレフタレート2と粒子マスターチップ2を支持層(C層)の原料としてそれぞれ用い、反射層Aは、反射層Aの質量に対するボイド形成剤の含有量が49質量%となるように、また、支持層Cは、支持層Cの質量に対するボイド形成剤の含有量が3質量%となるように混合し、押出機に投入し、A層は溶融押出し温度255℃にて、C層は溶融押出し温度230℃にて、C層/A層/C層の層構成となるように3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。このときC層/A層/C層の厚み比が2軸延伸後に10/80/10となるように各押出機の吐出量で調整した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムとした。この未延伸フィルムを73℃の予熱ゾーン、つづけて75℃の予熱ゾーンを通して、92℃に保たれた縦延伸ゾーンに導き、縦方向に2.9倍に延伸し、25℃のロール群で冷却し一軸延伸フィルムを得た。次いで、得られた一軸延伸フィルムの片面にリバースロールコート法を用いて、下記に示す表面層(B層)を形成するための塗液1を塗布した。
<塗液1>
樹脂としての互応化学株式会社製Z−465(ポリエチレンテレフタレートにナトリウムスルホイソフタル酸成分を全酸成分100モル%に対して10モル%、ジエチレングリコール成分を同10モル%を含む共重合ポリエステル樹脂(かかる共重合ポリエステルを樹脂1とする)。固形分濃度15質量%の水溶液。)と、粒子としての上記製造例5で得られた粒子1と、希釈溶媒としてのイオン交換水とを、樹脂と粒子とが表1に示す含有量比率となるように、また、塗液の固形分濃度が20質量%となるように混合し、塗液1を作成した。
塗布に続いて、フィルムの両端をクリップで保持しながら115℃の予熱ゾーンを通して130℃に保たれた横延伸ゾーンに導き、横方向に3.6倍に延伸した。その後テンター内で185℃で熱固定を行い、幅入れ率2%、幅入れ温度130℃で横方向の幅入れを行い、次いでフィルム両端を切り落し、縦弛緩率2%で熱弛緩し、室温まで冷やして、二軸延伸フィルムを得た。得られたフィルムの評価結果を表2に示す。
[実施例1−2、1−3、1−5、比較例1−1~1−3]
表面層(B層)に用いる粒子の態様を各々表1に示すとおりとする以外は、実施例1−1と同様にして二軸延伸フィルムを得た。得られたフィルムの評価結果を表2に示す。
[実施例1−4]
反射層Aのボイド形成剤を、ポリエステルに非相溶な樹脂(シクロオレフィン、ポリプラスチックス社製「TOPAS 6017S−04」)に変更し、反射層Aの質量に対するボイド形成剤の含有量を20質量%とした以外は、実施例1−1と同様にして二軸延伸フィルムを作成し、評価を実施した。評価結果を表2に示す。
[実施例1−6]
一軸延伸後、二軸延伸前に塗液の塗布をしない以外は実施例1−1と同様にして得られた二軸延伸フィルムの上に、ダイレクトグラビアコーティング装置にて、下記の表面層(層B)を形成するための塗液2に示す組成からなる塗液を、wet厚み15g/m2の塗布量で塗布した後、オーブン内にて80℃で乾燥してフィルムを得た。
<塗液2、固形分濃度30質量%>
・粒子:上記製造例5で得られた粒子1(非球状粒子)・・・7.5質量%
・アクリル樹脂(熱可塑性樹脂):DIC社製アクリディックA−817BA(固形分濃度50質量%、表中樹脂2と記載する)・・・30質量%
・架橋剤:日本ポリウレタン工業社製コロネートHL(イソシアネート系架橋剤、固形分濃度75質量%、表中架橋剤1と記載する)・・・10質量%
・希釈溶媒:酢酸ブチル・・・52.5質量%
得られたフィルムの評価結果は表2の通りであった。なお、塗液2における各成分の固形分比率は以下の通りとなる。
・粒子:25質量%
・アクリル樹脂(熱可塑性樹脂):50質量%
・架橋剤:25質量%
(白色反射フィルムの製造)
上記で得たイソフタル酸共重合ポリエチレンテレフタレート1と粒子マスターチップ1を反射層(A層)の原料として、イソフタル酸共重合ポリエチレンテレフタレート2と粒子マスターチップ2を支持層(C層)の原料としてそれぞれ用い、反射層Aは、反射層Aの質量に対するボイド形成剤の含有量が49質量%となるように、また、支持層Cは、支持層Cの質量に対するボイド形成剤の含有量が3質量%となるように混合し、押出機に投入し、A層は溶融押出し温度265℃にて、C層は溶融押出し温度240℃にて、C層/A層/C層の層構成となるように3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。このときC層/A層/C層の厚み比が2軸延伸後に10/80/10となるように各押出機の吐出量で調整した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムとした。この未延伸フィルムを73℃の予熱ゾーン、つづけて75℃の予熱ゾーンを通して、92℃に保たれた縦延伸ゾーンに導き、縦方向に2.9倍に延伸し、25℃のロール群で冷却し一軸延伸フィルムを得た。次いで、得られた一軸延伸フィルムの片面にリバースロールコート法を用いて、下記に示す表面層(B層)を形成するための塗液3を塗布した。
<塗液3>
樹脂としての互応化学株式会社製Z−465(樹脂1)と、粒子としての上記製造例6で得られた粒子8と、希釈溶媒としてのイオン交換水とを、樹脂と粒子の固形分含有量比率が樹脂:粒子=75:25(質量%)となるように、また、塗液の固形分濃度が20質量%となるように混合し、塗液3を作成した。
塗布に続いて、フィルムの両端をクリップで保持しながら115℃の予熱ゾーンを通して130℃に保たれた横延伸ゾーンに導き、横方向に3.6倍に延伸した。その後テンター内で185℃で熱固定を行い、幅入れ率2%、幅入れ温度130℃で横方向の幅入れを行い、次いでフィルム両端を切り落し、縦弛緩率2%で熱弛緩し、室温まで冷やして、二軸延伸フィルムを得た。得られたフィルムの評価結果を表4に示す。
[実施例2−2~2−5、2−8~2−15、比較例2−1~2−5]
表面層(B層)に用いる粒子の態様および層構成を、各々表3および表4に示すとおりとする以外は、実施例2−1と同様にして二軸延伸フィルムを得た。得られたフィルムの評価結果を表4に示す。
[実施例2−6]
反射層Aのボイド形成剤を、ポリエステルに非相溶な樹脂(シクロオレフィン、ポリプラスチックス社製「TOPAS 6017S−04」)に変更し、反射層Aの質量に対するボイド形成剤の含有量を20質量%とした以外は、実施例2−1と同様にして二軸延伸フィルムを作成し、評価を実施した。評価結果を表4に示す。
[実施例2−7]
一軸延伸後、二軸延伸前に塗液の塗布をしない以外は実施例2−1と同様にして得られた二軸延伸フィルムの上に、ダイレクトグラビアコーティング装置にて、下記の表面層(層B)を形成するための塗液4に示す組成からなる塗液を、wet厚み15g/m2の塗布量で塗布した後、オーブン内にて80℃で乾燥してフィルムを得た。
<塗液4、固形分濃度30質量%>
・粒子:上記製造例6で得られた粒子8(非球状粒子)・・・7.5質量%
・アクリル樹脂(熱可塑性樹脂):DIC社製アクリディックA−817BA(樹脂2)・・・30質量%
・架橋剤:日本ポリウレタン工業社製コロネートHL(架橋剤1)・・・10質量%
・希釈溶媒:酢酸ブチル・・・52.5質量%
得られたフィルムの評価結果は表4の通りであった。なお、塗液4における各成分の固形分比率は以下の通りとなる。
・粒子:25質量%
・アクリル樹脂(熱可塑性樹脂):50質量%
・架橋剤:25質量%
本発明によれば、導光板との貼り付きを十分に抑制し、同時に導光板の傷付きを十分に抑制することができる白色反射フィルムを提供することができる。 Hereinafter, the present invention will be described in detail by way of examples. Each characteristic value was measured by the following method.
(1) Light reflectance
An integrating sphere was attached to a spectrophotometer (UV-3101PC manufactured by Shimadzu Corporation), and BaSO 4 The reflectance when the white plate was 100% was measured at a wavelength of 550 nm, and this value was taken as the reflectance. The measurement was performed on the surface on the surface layer B side. In the case where the front and back surfaces have different surface layers B, the measurement was performed on the surface layer B surface on the light guide plate side.
(2) Average particle diameter of particles
