WO2015146668A1 - 繊維強化複合材料及びその製造方法 - Google Patents

繊維強化複合材料及びその製造方法 Download PDF

Info

Publication number
WO2015146668A1
WO2015146668A1 PCT/JP2015/057665 JP2015057665W WO2015146668A1 WO 2015146668 A1 WO2015146668 A1 WO 2015146668A1 JP 2015057665 W JP2015057665 W JP 2015057665W WO 2015146668 A1 WO2015146668 A1 WO 2015146668A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
binder resin
composite material
reinforced composite
preform
Prior art date
Application number
PCT/JP2015/057665
Other languages
English (en)
French (fr)
Inventor
中條賢一
根岸正一郎
堀中進
森千章
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US15/129,117 priority Critical patent/US10272620B2/en
Priority to JP2016510249A priority patent/JP6211681B2/ja
Publication of WO2015146668A1 publication Critical patent/WO2015146668A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/12Compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts

Definitions

  • the present invention relates to a fiber-reinforced composite material using a preform in which a deformed portion is formed by deforming a sheet-like fiber base material made of reinforcing fibers, and a method for producing the same.
  • a so-called RTM Resin® Transfer® Molding
  • a fiber-reinforced composite material (FRP molded product) is obtained by impregnating and curing a base resin in a fiber base material in a mold.
  • the law is known.
  • a fiber base material is shaped in advance to a shape close to the shape of a desired FRP molded product. It has been broken. That is, a preform is first prepared from a fiber base material as a molding precursor of an FRP molded product. Then, by placing this preform in a mold and impregnating and curing the base material resin as described above, it becomes possible to finally obtain an FRP molded product efficiently and with high accuracy.
  • the preform is shaped in a state in which a sheet-like fiber base material in which reinforcing fibers are oriented is integrated with a resin material or the like, as proposed in, for example, JP-A-2008-132775. It is produced by doing. That is, for example, by providing a resin material on the fiber base and fixing the reinforcing fibers, the reinforcing fibers are prevented from being scattered during shaping.
  • the fiber base material is heated to increase the degree of melting of the resin material and soften it. That is, when the fiber base material is shaped, the binding force of the reinforcing fiber by the resin material is reduced. For this reason, at the time of shaping, the orientation of the reinforcing fibers tends to be disturbed at a site where the deformation amount (processing rate) is large compared to other sites, such as a site where the bending angle of the fiber substrate becomes steep.
  • the main object of the present invention is to provide a fiber-reinforced composite material having improved mechanical strength and aesthetic design by using a preform in which disorder of orientation of reinforcing fibers is suppressed as a molding precursor.
  • Another object of the present invention is to provide a method for producing the above-described fiber-reinforced composite material.
  • the present invention provides a method for producing a fiber-reinforced composite material using a preform in which a deformed portion is formed by deforming a sheet-like fiber substrate made of reinforcing fibers by forming.
  • the first part of the fiber base material is deformed more easily than the second part when the fiber base material is shaped to obtain a preform, so that the orientation of the reinforcing fibers is likely to be disturbed.
  • the shaping step is performed so that the degree of melting of the binder resin applied to the first part is smaller than that of the binder resin applied to the second part. Therefore, when the fiber base material is deformed by shaping, the binding force of the binder resin acting on the reinforcing fibers in the first part is increased. Thereby, it can suppress effectively that disorder of orientation arises in the reinforced fiber of the 1st part.
  • the binding force of the binder resin acting on the reinforcing fibers in the second part is smaller than that in the first part, it is possible to avoid the loss of the shapeability of the fiber base material.
  • the distribution of the reinforcing fibers in the fiber base material may be biased as disordered orientation of the reinforcing fibers. Can be effectively suppressed. That is, in this method for producing a fiber-reinforced composite material, even if the reinforcing fibers forming the fiber base material are oriented in either one direction or multiple directions (including random), the spacing between the reinforcing fibers And it can suppress that distribution becomes non-uniform
  • the reinforcing fiber is continuous fiber, long fiber, short fiber or the like, and the fiber base material is any of UD material, woven material (cloth material), non-woven fabric, etc., mechanical strength and aesthetic design.
  • a fiber-reinforced composite material having excellent properties can be obtained efficiently.
  • a first binder resin is applied to the first part of the fiber base material, and at least the second part of the fiber base material is applied.
  • a second binder resin having a softening point lower than that of the first binder resin is applied, and in the heating step, the fiber base material is lower than the softening point of the first binder resin during the shaping step, and the second It is preferable to heat the fiber base so that the temperature becomes higher than the softening point of the binder resin.
  • the degree of melting during the shaping step of the binder resin applied to the fiber base material is higher than that of the second part. I try to make it smaller at the site.
  • the first binder resin having a softening point higher than that of the second binder resin is applied to the first part. Then, the fiber base material is heated in the heating step so that the binding force of the reinforcing fibers by the first binder resin is maintained during the shaping step, and the second binder resin is sufficiently softened.
  • the melting degree of the binder resin can be adjusted well for each of the first part and the second part.
  • a well shaped preform can be obtained.
  • the first binder resin is partially applied to the first portion of the fiber base material.
  • the reinforcing fibers in the first part are partially restrained, and the orientation of Disturbance can be suppressed. That is, it is possible to suppress the occurrence of orientation disorder while sufficiently securing the shapeability of the first part. Therefore, it becomes possible to shape the preform in which the reinforcing fibers are oriented substantially evenly with higher accuracy and more easily.
  • the amount of the first binder resin necessary for producing the fiber reinforced composite material can be reduced.
  • the first binder resin is applied to the first part of the fiber base material, and then the first part and the second part are both provided with the first part. It is preferable to apply a two-binder resin.
  • the second binder resin is applied to the entire surface of the fiber base including the first binder resin applied to the first part. For this reason, when forming a preform from the laminated body which laminated
  • the heating step it is possible to bond the layers of the laminate more satisfactorily by the second binder resin that has been heated above the softening point and has been softened well.
  • the second binder resin that has been heated above the softening point and has been softened well.
  • the second binder resin applied to the fiber base material in the application step preferably has a rigidity after curing larger than that of the first binder resin.
  • the second binder resin that covers the first part together with the first binder resin has a large rigidity, so that it is effective that the springback occurs. Can be suppressed. Therefore, a preform having a desired shape can be easily produced with higher accuracy.
  • the preform is disposed in a cavity formed by a mold, and a base material having a temperature lower than the softening point of each of the first binder resin and the second binder resin. It is preferable to obtain a fiber-reinforced composite material by impregnating and curing the resin and then removing the mold. In this case, even when the preform is molded in the mold, it is possible to avoid a decrease in the binding force of the first binder resin and the second binder resin on the reinforcing fibers. For this reason, it can suppress that disorder of orientation arises in a reinforced fiber more effectively. That is, it becomes possible to efficiently obtain a fiber-reinforced composite material in which the reinforcing fibers are oriented substantially uniformly and have excellent mechanical strength and aesthetic design.
  • the second temperature for heating the second part may be higher than the first temperature for heating the first part of the fiber base material. Good. That is, in this case, the degree of melting of the binder resin applied to the fiber base is smaller at the first part than at the second part by making the heating temperature in the heating step different between the first part and the second part. I am doing so.
