WO2015146667A1 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
WO2015146667A1
WO2015146667A1 PCT/JP2015/057663 JP2015057663W WO2015146667A1 WO 2015146667 A1 WO2015146667 A1 WO 2015146667A1 JP 2015057663 W JP2015057663 W JP 2015057663W WO 2015146667 A1 WO2015146667 A1 WO 2015146667A1
Authority
WO
WIPO (PCT)
Prior art keywords
external electrode
electrode layer
layer
capacitor
region
Prior art date
Application number
PCT/JP2015/057663
Other languages
French (fr)
Japanese (ja)
Inventor
秀俊 増田
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to US15/023,001 priority Critical patent/US20160233026A1/en
Publication of WO2015146667A1 publication Critical patent/WO2015146667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • H01G4/302Stacked capacitors obtained by injection of metal in cavities formed in a ceramic body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Definitions

  • the present invention relates to a porous capacitor.
  • Porous capacitors use a property that a metal oxide formed on a metal surface such as aluminum forms a porous (through-hole) structure, forms an internal electrode in the porous, and uses the metal oxide as a dielectric. It is a capacitor.
  • a capacitor can be reduced in size and height as compared with a conventional multilayer capacitor, and the demand for mobile communication devices with higher frequency is increasing.
  • External conductors are laminated on the front and back surfaces of the dielectric, and the internal electrodes formed in the porous are connected to either the external conductor on the front surface or the external conductor on the back surface.
  • the external conductor on the side not connected to the internal electrode is insulated by a gap or an insulating material.
  • an internal electrode functions as a counter electrode (a positive electrode or a negative electrode) which opposes via a dielectric.
  • Patent Document 1 and Patent Document 2 disclose a porous capacitor having such a configuration.
  • an internal electrode is formed in a porous body, one end of the internal electrode is connected to one conductor, and the other end is insulated from the other conductor.
  • porous capacitors cover external conductors with a protective layer that is slightly larger than external conductors, and prevent moisture from penetrating into the dielectric layer at the periphery of external conductors. It has a structure to prevent.
  • a pinhole or the like in the protective layer there is a problem that the humidity that has entered from the pinhole reaches the dielectric at the peripheral portion of the external conductor, resulting in a short circuit failure.
  • an object of the present invention is to provide a porous capacitor capable of preventing the occurrence of a short circuit failure due to the formation of hydrates in a dielectric layer.
  • a capacitor according to an embodiment of the present invention includes a dielectric layer, a first external electrode layer, a second external electrode layer, a first internal electrode, and a second internal electrode. Electrode.
  • the dielectric layer is formed by metal anodization, and has a first surface and a second surface opposite to the first surface, and the first surface and the second surface are A plurality of through holes communicating with each other are provided.
  • the first external electrode layer is disposed on the first surface.
  • the second external electrode layer is disposed on the second surface, and is opposed to the first external electrode layer via the dielectric layer, and the first external via the dielectric layer. A non-opposing region that does not face the external electrode layer.
  • the first internal electrode is formed in a part of the plurality of through holes, connected to the first external electrode layer, and separated from the second external electrode layer.
  • the second internal electrode is formed in another part of the plurality of through holes, connected to the second external electrode layer, and separated from the first external electrode layer.
  • the first internal electrode and the second internal electrode facing each other through the dielectric layer function as the counter electrode of the capacitor.
  • the first internal electrode is connected to the first external electrode layer
  • the second internal electrode is connected to the second external electrode layer, and is connected to the outside (connection terminal or the like) through these.
  • the dielectric material may undergo a hydration reaction and a hydrate may be generated. Since the hydrate is inferior in insulation, when the hydrate is formed so as to straddle the positive and negative internal electrodes at the periphery of the external electrode layer, the external electrode layers respectively disposed on the front and back of the dielectric layer are electrically connected to each other. As a result, a short circuit failure of the capacitor may occur.
  • the second external electrode layer is configured to have a region (non-opposite region) that does not oppose a region (opposite region) that faces the first external electrode layer via the dielectric layer.
  • the first external electrode layer includes a facing region that faces the second external electrode layer via the dielectric layer, and a non-facing region that does not face the second external electrode layer via the dielectric layer. You may have.
  • the counter area may be surrounded by the non-opposite area.
  • the width of the non-facing region may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • An insulating material may be filled between the first internal electrode and the second external electrode layer and between the second internal electrode and the first external electrode layer.
  • the dielectric layer may be made of a material that forms a porous layer by self-organization when anodized.
  • a dielectric layer having a through hole can be formed by anodizing the material.
  • the dielectric layer may be made of aluminum oxide formed by anodic oxidation of aluminum.
  • Aluminum oxide produced when anodizing aluminum produces through-holes due to self-organization during the oxidation process. That is, a dielectric layer having a through hole can be formed by anodizing aluminum.
  • FIG. 1 is a perspective view of a capacitor according to the present invention. It is sectional drawing of the same capacitor. It is a perspective view of the dielectric material layer with which the same capacitor is provided. It is sectional drawing of the dielectric material layer with which the same capacitor
  • FIG. 1 is a perspective view of a capacitor 100 according to the present embodiment
  • FIG. 2 is a cross-sectional view of the capacitor 100.
  • the capacitor 100 includes a dielectric layer 101, a first internal electrode 102, a second internal electrode 103, a first external electrode layer 104, a second external electrode layer 105, a first protective layer 106, a first protective layer 106, 2 includes a protective layer 107, a first external terminal 114, and a second external terminal 115.
  • the dielectric layer 101 functions as a dielectric of the capacitor 100.
  • FIG. 3 is a perspective view of the dielectric layer 101
  • FIG. 4 is a cross-sectional view of the dielectric layer 101.
  • the dielectric layer 101 is a dielectric material, and a material that forms a porous (pore) by self-organization can be used. As such a material, aluminum oxide (Al 2 O 3 ) can be given.
  • the thickness of the dielectric layer 101 is not particularly limited, but can be, for example, several ⁇ m to several hundred ⁇ m.
  • the dielectric layer 101 has a plurality of through holes 101a.
  • the through hole 101a is perpendicular to the first surface 101b and the second surface 101c.
  • the first surface 101b and the second surface 101c are formed so as to communicate with each other (in the thickness direction of the dielectric layer 101).
  • the number and size of the through holes 101a shown in FIG. 3 and the like are for convenience, and the actual ones are smaller and more in number.
  • the through-hole 101a may have a branch, and may merge with the adjacent through-hole 101a.
  • the side surface of the dielectric layer 101 with respect to the first surface 101b and the second surface 101c is referred to as a side surface 101d.
  • the first internal electrode 102 functions as one counter electrode of the capacitor 100.
  • FIG. 5 is a cross-sectional view illustrating a configuration of a part of the capacitor 100.
  • the first internal electrode 102 is made of a conductive material such as pure metals such as In, Sn, Pb, Cd, Bi, Al, Cu, Ni, Au, Ag, Pt, Pd, Co, Cr, Fe, and Zn. It can consist of alloys.
  • the first internal electrode 102 is connected to the first external electrode layer 104 and is separated from the second external electrode layer 105.
  • An insulator 102a made of an insulating material is formed between the first internal electrode 102 and the second external electrode layer 105 as shown in FIG. Further, the insulator 102 a may be a gap provided between the first internal electrode 102 and the second external electrode layer 105.
  • first internal electrodes 102 are connected to the first external electrode layer 104, but the first internal electrode 102 is located in a region where the first external electrode layer 104 is not disposed on the first surface 101b.
  • the first internal electrode 102 is not connected to the first external electrode layer 104.
  • the arrangement area of the first external electrode layer 104 will be described later.
  • the second internal electrode 103 functions as the other counter electrode of the capacitor 100.
  • the second internal electrode 103 is made of a conductive material such as pure metals such as In, Sn, Pb, Cd, Bi, Al, Cu, Ni, Au, Ag, Pt, Pd, Co, Cr, Fe, Zn, and the like. It can consist of alloys.
  • the second internal electrode 103 is connected to the second external electrode layer 105 and is separated from the first external electrode layer 104. Between the second internal electrode 103 and the first external electrode layer 104, an insulator 103a made of an insulating material is formed as shown in FIG. The insulator 103a may be a gap provided between the second internal electrode 103 and the first external electrode layer 104.
  • the second internal electrodes 103 are connected to the second external electrode layer 105, but are located in a region where the second external electrode layer 105 is not provided on the second surface 101c.
  • the second internal electrode 103 is not connected to the second external electrode layer 105.
  • the arrangement region of the second external electrode layer 105 will be described later.
  • first internal electrodes 102 and the second internal electrodes 103 are shown to be alternately arranged in FIG. 5, they are not necessarily alternate and may be randomly arranged.
  • First internal electrode 10 This is because a capacitor is formed if the second internal electrode 103 and the second internal electrode 103 are disposed to face each other with the dielectric layer 101 interposed therebetween.
  • the number of the first internal electrodes 102 and the number of the second internal electrodes 103 may not be the same, but it is preferable to make them equal because the capacitance of the capacitor increases.
  • the first external electrode layer 104 is disposed on the first surface 101b as shown in FIG.
  • the first external electrode layer 104 is a conductive material, for example, a pure metal such as Cu, Ni, Cr, Ag, Pd, Fe, Sn, Pb, Pt, Ir, Rh, Ru, Al, Ti, or an alloy thereof. Can be.
  • the thickness of the first external electrode layer 104 can be several tens of nm to several ⁇ m, for example.
  • the first external electrode layer 104 may be disposed so that a plurality of layers of conductive materials are laminated.
  • FIG. 2 is a perspective view showing the first external electrode layer 104.
  • the first external electrode layer 104 only needs to be disposed on at least the first surface 101 b, and does not have to cover the entire first surface 101 b.
  • the second external electrode layer 105 is disposed on the second surface 101c as shown in FIG.
  • the second external electrode layer 105 is a conductive material, for example, a pure metal such as Cu, Ni, Cr, Ag, Pd, Fe, Sn, Pb, Pt, Ir, Rh, Ru, Al, Ti, or an alloy thereof. Can be.
  • the thickness of the second external electrode layer 105 can be several tens of nm to several ⁇ m, for example. Further, the second external electrode layer 105 may be disposed so that a plurality of layers of conductive materials are laminated.
  • FIG. 7 is a perspective view showing the second external electrode layer 105.
  • the second external electrode layer 105 only needs to be disposed on at least the second surface 101 c, and may not be configured to cover the entire second surface 101 c.
  • first external electrode layer 104 and the second external electrode layer 105 are not completely opposed to each other, and partial regions of the first external electrode layer 104 and the second external electrode layer are opposed to each other. Not. The arrangement region of the first external electrode layer 104 and the second external electrode layer 105 will be described later.
  • the first protective layer 106 covers the first external electrode layer 104 and insulates the first external electrode layer 104 and the second external terminal 115 from each other.
  • FIG. 8 is a cross-sectional view showing a configuration of a part of the capacitor 100
  • FIG. 9 is a perspective view showing the first protective layer 106.
  • the first protective layer 106 is disposed on the first surface 101 b and further disposed on the first external electrode layer 104.
  • the first protective layer 106 has an opening 106a formed on the first external electrode layer 104, and the first external electrode layer 104 is exposed from the opening 106a. .
  • the shape, size, and number of the openings 106a are not particularly limited.
  • the second protective layer 107 covers the second external electrode layer 105 and insulates the second external electrode layer 105 from the first external terminal 114.
  • FIG. 10 is a perspective view showing the second protective layer 107.
  • the second protective layer 107 is disposed on the second surface 101 c and further disposed on the second external electrode layer 105.
  • the second protective layer 107 has an opening 107a formed on the second external electrode layer 105, and the second external electrode layer 105 is exposed from the opening 107a.
  • the shape, size, and number of the openings 107a are not particularly limited.
  • the first protective layer 106 and the second protective layer 107 are made of an insulating material, and a material particularly excellent in moisture resistance is suitable.
  • a material particularly excellent in moisture resistance those having a hygroscopicity of 2% or less and a moisture permeability of 1 mg / mm 2 or less per 1 ⁇ m thickness are suitable.