The particle size distribution (standard deviation of particle size) of the particles is obtained with a laser scattering type particle size distribution analyzer (SALD-7000 manufactured by Shimadzu Corporation), and the particle size at d50 (50% distribution from the smaller side on the basis of volume distribution) Particle diameter) was defined as the average particle diameter.
(3) Particle shape
(3-1)
The particle powder was fixed to the measurement stage with a conductive tape, and observed with a magnification of 1000 using an S-4700 field emission scanning electron microscope manufactured by Hitachi, Ltd., and the shape of the particles was observed. For 30 randomly selected particles, the maximum particle diameter Dx (referred to as x direction) and the direction perpendicular to the x direction (referred to as y direction and z direction. The z direction is also perpendicular to the y direction) The maximum diameters Dy and Dz (where Dy ≧ Dz) are calculated, and average values are calculated for each, and Dxave, Dave, Dzave, and Dxave-Dave, Dxave-Dzave, Dyave-Dzave are obtained. When at least one of these exceeded 20% of Dx, it was determined as non-spherical, and when it was not, it was determined as spherical.
(3-2) Particle shape 2 (aspect ratio and standard deviation of aspect ratio)
Lightly affix the particles to the conductive tape using a glass rod, fix it to the measurement stage, and use the S-4700 field emission scanning electron microscope manufactured by Hitachi, Ltd. from the front (without the tilt angle). For 30 particles randomly selected and observed at a magnification of 100, the maximum diameter in the direction perpendicular to the maximum diameter is defined as the major axis, and the major axis / minor axis ( (Aspect ratio) was determined and the average value was taken as the average aspect ratio. In addition, the standard deviation of the aspect ratio was calculated from each aspect ratio value.
In addition, about what has a small average particle diameter (for example, what is assumed to be 3 micrometers or less), the magnification was made high (for example, 1000 times), and it observed.
(4) Projection frequency on the film surface (number of protrusions)
The projection profile on the film surface was measured with a three-dimensional roughness measuring device SE-3CKT (manufactured by Kosaka Laboratory Ltd.) with a cutoff of 0.25 mm, a measurement length of 1 mm, a scanning pitch of 2 μm, and a scanning number of 100. The projection profile was recorded at a height magnification of 1000 times and a scanning direction magnification of 200 times. From the obtained projection profile (horizontal axis: projection height, vertical axis: projection profile of the number of projections), the number of projections having a height of 5 μm or more (pieces / m 2 ) Was calculated as the protrusion frequency. For the analysis, a three-dimensional roughness analyzer SPA-11 (manufactured by Kosaka Laboratory Ltd.) was used.
(5) 10% compressive strength
Using a micro hardness tester ENT-1100a manufactured by Elionix, the compressive strength of each particle at a load of 3 gf was measured, and the compressive strength (MPa) at 10% deformation was adopted. The average value of 5 measurements was used.
(6) Volatile organic solvent amount
At room temperature (23 ° C.), 1 g of a film sample was placed in a 10 L fluororesin bag, which was purged with pure nitrogen and sealed. Next, immediately from the nitrogen in the bag, 0.2 L and 1.0 L of nitrogen were collected in two analytical TENAX-TA collection tubes at a flow rate of 0.2 L / min. The mass of the organic solvent component contained in the collected nitrogen was quantified by HPLC, GCMS. The obtained value is converted into the amount in 10 L of nitrogen, and the mass of the organic solvent volatilized in 10 L of nitrogen is obtained from 1 g of the film sample, and the amount of volatile organic solvent (unit: ppm, based on the mass of the film sample) did. The aldehydes were quantified by HPLC by eluting the aldehyde derivatized product from the collection tube with acetonitrile. Moreover, when the value was different between HPLC and GCMS, the value of the more detected one was adopted.