  • the first part is heated at a first temperature at which the binding force of the reinforcing fiber by the binder resin is maintained.
  • the second part is heated at a second temperature at which the binder resin can be softened until the fiber substrate exhibits sufficient formability.
  • the shaping step it is possible to effectively prevent the disorder of the orientation of the reinforcing fibers in the first part due to the binding force of the binder resin, while avoiding the loss of the shaping property of the fiber base material. . That is, it is possible to easily adjust the degree of melting of the first part and the second part and easily produce a preform in which the reinforcing fibers are oriented substantially uniformly and shaped with high accuracy. As a result, it becomes possible to efficiently obtain a fiber-reinforced composite material having excellent mechanical strength and aesthetic design.
  • the preform is disposed in a cavity formed by a mold, impregnated with a base material resin having a temperature lower than the second temperature, cured, and then demolded. It is preferable to obtain a fiber-reinforced composite material.
  • a fiber-reinforced composite material even when the preform is molded in the mold, it is possible to avoid a reduction in the binding force of the binder resin with respect to the reinforcing fibers. For this reason, it can suppress that disorder of orientation arises in the reinforcing fiber of the 1st part and the 2nd part still more effectively. That is, it becomes possible to efficiently obtain a fiber-reinforced composite material in which the reinforcing fibers are oriented substantially uniformly and have excellent mechanical strength and aesthetic design.
  • the fiber base material coated with the binder resin is stacked and stacked between the application step and the heating step. It is preferable to further include a laminating step for forming a body.
  • the deformed portion includes a first binder resin, and at least a portion excluding the deformed portion includes a fiber reinforced composite material including a second binder resin having a softening point lower than that of the first binder resin.
  • the first binder resin is applied to the first part where the deformed portion is formed, and the second binder resin is applied to the second part excluding the first part. Shaped. Since the first binder resin has a higher softening point than the second binder resin, the binding force of the first binder resin that acts on the first part when the fiber base material is shaped is the second that acts on the second part. It becomes larger than the binding force of the binder resin.
  • the first part it is possible to effectively suppress the occurrence of disorder in the orientation of the reinforcing fiber, and in the second part, sufficient shapeability can be obtained. That is, it is possible to effectively suppress the occurrence of disorder in the orientation of the reinforcing fibers in the first part that is greatly deformed during shaping while maintaining the shaping property of the fiber base material satisfactorily.
  • a preform in which reinforcing fibers are oriented substantially evenly can be used as a molding precursor. Therefore, in the finally obtained fiber-reinforced composite material according to the present invention, mechanical strength and aesthetic design are improved satisfactorily. Can be made.
  • the deformed portion partially includes the first binder resin.
  • This fiber-reinforced composite material is obtained from a fiber base material in which the first binder resin is partially applied to the first part, for example, so as to have a dot shape.
  • the fiber base material By shaping this fiber base material, it is possible to obtain a preform while sufficiently securing the shapeability of the first part and suppressing occurrence of disorder of the orientation of the reinforcing fibers. Therefore, the fiber reinforced composite material according to the present invention obtained from the above preform is molded with high accuracy and has excellent mechanical strength and aesthetic design.
  • the first binder resin of the deformed portion is covered with the second binder resin.
  • the second binder resin can be effectively interposed between the layers of the laminate.
  • a fiber-reinforced composite material molded with high accuracy can be obtained from a preform in which the reinforcing fibers are oriented substantially uniformly. Therefore, this fiber reinforced composite material has excellent mechanical strength and aesthetic design.
  • the second binder resin has higher rigidity than the first binder resin.
  • the second binder resin that covers the first part together with the first binder resin has a large rigidity, so that it is effective that the springback occurs. Can be suppressed. Therefore, this fiber-reinforced composite material can be molded with higher accuracy, and the mechanical strength and the aesthetic design can be improved satisfactorily.
  • the above-mentioned fiber reinforced composite material preferably includes a base material resin having a molding temperature lower than the softening point of each of the first binder resin and the second binder resin.
  • the molding temperature is a temperature at which the base material resin can be injected and impregnated into the preform. That is, as described above, by including a base material resin having a molding temperature lower than the softening point of the first binder resin and the second binder resin, the first binder resin and the reinforcing fiber at the time of pouring and impregnating the base material resin and It can avoid that the binding force of 2nd binder resin falls. For this reason, it can suppress that disorder of orientation arises in the reinforcing fiber of the 1st part and the 2nd part still more effectively. That is, since this fiber-reinforced composite material is molded with high accuracy from a preform in which reinforcing fibers are oriented substantially uniformly, it has excellent mechanical strength and aesthetic design.
  • the fiber reinforced composite material 10 has a plurality of sheet-like UD materials in which reinforcing fibers made of continuous fibers are oriented along one direction. It comprises a single fiber substrate 12 and a base material resin 14 (see FIGS. 1 and 9).
  • the reinforcing fibers constituting the fiber base 12 are not limited to continuous fibers, and may be long fibers or short fibers.
  • the orientation direction of these reinforcing fibers is not limited to one direction, and may be a plurality of directions including a random direction. That is, the fiber base material may be either a woven fabric (cloth material) or a non-woven fabric.
  • Suitable materials for reinforcing fibers include carbon fibers, glass fibers, resin fibers, and the like.
  • Suitable materials for the base resin 14 include epoxy resins, polyamide resins, phenol resins, and the like.
  • the fiber reinforced composite material 10 is configured by laminating a plurality of fiber base materials 12, the fiber base material 12 may be singular. In other words, the fiber reinforced composite material may be configured from one sheet-like fiber base material 12.
  • the fiber reinforced composite material 10 is manufactured using a preform 16 (see FIG. 7) in which a deformed portion 16a is formed by deforming the fiber base 12 by shaping as a molding precursor.
  • the deformation portion 16 a is a portion having a large deformation amount (processing rate) as compared with the other portion 16 b of the preform 16.
  • the preform 16 is obtained by preforming the fiber base 12 in a shape close to the shape of the fiber reinforced composite material 10. Accordingly, the fiber reinforced composite material 10 includes the deformed portion 10a and other portions having a smaller deformation amount than the deformed portion 10a so as to correspond to the deformed portion 16a and the other portion 16b of the preform 16, respectively. 10b is formed (see FIG. 9).
  • the deformed portion 10a of the fiber reinforced composite material 10 includes a first binder resin 18, and the deformed portion 10a and the other portion 10b include a second binder resin 20 (see FIG. 3) and a base material resin 14.
  • the first binder resin 18 is partially included in the deformable portion 10a and covered with the second binder resin 20 so as to be, for example, a dot shape.
  • the second binder resin 20 has higher rigidity than the first binder resin 18.
  • the rigidity of the first binder resin 18 and the second binder resin 20 can be adjusted by the amount of the crosslinking agent to be added. That is, for example, by increasing the amount of the crosslinking agent added to the second binder resin 20 rather than the first binder resin 18, the rigidity of the second binder resin 20 can be made larger than that of the first binder resin 18.
  • the softening point of the second binder resin 20 is lower than the softening point of the first binder resin 18. Further, the temperature (molding temperature) at the time of pouring / impregnating the base material resin 14 is lower than the softening point of each of the first binder resin 18 and the second binder resin 20.