  • Such materials include epoxy resins, Mention may be made of silicone resins, polyimide resins or polyolefin resins.
  • the first external terminal 114 functions as a terminal of the first internal electrode 102. As shown in FIGS. 1 and 2, the first external terminal 114 is disposed on the first protective layer 106, the second protective layer 107, and the first external electrode layer 104, and is connected to the first protective layer 106 and the first protective layer 106. Two protective layers 107 are disposed on the side surface 101d. The first external terminal 114 is electrically connected to the first internal electrode 102 via the first external electrode layer 104, that is, functions as a terminal for connecting the first internal electrode 102 and the outside.
  • the second external terminal 115 functions as a terminal of the second internal electrode 103. As shown in FIGS. 1 and 2, the second external terminal 115 is disposed on the first protective layer 106, the second protective layer 107, and the second external electrode layer 105, and is connected to the first protective layer 106 and the second protective layer 106. 2 between the protective layer 107 and the side surface 101d. The second external terminal 115 is electrically connected to the second internal electrode 103 via the second external electrode layer 105, that is, functions as a terminal for connecting the second internal electrode 103.
  • the capacitor 100 has the above configuration. As described above, in the capacitor 100, the first internal electrode 102 and the second internal electrode 103 are opposed to each other with the dielectric layer 101 therebetween, thereby forming a capacitor. That is, the first internal electrode 102 and the second internal electrode 103 function as counter electrodes of the capacitor. Note that either the first internal electrode 102 or the second internal electrode 103 may be a positive electrode.
  • the first internal electrode 102 is connected to an external wiring, a terminal, or the like via the first external electrode layer 104, and the second internal electrode 103 is connected via the second external electrode layer 105, respectively.
  • FIG. 11 is a cross-sectional view illustrating a partial configuration of the capacitor 100
  • FIG. 12 is a plan view illustrating a partial configuration of the capacitor 100 viewed from the second surface 101c side.
  • the first external electrode layer 104 and the second external electrode layer 105 have the same size, do not completely face each other through the dielectric layer 101, and are in the layer surface direction (perpendicular to the thickness). It is possible that they are arranged to be shifted in the direction). As a result, a facing region and a non-facing region are formed in the first external electrode layer 104 and the second external electrode layer 105.
  • FIG. 13 is a schematic diagram showing opposing regions and non-opposing regions in the first external electrode layer 104 and the second external electrode layer 105.
  • the first external electrode layer 104 is formed with a facing region L1 that is a region facing the second external electrode layer 105 and a non-facing region L2 that is a region not facing the second external electrode layer 105.
  • the second external electrode layer 105 is formed with a facing region L3 that is a region facing the first external electrode layer 104 and a non-facing region L4 that is a region not facing the first external electrode layer 104.
  • the second internal electrode 103 formed in the facing region L1 is connected to the second external electrode layer 105, and the second internal electrode 103 formed in the non-facing region L2 is The second external electrode layer 105 is not connected.
  • the first internal electrode 102 formed in the facing region L3 is connected to the first external electrode layer 104, and the first internal electrode 102 formed in the non-facing region L4 is connected to the first external electrode layer 104. It can be unconnected.
  • the non-facing region L ⁇ b> 2 is provided along each of the long side and the short side of the first external electrode layer 104, and the non-facing region L ⁇ b> 4 includes the long side of the second external electrode layer 105.
  • Each of the short sides may be provided along one side.
  • the width of the non-facing region L2 (the distance between the periphery of the facing region L1 and the periphery of the non-facing region L2) is defined as the width D1 and the width D2
  • the width of the non-facing region L4 (the periphery of the facing region L3)
  • the distance of the peripheral edge of the non-facing region LL4) is defined as a width D3 and a width D4.
  • the widths D1 to D4 may be the same as or different from each other.
  • the widths D1 to D4 are not particularly limited, but are preferably 0.1 ⁇ m or more and 100 ⁇ m or less.
  • FIG. 14 to FIG. 17 are schematic views showing variations in the arrangement region of the first external electrode layer 104 and the second external electrode layer 105.
  • 14A to 17A are cross-sectional views of each capacitor 100
  • FIGS. 14B to 17B are plan views corresponding to the respective cross-sectional views.
  • Each plan view is a view of the capacitor 100 as viewed from the second surface 101b side.
  • the first external electrode layer 104 and the second external electrode layer 105 have the same size, and may be arranged shifted in one direction in the layer surface direction.
  • the non-facing region L2 can be provided along one short side of the facing region L1
  • the non-facing region L4 can be provided along one short side of the facing region L3.
  • the first external electrode layer 104 and the second external electrode layer 105 may have different sizes from each other.
  • the first external electrode layer 104 and the second external electrode layer 105 may have different long sides and short sides.
  • the non-facing region L2 can be provided along the long side of the facing region L1
  • the non-facing region L4 can be provided along the long side of the facing region L3.
  • the second external electrode layer 105 has all sides larger than the first external electrode layer 104, and all the sides of the second external electrode layer 105 and the first external electrode layer as viewed from the thickness direction. The sides may be separated. As a result, the opposing region L3 is surrounded by the non-opposing region L4, and the first external electrode layer 104 does not have the non-facing region L2.
  • the second external electrode layer 105 has all sides larger than the first external electrode layer 104, and one side of each of the long side and the short side of the second external electrode layer 105 when viewed from the thickness direction.
  • the long side and the short side of the first external electrode layer 104 may be separated from each other.
  • the non-facing region L4 is provided along one of the short side and the long side of the facing region L3, and the first external electrode layer 104 does not have the non-facing region L2.
  • the width of the non-facing region L2 and the width of the non-facing region L4 are not particularly limited, but are preferably 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the non-facing region L2 may not exist in the first external electrode layer 104.
  • the configurations of the first external electrode layer 104 and the second external electrode layer 105 are not limited to those shown here, and any structure may be used as long as at least the second external electrode layer 105 has the facing region L3 and the non-facing region L4.
  • the shapes of the first external electrode layer 104 and the second external electrode layer 105 are not limited to rectangles, and may be circular, elliptical, or polygonal.
  • FIG. 18 is a cross-sectional view of a capacitor 200 according to a comparative example.
  • the capacitor 200 includes a dielectric layer 201, a first internal electrode 202, a second internal electrode 203, a first external electrode layer 204, a second external electrode layer 205, a first protective layer 206, a second A protective layer 207, a first external terminal 214, and a second external terminal 215 are provided.
  • an insulator 202 a is filled between the first internal electrode 202 and the second external electrode layer 205
  • an insulator 203 a is filled between the second internal electrode 203 and the first external electrode layer 204.
  • a first external electrode layer 204 is disposed on the first surface 201a, and a second external electrode layer 205 is disposed on the second surface 201b.
  • the first external electrode layer 204 and the second external electrode layer 205 have the same size, and are configured to completely face each other with the dielectric layer 201 interposed therebetween.
  • FIG. 19 and 20 are enlarged views of the peripheral portions of the first external electrode layer 204 and the second external electrode layer 205 of the capacitor 200, and the dielectric layer 201 is the first external electrode layer 204 and the second external electrode layer. It is a figure which shows the state cut
  • the capacitor 200 when the capacitor 200 is exposed to a humidity environment, a hydration reaction occurs in the dielectric layer 201, and a hydrate such as boehmite is generated.
  • the dielectric layer 201 is covered with the first protective layer 206 and the second protective layer 207, but if there are pin poles in the first protective layer 206 and the second protective layer 207, moisture may reach the dielectric layer 201. There is.
  • the infiltrated moisture is in the first external electrode layer 204 and the second external electrode layer 205. 2 Reach the peripheral edge of the external electrode layer 205.
  • a hydrate W is formed at the peripheral portion of the first external electrode layer 204 in the dielectric layer 201. Since the hydrate W is inferior in insulation, when formed across the first internal electrode 202 and the second internal electrode 203, the first internal electrode 202 and the second internal electrode 203 are electrically connected as shown in FIG. Connected. Therefore, the first external electrode layer 204 connected to the first internal electrode 202 and the second external electrode layer 205 connected to the second internal electrode 203 are electrically connected to each other (conductive path D in the figure), causing a short circuit failure. There is a fear.
  • Such a short circuit failure due to a hydrate occurs because the second external electrode layer 205 exists on the opposite side of the peripheral portion of the first external electrode layer 204 through the dielectric layer 201.
  • the peripheral portion of the first external electrode layer 204 has been described here, a short-circuit failure due to hydrate may occur in the peripheral portion of the second external electrode layer 205 on the opposite side of the dielectric layer 201 in the same manner. There is.
  • FIG. 21 is a schematic diagram of the dielectric layer 201, the first internal electrode 202, the second internal electrode 203, the first external electrode layer 204, and the second external electrode layer 205.
  • the first external electrode layer 204 or the second external electrode layer 205 exists on the opposite side of the peripheral portion of the first external electrode layer 204 and the second external electrode layer 205 with the dielectric layer 201 interposed therebetween. Regions are indicated by black arrows. This region is a region along the periphery of the first external electrode layer 204 and the second external electrode layer 205. If a hydrate is generated in the region indicated by the black arrow, a short circuit failure may occur in the first external electrode layer 204 and the second external electrode layer 205. Hereinafter, this region is referred to as a short circuit occurrence region T1.
  • the capacitor 100 at least one of the first external electrode layer 104 and the second external electrode layer 105 has an opposing region and a non-opposing region, that is, the first external electrode.
  • the electrode layer 104 and the second external electrode layer 105 are not completely opposed to each other with the dielectric layer 101 interposed therebetween, and are disposed so as to be shifted in the layer surface direction (direction orthogonal to the thickness).
  • FIG. 22 is an enlarged view of the periphery of the first external electrode layer 104 and the second external electrode layer 105 of the capacitor 100, and the dielectric layer 101 is the periphery of the first external electrode layer 104 and the second external electrode layer 105. It is a figure which shows the state cut
  • the first external electrode layer 104 and the second external electrode layer 105 are not completely opposed to each other, and the first external electrode layer 104 has a facing region L1 and a non-facing region L2.
  • the second external electrode layer 105 represents only the facing region L3 in the range shown in FIG.
  • the hydrate W is formed in the dielectric layer 101 at the peripheral edge of the first external electrode layer 104 as in the comparative example, and the first internal electrode 102 and the second internal electrode 103 are interposed via the hydrate W. Even if electrically connected, the first external electrode layer 104 and the second external electrode layer 105 are not electrically connected. This is because the second internal electrode 103 is not connected to the second external electrode layer 105 in the non-facing region L2 of the first external electrode layer 104 (see FIG. 11).
  • FIG. 23 is a schematic diagram of the dielectric layer 101, the first internal electrode 102, the second internal electrode 103, the first external electrode layer 104, and the second external electrode layer 105.
  • the first external electrode layer 104 or the second external electrode layer 105 exists on the opposite side of the peripheral portion of the first external electrode layer 104 and the second external electrode layer 105 with the dielectric layer 101 interposed therebetween. Regions are indicated by black arrows. This region is a region along the periphery of the opposing region L1 of the first external electrode layer 104 and the periphery of the opposing region L3 of the second external electrode layer 105. Hereinafter, this region is referred to as a short circuit occurrence region T1.
  • first external electrode layer 104 or the second external electrode layer 105 does not exist on the opposite side of the peripheral portion of the first external electrode layer 104 and the second external electrode layer 105 with the dielectric layer 101 interposed therebetween. Shown with white arrows.
  • This region is a region along the periphery of the non-facing region L2 of the first external electrode layer 104 and the non-facing region L4 of the second external electrode layer 105.
  • this region is referred to as a short circuit prevention region T2.
  • a short-circuit failure may occur in the first external electrode layer 104 and the second external electrode layer 105 as described above.
  • the short circuit prevention region T2 there is no possibility of causing a short circuit failure in the first external electrode layer 104 and the second external electrode layer 105.
  • the second internal electrode 103 is not connected to the second external electrode layer 105 in the non-facing region L2 of the first external electrode layer 104 as shown in FIG.
  • the first internal electrode 102 is not connected to the first external electrode layer 104 in the non-facing region L4 of the second external electrode layer 105.