(7) Film thickness and layer structure
A white reflective film is sliced with a microtome to obtain a cross section, and this cross section is observed at a magnification of 500 times using a S-4700 field emission scanning electron microscope manufactured by Hitachi, Ltd. The thicknesses of the surface layer B and the support layer C were determined. In addition, about the surface layer B, the thickness of the part in which particle | grains exist was arbitrarily extract | collected 10 points | pieces, and those average values were made into thickness.
(8) Calculation of void volume ratio
The calculated density was determined from the density and blending ratio of the polymer, additive particles, and other components of the layer for which the void volume ratio was determined. At the same time, it was isolated by peeling off the layer, and the mass and volume were measured. The actual density was calculated from these, and the following formula was obtained from the calculated density and the actual density.
Void volume fraction = 100 × (1− (actual density / calculated density))
The density of isophthalic acid copolymerized polyethylene terephthalate (after biaxial stretching) is 1.39 g / cm. 3 The density of barium sulfate is 4.5 g / cm 3 It was.
Moreover, only the layer which measures a void volume ratio was isolated, the mass per unit volume was calculated | required, and the real density was calculated | required. Volume is 3cm in area of sample 2 Then, the thickness at that size was measured at 10 points with an electric micrometer (K-402B manufactured by Anritsu), and the average value was calculated as area × thickness. The mass was weighed with an electronic balance.
In addition, as the specific gravity of the particles (including aggregated particles), the value of bulk specific gravity obtained by the following graduated cylinder method was used. Fill a 1000 ml measuring cylinder with completely dry particles, measure the total weight, subtract the weight of the measuring cylinder from the total weight to obtain the weight of the particle, and measure the volume of the measuring cylinder. , The weight (g) of the particles to the volume (cm 3 ).
(9) Melting point, crow transition temperature
Using a differential scanning calorimeter (TA Instruments 2100 DSC), the temperature was measured at a heating rate of 20 ° C./min.
(10) Brightness
The reflective film is taken out from the LED liquid crystal television (LG42LE5310AKR) manufactured by LG, and the surface layer B side of the various reflective films described in the examples is installed on the screen side (side in contact with the light guide plate), in the state of the backlight unit. Using a luminance meter (Model MC-940, manufactured by Otsuka Electronics Co., Ltd.), the luminance was measured at a measurement distance of 500 mm from the front of the center of the backlight.
(11) Evaluation of scratches on light guide plate (Evaluation of shaving)
(11-1)
As shown in FIG. 3, an iron plate (2, 200 g in weight) having a width of 200 mm, a length of 200 mm, and a thickness of 3 mm is firmly attached to the end of the handle portion (1), and the evaluation surface is on the top, and the width is 250 mm. X A reflective film (3) having a length of 200 mm was pasted so that each 25 mm portion protruded from the iron plate from both ends in the width direction (so that the central 200 mm × 200 mm portion overlapped the iron plate). At this time, the evaluation surface (surface layer surface) of the reflective film was placed outside. In addition, the 25 mm portion remaining at both ends in the width direction of the reflective film is folded back to the back side of the iron plate, and the end portion of the reflective film (the portion where the blade is inserted with a knife or the like at the time of sampling) has the effect of scraping the light guide plate. Eliminated.
Next, a light guide plate (4, having a size of at least 400 mm × 200 mm) with a dot surface having dots (401) is fixed on a horizontal desk, and the reflection film fixed on the iron plate created above is evaluated. Place the reflective film side face down on the light guide plate so that the surface and the light guide plate are in contact with each other, and place a 500 g weight (5) on it, at a distance of 200 mm (in the region of 400 mm × 200 mm) The reflective film fixed to the iron plate is moved.) 15 reciprocations were performed at a speed of about 5 to 10 seconds per reciprocation. Then, on the surface of the light guide plate, the degree of shaving and the presence or absence of particles dropped from the reflective film were observed using a 20-fold magnifier and evaluated according to the following criteria.
If there are no scratches that can be observed with a loupe after 20 reciprocating movements in the entire range of 400 mm × 200 mm rubbed on the light guide plate, it is determined that “cannot be scraped” (scratch evaluation ○), and there are scratches that can be observed after 10 reciprocating movements Although there were no scratches that could be observed after 20 reciprocating movements, “scratch was difficult” (shave evaluation Δ), and when there were scratches that could be observed after 10 reciprocations, “scraped” (scraping evaluation ×).
In the evaluation, in order to suppress the influence of the dot size as much as possible, an area having a large dot size was selected as much as possible on the light guide plate, and the evaluation samples were aligned.
(11-2) Scratch evaluation 2
In the above (11-1), the size of the iron plate (2) is 400 mm × 200 mm (in accordance with this, the reflective film is 400 mm × 250 mm, and the light guide plate is at least 400 mm × 400 mm in size. 400 mm × 400 mm). In this region, the reflective film fixed to the iron plate is moved, and the observation range is also within this range.) The weight of the weight (5) is 1000 g (the pressure is the same as (11-1) above.) The evaluation was performed in the same manner except that.
(12) White spot evaluation
(12-1)
Using the reflective film and the light guide plate used in the evaluation of (11-1) above, place the reflective film on the desk so that the surface layer surface faces upward, and place the light guide plate so that the dot surface faces downward. Place and fix each 300 g weight on each of the four sides of the light guide plate, and use a backlight light source of an LED liquid crystal television (LG42LE5310AKR) manufactured by LG to make light incident from the side of the light guide plate and observe visually If there are bright spots other than light guide plate dots that can be formed, white spots are generated (evaluation Δ). On the other hand, if there were no abnormal bright spots that could be observed visually, no white spots were generated (evaluation ○).