  • the first binder resin 18 and the second binder resin 20 are made of a resin that adheres well to the base material resin 14. For example, when an epoxy resin is employed as the base material resin 14, it is preferable that the first binder resin 18 and the second binder resin 20 also employ an epoxy resin.
  • the softening point of the first binder resin 18, the softening point of the second binder resin 20, and the temperature (molding temperature) at the time of injection / impregnation of the base resin 14 are, for example, 160 ° C., 120 ° C., 110 ° C. It can be.
  • These softening points can be variously adjusted depending on the introduction rate of the epoxy resin used as a raw material and the substituent to be introduced.
  • a method for manufacturing the fiber-reinforced composite material 10 will be described. First, an application step of applying the first binder resin 18 and the second binder resin 20 to the surface of the fiber base 12 shown in FIG. 1 is performed. In this application step, first, as shown in FIG. 2, the first binder resin 18 is applied to the first portion 12 a of the fiber base 12.
  • part 12a is a site
  • the first binder resin 18 is partially applied to the first portion 12a so as to form a plurality of dots, for example.
  • thermal spraying in which the powder of the first binder resin 18 is melted using hot air and sprayed to the first portion 12a.
  • a solution in which the powdery first binder resin 18 is dissolved in a solvent is sprayed onto the first portion 12a using a spray.
  • the mixing ratio of the powder of the first binder resin 18 and the solvent may be adjusted so that the solution sprayed onto the first portion 12a has a viscosity that does not flow on the first portion 12a. preferable.
  • the second binder resin 20 is applied to the first portion 12a of the fiber base 12 and the second portion 12b which is a portion excluding the first portion 12a. That is, for example, by a known method such as spraying a solution obtained by dissolving the powdered second binder resin 20 in a solvent using a spray or spraying the powdered second binder resin 20 dissolved by heat. Then, the second binder resin 20 is applied to the entire surface of the fiber base 12 including the first binder resin 18 applied to the first portion 12a.
  • a lamination process is performed in which a plurality of fiber base materials 12 coated with the first binder resin 18 and the second binder resin 20 are laminated to form a laminate 22.
  • the fiber base materials 12 adjacent to each other in the stacking direction are arranged so that the orientation directions of the reinforcing fibers are orthogonal to each other.
  • attach the adjacent fiber base materials 12 favorably by interposing the 2nd binder resin 20 between the layers of the laminated body 22.
  • a heating process is performed in which the laminated body 22 (fiber substrate 12) is heated using a heating furnace (not shown) or the like to soften the second binder resin 20. That is, the heating temperature in the heating step is set to a temperature lower than the softening point of the first binder resin 18 and higher than the softening point of the second binder resin 20.
  • the second binder resin 20 can be softened while maintaining the restraining force that the first binder resin 18 restrains the reinforcing fibers of the first portion 12a, and the shapeability of the fiber base 12 can be improved.
  • a shaping process is performed in which the heated laminate 22 is shaped by the shaping mold 24 to form the preform 16.
  • the shaping mold 24 is formed in a shape that allows the laminate 22 to approach the shape of the final fiber-reinforced composite material 10. That is, the preform 16 having the deformed portion 16a and the other portion 16b is obtained as shown in FIG. 7 by shaping in the shaping mold 24 and then removing the mold after deforming the laminated body 22. It is possible.
  • the melting degree of the first binder resin 18 applied to the first portion 12a of the fiber base 12 is the second binder applied to the second portion 12b. It is smaller than the melting degree of the resin 20.
  • the binding force of the first binder resin 18 acting on the reinforcing fiber is sufficiently large in the first portion 12a, even if the laminated body 22 is deformed by shaping, it is effective that the disorder of orientation occurs in the reinforcing fiber. Can be suppressed.
  • the binding force of the 2nd binder resin 20 which acts on a reinforced fiber is small, and the shaping property of the laminated body 22 is impaired. Can be avoided.
  • the preform 16 in which the reinforcing fibers are oriented substantially uniformly and accurately shaped into a desired shape can be obtained.
  • the first binder resin 18 is partially applied to the first portion 12a of the fiber base 12 in the application step. Therefore, the shaping step is performed in a state where the reinforcing fibers in the first portion 12a are partially restrained. As a result, it is possible to suppress the occurrence of orientation disorder while ensuring the shapeability of the first portion 12a. Accordingly, the preform 16 in which the reinforcing fibers are oriented substantially uniformly can be shaped with higher accuracy and ease.
  • the second binder resin 20 is applied to the entire surface of the fiber base 12 including the first binder resin 18 applied to the first portion 12a of the fiber base 12 in the application step. .
  • the second binder resin 20 can be effectively interposed between the layers of the laminated body 22. This makes it possible to bond the layers of the stacked body 22 better by the softened second binder resin 20.
  • the rigidity of the second binder resin 20 that covers the first portion 12 a together with the first binder resin 18 is larger than that of the first binder resin 18. Therefore, even if the first portion 12a is greatly deformed by the shaping step to obtain the preform 16, it is possible to effectively suppress the occurrence of springback. As a result, the preform 16 having a desired shape can be easily manufactured with higher accuracy.
  • the preform 16 is disposed in the cavity 28 formed by the molding die 26, and the base material resin 14 is injected from the resin injection port 30 formed so as to reach the cavity 28. To do. At this time, air in the cavity 28 may be sucked. As a result, the matrix fiber 14 is impregnated into the reinforcing fibers of the preform 16. Next, the base resin 14 is cured by cooling or chemical reaction. Then, the fiber reinforced composite material 10 can be obtained by removing the mold 26.
  • the fiber reinforced composite material 10 uses, as a molding precursor, a preform 16 in which the reinforcing fibers are oriented substantially uniformly and accurately shaped to a shape close to the shape of the final fiber reinforced composite material 10. .
  • the fiber reinforced composite material 10 excellent in mechanical strength and aesthetic design can be efficiently manufactured.
  • the molding temperature of the base resin 14 is lower than the softening points of the first binder resin 18 and the second binder resin 20, even if the preform 16 is impregnated with the preform 16, It can be avoided that the binding force of the reinforcing fibers by the first binder resin 18 and the second binder resin 20 is reduced. As a result, it is possible to suppress the occurrence of orientation disorder in the reinforcing fiber more effectively, and thus the fiber-reinforced composite material 10 in which the reinforcing fiber is oriented substantially uniformly and is excellent in mechanical strength and aesthetic design is obtained efficiently. Is possible.
  • the first binder resin 18 and the second binder resin 20 having different softening points are applied to the first portion 12a and the second portion 12b of the fiber base 12, respectively.
  • a similar binder resin may be applied to the surface of the fiber base 12 without distinguishing the first part 12a and the second part 12b from each other.
  • the degree of melting of the binder resin applied to the fiber substrate 12 is different from that of the second part 12b by changing the heating temperature in the heating step between the first part 12a and the second part 12b. Can be made smaller.
  • the first portion 12a is heated at a first temperature at which the binding force of the reinforcing fiber by the binder resin is maintained.
  • the second portion 12b is heated at a second temperature at which the binder resin can be softened until the fiber base 12 exhibits sufficient formability. That is, the second temperature is higher than the first temperature.
  • the preform is placed in the cavity 28 formed by the mold 26, impregnated with the base material resin 14 having a temperature lower than the first temperature and the second temperature, and then removed. It is preferable to mold to obtain a fiber reinforced composite material. Thereby, even when the preform is molded in the mold 26, it is possible to avoid a reduction in the binding force of the binder resin to the reinforcing fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 本発明は、繊維強化複合材料及びその製造方法に関するものである。繊維基材(12)の変形部(16a)を形成する第1部位(12a)に第1バインダ樹脂(18)を塗布し、第1部位(12a)を除く第2部位(12b)に第2バインダ樹脂(20)を塗布する。次に、賦形時の第1バインダ樹脂(18)の溶融度合いが、第2バインダ樹脂(20)の溶融度合いに比して小さくなるように繊維基材(12)を加熱して、第2バインダ樹脂(20)を軟化させる。次に、繊維基材(12)に変形部(16a)が形成されるように賦形してプリフォーム(16)とする。このプリフォーム(16)を成形前駆体として、繊維強化複合材料(10)を得る。