  • the first external electrode layer 104 has the facing region L1 and the non-facing region L2
  • the second external electrode layer 105 has the facing region L3 and the non-facing region L4.
  • FIG. 24 is a schematic diagram of the dielectric layer 101, the first internal electrode 102, the second internal electrode 103, the first external electrode layer 104, and the second external electrode layer 105 in the capacitor 100 in this case.
  • the first external electrode layer 104 does not exist on the opposite side of the peripheral portion of the second external electrode layer 105 through the dielectric layer 101 over the entire circumference. For this reason, as shown in the figure, the entire circumference of the peripheral portion of the second external electrode layer 105 becomes the short-circuit prevention region T2. Further, the second external electrode layer 105 exists on the opposite side of the peripheral portion of the first external electrode layer 104 through the dielectric layer 101 over the entire periphery. For this reason, as shown in the figure, the entire periphery of the peripheral portion of the first external electrode layer 104 is a short-circuit generation region T1.
  • FIG. 25 is a schematic diagram showing how the capacitor 100 is mounted in this case.
  • the first surface 101b side of the capacitor 100 is covered with the underfill U by mounting the first surface 101b side as the mounting substrate B side. Is done. Accordingly, it is possible to prevent moisture from entering the first surface 101b side by the underfill U, and it is possible to prevent hydrate formation. As described above, since only the short-circuit prevention region T2 exists on the second surface 101c side, it is possible to prevent a short-circuit failure even if a hydrate is formed.
  • Capacitor manufacturing method A method for manufacturing the capacitor 100 according to the present embodiment will be described.
  • the manufacturing method shown below is an example and the capacitor
  • 26 to 32 are schematic views showing a manufacturing process of the capacitor 100. FIG.
  • FIG. 26A shows the base material 301 that is the basis of the dielectric layer 101.
  • the base material 301 is a metal (for example, aluminum) before the oxidation.
  • the substrate 301 when a voltage is applied with the substrate 301 as an anode in an oxalic acid (0.1 mol / l) solution adjusted to 15 ° C. to 20 ° C., the substrate 301 is oxidized (anodized) as shown in FIG. ) To form a base oxide 302.
  • holes H are formed in the base material oxide 302 by the self-organizing action of the base material oxide 302. The holes H grow in the direction of progress of oxidation, that is, in the thickness direction of the substrate 301.
  • regular pits may be formed in the base material 301 before the anodic oxidation, and the holes H may be grown using the pits as base points.
  • the arrangement of the holes H can be controlled by the arrangement of the pits.
  • the pit can be formed, for example, by pressing a mold (mold) against the base material 301.
  • the voltage applied to the base material 301 is increased after a predetermined time has elapsed from the start of anodization. Since the pitch of the holes H formed by the self-organization is determined by the magnitude of the applied voltage, the self-organization proceeds so that the pitch of the holes H increases. Thereby, as shown in FIG.26 (c), formation of a hole is continued about some holes H, and a hole diameter expands. On the other hand, since the pitch of the holes H is increased, the hole forming speed of the other holes H is very slow.
  • the hole H in which the formation speed of the hole is slow is referred to as a hole H1
  • the hole H in which the formation of the hole is continued (enlarged) is referred to as a hole H2.
  • the anodizing conditions can be set as appropriate.
  • the applied voltage of the first stage anodizing shown in FIG. 26B can be set to several V to several hundred V, and the processing time can be set to several minutes to several days.
  • the voltage value can be several times that of the first stage, and the processing time can be set to several minutes to several tens of minutes.
  • a hole H having a hole diameter of 100 nm is formed by setting the applied voltage at the first stage to 40V, and a hole diameter of the hole H2 is enlarged to 200 nm by setting the applied voltage at the second stage to 80V.
  • the voltage value of the second stage within the above-described range, the number of holes H1 and holes H2 can be made substantially equal.
  • the processing time of the second stage voltage application within the above-mentioned range, the base oxide 302 formed on the bottom by the second stage voltage application while the pitch conversion of the holes H2 is sufficiently completed. Can be reduced in thickness. Since the base material oxide 302 formed by the voltage application in the second stage is removed in a later process, it is preferable that the base material oxide 302 be as thin as possible.
  • the non-oxidized base material 301 is removed.
  • the substrate 301 can be removed by wet etching, for example.
  • the surface of the base oxide 302 on which the holes H1 and H2 are formed is referred to as a front surface 302a, and the opposite surface is referred to as a back surface 302b.
  • the base material oxide 302 is removed from the back surface 302b side with a predetermined thickness. This can be done by reactive ion etching (RIE). At this time, the base oxide 302 is removed so that the hole H2 communicates with the back surface 302b and the hole H1 does not communicate with the back surface 302b.
  • RIE reactive ion etching
  • a first conductor layer 303 made of a conductive material is formed on the surface 302a.
  • the first conductor layer 303 can be formed by any method such as sputtering or vacuum deposition.
  • the first plating conductor M1 is embedded in the hole H2.
  • the first plating conductor M1 can be embedded by performing electrolytic plating on the base material oxide 302 using the first conductor layer 303 as a seed layer. Since the plating solution does not enter the hole H1, the first plating conductor M1 is not formed in the hole H1.
  • the base material oxide 302 is removed again from the back surface 302b with a predetermined thickness. This can be done by reactive ion etching. At this time, the base oxide 302 is removed with a thickness that allows the hole H1 to communicate with the back surface 302b.
  • the second plating conductor M2 is embedded in the hole H1
  • the third plating conductor M3 is embedded in the hole H2.
  • the second plating conductor M2 and the third plating conductor M3 can be embedded by performing electrolytic plating on the base material oxide 302 using the first conductor layer 303 as a seed layer. At this time, since the first plating conductor M1 is formed in the hole H2 by the previous process, the tip of the third plating conductor M3 protrudes from the tip of the second plating conductor M2.
  • the first plating conductor M1 and the third plating conductor M3 are referred to as a first inner conductor 304, and the second plating conductor M2 is referred to as a second inner conductor 305.
  • the base material oxide 302 is removed again from the back surface 302b with a predetermined thickness. This can be done by mechanical polishing or the like. At this time, the base oxide 302 is removed with such a thickness that the first inner conductor 304 is exposed on the back surface 302b and the first inner conductor 305 is not exposed on the back surface 302b.
  • an insulator 306 is embedded in the gap of the hole H1.
  • the insulator 306 can be embedded by filling the gap with any insulating material.
  • a second conductor layer 307 made of a conductive material is formed on the back surface 302b.
  • the second conductor layer 307 can be formed by any method such as sputtering or vacuum deposition.
  • the first conductor layer 303 is removed.
  • the removal of the first conductor layer 303 can be performed by a wet etching method, a dry etching method, an ion milling method, a CMP (Chemical-Mechanical-Polishing) method, or the like.
  • electrolytic etching is performed on the base material oxide 302 using the second conductor layer 307 as a seed layer. Since the first inner conductor 304 is electrically connected to the second conductor layer 307, it is etched by electrolytic etching. As a result, a gap is formed in the hole H2 from which the first inner conductor 304 has been removed. On the other hand, since the second inner conductor 305 is insulated from the second conductor layer 307, it is not etched by electrolytic etching.
  • an insulator 308 is embedded in the gap of the hole H2.
  • the insulator 308 can be embedded by filling the gap with an arbitrary insulating material.
  • a third conductor layer 309 made of a conductive material is formed on the surface 302a.
  • the third conductor layer 309 can be formed by any method such as sputtering or vacuum deposition.
  • the second conductor layer 307 is removed.
  • the removal of the second conductor layer 307 can be performed by a wet etching method, a dry etching method, an ion milling method, a CMP (Chemical-Mechanical-Polishing) method, or the like.
  • a fourth conductor layer 310 made of a conductive material is formed on the back surface 302b.
  • the fourth conductor layer 310 can be formed by shifting in the layer surface direction with respect to the third conductor layer 309.
  • a non-facing region L4 that is a region that does not face the facing region L3 that is the region facing the third conductor layer 309 via the base material oxide 302 is formed in the fourth conductor layer 310.
  • a non-facing region L2 that is a region that does not face the facing region L1 that is a region facing the fourth conductor layer 310 via the base oxide 302 is also formed in the third conductor layer 309.
  • the first protective layer 311 is disposed on the third conductor layer 309 and the second protective layer 312 is disposed on the fourth conductor layer 310.
  • the first protective layer 311 and the second protective layer 312 can be formed by applying a resin material on the third conductor layer 309 and the fourth conductor layer 310 and patterning them by photolithography or the like. During the patterning, an opening 311a from which the third conductor layer 309 is exposed is formed in the first protective layer 311, and an opening 312 a from which the fourth conductor layer 310 is exposed is formed in the second protective layer 312.
  • the first outer conductor 313 is disposed on the side surface 302 c, the third conductor layer 309, the first protective layer 311, and the second protective layer 312.
  • a second outer conductor 314 is disposed on the side surface 302 c, the fourth conductor layer 310, the first protective layer 311, and the second protective layer 312.
  • the first outer conductor 313 and the second outer conductor 314 can be formed by applying a metal material on the front surface 302a, the side surface 302c, and the back surface 302b and patterning the material by photolithography or the like. By separating the metal material during patterning, the first outer conductor 313 and the second outer conductor 314 are formed.
  • the capacitor 100 can be manufactured as described above.
  • the base oxide 302 corresponds to the dielectric layer 101
  • the second internal conductor 305 corresponds to the first internal electrode 102
  • the first internal conductor 304 corresponds to the second internal electrode 103.
  • the third conductor layer 309 is the first external electrode layer 104
  • the fourth conductor layer 310 is the second external electrode layer 105
  • the first protective layer 311 is the first protective layer 106
  • the second protective layer 312 is the second protective layer.
  • the first external conductor 313 corresponds to the first external terminal 114
  • the second external conductor 314 corresponds to the second external terminal 115, respectively.
  • DESCRIPTION OF SYMBOLS 100 ... Capacitor 101 ... Dielectric layer 101a ... Through-hole 101b ... 1st surface 101c ... 2nd surface 102 ... 1st internal electrode 103 ... 2nd internal electrode 104 ... 1st external electrode layer 105 ... 2nd external electrode layer L1, L3 ... Opposite area L2, L4 ... Non-opposite area

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

[Problem] To provide a porous capacitor such that occurrences of short circuit faults caused by formation of hydrates in a dielectric layer can be prevented. [Solution] The capacitor is equipped with a dielectric layer, through-holes, a first external electrode layer, a second external electrode layer, first internal electrodes, and second internal electrodes. The dielectric layer is formed by way of anodization of a metal. The through-holes are a plurality of through-holes which provide communication between a first surface of the dielectric layer and a second surface on the opposite side from the first surface. The first external electrode layer is disposed on the first surface. The second external electrode layer is disposed on the second surface and comprises a facing region which faces the first external electrode layer across the dielectric layer and a non-facing region which does not face the first external electrode layer. The first internal electrodes are formed on a portion of the plurality of through-holes, are connected to the first external electrode layer, and are spaced apart from the second external electrode layer. The second internal electrodes are formed on another portion of the plurality of through-holes, are connected to the second external electrode layer, and are spaced apart from the first external electrode layer.

Description

コンデンサCapacitor
 本発明は、ポーラスコンデンサに関する。 The present invention relates to a porous capacitor.
 近年、新しいタイプのコンデンサとしてポーラスコンデンサが開発されている。ポーラスコンデンサは、アルミニウム等の金属表面に形成される金属酸化物がポーラス(細孔の貫通孔)構造を形成する性質を利用してポーラス内に内部電極を形成し、金属酸化物を誘電体としてコンデンサとしたものである。このようなコンデンサは従来の積層コンデンサより、小型化、低背化が可能であり、高周波化が進む移動通信機器での需要が高まっている。 Recently, a porous capacitor has been developed as a new type of capacitor. Porous capacitors use a property that a metal oxide formed on a metal surface such as aluminum forms a porous (through-hole) structure, forms an internal electrode in the porous, and uses the metal oxide as a dielectric. It is a capacitor. Such a capacitor can be reduced in size and height as compared with a conventional multilayer capacitor, and the demand for mobile communication devices with higher frequency is increasing.