(12-2) White spot evaluation 2
Using the reflective film and the light guide plate used in the evaluation of (11-2) above, if there is a bright point other than the light guide plate dot that can be observed visually, white spots are generated (evaluation x) and observed visually If there is no abnormal bright point that can be produced, white spots will not occur (evaluation ○), and there are bright spots other than light guide plate dots that can be visually observed, but thin ones will generate white spots (evaluation Δ), Evaluation was performed in the same manner as in (12-1) above.
(13) Adhesion spot evaluation (adhesion evaluation)
(13-1) Sticking
As shown in FIG. 4, take out the chassis (6) from the LED liquid crystal television (47 inch size) manufactured by LG and place it on a horizontal desk so that the inside of the television is facing upward. The reflective film was placed with the surface layer surface facing upward, and further, the light guide plate and three optical sheets (7, two diffusion films, one prism) originally provided in the television were placed thereon. Next, an equilateral triangular base (801) having three columnar legs with a diameter of 5 mm as shown in FIG. 4 is placed in the area including the most severely uneven portion of the chassis within the plane, and a further 10 kg is placed thereon. A region surrounded by the three legs was visually observed, and if there was no abnormally bright part, “no adhesion spots” (adhesion spots evaluation ○) was obtained. If there is an abnormally bright part, place the DBEF sheet originally provided on the television on top of the three optical sheets and observe it in the same manner. When there was a spot (evaluation x), and when there was no abnormally bright part, it was set as "there was almost no adhesion spot" (evaluation (triangle | delta)). In addition, the area surrounded by the three legs was a substantially equilateral triangle having a side length of 10 cm.
(13-2) Sticking evaluation 2
In the above (13-1), evaluation was made in the same manner except that the weight of the weight (802) was 15 kg.
(14) Evaluation of recovered film-forming properties
The biaxially stretched film obtained in the examples was pulverized, melt-extruded, and formed into chips to prepare a self-recovery raw material. Such a self-recovered raw material is added to the reflective layer A in an amount of 35% by mass based on the mass of the reflective layer A, and the mass ratio of the remaining polyester to the void forming agent is the same as that of the original film. A biaxially stretched film containing a self-recovery raw material was prepared in the same manner as the above film and evaluated according to the following criteria.
A: The film can be stably formed with a length of 2000 m or more.
○: The film can be stably formed with a length of 1000 m or more and less than 2000 m.
(Triangle | delta): The cutting | disconnection produced once in less than 1000 m in length.
X: The cutting | disconnection produced twice or more in length less than 1000 m.
<Production Example 1: Synthesis of isophthalic acid copolymerized
136.5 parts by mass of dimethyl terephthalate, 13.5 parts by mass of dimethyl isophthalate (9 mol% with respect to 100 mol% of total acid components of the obtained polyester), 98 parts by mass of ethylene glycol, 1.0 part by mass of diethylene glycol Then, 0.05 part by mass of manganese acetate and 0.012 part by mass of lithium acetate were charged into a rectification column and a flask equipped with a distillation condenser, and heated to 150 to 240 ° C. with stirring to distill methanol to conduct a transesterification reaction. went. After methanol was distilled, 0.03 parts by mass of trimethyl phosphate and 0.04 parts by mass of germanium dioxide were added, and the reaction product was transferred to the reactor. Next, while stirring, the pressure in the reactor was gradually reduced to 0.3 mmHg and the temperature was raised to 292 ° C. to carry out a polycondensation reaction to obtain isophthalic acid copolymerized
<Production Example 2: Synthesis of isophthalic acid copolymerized polyethylene terephthalate 2>
Except for changing to 129.0 parts by mass of dimethyl terephthalate and 21.0 parts by mass of dimethyl isophthalate (14 mol% with respect to 100 mol% of the total acid component of the resulting polyester), the same as in Production Example 1 above. Thus, isophthalic acid copolymerized polyethylene terephthalate 2 was obtained. The melting point of this polymer was 215 ° C.
<Production Example 3: Preparation of
Part of the isophthalic acid copolymerized
<Production Example 4: Preparation of particle master chip 2>
Using a part of the isophthalic acid copolymerized polyethylene terephthalate 2 obtained above and barium sulfate particles having an average particle size of 1.0 μm as a void forming agent, a NEX-T60 tandem extruder manufactured by Kobe Steel was used. The mixture was mixed so that the content of barium sulfate particles was 60% by mass with respect to the mass of the master chip, and extruded at a resin temperature of 260 ° C. to prepare particle master chip 2 containing barium sulfate particles.
<Production Example 5: Creation of
150 parts by mass of dimethyl terephthalate, 98 parts by mass of ethylene glycol, 1.0 part by mass of diethylene glycol, 0.05 part by mass of manganese acetate, 0.012 part by mass of lithium acetate were charged into a rectifying column and a flask equipped with a distillation condenser. While stirring, the mixture was heated to 150 to 240 ° C. to distill off methanol and conduct transesterification. After methanol was distilled, 0.03 parts by mass of trimethyl phosphate and 0.04 parts by mass of germanium dioxide were added, and the reaction product was transferred to the reactor. Next, while stirring, the pressure in the reactor was gradually reduced to 0.3 mmHg and the temperature was raised to 292 ° C. to conduct a polycondensation reaction to obtain
Particle 2: Non-spherical particles having an average particle size of 40 μm obtained by pulverization and classification in the same manner as in Production Example 5 except that pellets of nylon 66 resin CM3006 manufactured by Toray Industries, Inc. are used.
Particle 3: Non-spherical particles having an average particle diameter of 10 μm obtained by pulverization and classification in the same manner as in Production Example 5 except that pellets of nylon 66 resin CM3006 manufactured by Toray Industries, Inc. are used.