Description

繊維強化複合材料及びその製造方法
 本発明は、強化繊維からなるシート状の繊維基材を賦形により変形させて変形部を形成したプリフォームを成形前駆体とする繊維強化複合材料及びその製造方法に関する。
 生産性に優れる繊維強化複合材料の製造方法として、成形型内で繊維基材に母材樹脂を含浸、硬化させることで繊維強化複合材料(FRP成形品)を得る、いわゆるRTM(Resin Transfer Molding)法が知られている。このRTM法を用いて、例えば、比較的大型のFRP成形品等を得る場合には、所望のFRP成形品の形状と近い形状に予め繊維基材を賦形しておくことが一般的に行われている。すなわち、FRP成形品の成形前駆体として、先ず、繊維基材からプリフォームを作製する。そして、このプリフォームを成形型内に配置して、上記の通り母材樹脂を含浸、硬化させることで、最終的にFRP成形品を効率的且つ高精度に得ることが可能になる。
 具体的には、プリフォームは、例えば、特開2008-132775号公報に提案されるように、強化繊維を配向させたシート状の繊維基材を、樹脂材料等で一体化した状態で賦形することによって作製される。すなわち、例えば、繊維基材に樹脂材料を設けて強化繊維を固定することで、賦形時に該強化繊維がばらけてしまうこと等を抑制している。
 ところで、上記のプリフォームを作製する場合、繊維基材を加熱することで、樹脂材料の溶融度合いを大きくして軟化させた状態で賦形を行う。すなわち、繊維基材の賦形時は、樹脂材料による強化繊維の拘束力が低減している。このため、賦形時に、繊維基材の曲げ角度が急峻になる部位等の、他の部位に比して変形量(加工率)が大きくなる部位では、強化繊維の配向が乱れ易い。これによって、強化繊維同士の間隔が不均一になり、縒れや目開きが生じたプリフォームが作製されると、最終的に得られるFRP成形品の機械強度や美観意匠性等が低下する懸念がある。
 本発明の主たる目的は、強化繊維の配向乱れが抑制されたプリフォームを成形前駆体とすることで、機械強度や美観意匠性を向上させた繊維強化複合材料を提供することにある。
 本発明の別の目的は、上記した繊維強化複合材料の製造方法を提供することにある。
 本発明の一実施形態によれば、本発明は、強化繊維からなるシート状の繊維基材を賦形により変形させて変形部を形成したプリフォームを成形前駆体とする繊維強化複合材料の製造方法であって、前記繊維基材にバインダ樹脂を塗布する塗布工程と、前記バインダ樹脂を塗布した前記繊維基材を加熱して、該バインダ樹脂を軟化させる加熱工程と、加熱した前記繊維基材に前記変形部が形成されるように賦形して前記プリフォームとする賦形工程と、を有し、前記賦形工程では、前記繊維基材の前記変形部を形成する第1部位に塗布した前記バインダ樹脂の溶融度合いを、前記繊維基材の前記第1部位を除く第2部位に塗布した前記バインダ樹脂の溶融度合いに比して小さくする維強化複合材料の製造方法が提供される。
 上記の通り、繊維基材の第1部位は、繊維基材を賦形してプリフォームを得る際、第2部位に比して変形量が大きくなるため、強化繊維の配向が乱れ易くなる。しかしながら、本発明に係る繊維強化複合材料の製造方法では、第1部位に塗布されたバインダ樹脂の溶融度合いが、第2部位に塗布されたバインダ樹脂よりも小さくなるように賦形工程を行う。従って、賦形により繊維基材を変形させる際に、第1部位の強化繊維に作用するバインダ樹脂の拘束力が大きくなる。これによって、第1部位の強化繊維に配向の乱れが生じることを効果的に抑制できる。また、第2部位の強化繊維に作用するバインダ樹脂の拘束力は、第1部位に比して小さくなるため、繊維基材の賦形性が損なわれることを回避できる。
 つまり、繊維基材の賦形性は良好に維持したまま、強化繊維の配向乱れが生じることを効果的に抑制できる。これによって、強化繊維が略均等に配向され、所望の形状に精度よく賦形されたプリフォームを得ることができる。このプリフォームを成形前駆体とすることで、機械強度や美観意匠性に優れた繊維強化複合材料を効率的に製造することが可能になる。
 なお、例えば、繊維基材を不織布等から形成した場合、すなわち、強化繊維をランダムに配向させた場合は、強化繊維の配向乱れとして、繊維基材中の強化繊維の分布に偏り等が生じることを効果的に抑制できる。すなわち、この繊維強化複合材料の製造方法では、繊維基材を形成する強化繊維が一方向及び複数方向(ランダムを含む)のいずれに配向されている場合であっても、該強化繊維同士の間隔及び分布が不均一になることを抑制できる。このため、強化繊維が略均等に配向され、所望の形状に精度よく賦形されたプリフォームを得ることができる。つまり、強化繊維が連続繊維、長繊維、短繊維等のいずれであっても、また、繊維基材がUD材、織物(クロス材)、不織布等のいずれであっても、機械強度や美観意匠性に優れた繊維強化複合材料を効率的に得ることができる。
 上記の繊維強化複合材料の製造方法において、前記塗布工程では、前記バインダ樹脂として、前記繊維基材の前記第1部位に第1バインダ樹脂を塗布し、前記繊維基材の少なくとも前記第2部位に前記第1バインダ樹脂よりも軟化点が低い第2バインダ樹脂を塗布し、前記加熱工程では、前記賦形工程時に前記繊維基材が前記第1バインダ樹脂の軟化点よりも低く、且つ前記第2バインダ樹脂の軟化点よりも高い温度になるように前記繊維基材を加熱することが好ましい。
 すなわち、この場合、第1バインダ樹脂及び第2バインダ樹脂の軟化点を互いに異ならせることで、繊維基材に塗布されたバインダ樹脂の賦形工程時の溶融度合いが、第2部位よりも第1部位で小さくなるようにしている。具体的には、第2バインダ樹脂よりも軟化点が高い第1バインダ樹脂を第1部位に塗布している。そして、賦形工程時に第1バインダ樹脂による強化繊維の拘束力が維持され、且つ第2バインダ樹脂が十分に軟化する温度となるように、加熱工程において繊維基材を加熱する。
 これによって、バインダ樹脂の溶融度合いを第1部位及び第2部位ごとに良好に調整することができる。その結果、繊維基材の賦形性が損なわれることを回避しつつ、強化繊維に配向の乱れが生じることを効果的に抑制できるため、強化繊維が略均等に配向され、所望の形状に精度よく賦形されたプリフォームを得ることができる。
 上記の繊維強化複合材料の製造方法において、前記塗布工程では、前記繊維基材の前記第1部位に対して、部分的に前記第1バインダ樹脂を塗布することが好ましい。このように、第1部位に対して、例えば、点状となるように、部分的に第1バインダ樹脂を塗布することで、第1部位の強化繊維同士を部分的に拘束して、配向の乱れを抑制することができる。すなわち、第1部位の賦形性を十分に確保しつつ、配向の乱れが生じることを抑制できる。従って、強化繊維が略均等に配向されたプリフォームを一層高精度且つ容易に賦形することが可能になる。また、繊維強化複合材料を作製する際に必要な第1バインダ樹脂の量を低減することができる。
 上記の繊維強化複合材料の製造方法において、前記塗布工程では、前記繊維基材の前記第1部位に前記第1バインダ樹脂を塗布した後、該第1部位及び前記第2部位の両方に前記第2バインダ樹脂を塗布することが好ましい。この場合、第1部位に塗布された第1バインダ樹脂上を含む、繊維基材の表面全体に第2バインダ樹脂が塗布される。このため、例えば、複数の繊維基材を積層した積層体からプリフォームを形成する際、積層体の層間に効果的に第2バインダ樹脂を介在させることができる。これによって、加熱工程において、軟化点以上に加熱され、良好に軟化した第2バインダ樹脂によって、積層体の層間を一層良好に接着することが可能になる。その結果、強化繊維が略均等に配向され、一層高精度且つ容易に賦形されたプリフォームを得ることができる。
 上記の繊維強化複合材料の製造方法において、前記塗布工程で前記繊維基材に塗布する第2バインダ樹脂は、硬化後の剛性が前記第1バインダ樹脂よりも大きいことが好ましい。この場合、上記の通り、第1部位を大きく変形させてプリフォームを得ても、第1部位を第1バインダ樹脂ごと覆う第2バインダ樹脂の剛性が大きいため、スプリングバックが生じることを効果的に抑制できる。従って、所望の形状のプリフォームを一層高精度且つ容易に作製することができる。
 上記の繊維強化複合材料の製造方法において、成形型によって形成されるキャビティ内に前記プリフォームを配置して、前記第1バインダ樹脂及び第2バインダ樹脂の各々の軟化点よりも低い温度の母材樹脂を含浸、硬化させた後に脱型して繊維強化複合材料を得ることが好ましい。この場合、成形型内でプリフォームを成形する際においても、強化繊維に対する第1バインダ樹脂及び第2バインダ樹脂の拘束力が低下することを回避できる。このため、一層効果的に強化繊維に配向の乱れが生じることを抑制できる。すなわち、強化繊維が略均等に配向し、機械強度や美観意匠性に優れた繊維強化複合材料を効率的に得ることが可能になる。
 上記の繊維強化複合材料の製造方法において、前記加熱工程では、前記繊維基材の第1部位を加熱する第1温度に比して、前記第2部位を加熱する第2温度を高くしてもよい。すなわち、この場合、加熱工程における加熱温度を第1部位と第2部位とで異ならせることで、繊維基材に塗布されたバインダ樹脂の溶融度合いが、第2部位よりも第1部位で小さくなるようにしている。具体的には、加熱工程において、バインダ樹脂による強化繊維の拘束力が維持される第1温度で第1部位を加熱する。一方、繊維基材が十分な賦形性を示すまでバインダ樹脂を軟化させることができる第2温度で第2部位を加熱する。