 誘電体の表面及び裏面にはそれぞれ外部導電体が積層され、ポーラス内に形成される内部電極は表面の外部導電体と裏面の外部導電体のいずれか一方に接続される。内部電極と接続されない側の外部導電体との間は、空隙又は絶縁性材料によって絶縁される。これにより内部電極は、誘電体を介して対向する対向電極(正極又は負極)として機能する。 External conductors are laminated on the front and back surfaces of the dielectric, and the internal electrodes formed in the porous are connected to either the external conductor on the front surface or the external conductor on the back surface. The external conductor on the side not connected to the internal electrode is insulated by a gap or an insulating material. Thereby, an internal electrode functions as a counter electrode (a positive electrode or a negative electrode) which opposes via a dielectric.
 例えば、特許文献1及び特許文献2には、このような構成を有するポーラスコンデンサが開示されている。いずれの特許文献においても、ポーラス内に内部電極が形成され、内部電極の一端は一方の導電体に接続され、他端は他方の導電体と絶縁されている。 For example, Patent Document 1 and Patent Document 2 disclose a porous capacitor having such a configuration. In any of the patent documents, an internal electrode is formed in a porous body, one end of the internal electrode is connected to one conductor, and the other end is insulated from the other conductor.
特開4493686号公報Japanese Patent No. 4493686 特開2009-76850号公報JP 2009-76850 A
 誘電体に酸化アルミニウムを用いるポーラスコンデンサは、湿度環境に暴露されると水和反応が進行し、誘電体を構成する誘電材料が水和物に変質する。水和物は絶縁性に劣るため、外部導電体の周縁部において正負の内部電極をまたぐように水和物が形成されると、誘電体の表裏にそれぞれ積層された外部導電体が互いに導通してしまい、コンデンサの短絡故障を引き起こすという問題がある。 When a porous capacitor using aluminum oxide as a dielectric is exposed to a humidity environment, a hydration reaction proceeds, and the dielectric material constituting the dielectric changes into a hydrate. Since the hydrate is inferior in insulation, when the hydrate is formed so as to straddle the positive and negative internal electrodes at the periphery of the external conductor, the external conductors laminated on the front and back of the dielectric are electrically connected to each other. Therefore, there is a problem of causing a short circuit failure of the capacitor.
 通常、ポーラスコンデンサは、水和物による短絡故障を回避するため、外部導電体より一回り大きい保護層で外部導電体を被覆し、外部導電体の周縁部の誘電体層への湿度の侵入を防ぐ構成となっている。しかしながら、この構成においても、保護層にピンホール等が存在すると、ピンホールから侵入した湿度が外部導電体の周縁部の誘電体に到達し、短絡故障に至るという問題がある。 Usually, in order to avoid short-circuit failure due to hydrates, porous capacitors cover external conductors with a protective layer that is slightly larger than external conductors, and prevent moisture from penetrating into the dielectric layer at the periphery of external conductors. It has a structure to prevent. However, even in this configuration, if there is a pinhole or the like in the protective layer, there is a problem that the humidity that has entered from the pinhole reaches the dielectric at the peripheral portion of the external conductor, resulting in a short circuit failure.
 以上のような事情に鑑み、本発明の目的は、誘電体層における水和物の生成による短絡故障の発生を防止することが可能なポーラスコンデンサを提供することにある。 In view of the above circumstances, an object of the present invention is to provide a porous capacitor capable of preventing the occurrence of a short circuit failure due to the formation of hydrates in a dielectric layer.
 上記目的を達成するため、本発明の一実施形態に係るコンデンサは、誘電体層と、第1の外部電極層と、第2の外部電極層と、第1の内部電極と、第2の内部電極とを具備する。
 上記誘電体層は、金属の陽極酸化によって形成され、第1の面と、上記第1の面の反対側の第2の面とを有し、前記第1の面と前記第2の面に連通する複数の貫通孔を備える。
 上記第1の外部電極層は、上記第1の面に配設されている。
 上記第2の外部電極層は、上記第2の面に配設され、上記誘電体層を介して上記第1の外部電極層と対向する対向領域と、上記誘電体層を介して上記第1の外部電極層と対向しない非対向領域を有する。
 上記第1の内部電極は、上記複数の貫通孔の一部に形成され、上記第1の外部電極層に接続され、上記第2の外部電極層と離間している。
 上記第2の内部電極は、上記複数の貫通孔の他の一部に形成され、上記第2の外部電極層に接続され、上記第1の外部電極層と離間している。
In order to achieve the above object, a capacitor according to an embodiment of the present invention includes a dielectric layer, a first external electrode layer, a second external electrode layer, a first internal electrode, and a second internal electrode. Electrode.
The dielectric layer is formed by metal anodization, and has a first surface and a second surface opposite to the first surface, and the first surface and the second surface are A plurality of through holes communicating with each other are provided.
The first external electrode layer is disposed on the first surface.
The second external electrode layer is disposed on the second surface, and is opposed to the first external electrode layer via the dielectric layer, and the first external via the dielectric layer. A non-opposing region that does not face the external electrode layer.
The first internal electrode is formed in a part of the plurality of through holes, connected to the first external electrode layer, and separated from the second external electrode layer.
The second internal electrode is formed in another part of the plurality of through holes, connected to the second external electrode layer, and separated from the first external electrode layer.
 この構成によれば、誘電体層を介して対向する第1内部電極と第2内部電極が、コンデンサの対向電極として機能する。第1内部電極は第1外部電極層に、第2内部電極は第2外部電極層にそれぞれ接続され、これらを介して外部(接続端子等)と接続される。ここで、コンデンサが高湿度環境に暴露されると、誘電材料が水和反応を生じ、水和物が生成する場合がある。水和物は絶縁性に劣るため、外部電極層の周縁部において正負の内部電極をまたぐように水和物が生成すると、誘電体層の表裏にそれぞれ配設された外部電極層が互いに導通してしまい、コンデンサの短絡故障が発生する可能性がある。このような場合であっても、第2外部電極層が、誘電体層を介して、第1外部電極層と対向する領域(対向領域)と対向しない領域(非対向領域)を有する構成にすることで、誘電体層の周縁部で水和物が生成しても、内部電極を介して外部電極層が互いに導通せず、コンデンサの短絡故障を防止することが可能である。 According to this configuration, the first internal electrode and the second internal electrode facing each other through the dielectric layer function as the counter electrode of the capacitor. The first internal electrode is connected to the first external electrode layer, and the second internal electrode is connected to the second external electrode layer, and is connected to the outside (connection terminal or the like) through these. Here, when the capacitor is exposed to a high humidity environment, the dielectric material may undergo a hydration reaction and a hydrate may be generated. Since the hydrate is inferior in insulation, when the hydrate is formed so as to straddle the positive and negative internal electrodes at the periphery of the external electrode layer, the external electrode layers respectively disposed on the front and back of the dielectric layer are electrically connected to each other. As a result, a short circuit failure of the capacitor may occur. Even in such a case, the second external electrode layer is configured to have a region (non-opposite region) that does not oppose a region (opposite region) that faces the first external electrode layer via the dielectric layer. Thus, even if a hydrate is generated at the peripheral portion of the dielectric layer, the external electrode layers are not electrically connected to each other through the internal electrodes, and it is possible to prevent a short circuit failure of the capacitor.
 前記第1の外部電極層は、前記誘電体層を介して前記第2の外部電極層と対向する対向領域と、前記誘電体層を介して前記第2の外部電極層と対向しない非対向領域を有していてもよい。 The first external electrode layer includes a facing region that faces the second external electrode layer via the dielectric layer, and a non-facing region that does not face the second external electrode layer via the dielectric layer. You may have.
 この構成によれば、水和物が形成されても内部電極を介した短絡が発生しない領域が第1の面と第2の面の両面に形成されるため、両面における短絡故障の発生確率を低減することが可能となる。 According to this configuration, since a region where a short circuit does not occur via the internal electrode even if a hydrate is formed is formed on both the first surface and the second surface, the probability of occurrence of a short circuit failure on both surfaces is reduced. It becomes possible to reduce.
 上記対向領域は、上記非対向領域に囲まれていてもよい。 The counter area may be surrounded by the non-opposite area.
 対向領域が非対向領域に囲まれていると、水和物により第1内部電極と第2内部電極の短絡が発生する領域が誘電体層の第1の面側のみとなる。このため、コンデンサを基板に実装する際に、第1の面側が基板側となるように実装し、アンダーフィルを施すことにより、第1の面側への水分の浸入を防止し、第1の面側における水和物の生成を防止することができる。第2の面側は、上記のように水和物による導通が防止されているため、短絡故障の発生が防止され、コンデンサの信頼性をより高めることが可能である。 When the facing region is surrounded by the non-facing region, a region where a short circuit between the first internal electrode and the second internal electrode occurs due to the hydrate is only on the first surface side of the dielectric layer. For this reason, when the capacitor is mounted on the substrate, the first surface side is mounted on the substrate side, and underfill is applied to prevent moisture from entering the first surface side. Hydrate formation on the surface side can be prevented. Since the second surface side is prevented from conducting by the hydrate as described above, it is possible to prevent the occurrence of a short circuit failure and to further improve the reliability of the capacitor.
 上記非対向領域の幅は、0.1μm以上100μm以下であってもよい。 The width of the non-facing region may be 0.1 μm or more and 100 μm or less.
 この構成によれば、非対向領域の幅を0.1μm以上100μm以下にすることで、コンデンサの電気容量を確保しつつ、短絡故障する確率を低減させることが可能である。 According to this configuration, by setting the width of the non-facing region to 0.1 μm or more and 100 μm or less, it is possible to reduce the probability of a short circuit failure while securing the capacitance of the capacitor.
 第1の内部電極と第2の外部電極層の間と、第2の内部電極と第1の外部電極層の間には、絶縁性材料が充填されていてもよい。 An insulating material may be filled between the first internal electrode and the second external electrode layer and between the second internal electrode and the first external electrode layer.
 この構成によれば、絶縁性材料を充填することによって、第1内部電極と第2外部電極層の間及び第2内部電極と第1外部電極層の間の絶縁を確実にすることが可能である。 According to this configuration, it is possible to ensure insulation between the first internal electrode and the second external electrode layer and between the second internal electrode and the first external electrode layer by filling the insulating material. is there.
 上記誘電体層は、陽極酸化されると自己組織化作用によりポーラスを形成する材料からなるものであってもよい。 The dielectric layer may be made of a material that forms a porous layer by self-organization when anodized.
 この構成によれば、材料を陽極酸化することによって、貫通孔(ポーラス)を有する誘電体層を形成することが可能となる。 According to this configuration, a dielectric layer having a through hole (porous) can be formed by anodizing the material.
 上記誘電体層は、アルミニウムの陽極酸化により形成された酸化アルミニウムからなるものであってもよい。 The dielectric layer may be made of aluminum oxide formed by anodic oxidation of aluminum.
 アルミニウムを陽極酸化すると生じる酸化アルミニウムは、酸化の過程において自己組織化作用による貫通孔を生じる。即ち、アルミニウムを陽極酸化することによって、貫通孔を有する誘電体層を形成することが可能である。 Aluminum oxide produced when anodizing aluminum produces through-holes due to self-organization during the oxidation process. That is, a dielectric layer having a through hole can be formed by anodizing aluminum.
 本発明によれば、誘電体層における水和物の生成による短絡故障の発生を防止することが可能なポーラスコンデンサを提供することが可能である。 According to the present invention, it is possible to provide a porous capacitor capable of preventing the occurrence of a short circuit failure due to the formation of hydrates in the dielectric layer.