Particle 4: Non-spherical particles having an average particle diameter of 10 μm obtained by pulverization and classification in the same manner as in Production Example 5 except that pellets of
Particle 5: MBX-40 manufactured by Sekisui Plastics Co., Ltd. (true spherical acrylic particles, average particle size 40 μm)
Particle 6: Non-spherical particle having an average particle diameter of 10 μm obtained by pulverization and classification in the same manner as in Production Example 5 except that a pellet of poly (methyl methacrylate) (PMMA) resin Sumipex MGSS manufactured by Sumitomo Chemical Co., Ltd. is used. .
Particle 7: SP-10 manufactured by Toray Industries, Inc. (true spherical nylon particles, average particle diameter 10 μm)
<Production Example 6: Creation of particles 8 used for surface layer B>
In the same manner as in Production Example 5,
<Production Example 7: Creation of particles 9 used for surface layer B>
Using the pellets obtained in Production Example 6 above, the conditions normally used for a biaxially stretched film of polyethylene terephthalate (longitudinal stretch ratio: 3.0 times, transverse stretch ratio: 4.0 times, heat setting temperature set at 220 ° C.) Thus, a transparent biaxially stretched polyethylene terephthalate film (thickness: 50 μm) was obtained. This was pulverized while cooling with liquid nitrogen in the same manner as in Production Example 6 above, followed by air classification to obtain particles 9 (non-spherical particles) having an average particle diameter of 52 μm.
<Production Example 8: Creation of particles 10 used for surface layer B>
Using the pellets obtained in Production Example 6 above, polyester fibers having a diameter of 35 μm were prepared by a conventional method, and this was crushed while cooling with liquid nitrogen in the same manner as in Production Example 6 to obtain particles 10 having an average particle diameter of 40 μm. (Non-spherical particles) were obtained.
<Production Examples 9 and 10: Creation of particles 11 and 12 used for surface layer B>
The pellets obtained in Production Example 6 were dried and crystallized, similarly pulverized, and subjected to air classification to obtain particles 11 (non-spherical particles) having an average particle diameter of 35 μm. Further, the film obtained in Production Example 7 was similarly crushed and subjected to air classification to obtain particles 12 (non-spherical particles) having an average particle diameter of 50 μm. In the above, the air classification conditions were adjusted so that the particles obtained would be in the form shown in Table 3.
Particle 13: Non-spherical particle having an average particle diameter of 40 μm obtained by pulverization and classification in the same manner as in Production Example 6 except that pellets of poly (methyl methacrylate) (PMMA) resin Sumipex MGSS manufactured by Sumitomo Chemical Co., Ltd. are used. .
<Production Examples 11 and 12: Creation of particles 14 and 15 used for the surface layer B>
In Production Example 7, the film thickness was changed to 75 μm, and pulverization and air classification were performed in the same manner as in Production Example 7 to obtain particles 14 (non-spherical particles). Moreover, the film thickness was set to 100 μm, and similarly, particles 15 (non-spherical particles) were obtained. In the above, the air classification conditions were adjusted so that the particles obtained would be in the form shown in Table 3.
<Production Examples 13 to 20: Creation of particles 16 to 23 used for the surface layer B>
The pellets obtained in Production Example 6 were dried and crystallized, similarly crushed, and subjected to air classification to obtain particles 16 to 23 (non-spherical particles or spherical particles) each having the structure shown in Table 3. In the above, the air classification conditions were adjusted so that the particles obtained would be in the form shown in Table 3.
[Example 1-1]
(Manufacture of white reflective film)
The isophthalic acid copolymerized
<
Z-465 manufactured by Kyodo Chemical Co., Ltd. as a resin (a copolymerized polyester resin containing 10 mol% of sodium sulfoisophthalic acid component and 100 mol% of total acid component and 10 mol% of diethylene glycol component in polyethylene terephthalate) Polymerized polyester is
Following application, the film was guided to a transverse stretching zone maintained at 130 ° C. through a preheating zone at 115 ° C. while holding both ends with clips, and stretched 3.6 times in the transverse direction. Then, heat setting is performed at 185 ° C. in the tenter, the width is set to 2%, the width is set in the horizontal direction at a temperature of 130 ° C., then both ends of the film are cut off, and the film is thermally relaxed at a longitudinal relaxation rate of 2%. It cooled and the biaxially stretched film was obtained. The evaluation results of the obtained film are shown in Table 2.
[Examples 1-2, 1-3, 1-5, Comparative Examples 1-1 to 1-3]
A biaxially stretched film was obtained in the same manner as in Example 1-1 except that the aspect of the particles used for the surface layer (B layer) was as shown in Table 1. The evaluation results of the obtained film are shown in Table 2.
[Example 1-4]
The void forming agent of the reflective layer A was changed to a resin incompatible with polyester (cycloolefin, “TOPAS 6017S-04” manufactured by Polyplastics Co., Ltd.), and the content of the void forming agent with respect to the mass of the reflective layer A was 20 A biaxially stretched film was prepared and evaluated in the same manner as in Example 1-1 except that the mass% was used. The evaluation results are shown in Table 2.
[Example 1-6]
After the uniaxial stretching, the following surface layer (layer) was formed on the biaxially stretched film obtained in the same manner as in Example 1-1 except that the coating solution was not applied before the biaxial stretching. A coating liquid having the composition shown in the coating liquid 2 for forming B) is applied with a wet thickness of 15 g / m. 2 Then, the film was dried in an oven at 80 ° C. to obtain a film.
<Coating liquid 2, solid content concentration 30% by mass>
Particle: Particle 1 (non-spherical particle) obtained in Production Example 5 7.5 mass%
Acrylic resin (thermoplastic resin): DIC ACRICID A-817BA (solid content concentration 50% by mass, described as resin 2 in the table) ... 30% by mass
-Crosslinking agent: Coronate HL manufactured by Nippon Polyurethane Industry Co., Ltd. (isocyanate-based crosslinking agent, solid content concentration 75% by mass, described as
Diluting solvent: butyl acetate 52.5% by mass
The evaluation results of the obtained film were as shown in Table 2. In addition, the solid content ratio of each component in the coating liquid 2 is as follows.