 これによって、賦形工程において、バインダ樹脂の拘束力により、第1部位の強化繊維に配向の乱れが生じることを効果的に抑制しつつ、繊維基材の賦形性が損なわれることを回避できる。すなわち、第1部位及び第2部位の溶融度合いを効率的に調整して、強化繊維が略均等に配向され且つ高精度に賦形されたプリフォームを容易に作製することができる。その結果、機械強度や美観意匠性に優れた繊維強化複合材料を効率的に得ることが可能になる。
 上記の繊維強化複合材料の製造方法において、成形型によって形成されるキャビティ内に前記プリフォームを配置して、前記第2温度よりも低い温度の母材樹脂を含浸、硬化させた後に脱型して繊維強化複合材料を得ることが好ましい。この場合、成形型内でプリフォームを成形する際においても、強化繊維に対するバインダ樹脂の拘束力が低下することを回避できる。このため、一層効果的に第1部位及び第2部位の強化繊維に配向の乱れが生じることを抑制できる。すなわち、強化繊維が略均等に配向し、機械強度や美観意匠性に優れた繊維強化複合材料を効率的に得ることが可能になる。
 上記の繊維強化複合材料の製造方法において、前記繊維基材が複数からなるとき、前記塗布工程と、前記加熱工程との間に、前記バインダ樹脂を塗布した前記繊維基材を複数積層して積層体とする積層工程をさらに有することが好ましい。このように、複数の繊維基材からプリフォームを作製する場合であっても、繊維基材のそれぞれについて、第1部位の強化繊維に配向の乱れが生じることを抑制できるとともに、賦形性が低下することを回避できる。すなわち、強化繊維が略均等に配向され且つ高精度に賦形された繊維基材の積層体からなるプリフォームを得ることができ、一層機械強度に優れた繊維強化複合材料を得ることが可能になる。
 また、本発明の別の一実施形態によれば、強化繊維を配向させたシート状の繊維基材を賦形により変形させて変形部を形成したプリフォームを成形前駆体とする繊維強化複合材料であって、前記変形部は第1バインダ樹脂を含み、少なくとも前記変形部を除く部位は前記第1バインダ樹脂よりも軟化点が低い第2バインダ樹脂を含んでいる繊維強化複合材料が提供される。
 この繊維強化複合材料を形成する繊維基材は、変形部が形成される第1部位に第1バインダ樹脂が塗布され、第1部位を除く第2部位に第2バインダ樹脂が塗布された状態で賦形される。第1バインダ樹脂は、第2バインダ樹脂に比べて軟化点が高いため、繊維基材の賦形時に、第1部位に作用する第1バインダ樹脂の拘束力は、第2部位に作用する第2バインダ樹脂の拘束力に比して大きくなる。
 従って、第1部位では、強化繊維に配向の乱れが生じることを効果的に抑制でき、第2部位では、十分な賦形性が得られる。つまり、繊維基材の賦形性を良好に維持したまま、賦形時に大きく変形する第1部位に強化繊維の配向乱れが生じることを効果的に抑制できる。これによって、強化繊維を略均等に配向させたプリフォームを成形前駆体とすることができるため、最終的に得られる本発明に係る繊維強化複合材料では、機械強度や美観意匠性を良好に向上させることができる。
 上記の繊維強化複合材料において、前記変形部は、前記第1バインダ樹脂を部分的に含んでいることが好ましい。この繊維強化複合材料は、第1部位に対して、例えば、点状となるように、部分的に第1バインダ樹脂を塗布した繊維基材から得られる。この繊維基材を賦形することで、第1部位の賦形性を十分に確保しつつ、且つ強化繊維の配向の乱れが生じることを抑制しつつプリフォームを得ることができる。従って、上記のプリフォームから得られる本発明に係る繊維強化複合材料は、高精度に成形され、且つ優れた機械強度や美観意匠性を有する。
 上記の繊維強化複合材料の製造方法において、前記変形部の前記第1バインダ樹脂は、前記第2バインダ樹脂に覆われていることが好ましい。この場合、例えば、複数の繊維基材を積層した積層体からプリフォームを形成する際、積層体の層間に効果的に第2バインダ樹脂を介在させることができる。その結果、強化繊維が略均等に配向されたプリフォームから、高精度に成形された繊維強化複合材料が得られる。従って、この繊維強化複合材料は優れた機械強度や美観意匠性を有する。
 上記の繊維強化複合材料において、前記第2バインダ樹脂は、前記第1バインダ樹脂よりも剛性が大きいことが好ましい。この場合、上記の通り、第1部位を大きく変形させてプリフォームを得ても、第1部位を第1バインダ樹脂ごと覆う第2バインダ樹脂の剛性が大きいため、スプリングバックが生じることを効果的に抑制できる。従って、この繊維強化複合材料は、一層高精度に成形され、且つ機械強度や美観意匠性を良好に向上させることができる。
 上記の繊維強化複合材料において、前記第1バインダ樹脂及び第2バインダ樹脂の各々の軟化点よりも成形温度が低い母材樹脂を含んでいることが好ましい。ここで、成形温度とは、母材樹脂がプリフォームに注入・含浸可能となる温度である。つまり、上記の通り、第1バインダ樹脂及び第2バインダ樹脂の軟化点よりも成形温度が低い母材樹脂を含むことで、該母材樹脂の注入・含浸時に、強化繊維に対する第1バインダ樹脂及び第2バインダ樹脂の拘束力が低下することを回避できる。このため、一層効果的に第1部位及び第2部位の強化繊維に配向の乱れが生じることを抑制できる。すなわち、この繊維強化複合材料は、強化繊維が略均等に配向したプリフォームから高精度に成形されるため、優れた機械強度や美観意匠性を有する。
本発明の実施形態に係る繊維強化複合材料を構成する繊維基材を示す概略構成図である。 図1の繊維基材の第1部位に第1バインダ樹脂を塗布した状態を示す概略構成図である。 図2の繊維基材の第1部位及び第2部位に第2バインダ樹脂を塗布した状態を示す概略構成図である。 図3の繊維基材を複数積層する積層工程を説明する説明図である。 図4の複数の繊維基材を積層した積層体を加熱する加熱工程を説明する説明図である。 図5の加熱した積層体を賦形型で賦形する賦形工程を説明する説明図である。 図6の賦形型で賦形されたプリフォームの概略構成図である。 図7のプリフォームに成形型内で母材樹脂を含浸させる工程を説明する説明図である。 図8の成形型から脱型した繊維強化複合材料の概略構成図である。
 以下、本発明に係る繊維強化複合材料につき、その製造方法との関係で好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。
 図1~図9に示すように、本実施形態に係る繊維強化複合材料10(図9参照)は、連続繊維からなる強化繊維を一方向に沿って配向させてシート状のUD材とした複数個の繊維基材12と、母材樹脂14とから構成される(図1、図9等参照)。この繊維基材12を構成する強化繊維は、連続繊維に限定されるものではなく、長繊維、短繊維であってもよい。また、これらの強化繊維の配向方向は、一方向に限定されず、ランダム方向を含む複数方向であってもよい。すなわち、繊維基材は、織物(クロス材)、不織布のいずれであってもよい。
 強化繊維の好適な材料としては、炭素繊維、ガラス繊維、樹脂繊維等が挙げられる。母材樹脂14の好適な材料としては、エポキシ樹脂、ポリアミド樹脂、フェノール樹脂等が挙げられる。
 さらに、繊維強化複合材料10では、複数個の繊維基材12を積層して構成されることとしたが、繊維基材12は単数であってもよい。すなわち、1枚のシート状の繊維基材12から、繊維強化複合材料を構成してもよい。
 繊維強化複合材料10は、繊維基材12を賦形により変形させて変形部16aを形成したプリフォーム16(図7参照)を成形前駆体として製造される。この変形部16aは、プリフォーム16の他の部位16bに比して変形量(加工率)が大きい部位である。
 プリフォーム16は、繊維強化複合材料10の形状と近い形状に繊維基材12が予備成形されたものである。従って、プリフォーム16の変形部16a及び他の部位16bのそれぞれに対応するように、繊維強化複合材料10には、変形部10aと、該変形部10aに比して変形量が小さい他の部位10bが形成されている(図9参照)。
 繊維強化複合材料10の変形部10aは、第1バインダ樹脂18を含み、変形部10a及び他の部位10bは、第2バインダ樹脂20(図3参照)及び母材樹脂14を含んでいる。第1バインダ樹脂18は、例えば、点状となるように、部分的に変形部10aに含まれ、且つ第2バインダ樹脂20に覆われている。第2バインダ樹脂20は、第1バインダ樹脂18よりも剛性が大きい。なお、第1バインダ樹脂18及び第2バインダ樹脂20の剛性は、添加する架橋剤の量等によって調整することができる。すなわち、例えば、第1バインダ樹脂18よりも第2バインダ樹脂20に添加する架橋剤の量を多くすることで、第1バインダ樹脂18よりも第2バインダ樹脂20の剛性を大きくすることができる。