本発明に係るコンデンサの斜視図である。1 is a perspective view of a capacitor according to the present invention. 同コンデンサの断面図である。It is sectional drawing of the same capacitor. 同コンデンサが備える誘電体層の斜視図である。It is a perspective view of the dielectric material layer with which the same capacitor is provided. 同コンデンサが備える誘電体層の断面図である。It is sectional drawing of the dielectric material layer with which the same capacitor | condenser is provided. 同コンデンサの構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す斜視図である。It is a perspective view which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す斜視図である。It is a perspective view which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す斜視図である。It is a perspective view which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す平面図である。It is a top view which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す平面図である。It is a top view which shows a part of structure of the capacitor | condenser. 同コンデンサにおける構成のバリエーションを示す模式図である。It is a schematic diagram which shows the variation of the structure in the capacitor | condenser. 同コンデンサにおける構成のバリエーションを示す模式図である。It is a schematic diagram which shows the variation of the structure in the capacitor | condenser. 同コンデンサにおける構成のバリエーションを示す模式図である。It is a schematic diagram which shows the variation of the structure in the capacitor | condenser. 同コンデンサにおける構成のバリエーションを示す模式図である。It is a schematic diagram which shows the variation of the structure in the capacitor | condenser. 本発明の比較例に係るコンデンサの断面図である。It is sectional drawing of the capacitor | condenser which concerns on the comparative example of this invention. 同コンデンサの拡大斜視図である。It is an expansion perspective view of the same capacitor. 同コンデンサの拡大斜視図である。It is an expansion perspective view of the same capacitor. 同コンデンサの構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the capacitor | condenser. 本発明に係るコンデンサの拡大斜視図である。It is an expansion perspective view of the capacitor concerning the present invention. 同コンデンサの構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the capacitor | condenser. 同コンデンサの構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the capacitor | condenser. 同コンデンサにおける実装態様を示す模式図である。It is a schematic diagram which shows the mounting aspect in the capacitor | condenser. 同コンデンサの製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same capacitor. 同コンデンサの製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same capacitor. 同コンデンサの製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same capacitor. 同コンデンサの製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same capacitor. 同コンデンサの製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same capacitor. 同コンデンサの製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same capacitor. 同コンデンサの製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the same capacitor.
 [コンデンサの構成]
 図1は、本実施形態に係るコンデンサ100の斜視図であり、図2はコンデンサ100の断面図である。これらの図に示すように、コンデンサ100は、誘電体層101、第1内部電極102、第2内部電極103、第1外部電極層104、第2外部電極層105、第1保護層106、第2保護層107、第1外部端子114及び第2外部端子115を具備する。
[Configuration of capacitor]
FIG. 1 is a perspective view of a capacitor 100 according to the present embodiment, and FIG. 2 is a cross-sectional view of the capacitor 100. As shown in these drawings, the capacitor 100 includes a dielectric layer 101, a first internal electrode 102, a second internal electrode 103, a first external electrode layer 104, a second external electrode layer 105, a first protective layer 106, a first protective layer 106, 2 includes a protective layer 107, a first external terminal 114, and a second external terminal 115.
 誘電体層101は、コンデンサ100の誘電体として機能する。図3は、誘電体層101の斜視図であり、図4は誘電体層101の断面図である。誘電体層101は、誘電性材料であって、自己組織化によってポーラス(細孔)を形成する材料を利用することができる。このような材料としては、酸化アルミニウム(Al)を挙げることができる。誘電体層101の厚みは特に限定されないが、例えば数μm~数百μmとすることができる。 The dielectric layer 101 functions as a dielectric of the capacitor 100. FIG. 3 is a perspective view of the dielectric layer 101, and FIG. 4 is a cross-sectional view of the dielectric layer 101. The dielectric layer 101 is a dielectric material, and a material that forms a porous (pore) by self-organization can be used. As such a material, aluminum oxide (Al 2 O 3 ) can be given. The thickness of the dielectric layer 101 is not particularly limited, but can be, for example, several μm to several hundred μm.
 図3及び図4に示すように、誘電体層101には、複数の貫通孔101aが形成されている。誘電体層101の層面方向に平行な表面を第1の面101bとし、その反対側の面を第2の面101cとすると、貫通孔101aは第1の面101b及び第2の面101cに垂直な方向(誘電体層101の厚み方向)に沿って形成され、第1の面101b及び第2の面101cに連通するように形成されている。なお、図3等に示す貫通孔101aの数や大きさは便宜的なものであり、実際のものはより小さく、多数である。また、貫通孔101aは分岐を有してもよく、隣接する貫通孔101aと合流していてもよい。また、誘電体層101において第1の面101b及び第2の面101cに対する側面を側面101dとする。 As shown in FIGS. 3 and 4, the dielectric layer 101 has a plurality of through holes 101a. When the surface parallel to the layer surface direction of the dielectric layer 101 is a first surface 101b and the opposite surface is a second surface 101c, the through hole 101a is perpendicular to the first surface 101b and the second surface 101c. The first surface 101b and the second surface 101c are formed so as to communicate with each other (in the thickness direction of the dielectric layer 101). The number and size of the through holes 101a shown in FIG. 3 and the like are for convenience, and the actual ones are smaller and more in number. Moreover, the through-hole 101a may have a branch, and may merge with the adjacent through-hole 101a. Further, the side surface of the dielectric layer 101 with respect to the first surface 101b and the second surface 101c is referred to as a side surface 101d.
 第1内部電極102は、コンデンサ100の一方の対向電極として機能する。図5は、コンデンサ100の一部の構成を示す断面図である。第1内部電極102は導電性材料、例えば、In、Sn、Pb、Cd、Bi、Al、Cu、Ni、Au、Ag、Pt、Pd、Co、Cr、Fe、Zn等の純金属やこれらの合金からなるものとすることができる。 The first internal electrode 102 functions as one counter electrode of the capacitor 100. FIG. 5 is a cross-sectional view illustrating a configuration of a part of the capacitor 100. The first internal electrode 102 is made of a conductive material such as pure metals such as In, Sn, Pb, Cd, Bi, Al, Cu, Ni, Au, Ag, Pt, Pd, Co, Cr, Fe, and Zn. It can consist of alloys.
 第1内部電極102は、図5に示すように、第1外部電極層104に接続され、第2外部電極層105とは離間して形成されている。第1内部電極102と第2外部電極層105の間には、同図に示すように絶縁性材料からなる絶縁体102aが形成されている。また、絶縁体102aは第1内部電極102と第2外部電極層105の間に設けられた空隙であってもよい。 As shown in FIG. 5, the first internal electrode 102 is connected to the first external electrode layer 104 and is separated from the second external electrode layer 105. An insulator 102a made of an insulating material is formed between the first internal electrode 102 and the second external electrode layer 105 as shown in FIG. Further, the insulator 102 a may be a gap provided between the first internal electrode 102 and the second external electrode layer 105.
 ここで、第1内部電極102は、その全てが第1外部電極層104に接続されているのではなく、第1の面101bにおいて第1外部電極層104が配設されていない領域に位置する第1内部電極102は、第1外部電極層104とは接続されない。第1外部電極層104の配設領域については後述する。 Here, not all of the first internal electrodes 102 are connected to the first external electrode layer 104, but the first internal electrode 102 is located in a region where the first external electrode layer 104 is not disposed on the first surface 101b. The first internal electrode 102 is not connected to the first external electrode layer 104. The arrangement area of the first external electrode layer 104 will be described later.
 第2内部電極103は、コンデンサ100の他方の対向電極として機能する。第2内部電極103は導電性材料、例えば、In、Sn、Pb、Cd、Bi、Al、Cu、Ni、Au、Ag、Pt、Pd、Co、Cr、Fe、Zn等の純金属やこれらの合金からなるものとすることができる。 The second internal electrode 103 functions as the other counter electrode of the capacitor 100. The second internal electrode 103 is made of a conductive material such as pure metals such as In, Sn, Pb, Cd, Bi, Al, Cu, Ni, Au, Ag, Pt, Pd, Co, Cr, Fe, Zn, and the like. It can consist of alloys.
 第2内部電極103は、図5に示すように、第2外部電極層105に接続され、第1外部電極層104とは離間して形成されている。第2内部電極103と第1外部電極層104の間には、同図に示すように絶縁性材料からなる絶縁体103aが形成されている。また、絶縁体103aは、第2内部電極103と第1外部電極層104の間に設けられた空隙であってもよい。 As shown in FIG. 5, the second internal electrode 103 is connected to the second external electrode layer 105 and is separated from the first external electrode layer 104. Between the second internal electrode 103 and the first external electrode layer 104, an insulator 103a made of an insulating material is formed as shown in FIG. The insulator 103a may be a gap provided between the second internal electrode 103 and the first external electrode layer 104.
 ここで、第2内部電極103は、その全てが第2外部電極層105に接続されているのではなく、第2の面101cにおいて第2外部電極層105が配設されていない領域に位置する第2内部電極103は、第2外部電極層105とは接続されない。第2外部電極層105の配設領域については後述する。 Here, not all of the second internal electrodes 103 are connected to the second external electrode layer 105, but are located in a region where the second external electrode layer 105 is not provided on the second surface 101c. The second internal electrode 103 is not connected to the second external electrode layer 105. The arrangement region of the second external electrode layer 105 will be described later.
 第1内部電極102と第2内部電極103は、図5では交互に配列するように表されて
いるが、必ずしも交互でなくてもよく、ランダムに配列されてもよい。第1内部電極10
2と第2内部電極103が誘電体層101を介して対向配置されていれば、コンデンサが
構成されるためである。第1内部電極102と第2内部電極103の数は同等でなくても
よいが、同等とするほうがコンデンサの容量が大きくなり、好適である。
Although the first internal electrodes 102 and the second internal electrodes 103 are shown to be alternately arranged in FIG. 5, they are not necessarily alternate and may be randomly arranged. First internal electrode 10
This is because a capacitor is formed if the second internal electrode 103 and the second internal electrode 103 are disposed to face each other with the dielectric layer 101 interposed therebetween. The number of the first internal electrodes 102 and the number of the second internal electrodes 103 may not be the same, but it is preferable to make them equal because the capacitance of the capacitor increases.
 第1外部電極層104は、図5に示すように、第1の面101b上に配設される。第1外部電極層104は導電性材料、例えば、Cu、Ni、Cr、Ag、Pd、Fe、Sn、Pb、Pt、Ir、Rh、Ru、Al、Ti等の純金属やこれらの合金であるものとすることができる。第1外部電極層104の厚さは例えば数十nm~数μmであるものとすることができる。また、第1外部電極層104は、複数層の導電性材料が積層されるように配設されたものとすることも可能である。 The first external electrode layer 104 is disposed on the first surface 101b as shown in FIG. The first external electrode layer 104 is a conductive material, for example, a pure metal such as Cu, Ni, Cr, Ag, Pd, Fe, Sn, Pb, Pt, Ir, Rh, Ru, Al, Ti, or an alloy thereof. Can be. The thickness of the first external electrode layer 104 can be several tens of nm to several μm, for example. In addition, the first external electrode layer 104 may be disposed so that a plurality of layers of conductive materials are laminated.
 図2に示すように、第1外部電極層104は、第1内部電極102と第1外部端子114を電気的に接続する。図6は第1外部電極層104を示す斜視図である。第1外部電極層104は、図5及び図6に示すように、少なくとも第1の面101bに配設されていればよく、第1の面101bの全部を覆う構成でなくてもよい。 As shown in FIG. 2, the first external electrode layer 104 electrically connects the first internal electrode 102 and the first external terminal 114. FIG. 6 is a perspective view showing the first external electrode layer 104. As shown in FIGS. 5 and 6, the first external electrode layer 104 only needs to be disposed on at least the first surface 101 b, and does not have to cover the entire first surface 101 b.
 第2外部電極層105は、図5に示すように、第2の面101c上に配設される。第2外部電極層105は導電性材料、例えば、Cu、Ni、Cr、Ag、Pd、Fe、Sn、Pb、Pt、Ir、Rh、Ru、Al、Ti等の純金属やこれらの合金であるものとすることができる。第2外部電極層105の厚さは例えば数十nm~数μmであるものとすることができる。また、第2外部電極層105は、複数層の導電性材料が積層されるように配設されたものとすることも可能である。 The second external electrode layer 105 is disposed on the second surface 101c as shown in FIG. The second external electrode layer 105 is a conductive material, for example, a pure metal such as Cu, Ni, Cr, Ag, Pd, Fe, Sn, Pb, Pt, Ir, Rh, Ru, Al, Ti, or an alloy thereof. Can be. The thickness of the second external electrode layer 105 can be several tens of nm to several μm, for example. Further, the second external electrode layer 105 may be disposed so that a plurality of layers of conductive materials are laminated.