・ Particles: 25% by mass
-Acrylic resin (thermoplastic resin): 50% by mass
・ Crosslinking agent: 25% by mass
(Manufacture of white reflective film)
The isophthalic acid copolymerized
<
Z-465 (Resin 1) manufactured by Kyodo Chemical Co., Ltd. as a resin, particles 8 obtained in Production Example 6 as particles, and ion-exchanged water as a diluting solvent, the solid content of the resin and particles The
Following application, the film was guided to a transverse stretching zone maintained at 130 ° C. through a preheating zone at 115 ° C. while holding both ends with clips, and stretched 3.6 times in the transverse direction. Then, heat setting is performed at 185 ° C. in the tenter, the width is set to 2%, the width is set in the horizontal direction at a temperature of 130 ° C., then both ends of the film are cut off, and the film is thermally relaxed at a longitudinal relaxation rate of 2%. It cooled and the biaxially stretched film was obtained. Table 4 shows the evaluation results of the obtained film.
[Examples 2-2 to 2-5, 2-8 to 2-15, Comparative Examples 2-1 to 2-5]
A biaxially stretched film was obtained in the same manner as in Example 2-1, except that the aspect and layer structure of the particles used for the surface layer (B layer) were as shown in Table 3 and Table 4, respectively. Table 4 shows the evaluation results of the obtained film.
[Example 2-6]
The void forming agent of the reflective layer A was changed to a resin incompatible with polyester (cycloolefin, “TOPAS 6017S-04” manufactured by Polyplastics Co., Ltd.), and the content of the void forming agent with respect to the mass of the reflective layer A was 20 A biaxially stretched film was prepared and evaluated in the same manner as in Example 2-1, except that the mass% was used. The evaluation results are shown in Table 4.
[Example 2-7]
After the uniaxial stretching, the following surface layer (layer) was formed on the biaxially stretched film obtained in the same manner as in Example 2-1, except that the coating solution was not applied before the biaxial stretching. A coating liquid having the composition shown in the coating liquid 4 for forming B) is applied with a wet thickness of 15 g / m. 2 Then, the film was dried in an oven at 80 ° C. to obtain a film.
<Coating liquid 4, solid content concentration 30% by mass>
Particles: Particles 8 (non-spherical particles) obtained in Production Example 6 7.5% by mass
Acrylic resin (thermoplastic resin): DIC's Acridic A-817BA (resin 2) ... 30% by mass
Crosslinking agent: Coronate HL (crosslinking agent 1) manufactured by Nippon Polyurethane Industry Co., Ltd. 10% by mass
Diluting solvent: butyl acetate 52.5% by mass
The evaluation results of the obtained film were as shown in Table 4. In addition, the solid content ratio of each component in the coating liquid 4 is as follows.
・ Particles: 25% by mass
-Acrylic resin (thermoplastic resin): 50% by mass
・ Crosslinking agent: 25% by mass
ADVANTAGE OF THE INVENTION According to this invention, the white reflective film which can fully suppress sticking with a light-guide plate, and can fully suppress the damage | wound of a light-guide plate simultaneously can be provided.
Claims (10)
- 反射層Aと、粒子を含有する樹脂組成物からなる表面層Bとを有する白色反射フィルムであって、
表面層Bの反射層Aとは反対側の表面に上記粒子により形成された突起を有し、該表面における高さ5μm以上の突起個数が104~1010個/m2であり、
上記粒子は、平均粒子径が3~100μm、10%圧縮強度が0.1~15MPaの非球状粒子である、白色反射フィルム。 A white reflective film having a reflective layer A and a surface layer B made of a resin composition containing particles,
The surface layer B has protrusions formed of the particles on the surface opposite to the reflective layer A, and the number of protrusions having a height of 5 μm or more on the surface is 10 4 to 10 10 / m 2 ;
The white reflective film, wherein the particles are non-spherical particles having an average particle diameter of 3 to 100 μm and a 10% compressive strength of 0.1 to 15 MPa. - 上記粒子が、ポリマーを粉砕することによって得られた粉砕ポリマー粒子である、請求項1に記載の白色反射フィルム。 The white reflective film according to claim 1, wherein the particles are pulverized polymer particles obtained by pulverizing a polymer.
- 上記ポリマーがポリエステルである、請求項2に記載の白色反射フィルム。 The white reflective film according to claim 2, wherein the polymer is polyester.
- 上記粒子が、アスペクト比(長径/短径)の平均が1.31以上、1.80以下であり、かつ、アスペクト比の標準偏差が0.15~0.50である非球状粒子である、請求項1~3のいずれか1項に記載の白色反射フィルム。 The particles are non-spherical particles having an average aspect ratio (major axis / minor axis) of 1.31 or more and 1.80 or less, and a standard deviation of the aspect ratio of 0.15 to 0.50. The white reflective film according to any one of claims 1 to 3.
- 表面層B中の上記粒子の含有量が、表面層Bの質量を基準として1~70質量%である、請求項1~3のいずれか1項に記載の白色反射フィルム。 The white reflective film according to any one of claims 1 to 3, wherein the content of the particles in the surface layer B is 1 to 70% by mass based on the mass of the surface layer B.
- 揮発有機溶剤量が10ppm以下である、請求項1~3のいずれか1項に記載の白色反射フィルム。 The white reflective film according to any one of claims 1 to 3, wherein the amount of volatile organic solvent is 10 ppm or less.
- 反射層Aがボイドを含有し、そのボイド体積率が15体積%以上、70体積%以下である、請求項1~3のいずれか1項に記載の白色反射フィルム。 The white reflective film according to any one of claims 1 to 3, wherein the reflective layer A contains voids, and the void volume ratio thereof is 15% by volume or more and 70% by volume or less.
- さらにボイド体積率が0体積%以上、15体積%未満である支持層Cを有する、請求項7に記載の白色反射フィルム。 Furthermore, the white reflective film of Claim 7 which has the support layer C whose void volume fraction is 0 volume% or more and less than 15 volume%.