 第2バインダ樹脂20の軟化点は第1バインダ樹脂18の軟化点より低い温度である。また、母材樹脂14の注入・含浸時の温度(成形温度)は、第1バインダ樹脂18及び第2バインダ樹脂20の各々の軟化点より低い温度である。第1バインダ樹脂18及び第2バインダ樹脂20は、母材樹脂14と良好に接着する樹脂からなる。例えば、母材樹脂14としてエポキシ樹脂を採用した場合、第1バインダ樹脂18及び第2バインダ樹脂20もエポキシ樹脂を採用することが好ましい。また、この場合、第1バインダ樹脂18の軟化点、第2バインダ樹脂20の軟化点、母材樹脂14の注入・含浸時の温度(成形温度)は、例えば、160℃、120℃、110℃とすることができる。これらの軟化点は、原料として用いるエポキシ樹脂や導入する置換基の導入率によって種々調整が可能である。
 この繊維強化複合材料10の製造方法につき説明する。はじめに、図1に示す繊維基材12の表面に第1バインダ樹脂18及び第2バインダ樹脂20を塗布する塗布工程を行う。この塗布工程では、先ず、図2に示すように、繊維基材12の第1部位12aに対して、第1バインダ樹脂18を塗布する。第1部位12aは、繊維基材12を賦形してプリフォーム16とした際に、変形部16aを形成することになる部位である。
 具体的には、第1部位12aに対して、第1バインダ樹脂18を、例えば、複数の点状となるように部分的に塗布する。このような塗布を行うために、例えば、熱風を用いて第1バインダ樹脂18の粉末を溶融しつつ、第1部位12aに吹き付ける、いわゆる溶射を行えばよい。また、他の塗布方法としては、例えば、粉末状の第1バインダ樹脂18を溶剤に溶かした溶液を、スプレーを用いて第1部位12aに噴射することが挙げられる。この際、第1部位12a上に噴射された溶液が、該第1部位12a上で流動しない程度の粘度となるように、第1バインダ樹脂18の粉末と溶剤との混合比を調整することが好ましい。
 この塗布工程では、次に、図3に示すように、繊維基材12の第1部位12a及び該第1部位12aを除く部位である第2部位12bに第2バインダ樹脂20を塗布する。すなわち、例えば、粉末状の第2バインダ樹脂20を溶剤に溶かした溶液を、スプレーを用いて噴射したり、熱で溶かした粉末状の第2バインダ樹脂20を噴霧したり等の公知の手法により、第1部位12aに塗布された第1バインダ樹脂18上を含む繊維基材12の表面全体に第2バインダ樹脂20を塗布する。
 次に、図4及び図5に示すように、第1バインダ樹脂18及び第2バインダ樹脂20を塗布した繊維基材12を複数積層して積層体22とする積層工程を行う。この際、例えば、積層方向に隣接する繊維基材12は、強化繊維の配向方向が互いに直交するように配置される。また、積層体22の層間に第2バインダ樹脂20を介在させることで、隣接する繊維基材12同士を良好に接着することが可能になる。従って、積層体22の層間を形成しない繊維基材12の表面、すなわち、積層体22の積層方向両端に配置される繊維基材12の外表面には、第2バインダ樹脂20を塗布する必要はない。
 次に、図5に示すように、例えば、加熱炉(不図示)等を用いて積層体22(繊維基材12)を加熱し、第2バインダ樹脂20を軟化させる加熱工程を行う。すなわち、加熱工程での加熱温度は、第1バインダ樹脂18の軟化点よりも低く、且つ第2バインダ樹脂20の軟化点よりも高い温度とする。これによって、第1バインダ樹脂18が第1部位12aの強化繊維を拘束する拘束力を維持したまま、第2バインダ樹脂20を軟化させて、繊維基材12の賦形性を向上させることができる。
 次に、図6に示すように、加熱した積層体22を賦形型24によって賦形してプリフォーム16とする賦形工程を行う。賦形型24は、積層体22を、最終的な繊維強化複合材料10の形状に近づけることが可能な形状に形成されている。すなわち、賦形型24内で賦形して、積層体22を変形させた後に脱型することで、図7に示すように、変形部16aと他の部位16bとを有するプリフォーム16を得ることが可能である。
 ここで、上記の通り、加熱工程で加熱された積層体22では、繊維基材12の第1部位12aに塗布した第1バインダ樹脂18の溶融度合いが、第2部位12bに塗布した第2バインダ樹脂20の溶融度合いに比して小さくなっている。
 すなわち、第1部位12aでは、強化繊維に作用する第1バインダ樹脂18の拘束力が十分に大きいため、賦形により積層体22を変形させても、強化繊維に配向の乱れが生じることを効果的に抑制できる。また、第2部位12bでは、第2バインダ樹脂20が十分に軟化しているため、強化繊維に作用する第2バインダ樹脂20の拘束力が小さく、積層体22の賦形性が損なわれることを回避できる。
 つまり、積層体22の賦形性を良好に維持したまま、強化繊維の配向乱れが生じることを効果的に抑制できる。これによって、強化繊維が略均等に配向され、所望の形状に精度よく賦形されたプリフォーム16を得ることができる。
 また、上記の通り、塗布工程において、繊維基材12の第1部位12aには、部分的に第1バインダ樹脂18が塗布されている。従って、第1部位12aの強化繊維同士が部分的に拘束された状態で賦形工程が行われる。これによって、第1部位12aの賦形性を確保しつつ、配向の乱れが生じることを抑制できる。従って、強化繊維が略均等に配向されたプリフォーム16を一層高精度且つ容易に賦形することが可能になる。
 さらに、上記の通り、塗布工程において、繊維基材12の第1部位12aに塗布された第1バインダ樹脂18上を含む、繊維基材12の表面全体に第2バインダ樹脂20が塗布されている。このため、積層体22からプリフォーム16を形成する際、積層体22の層間に効果的に第2バインダ樹脂20を介在させることができる。これによって、軟化した第2バインダ樹脂20によって、積層体22の層間を一層良好に接着することが可能になる。
 この第1部位12aを第1バインダ樹脂18ごと覆う第2バインダ樹脂20の剛性は、第1バインダ樹脂18よりも大きい。従って、賦形工程によって第1部位12aを大きく変形させてプリフォーム16を得ても、スプリングバックが生じることを効果的に抑制できる。その結果、所望の形状のプリフォーム16を一層高精度且つ容易に作製することができる。
 次に、図8に示すように、成形型26によって形成されるキャビティ28内にプリフォーム16を配置して、該キャビティ28に達するように形成された樹脂注入口30から母材樹脂14を注入する。なお、この際、キャビティ28内の空気を吸引してもよい。これによって、プリフォーム16の強化繊維に母材樹脂14を含浸させる。次に、冷却や化学反応等によって母材樹脂14を硬化させる。その後、成形型26を脱型することで、繊維強化複合材料10を得ることができる。
 この繊維強化複合材料10は、上記の通り、強化繊維が略均等に配向され、最終的な繊維強化複合材料10の形状と近い形状に精度よく賦形されたプリフォーム16を成形前駆体とする。これによって、機械強度や美観意匠性に優れる繊維強化複合材料10を効率的に製造することができる。
 また、上記の通り、母材樹脂14の成形温度が第1バインダ樹脂18及び第2バインダ樹脂20の各々の軟化点よりも低いため、母材樹脂14をプリフォーム16に含浸させても、第1バインダ樹脂18及び第2バインダ樹脂20による強化繊維の拘束力が低下することを回避できる。これによって、一層効果的に強化繊維に配向の乱れが生じることを抑制できるため、強化繊維が略均等に配向し、機械強度や美観意匠性に優れた繊維強化複合材料10を効率的に得ることが可能になる。
 なお、本発明は、上記した実施形態に特に限定されるものではなく、その要旨を逸脱しない範囲で種々の変形が可能であることは勿論である。
 例えば、上記の実施形態では、繊維基材12の第1部位12a及び第2部位12bのそれぞれに互いに軟化点が異なる第1バインダ樹脂18及び第2バインダ樹脂20を塗布した。しかしながら、第1部位12a及び第2部位12bを互いに区別せず同様のバインダ樹脂を繊維基材12の表面に塗布してもよい。この場合、加熱工程における加熱温度を第1部位12aと第2部位12bとで異ならせることで、繊維基材12に塗布されたバインダ樹脂の溶融度合いが、第2部位12bよりも第1部位12aで小さくなるようにすることができる。
 具体的には、加熱工程において、バインダ樹脂による強化繊維の拘束力が維持される第1温度で第1部位12aを加熱する。一方、繊維基材12が十分な賦形性を示すまでバインダ樹脂を軟化させることができる第2温度で第2部位12bを加熱する。すなわち、第2温度は、第1温度に比して高温である。これによって、賦形工程において、バインダ樹脂の拘束力により、第1部位12aの強化繊維に配向の乱れが生じることを効果的に抑制しつつ、繊維基材12の賦形性が損なわれることを回避できる。
 すなわち、第1部位12a及び第2部位12bの溶融度合いを効率的に調整して、強化繊維が略均等に配向され且つ高精度に賦形されたプリフォームを容易に作製することができる。その結果、機械強度や美観意匠性に優れた繊維強化複合材料を効率的に得ることが可能になる。
 また、この場合、成形型26によって形成されるキャビティ28内に、上記のプリフォームを配置して、第1温度及び第2温度よりも低い温度の母材樹脂14を含浸、硬化させた後に脱型して繊維強化複合材料を得ることが好ましい。これによって、成形型26内でプリフォームを成形する際においても、強化繊維に対するバインダ樹脂の拘束力が低下することを回避できる。