 図2に示すように、第2外部電極層105は、第2内部電極103と第2外部端子115を電気的に接続する。図7は第2外部電極層105を示す斜視図である。第2外部電極層105は、図5及び図7に示すように、少なくとも第2の面101cに配設されていればよく、第2の面101cの全部を覆う構成でなくてもよい。 As shown in FIG. 2, the second external electrode layer 105 electrically connects the second internal electrode 103 and the second external terminal 115. FIG. 7 is a perspective view showing the second external electrode layer 105. As shown in FIGS. 5 and 7, the second external electrode layer 105 only needs to be disposed on at least the second surface 101 c, and may not be configured to cover the entire second surface 101 c.
 ここで、第1外部電極層104及び第2外部電極層105は、互いに完全に対向しておらず、第1外部電極層104及び第2外部電極層のそれぞれの一部領域は、互いに対向していない。この第1外部電極層104及び第2外部電極層105の配設領域については後述する。 Here, the first external electrode layer 104 and the second external electrode layer 105 are not completely opposed to each other, and partial regions of the first external electrode layer 104 and the second external electrode layer are opposed to each other. Not. The arrangement region of the first external electrode layer 104 and the second external electrode layer 105 will be described later.
 第1保護層106は、図2に示すように、第1外部電極層104を被覆し、第1外部電極層104と第2外部端子115とを絶縁する。図8は、コンデンサ100の一部の構成を示す断面図であり、図9は第1保護層106を示す斜視図である。第1保護層106は、第1の面101b上に配設され、さらに第1外部電極層104上に配設されている。第1保護層106には、図8及び図9に示すように、第1外部電極層104上において開口106aが形成され、開口106aから第1外部電極層104が露出するように構成されている。開口106aの形状や大きさ、数は特に限定されない。 As shown in FIG. 2, the first protective layer 106 covers the first external electrode layer 104 and insulates the first external electrode layer 104 and the second external terminal 115 from each other. FIG. 8 is a cross-sectional view showing a configuration of a part of the capacitor 100, and FIG. 9 is a perspective view showing the first protective layer 106. The first protective layer 106 is disposed on the first surface 101 b and further disposed on the first external electrode layer 104. As shown in FIGS. 8 and 9, the first protective layer 106 has an opening 106a formed on the first external electrode layer 104, and the first external electrode layer 104 is exposed from the opening 106a. . The shape, size, and number of the openings 106a are not particularly limited.
 第2保護層107は、図2に示すように、第2外部電極層105を被覆し、第2外部電極層105と第1外部端子114とを絶縁する。図10は、第2保護層107を示す斜視図である。第2保護層107は、第2の面101c上に配設され、さらに第2外部電極層105上に配設されている。第2保護層107には、図8及び図10に示すように、第2外部電極層105上において開口107aが形成され、開口107aから第2外部電極層105が露出するように構成されている。開口107aの形状や大きさ、数は特に限定されない。 As shown in FIG. 2, the second protective layer 107 covers the second external electrode layer 105 and insulates the second external electrode layer 105 from the first external terminal 114. FIG. 10 is a perspective view showing the second protective layer 107. The second protective layer 107 is disposed on the second surface 101 c and further disposed on the second external electrode layer 105. As shown in FIGS. 8 and 10, the second protective layer 107 has an opening 107a formed on the second external electrode layer 105, and the second external electrode layer 105 is exposed from the opening 107a. . The shape, size, and number of the openings 107a are not particularly limited.
 第1保護層106及び第2保護層107は、絶縁性材料からなり、特に耐湿性に優れた
材料が好適である。耐湿性の指標として、吸湿性が2%以下、透湿性が1μm厚さあたり
1mg/mm以下であるものが好適である。このような材料としては、エポキシ樹脂、
シリコーン樹脂、ポリイミド樹脂又はポリオレフィン樹脂を挙げることができる。
The first protective layer 106 and the second protective layer 107 are made of an insulating material, and a material particularly excellent in moisture resistance is suitable. As an index of moisture resistance, those having a hygroscopicity of 2% or less and a moisture permeability of 1 mg / mm 2 or less per 1 μm thickness are suitable. Such materials include epoxy resins,
Mention may be made of silicone resins, polyimide resins or polyolefin resins.
 第1外部端子114は、第1内部電極102の端子として機能する。第1外部端子114は、図1及び図2に示すように、第1保護層106、第2保護層107及び第1外部電極層104上に配設され、かつ、第1保護層106と第2保護層107の間で側面101d上に配設されている。第1外部端子114は、第1外部電極層104を介して第1内部電極102と電気的に接続されており、即ち、第1内部電極102と外部とを接続する端子として機能する。 The first external terminal 114 functions as a terminal of the first internal electrode 102. As shown in FIGS. 1 and 2, the first external terminal 114 is disposed on the first protective layer 106, the second protective layer 107, and the first external electrode layer 104, and is connected to the first protective layer 106 and the first protective layer 106. Two protective layers 107 are disposed on the side surface 101d. The first external terminal 114 is electrically connected to the first internal electrode 102 via the first external electrode layer 104, that is, functions as a terminal for connecting the first internal electrode 102 and the outside.
 第2外部端子115は、第2内部電極103の端子として機能する。第2外部端子115は、図1及び図2に示すように、第1保護層106、第2保護層107及び第2外部電極層105上に配設され、かつ、第1保護層106と第2保護層107との間で側面101d上に配設されている。第2外部端子115は、第2外部電極層105を介して第2内部電極103と電気的に接続されており、即ち、第2内部電極103とを接続する端子として機能する。 The second external terminal 115 functions as a terminal of the second internal electrode 103. As shown in FIGS. 1 and 2, the second external terminal 115 is disposed on the first protective layer 106, the second protective layer 107, and the second external electrode layer 105, and is connected to the first protective layer 106 and the second protective layer 106. 2 between the protective layer 107 and the side surface 101d. The second external terminal 115 is electrically connected to the second internal electrode 103 via the second external electrode layer 105, that is, functions as a terminal for connecting the second internal electrode 103.
 コンデンサ100は以上のような構成を有する。なお、上述のように、コンデンサ100は誘電体層101を介して第1内部電極102と第2内部電極103が対向し、コンデンサを形成する。即ち、第1内部電極102と第2内部電極103は、コンデンサの対向電極として機能する。なお、第1内部電極102と第2内部電極103はどちらが正極であってもよい。第1内部電極102は第1外部電極層104を介して、第2内部電極103は第2外部電極層105を介して、それぞれ外部の配線や端子等と接続される。 The capacitor 100 has the above configuration. As described above, in the capacitor 100, the first internal electrode 102 and the second internal electrode 103 are opposed to each other with the dielectric layer 101 therebetween, thereby forming a capacitor. That is, the first internal electrode 102 and the second internal electrode 103 function as counter electrodes of the capacitor. Note that either the first internal electrode 102 or the second internal electrode 103 may be a positive electrode. The first internal electrode 102 is connected to an external wiring, a terminal, or the like via the first external electrode layer 104, and the second internal electrode 103 is connected via the second external electrode layer 105, respectively.
 [第1外部電極層及び第2外部電極層の配設領域について]
 本実施形態に係るコンデンサが有する第1外部電極層104及び第2外部電極層105の配設領域について説明する。
[Regarding Arrangement Area of First External Electrode Layer and Second External Electrode Layer]
An arrangement region of the first external electrode layer 104 and the second external electrode layer 105 included in the capacitor according to the present embodiment will be described.
 上述のように、第1外部電極層104と第2外部電極層105は、誘電体層101を介して互いに対向しない領域を有する。図11はコンデンサ100の一部の構成を示す断面図であり、図12は、コンデンサ100を第2の面101c側から見た一部の構成を示す平面図である。 As described above, the first external electrode layer 104 and the second external electrode layer 105 have regions that do not face each other with the dielectric layer 101 interposed therebetween. FIG. 11 is a cross-sectional view illustrating a partial configuration of the capacitor 100, and FIG. 12 is a plan view illustrating a partial configuration of the capacitor 100 viewed from the second surface 101c side.
 これらの図に示すように、第1外部電極層104と第2外部電極層105は、サイズが同等であり、誘電体層101を介して完全には対向せず、層面方向(厚みに直交する方向)にずれて配設されているものとすることができる。これにより、第1外部電極層104及び第2外部電極層105には対向領域と非対向領域が形成されている。 As shown in these drawings, the first external electrode layer 104 and the second external electrode layer 105 have the same size, do not completely face each other through the dielectric layer 101, and are in the layer surface direction (perpendicular to the thickness). It is possible that they are arranged to be shifted in the direction). As a result, a facing region and a non-facing region are formed in the first external electrode layer 104 and the second external electrode layer 105.
 図13は第1外部電極層104及び第2外部電極層105における対向領域及び非対向領域を示す模式図である。同図に示すように第1外部電極層104には、第2外部電極層105に対向する領域である対向領域L1と第2外部電極層105に対向しない領域である非対向領域L2が形成されている。また、第2外部電極層105には、第1外部電極層104に対向する領域である対向領域L3と第1外部電極層104に対向しない領域である非対向領域L4が形成されている。 FIG. 13 is a schematic diagram showing opposing regions and non-opposing regions in the first external electrode layer 104 and the second external electrode layer 105. As shown in the figure, the first external electrode layer 104 is formed with a facing region L1 that is a region facing the second external electrode layer 105 and a non-facing region L2 that is a region not facing the second external electrode layer 105. ing. The second external electrode layer 105 is formed with a facing region L3 that is a region facing the first external electrode layer 104 and a non-facing region L4 that is a region not facing the first external electrode layer 104.
 ここで、図11に示すように、対向領域L1内に形成された第2内部電極103は、第2外部電極層105に接続され、非対向領域L2内に形成された第2内部電極103は、第2外部電極層105に接続されない。また、対向領域L3内に形成された第1内部電極102は、第1外部電極層104に接続され、非対向領域L4内に形成された第1内部電極102は、第1外部電極層104に接続されないものとすることができる。 Here, as shown in FIG. 11, the second internal electrode 103 formed in the facing region L1 is connected to the second external electrode layer 105, and the second internal electrode 103 formed in the non-facing region L2 is The second external electrode layer 105 is not connected. The first internal electrode 102 formed in the facing region L3 is connected to the first external electrode layer 104, and the first internal electrode 102 formed in the non-facing region L4 is connected to the first external electrode layer 104. It can be unconnected.
 図13に示すように、非対向領域L2は第1外部電極層104の長辺と短辺のそれぞれ一辺ずつに沿って設けられ、非対向領域L4は、第2外部電極層105の長辺と短辺のそれぞれ一辺ずつに沿って設けられるものとすることができる。同図に示すように、非対向領域L2の幅(対向領域L1の周縁と非対向領域L2の周縁の距離)を幅D1及び幅D2とし、非対向領域L4の幅(対向領域L3の周縁と非対向領域LL4の周縁の距離)を幅D3及び幅D4とする。なお、幅D1乃至幅D4は互いに同一でもよく、異なっていてもよい。幅D1乃至幅D4は、特に限定されないが、0.1μm以上100μm以下が好適である。 As shown in FIG. 13, the non-facing region L <b> 2 is provided along each of the long side and the short side of the first external electrode layer 104, and the non-facing region L <b> 4 includes the long side of the second external electrode layer 105. Each of the short sides may be provided along one side. As shown in the figure, the width of the non-facing region L2 (the distance between the periphery of the facing region L1 and the periphery of the non-facing region L2) is defined as the width D1 and the width D2, and the width of the non-facing region L4 (the periphery of the facing region L3) The distance of the peripheral edge of the non-facing region LL4) is defined as a width D3 and a width D4. The widths D1 to D4 may be the same as or different from each other. The widths D1 to D4 are not particularly limited, but are preferably 0.1 μm or more and 100 μm or less.