- 表面層Bが、塗液の塗布によって形成された層である、請求項7に記載の白色反射フィルム。 The white reflective film according to claim 7, wherein the surface layer B is a layer formed by application of a coating liquid.
- 導光板を備える面光源反射板として用いられる、請求項1~3のいずれか1項に記載の白色反射フィルム。 The white reflective film according to any one of claims 1 to 3, which is used as a surface light source reflective plate provided with a light guide plate.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014560183A JP5898345B2 (en) | 2013-08-07 | 2014-08-04 | White reflective film |
KR1020157009589A KR101810750B1 (en) | 2013-08-07 | 2014-08-04 | White reflective film |
KR1020177018651A KR20170081765A (en) | 2013-08-07 | 2014-08-04 | White reflective film |
CN201480002946.XA CN104769461A (en) | 2013-08-07 | 2014-08-04 | White reflective film |
KR1020167027367A KR101937007B1 (en) | 2013-08-07 | 2014-08-04 | White reflective film |
KR1020177006145A KR101973875B1 (en) | 2013-08-07 | 2014-08-04 | White reflective film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013164228 | 2013-08-07 | ||
JP2013-164228 | 2013-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015020223A1 true WO2015020223A1 (en) | 2015-02-12 |
Family
ID=52461546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071129 WO2015020223A1 (en) | 2013-08-07 | 2014-08-04 | White reflective film |
Country Status (5)
Country | Link |
---|---|
JP (3) | JP5898345B2 (en) |
KR (4) | KR20170081765A (en) |
CN (3) | CN107272091A (en) |
TW (3) | TWI619607B (en) |
WO (1) | WO2015020223A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017018280A1 (en) * | 2015-07-24 | 2017-02-02 | 帝人フィルムソリューション株式会社 | White reflective film |
JP2017090929A (en) * | 2013-08-07 | 2017-05-25 | 帝人フィルムソリューション株式会社 | White reflection film and manufacturing method of the same |
WO2017131030A1 (en) * | 2016-01-26 | 2017-08-03 | 東レ株式会社 | Reflective film for edge-light-type backlight, and liquid crystal display backlight using same |
JP2020027218A (en) * | 2018-08-16 | 2020-02-20 | 楷威電子股▲分▼有限公司 | Optical film, and backlight module applying the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017195352A (en) * | 2016-04-14 | 2017-10-26 | 大日本印刷株式会社 | Light emitting diode mounting module |
JP2017199737A (en) * | 2016-04-25 | 2017-11-02 | 大日本印刷株式会社 | Light emitting diode-mounted module, and light reflective member for light emitting diode-mounted module |
KR102004088B1 (en) | 2018-03-06 | 2019-07-25 | 도레이첨단소재 주식회사 | White polyester reflective film and reflective sheet using the same and method of manufacturing the same |
KR102033033B1 (en) * | 2018-08-24 | 2019-10-16 | 주식회사 퓨엠 | Method for producing optical beads, optical beads produced by the same, reflection film, and light source assembly comprising the film |
KR102285669B1 (en) | 2018-08-27 | 2021-08-04 | 동우 화인켐 주식회사 | A color filter, a method of making thereof, and an image display device comprising thereof |
CN112297552A (en) * | 2019-07-31 | 2021-02-02 | 宁波长阳科技股份有限公司 | White reflective polyester film |
CN110297341A (en) | 2019-08-02 | 2019-10-01 | 京东方科技集团股份有限公司 | Light modulation film, backlight module, display device |
CN111552114A (en) | 2020-03-24 | 2020-08-18 | 京东方科技集团股份有限公司 | Backlight module and display device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005181492A (en) * | 2003-12-17 | 2005-07-07 | Matsushita Electric Ind Co Ltd | Light transmissive sheet and touch panel using same |
WO2011105294A1 (en) * | 2010-02-24 | 2011-09-01 | 東レ株式会社 | White reflective film for edge-lit backlight and backlight using the aforementioned |
JP2012108190A (en) * | 2010-11-15 | 2012-06-07 | Teijin Dupont Films Japan Ltd | Reflection film |
JP2012159610A (en) * | 2011-01-31 | 2012-08-23 | Teijin Dupont Films Japan Ltd | Reflection film |
JP2013041021A (en) * | 2011-08-12 | 2013-02-28 | Teijin Dupont Films Japan Ltd | White reflective film |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08278415A (en) * | 1995-04-07 | 1996-10-22 | Taiho Ind Co Ltd | Backlight for liquid crystal panel and reflecting sheet |
JP2000162439A (en) * | 1998-11-26 | 2000-06-16 | Nitto Denko Corp | Polarizing plate |
JP2000302624A (en) * | 1999-04-22 | 2000-10-31 | Sekisui Plastics Co Ltd | Acrylic acid ester-based resin particle and external preparation containing the same |
JP4712252B2 (en) | 2001-09-19 | 2011-06-29 | 恵和株式会社 | Reflective sheet and backlight unit using the same |
JP2003279714A (en) * | 2002-03-20 | 2003-10-02 | Mitsui Chemicals Inc | Reflector, side light type back light device using the same, and liquid crystal display |
JP4259029B2 (en) * | 2002-03-20 | 2009-04-30 | 住友化学株式会社 | Micro powder and method for producing the same |
JP2008512719A (en) | 2004-09-13 | 2008-04-24 | エスケーシー ハース ディスプレイ フィルムズ カンパニー,リミテッド | Reflective sheet and backlight unit using the same |
US20100097824A1 (en) * | 2007-03-22 | 2010-04-22 | Kimoto Co., Ltd. | Backlight unit and member |
JP2008239734A (en) * | 2007-03-27 | 2008-10-09 | Sekisui Plastics Co Ltd | Synthetic resin particle, and optical material, coating material, cosmetic, and synthetic resin sheet using the synthetic resin particle |
WO2008139824A1 (en) * | 2007-05-08 | 2008-11-20 | Toray Industries, Inc. | White reflective film |