Claims (14)

  1.  強化繊維からなるシート状の繊維基材(12)を賦形により変形させて変形部(16a)を形成したプリフォーム(16)を成形前駆体とする繊維強化複合材料(10)の製造方法であって、
     前記繊維基材(12)にバインダ樹脂(18、20)を塗布する塗布工程と、
     前記バインダ樹脂(18、20)を塗布した前記繊維基材(12)を加熱して、該バインダ樹脂(18、20)を軟化させる加熱工程と、
     加熱した前記繊維基材(12)に前記変形部(16a)が形成されるように賦形して前記プリフォーム(16)とする賦形工程と、を有し、
     前記賦形工程では、前記繊維基材(12)の前記変形部(16a)を形成する第1部位(12a)に塗布した前記バインダ樹脂(18、20)の溶融度合いを、前記繊維基材(12)の前記第1部位(12a)を除く第2部位(12b)に塗布した前記バインダ樹脂(18、20)の溶融度合いに比して小さくすることを特徴とする繊維強化複合材料(10)の製造方法。
  2.  請求項1記載の繊維強化複合材料(10)の製造方法において、
     前記塗布工程では、前記バインダ樹脂(18、20)として、前記繊維基材(12)の前記第1部位(12a)に第1バインダ樹脂(18)を塗布し、前記繊維基材(12)の少なくとも前記第2部位(12b)に前記第1バインダ樹脂(18)よりも軟化点が低い第2バインダ樹脂(20)を塗布し、
     前記加熱工程では、前記賦形工程時に前記繊維基材(12)が前記第1バインダ樹脂(18)の軟化点よりも低く、且つ前記第2バインダ樹脂(20)の軟化点よりも高い温度になるように前記繊維基材(12)を加熱することを特徴とする繊維強化複合材料(10)の製造方法。
  3.  請求項2記載の繊維強化複合材料(10)の製造方法において、
     前記塗布工程では、前記繊維基材(12)の前記第1部位(12a)に対して、部分的に前記第1バインダ樹脂(18)を塗布することを特徴とする繊維強化複合材料(10)の製造方法。
  4.  請求項2の繊維強化複合材料(10)の製造方法において、
     前記塗布工程では、前記繊維基材(12)の前記第1部位(12a)に前記第1バインダ樹脂(18)を塗布した後、該第1部位(12a)及び前記第2部位(12b)の両方に前記第2バインダ樹脂(20)を塗布することを特徴とする繊維強化複合材料(10)の製造方法。
  5.  請求項4記載の繊維強化複合材料(10)の製造方法において、
     前記塗布工程で前記繊維基材(12)に塗布する第2バインダ樹脂(20)は、硬化後の剛性が前記第1バインダ樹脂(18)よりも大きいことを特徴とする繊維強化複合材料(10)の製造方法。
  6.  請求項3記載の繊維強化複合材料(10)の製造方法において、
     成形型(26)によって形成されるキャビティ(28)内に前記プリフォーム(16)を配置して、前記第1バインダ樹脂(18)及び前記第2バインダ樹脂(20)の各々の軟化点よりも低い温度の母材樹脂(14)を含浸、硬化させた後に脱型して繊維強化複合材料(10)を得ることを特徴とする繊維強化複合材料(10)の製造方法。
  7.  請求項1記載の繊維強化複合材料(10)の製造方法において、
     前記加熱工程では、前記繊維基材(12)の第1部位(12a)を加熱する第1温度に比して、前記第2部位(12b)を加熱する第2温度を高くすることを特徴とする繊維強化複合材料(10)の製造方法。
  8.  請求項7記載の繊維強化複合材料(10)の製造方法において、
     成形型(26)によって形成されるキャビティ(28)内に前記プリフォーム(16)を配置して、前記第2温度よりも低い温度の母材樹脂(14)を含浸、硬化させた後に脱型して繊維強化複合材料(10)を得ることを特徴とする繊維強化複合材料(10)の製造方法。
  9.  請求項1記載の繊維強化複合材料(10)の製造方法において、
     前記繊維基材(12)は複数からなり、前記塗布工程と、前記加熱工程との間に、前記バインダ樹脂(18、20)を塗布した前記繊維基材(12)を複数積層して積層体(22)とする積層工程をさらに有することを特徴とする繊維強化複合材料(10)の製造方法。
  10.  強化繊維を配向させたシート状の繊維基材(12)を賦形により変形させて変形部(16a)を形成したプリフォーム(16)を成形前駆体とする繊維強化複合材料(10)であって、
     前記変形部(16a)は第1バインダ樹脂(18)を含み、少なくとも前記変形部(16a)を除く部位(16b)は前記第1バインダ樹脂(18)よりも軟化点が低い第2バインダ樹脂(20)を含んでいることを特徴とする繊維強化複合材料(10)。
  11.  請求項10記載の繊維強化複合材料(10)において、
     前記変形部(16a)は、前記第1バインダ樹脂(18)を部分的に含んでいることを特徴とする繊維強化複合材料(10)。
  12.  請求項10記載の繊維強化複合材料(10)において、
     前記変形部(16a)の前記第1バインダ樹脂(18)は、前記第2バインダ樹脂(20)に覆われていることを特徴とする繊維強化複合材料(10)。
  13.  請求項12記載の繊維強化複合材料(10)において、
     前記第2バインダ樹脂(20)は、前記第1バインダ樹脂(18)よりも剛性が大きいこと特徴とする繊維強化複合材料(10)。
  14.  請求項10記載の繊維強化複合材料(10)において、
     前記第1バインダ樹脂(18)及び前記第2バインダ樹脂(20)の各々の軟化点よりも成形温度が低い母材樹脂(14)をさらに含んでいることを特徴とする繊維強化複合材料(10)。
PCT/JP2015/057665 2014-03-28 2015-03-16 繊維強化複合材料及びその製造方法 WO2015146668A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/129,117 US10272620B2 (en) 2014-03-28 2015-03-16 Fiber-reinforced composite material and method for manufacturing same
JP2016510249A JP6211681B2 (ja) 2014-03-28 2015-03-16 繊維強化複合材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070470 2014-03-28
JP2014-070470 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146668A1 true WO2015146668A1 (ja) 2015-10-01