 なお、第1外部電極層104及び第2外部電極層105の配設領域は上述のものに限られない。図14乃至図17は、第1外部電極層104及び第2外部電極層105の配設領域のバリエーションを示す模式図である。図14(a)乃至図17(a)は各コンデンサ100の断面図であり、図14(b)乃至図17(b)はそれぞれの断面図に対応する平面図である。なお、各平面図はコンデンサ100を第2の面101b側から見た図である。 In addition, the arrangement | positioning area | region of the 1st external electrode layer 104 and the 2nd external electrode layer 105 is not restricted above-mentioned. FIG. 14 to FIG. 17 are schematic views showing variations in the arrangement region of the first external electrode layer 104 and the second external electrode layer 105. 14A to 17A are cross-sectional views of each capacitor 100, and FIGS. 14B to 17B are plan views corresponding to the respective cross-sectional views. Each plan view is a view of the capacitor 100 as viewed from the second surface 101b side.
 例えば、図14に示すように、第1外部電極層104及び第2外部電極層105はサイズが同等であり、層面方向の一方向にずれて配設されていてもよい。これにより、非対向領域L2は対向領域L1の一つの短辺に沿って設けられ、非対向領域L4は、対向領域L3の一つの短辺にそって設けられるものとすることができる。 For example, as shown in FIG. 14, the first external electrode layer 104 and the second external electrode layer 105 have the same size, and may be arranged shifted in one direction in the layer surface direction. Thus, the non-facing region L2 can be provided along one short side of the facing region L1, and the non-facing region L4 can be provided along one short side of the facing region L3.
 あるいは、第1外部電極層104及び第2外部電極層105は、互いにサイズが異なっていてもよい。例えば、図15に示すように第1外部電極層104及び第2外部電極層105は、長辺及び短辺の長さが異なっていてもよい。これにより、非対向領域L2は対向領域L1の長辺に沿って設けられ、非対向領域L4は対向領域L3の長辺に沿って設けられるものとすることができる。 Alternatively, the first external electrode layer 104 and the second external electrode layer 105 may have different sizes from each other. For example, as shown in FIG. 15, the first external electrode layer 104 and the second external electrode layer 105 may have different long sides and short sides. Thereby, the non-facing region L2 can be provided along the long side of the facing region L1, and the non-facing region L4 can be provided along the long side of the facing region L3.
 また、図16に示すように、第2外部電極層105は全辺が第1外部電極層104より大きく、厚み方向から見て第2外部電極層105の全辺と第1外部電極層の全辺は離間していてもよい。これにより、対向領域L3は非対向領域L4に囲まれ、第1外部電極層104は非対向領域L2を有しないものとすることができる。 In addition, as shown in FIG. 16, the second external electrode layer 105 has all sides larger than the first external electrode layer 104, and all the sides of the second external electrode layer 105 and the first external electrode layer as viewed from the thickness direction. The sides may be separated. As a result, the opposing region L3 is surrounded by the non-opposing region L4, and the first external electrode layer 104 does not have the non-facing region L2.
 さらに、図17に示すように、第2外部電極層105は全辺が第1外部電極層104より大きく、厚み方向から見て第2外部電極層105の長辺及び短辺のそれぞれ一辺ずつと、第1外部電極層104の長辺及び短辺のそれぞれ一辺ずつは離間していてもよい。これにより、非対向領域L4は対向領域L3の短辺及び長辺のそれぞれ一辺に沿って設けられ、第1外部電極層104は非対向領域L2を有しないものとすることができる。 Further, as shown in FIG. 17, the second external electrode layer 105 has all sides larger than the first external electrode layer 104, and one side of each of the long side and the short side of the second external electrode layer 105 when viewed from the thickness direction. The long side and the short side of the first external electrode layer 104 may be separated from each other. Thus, the non-facing region L4 is provided along one of the short side and the long side of the facing region L3, and the first external electrode layer 104 does not have the non-facing region L2.
 これらの各構成においても、非対向領域L2の幅と非対向領域L4の幅(図13参照)は特に限定されないが、0.1μm以上100μm以下が好適である。なお、上記のように第1外部電極層104において非対向領域L2が存在しない場合もある。 Also in each of these configurations, the width of the non-facing region L2 and the width of the non-facing region L4 (see FIG. 13) are not particularly limited, but are preferably 0.1 μm or more and 100 μm or less. In addition, as described above, the non-facing region L2 may not exist in the first external electrode layer 104.
 第1外部電極層104及び第2外部電極層105の構成はここに示すものに限られず、少なくとも第2外部電極層105が対向領域L3及び非対向領域L4を有するものであればよい。第1外部電極層104及び第2外部電極層105の形状も矩形に限られず、円形や楕円形、多角形状であってもよい。 The configurations of the first external electrode layer 104 and the second external electrode layer 105 are not limited to those shown here, and any structure may be used as long as at least the second external electrode layer 105 has the facing region L3 and the non-facing region L4. The shapes of the first external electrode layer 104 and the second external electrode layer 105 are not limited to rectangles, and may be circular, elliptical, or polygonal.
 [コンデンサの効果]
 コンデンサ100の効果について、比較例を用いて説明する。図18は、比較例に係るコンデンサ200の断面図である。同図に示すように、コンデンサ200は、誘電体層201、第1内部電極202、第2内部電極203、第1外部電極層204、第2外部電極層205、第1保護層206、第2保護層207、第1外部端子214及び第2外部端子215を備える。また、第1内部電極202と第2外部電極層205の間には絶縁体202aが充填され、第2内部電極203と第1外部電極層204の間には絶縁体203aが充填されている。
[Effect of capacitor]
The effect of the capacitor 100 will be described using a comparative example. FIG. 18 is a cross-sectional view of a capacitor 200 according to a comparative example. As shown in the figure, the capacitor 200 includes a dielectric layer 201, a first internal electrode 202, a second internal electrode 203, a first external electrode layer 204, a second external electrode layer 205, a first protective layer 206, a second A protective layer 207, a first external terminal 214, and a second external terminal 215 are provided. Further, an insulator 202 a is filled between the first internal electrode 202 and the second external electrode layer 205, and an insulator 203 a is filled between the second internal electrode 203 and the first external electrode layer 204.
 誘電体層201には、図18に示すように、第1の面201aに第1外部電極層204が配設され、第2の面201bに第2外部電極層205が配設されている。第1外部電極層204及び第2外部電極層205はサイズが同等であり、誘電体層201を介して、互いに完全に対向する構成となっている。 In the dielectric layer 201, as shown in FIG. 18, a first external electrode layer 204 is disposed on the first surface 201a, and a second external electrode layer 205 is disposed on the second surface 201b. The first external electrode layer 204 and the second external electrode layer 205 have the same size, and are configured to completely face each other with the dielectric layer 201 interposed therebetween.
 図19及び図20は、コンデンサ200の、第1外部電極層204及び第2外部電極層205の周縁部の拡大図であり、誘電体層201が第1外部電極層204及び第2外部電極層205の周縁部近傍で切断された状態を示す図である。なお、両図において第1保護層206、第2保護層207、第1外部端子214及び第2外部端子215は図示を省略する。 19 and 20 are enlarged views of the peripheral portions of the first external electrode layer 204 and the second external electrode layer 205 of the capacitor 200, and the dielectric layer 201 is the first external electrode layer 204 and the second external electrode layer. It is a figure which shows the state cut | disconnected in the peripheral part vicinity of 205. FIG. In both figures, the first protective layer 206, the second protective layer 207, the first external terminal 214, and the second external terminal 215 are not shown.
 ここで、コンデンサ200が湿度環境に暴露されると、誘電体層201において水和反応が発生し、ベーマイト等の水和物が生成する。誘電体層201は第1保護層206及び第2保護層207によって被覆されているが、第1保護層206及び第2保護層207にピンポールが存在すると、水分が誘電体層201に到達するおそれがある。 Here, when the capacitor 200 is exposed to a humidity environment, a hydration reaction occurs in the dielectric layer 201, and a hydrate such as boehmite is generated. The dielectric layer 201 is covered with the first protective layer 206 and the second protective layer 207, but if there are pin poles in the first protective layer 206 and the second protective layer 207, moisture may reach the dielectric layer 201. There is.
 誘電体層201の第1の面201a及び第2の面201bには第1外部電極層204及び第2外部電極層205が形成されているため、浸入した水分は第1外部電極層204及び第2外部電極層205の周縁部に到達する。 Since the first external electrode layer 204 and the second external electrode layer 205 are formed on the first surface 201 a and the second surface 201 b of the dielectric layer 201, the infiltrated moisture is in the first external electrode layer 204 and the second external electrode layer 205. 2 Reach the peripheral edge of the external electrode layer 205.
 これにより、例えば、図19に示すように、誘電体層201における第1外部電極層204の周縁部に水和物Wが形成される。水和物Wは絶縁性に劣るため、第1内部電極202及び第2内部電極203をまたいで形成されると、図20に示すように、第1内部電極202及び第2内部電極203が電気的に接続される。したがって、第1内部電極202に接続された第1外部電極層204と第2内部電極203に接続された第2外部電極層205が互いに導通(図中、導通経路D)し、短絡故障を引き起こすおそれがある。 Thereby, for example, as shown in FIG. 19, a hydrate W is formed at the peripheral portion of the first external electrode layer 204 in the dielectric layer 201. Since the hydrate W is inferior in insulation, when formed across the first internal electrode 202 and the second internal electrode 203, the first internal electrode 202 and the second internal electrode 203 are electrically connected as shown in FIG. Connected. Therefore, the first external electrode layer 204 connected to the first internal electrode 202 and the second external electrode layer 205 connected to the second internal electrode 203 are electrically connected to each other (conductive path D in the figure), causing a short circuit failure. There is a fear.
 このような水和物による短絡故障は、第1外部電極層204の周縁部の、誘電体層201を介した反対側に第2外部電極層205が存在するために発生する。なお、ここでは第1外部電極層204の周縁部について説明したが、誘電体層201の反対側である第2外部電極層205の周縁部についても同様に水和物による短絡故障が発生するおそれがある。 Such a short circuit failure due to a hydrate occurs because the second external electrode layer 205 exists on the opposite side of the peripheral portion of the first external electrode layer 204 through the dielectric layer 201. Although the peripheral portion of the first external electrode layer 204 has been described here, a short-circuit failure due to hydrate may occur in the peripheral portion of the second external electrode layer 205 on the opposite side of the dielectric layer 201 in the same manner. There is.
 図21は、誘電体層201、第1内部電極202、第2内部電極203、第1外部電極層204及び第2外部電極層205の模式図である。同図において、第1外部電極層204と第2外部電極層205の周縁部であって、誘電体層201を介して反対側に第1外部電極層204又は第2外部電極層205が存在する領域を黒矢印で示す。なお、この領域は、第1外部電極層204及び第2外部電極層205の周縁に沿った領域である。黒矢印で示す領域に水和物が発生すると、第1外部電極層204及び第2外部電極層205において短絡故障が発生するおそれがある。以下、この領域を短絡発生領域T1とする。 FIG. 21 is a schematic diagram of the dielectric layer 201, the first internal electrode 202, the second internal electrode 203, the first external electrode layer 204, and the second external electrode layer 205. In the figure, the first external electrode layer 204 or the second external electrode layer 205 exists on the opposite side of the peripheral portion of the first external electrode layer 204 and the second external electrode layer 205 with the dielectric layer 201 interposed therebetween. Regions are indicated by black arrows. This region is a region along the periphery of the first external electrode layer 204 and the second external electrode layer 205. If a hydrate is generated in the region indicated by the black arrow, a short circuit failure may occur in the first external electrode layer 204 and the second external electrode layer 205. Hereinafter, this region is referred to as a short circuit occurrence region T1.
 ここで、本実施形態に係るコンデンサ100は、上述のように、第1外部電極層104及び第2外部電極層105の少なくとも一方は対向領域及び非対向領域を有しており、即ち第1外部電極層104と第2外部電極層105は誘電体層101を介して互いに完全に対向せず、層面方向(厚みに直交する方向)にずれて配設されている。 Here, as described above, in the capacitor 100 according to the present embodiment, at least one of the first external electrode layer 104 and the second external electrode layer 105 has an opposing region and a non-opposing region, that is, the first external electrode. The electrode layer 104 and the second external electrode layer 105 are not completely opposed to each other with the dielectric layer 101 interposed therebetween, and are disposed so as to be shifted in the layer surface direction (direction orthogonal to the thickness).