JP2009244509A (en) | 2008-03-31 | 2009-10-22 | Mitsubishi Rayon Co Ltd | Reflective sheet |
JP2011168680A (en) * | 2010-02-17 | 2011-09-01 | Kobe Univ | Method for producing hemispherical fine particle |
DE102011111145A1 (en) * | 2011-08-20 | 2013-02-21 | Clariant International Ltd. | Ink systems |
JP6014979B2 (en) * | 2011-09-26 | 2016-10-26 | 住友大阪セメント株式会社 | Light diffusing film forming resin composition and manufacturing method thereof, light diffusing film, light diffusing reflection member, light diffusing and transmitting member, optical element |
WO2015020223A1 (en) * | 2013-08-07 | 2015-02-12 | 帝人デュポンフィルム株式会社 | White reflective film |
-
2014
- 2014-08-04 WO PCT/JP2014/071129 patent/WO2015020223A1/en active Application Filing
- 2014-08-04 KR KR1020177018651A patent/KR20170081765A/en not_active Application Discontinuation
- 2014-08-04 KR KR1020177006145A patent/KR101973875B1/en active IP Right Grant
- 2014-08-04 CN CN201710367396.7A patent/CN107272091A/en active Pending
- 2014-08-04 KR KR1020157009589A patent/KR101810750B1/en active IP Right Review Request
- 2014-08-04 JP JP2014560183A patent/JP5898345B2/en active Active
- 2014-08-04 KR KR1020167027367A patent/KR101937007B1/en active IP Right Grant
- 2014-08-04 CN CN201480002946.XA patent/CN104769461A/en active Pending
- 2014-08-04 CN CN201710367240.9A patent/CN107315209B/en active Active
- 2014-08-07 TW TW106112244A patent/TWI619607B/en active
- 2014-08-07 TW TW106106478A patent/TWI629172B/en active
- 2014-08-07 TW TW103127110A patent/TWI589440B/en active
-
2015
- 2015-10-23 JP JP2015209021A patent/JP6185537B2/en active Active
-
2017
- 2017-01-30 JP JP2017014396A patent/JP6404962B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005181492A (en) * | 2003-12-17 | 2005-07-07 | Matsushita Electric Ind Co Ltd | Light transmissive sheet and touch panel using same |
WO2011105294A1 (en) * | 2010-02-24 | 2011-09-01 | 東レ株式会社 | White reflective film for edge-lit backlight and backlight using the aforementioned |
JP2012108190A (en) * | 2010-11-15 | 2012-06-07 | Teijin Dupont Films Japan Ltd | Reflection film |
JP2012159610A (en) * | 2011-01-31 | 2012-08-23 | Teijin Dupont Films Japan Ltd | Reflection film |
JP2013041021A (en) * | 2011-08-12 | 2013-02-28 | Teijin Dupont Films Japan Ltd | White reflective film |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017090929A (en) * | 2013-08-07 | 2017-05-25 | 帝人フィルムソリューション株式会社 | White reflection film and manufacturing method of the same |
WO2017018280A1 (en) * | 2015-07-24 | 2017-02-02 | 帝人フィルムソリューション株式会社 | White reflective film |
JPWO2017018280A1 (en) * | 2015-07-24 | 2018-03-01 | 帝人フィルムソリューション株式会社 | White reflective film |
CN107850702A (en) * | 2015-07-24 | 2018-03-27 | 帝人薄膜解决方案有限公司 | White reflection film |
CN107850702B (en) * | 2015-07-24 | 2020-05-12 | 帝人薄膜解决方案有限公司 | White reflective film |
WO2017131030A1 (en) * | 2016-01-26 | 2017-08-03 | 東レ株式会社 | Reflective film for edge-light-type backlight, and liquid crystal display backlight using same |
JP2020027218A (en) * | 2018-08-16 | 2020-02-20 | 楷威電子股▲分▼有限公司 | Optical film, and backlight module applying the same |
Also Published As
Publication number | Publication date |
---|---|
TW201518101A (en) | 2015-05-16 |
JP2016027429A (en) | 2016-02-18 |
KR101937007B1 (en) | 2019-01-09 |
JPWO2015020223A1 (en) | 2017-03-02 |
TWI629172B (en) | 2018-07-11 |
KR20160119277A (en) | 2016-10-12 |
TWI619607B (en) | 2018-04-01 |
JP6185537B2 (en) | 2017-08-23 |
TWI589440B (en) | 2017-07-01 |
JP2017090929A (en) | 2017-05-25 |
KR101973875B1 (en) | 2019-04-29 |
TW201722735A (en) | 2017-07-01 |
KR20170081765A (en) | 2017-07-12 |
KR20150058336A (en) | 2015-05-28 |
KR101810750B1 (en) | 2017-12-19 |
TW201726415A (en) | 2017-08-01 |
JP6404962B2 (en) | 2018-10-17 |
CN104769461A (en) | 2015-07-08 |
CN107315209B (en) | 2020-01-14 |
CN107315209A (en) | 2017-11-03 |
KR20170029023A (en) | 2017-03-14 |
CN107272091A (en) | 2017-10-20 |
JP5898345B2 (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6404962B2 (en) | White reflective film and method for producing the same | |
JP5926512B2 (en) | White reflective film | |
JP6211923B2 (en) | White reflective film | |
JP6211918B2 (en) | White reflective film | |
JP6110220B2 (en) | White reflective film | |
JP6336266B2 (en) | White reflective film | |
JP5722937B2 (en) | White reflective film | |
JPWO2017018280A1 (en) | White reflective film | |
JP6211917B2 (en) | White reflective film | |
JP2015069020A (en) | White reflection film | |
WO2014129673A1 (en) | White reflective film | |
JP6363334B2 (en) | White reflective film | |
JP5785202B2 (en) | White reflective film | |
JP6235299B2 (en) | White reflective film | |
JP6352613B2 (en) | White reflective film | |
JP5702482B2 (en) | White reflective film | |
JP5495345B2 (en) | White reflective film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014560183 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14835220 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157009589 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14835220 Country of ref document: EP Kind code of ref document: A1 |