Family

ID=54195191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057665 WO2015146668A1 (ja) 2014-03-28 2015-03-16 繊維強化複合材料及びその製造方法

Country Status (3)

Country Link
US (1) US10272620B2 (ja)
JP (1) JP6211681B2 (ja)
WO (1) WO2015146668A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208458A1 (ja) * 2016-06-03 2017-12-07 日産自動車株式会社 複合材料の製造方法および製造装置
WO2019188417A1 (ja) * 2018-03-27 2019-10-03 三菱ケミカル株式会社 プリフォームの製造方法及びプリフォームの製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439879B2 (ja) * 2015-09-09 2018-12-26 日産自動車株式会社 複合材料の製造方法および複合材料の製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185539A (ja) * 1992-01-10 1993-07-27 Honda Motor Co Ltd 熱可塑性複合材のプリフォーム体及びその製造方法
JP2007126793A (ja) * 2005-11-07 2007-05-24 Toho Tenax Co Ltd 積層体の裁断方法とプリフォーム基材及びそれを用いたプリフォームの製造方法
JP2007276453A (ja) * 2006-03-15 2007-10-25 Toray Ind Inc 強化繊維基材積層体およびその製造方法
JP2009161886A (ja) * 2008-01-09 2009-07-23 Toray Ind Inc 強化繊維基材、プリフォーム、複合材料およびその製造方法
WO2013118534A1 (ja) * 2012-02-08 2013-08-15 東レ株式会社 プリフォームおよびその製造方法
WO2013140786A1 (ja) * 2012-03-19 2013-09-26 東レ株式会社 炭素繊維プリフォーム、炭素繊維強化プラスチック、炭素繊維プリフォームの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928693A (en) * 1970-11-06 1975-12-23 Bernard Rudloff Composite article of fibers and resins
JP3894035B2 (ja) * 2001-07-04 2007-03-14 東レ株式会社 炭素繊維強化基材、それからなるプリフォームおよび複合材料
US7888274B2 (en) * 2005-07-29 2011-02-15 Toray Industries, Inc. Reinforcing woven fabric and process for producing the same
JP2008132775A (ja) 2006-10-31 2008-06-12 Toray Ind Inc 多層基材およびプリフォーム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185539A (ja) * 1992-01-10 1993-07-27 Honda Motor Co Ltd 熱可塑性複合材のプリフォーム体及びその製造方法
JP2007126793A (ja) * 2005-11-07 2007-05-24 Toho Tenax Co Ltd 積層体の裁断方法とプリフォーム基材及びそれを用いたプリフォームの製造方法
JP2007276453A (ja) * 2006-03-15 2007-10-25 Toray Ind Inc 強化繊維基材積層体およびその製造方法
JP2009161886A (ja) * 2008-01-09 2009-07-23 Toray Ind Inc 強化繊維基材、プリフォーム、複合材料およびその製造方法
WO2013118534A1 (ja) * 2012-02-08 2013-08-15 東レ株式会社 プリフォームおよびその製造方法
WO2013140786A1 (ja) * 2012-03-19 2013-09-26 東レ株式会社 炭素繊維プリフォーム、炭素繊維強化プラスチック、炭素繊維プリフォームの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208458A1 (ja) * 2016-06-03 2017-12-07 日産自動車株式会社 複合材料の製造方法および製造装置
JPWO2017208458A1 (ja) * 2016-06-03 2019-03-22 日産自動車株式会社 複合材料の製造方法および製造装置
RU2715662C1 (ru) * 2016-06-03 2020-03-02 Ниссан Мотор Ко., Лтд. Способ и устройство для производства композитного материала
WO2019188417A1 (ja) * 2018-03-27 2019-10-03 三菱ケミカル株式会社 プリフォームの製造方法及びプリフォームの製造装置
JPWO2019188417A1 (ja) * 2018-03-27 2020-04-30 三菱ケミカル株式会社 プリフォームの製造方法及びプリフォームの製造装置

Also Published As

Publication number Publication date
JPWO2015146668A1 (ja) 2017-04-13
JP6211681B2 (ja) 2017-10-11
US10272620B2 (en) 2019-04-30
US20170106608A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
CN112313055B (zh) 预浸片及其制造方法、纤维增强复合材料成型品及其制造方法以及预塑型坯的制造方法
EP3513942B1 (en) Method for molding composite material, and composite material
JP6085798B2 (ja) 3次元形状成形用複合材及びその製造方法
KR101981832B1 (ko) 금속 지지체 및 섬유 강화 플라스틱이 구비되어 있는 경화성 코팅을 포함하는 반제품 또는 부품을 제조하기 위한 방법
CN108025483B (zh) 复合材料的制造方法、复合材料的制造装置、复合材料用预制件以及复合材料
JP2006501085A (ja) 複合材料の製造方法
US20150041081A1 (en) Natural fiber reinforced composite panel and method
JP2008290421A (ja) プリプレグ積層体からなる成形品の製造方法
JP6211681B2 (ja) 繊維強化複合材料及びその製造方法
US20170001407A1 (en) Composite structure and manufacturing method thereof
CN104602896A (zh) 用于快速模制出复合结构的方法和设备
JP5682843B2 (ja) 長繊維強化樹脂成形体とその製造方法
JP2021014125A (ja) 繊維強化樹脂構造物の製造方法、繊維強化樹脂構造物の製造システム及び繊維強化樹脂構造物
CN108025462A (zh) 复合材料的制造方法、复合材料的制造装置以及复合材料用预制件
KR20180135203A (ko) 탄소섬유 원단과 금속 그물 구조물을 밀착가공한 탄소섬유 원단 프리프레그 및 그 제조방법
JP2013082229A (ja) Rtm用強化繊維積層体およびプリフォーム
EP3960796A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP2021030466A (ja) 繊維強化樹脂成形品の製造方法
CN109195760A (zh) 复合材料的制造方法以及制造装置
JP2002248620A (ja) 繊維強化プラスチック成形用基材および繊維強化プラスチックの成形方法
WO2012118665A1 (en) Composite material and method for preparing the same
JP6777017B2 (ja) 繊維強化樹脂成形品の成形用材料及び成形方法
KR102206861B1 (ko) 일방향성 프리프레그 및 그의 제조방법
JP2009160879A (ja) 強化繊維樹脂構造体の製造方法
JP2024070037A (ja) 複合材料製パネル構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510249

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15129117

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769153

Country of ref document: EP

Kind code of ref document: A1