 図22は、コンデンサ100の、第1外部電極層104及び第2外部電極層105の周縁部の拡大図であり、誘電体層101が第1外部電極層104及び第2外部電極層105の周縁部近傍で切断された状態を示す図である。図22(a)は第1の面101b側からみた図、図22(b)は第2の面101c側からみた図である。なお、同図において第1保護層106、第2保護層107、第1外部端子114及び第2外部端子115は図示を省略する。上述のように、第1外部電極層104と第2外部電極層105は完全には対向しておらず、第1外部電極層104は対向領域L1と非対向領域L2を有している。なお、第2外部電極層105は同図に示す範囲おいては、対向領域L3のみが表されている。 FIG. 22 is an enlarged view of the periphery of the first external electrode layer 104 and the second external electrode layer 105 of the capacitor 100, and the dielectric layer 101 is the periphery of the first external electrode layer 104 and the second external electrode layer 105. It is a figure which shows the state cut | disconnected by the part vicinity. 22A is a diagram viewed from the first surface 101b side, and FIG. 22B is a diagram viewed from the second surface 101c side. In the figure, the first protective layer 106, the second protective layer 107, the first external terminal 114, and the second external terminal 115 are not shown. As described above, the first external electrode layer 104 and the second external electrode layer 105 are not completely opposed to each other, and the first external electrode layer 104 has a facing region L1 and a non-facing region L2. The second external electrode layer 105 represents only the facing region L3 in the range shown in FIG.
 これにより、比較例と同様に第1外部電極層104の周縁部の誘電体層101において水和物Wが形成され、第1内部電極102及び第2内部電極103が水和物Wを介して電気的に接続されても、第1外部電極層104と第2外部電極層105は電気的に接続されない。第1外部電極層104の非対向領域L2において、第2内部電極103は、第2外部電極層105に接続されていないからである(図11参照)。 Thereby, the hydrate W is formed in the dielectric layer 101 at the peripheral edge of the first external electrode layer 104 as in the comparative example, and the first internal electrode 102 and the second internal electrode 103 are interposed via the hydrate W. Even if electrically connected, the first external electrode layer 104 and the second external electrode layer 105 are not electrically connected. This is because the second internal electrode 103 is not connected to the second external electrode layer 105 in the non-facing region L2 of the first external electrode layer 104 (see FIG. 11).
 図23は誘電体層101、第1内部電極102、第2内部電極103、第1外部電極層104及び第2外部電極層105の模式図である。同図において、第1外部電極層104と第2外部電極層105の周縁部であって、誘電体層101を介して反対側に第1外部電極層104又は第2外部電極層105が存在する領域を黒矢印で示す。なお、この領域は、第1外部電極層104の対向領域L1の周縁及び第2外部電極層105の対向領域L3の周縁に沿った領域である。以下、この領域を短絡発生領域T1とする。 FIG. 23 is a schematic diagram of the dielectric layer 101, the first internal electrode 102, the second internal electrode 103, the first external electrode layer 104, and the second external electrode layer 105. In the drawing, the first external electrode layer 104 or the second external electrode layer 105 exists on the opposite side of the peripheral portion of the first external electrode layer 104 and the second external electrode layer 105 with the dielectric layer 101 interposed therebetween. Regions are indicated by black arrows. This region is a region along the periphery of the opposing region L1 of the first external electrode layer 104 and the periphery of the opposing region L3 of the second external electrode layer 105. Hereinafter, this region is referred to as a short circuit occurrence region T1.
 また、第1外部電極層104と第2外部電極層105の周縁部であって、誘電体層101を介して反対側に第1外部電極層104又は第2外部電極層105が存在しない領域を白矢印で示す。なお、この領域は、第1外部電極層104の非対向領域L2及び第2外部電極層105の非対向領域L4の周縁に沿った領域である。以下、この領域を短絡防止領域T2とする。 Further, a region where the first external electrode layer 104 or the second external electrode layer 105 does not exist on the opposite side of the peripheral portion of the first external electrode layer 104 and the second external electrode layer 105 with the dielectric layer 101 interposed therebetween. Shown with white arrows. This region is a region along the periphery of the non-facing region L2 of the first external electrode layer 104 and the non-facing region L4 of the second external electrode layer 105. Hereinafter, this region is referred to as a short circuit prevention region T2.
 短絡発生領域T1に水和物が発生すると、上述にように、第1外部電極層104及び第2外部電極層105において短絡故障が発生するおそれがある。しかしながら、短絡防止領域T2に水和物が発生した場合は、第1外部電極層104及び第2外部電極層105において短絡故障を引き起こすおそれがない。図23に示すように、第1外部電極層104の非対向領域L2において、第2内部電極103は、第2外部電極層105に接続されていないからである。また、第2外部電極層105の非対向領域L4において、第1内部電極102は、第1外部電極層104に接続されていないからである。 When a hydrate is generated in the short-circuit generation region T1, a short-circuit failure may occur in the first external electrode layer 104 and the second external electrode layer 105 as described above. However, when a hydrate is generated in the short circuit prevention region T2, there is no possibility of causing a short circuit failure in the first external electrode layer 104 and the second external electrode layer 105. This is because the second internal electrode 103 is not connected to the second external electrode layer 105 in the non-facing region L2 of the first external electrode layer 104 as shown in FIG. In addition, the first internal electrode 102 is not connected to the first external electrode layer 104 in the non-facing region L4 of the second external electrode layer 105.
 このように本実施形態に係るコンデンサ100においては、第1外部電極層104が対向領域L1及び非対向領域L2を有し、第2外部電極層105が対向領域L3及び非対向領域L4を有する。このため、誘電体層101に水和物が形成されても、比較例に係るコンデンサ200よりも短絡故障が発生する確率を低減させることが可能である。 As described above, in the capacitor 100 according to the present embodiment, the first external electrode layer 104 has the facing region L1 and the non-facing region L2, and the second external electrode layer 105 has the facing region L3 and the non-facing region L4. For this reason, even if a hydrate is formed in the dielectric layer 101, it is possible to reduce the probability of occurrence of a short-circuit failure as compared with the capacitor 200 according to the comparative example.
 さらに、図16に示すように、第2外部電極層105において、対向領域L3は、非対向領域L4に囲まれているものとすることができる。図24はこの場合のコンデンサ100における誘電体層101、第1内部電極102、第2内部電極103、第1外部電極層104及び第2外部電極層105の模式図である。 Further, as shown in FIG. 16, in the second external electrode layer 105, the facing region L3 can be surrounded by the non-facing region L4. FIG. 24 is a schematic diagram of the dielectric layer 101, the first internal electrode 102, the second internal electrode 103, the first external electrode layer 104, and the second external electrode layer 105 in the capacitor 100 in this case.
 この場合、第2外部電極層105の周縁部は全周にわたって、誘電体層101を介した反対側に第1外部電極層104が存在しない。このため、同図に示すように、第2外部電極層105の周縁部の全周が短絡防止領域T2となる。また、第1外部電極層104の周縁部は全周にわたって、誘電体層101を介した反対側に第2外部電極層105が存在する。このため、同図に示すように、第1外部電極層104の周縁部の全周が短絡発生領域T1となる。 In this case, the first external electrode layer 104 does not exist on the opposite side of the peripheral portion of the second external electrode layer 105 through the dielectric layer 101 over the entire circumference. For this reason, as shown in the figure, the entire circumference of the peripheral portion of the second external electrode layer 105 becomes the short-circuit prevention region T2. Further, the second external electrode layer 105 exists on the opposite side of the peripheral portion of the first external electrode layer 104 through the dielectric layer 101 over the entire periphery. For this reason, as shown in the figure, the entire periphery of the peripheral portion of the first external electrode layer 104 is a short-circuit generation region T1.
 即ちこの構成では、コンデンサ100の一面(第1の面101b側)のみに短絡発生領域T1が存在する。ここで、コンデンサ100を基板に実装する際に、当該面を実装基板側とすることができる。図25は、この場合におけるコンデンサ100の実装態様を示す模式図である。 That is, in this configuration, the short-circuit generation region T1 exists only on one surface (the first surface 101b side) of the capacitor 100. Here, when the capacitor 100 is mounted on the substrate, the surface can be the mounting substrate side. FIG. 25 is a schematic diagram showing how the capacitor 100 is mounted in this case.
 同図に示すように、コンデンサ100を実装基板Bに実装する際、第1の面101b側を実装基板B側として実装することにより、コンデンサ100の第1の面101b側はアンダーフィルUで被覆される。これにより、第1の面101b側への水分の浸入をアンダーフィルUによって防止することが可能となり、水和物の形成を防止することが可能である。上記のように第2の面101c側には、短絡防止領域T2のみが存在するため、水和物が形成されても短絡故障を防止することが可能である。 As shown in the figure, when the capacitor 100 is mounted on the mounting substrate B, the first surface 101b side of the capacitor 100 is covered with the underfill U by mounting the first surface 101b side as the mounting substrate B side. Is done. Accordingly, it is possible to prevent moisture from entering the first surface 101b side by the underfill U, and it is possible to prevent hydrate formation. As described above, since only the short-circuit prevention region T2 exists on the second surface 101c side, it is possible to prevent a short-circuit failure even if a hydrate is formed.
 [コンデンサの製造方法]
 本実施形態に係るコンデンサ100の製造方法について説明する。なお、以下に示す製造方法は一例であり、コンデンサ100は、以下に示す製造方法とは異なる製造方法によって製造することも可能である。図26乃至図32は、コンデンサ100の製造プロセスを示す模式図である。
[Capacitor manufacturing method]
A method for manufacturing the capacitor 100 according to the present embodiment will be described. In addition, the manufacturing method shown below is an example and the capacitor | condenser 100 can also be manufactured with the manufacturing method different from the manufacturing method shown below. 26 to 32 are schematic views showing a manufacturing process of the capacitor 100. FIG.
 図26(a)は、誘電体層101の元となる基材301を示す。誘電体層101を金属酸化物(例えば酸化アルミニウム)からなるものとする場合、基材301はその酸化前の金属(例えばアルミニウム)である。 FIG. 26A shows the base material 301 that is the basis of the dielectric layer 101. When the dielectric layer 101 is made of a metal oxide (for example, aluminum oxide), the base material 301 is a metal (for example, aluminum) before the oxidation.
 例えば15℃~20℃に調整されたシュウ酸(0.1mol/l)溶液中で基材301を陽極として電圧を印加すると、図26(b)に示すように基材301が酸化(陽極酸化)され、基材酸化物302が形成される。この際、基材酸化物302の自己組織化作用によって、基材酸化物302に孔Hが形成される。孔Hは酸化の進行方向、即ち基材301の厚み方向に向かって成長する。 For example, when a voltage is applied with the substrate 301 as an anode in an oxalic acid (0.1 mol / l) solution adjusted to 15 ° C. to 20 ° C., the substrate 301 is oxidized (anodized) as shown in FIG. ) To form a base oxide 302. At this time, holes H are formed in the base material oxide 302 by the self-organizing action of the base material oxide 302. The holes H grow in the direction of progress of oxidation, that is, in the thickness direction of the substrate 301.
 なお、陽極酸化の前に基材301に規則的なピット(凹部)を形成しておき、このピットを基点として孔Hを成長させてもよい。このピットの配置により孔Hの配列を制御することが可能となる。ピットは、例えば基材301にモールド(型)を押圧することによって形成することが可能である。 It should be noted that regular pits (concave portions) may be formed in the base material 301 before the anodic oxidation, and the holes H may be grown using the pits as base points. The arrangement of the holes H can be controlled by the arrangement of the pits. The pit can be formed, for example, by pressing a mold (mold) against the base material 301.
 陽極酸化の開始から所定時間経過後、基材301に印加されている電圧を増加させる。自己組織化によって形成される孔Hのピッチは、印加電圧の大きさによって決定されるため、孔Hのピッチが拡大するように自己組織化が進行する。これにより、図26(c)に示すように一部の孔Hについて孔の形成が継続すると共に、孔径が拡大する。一方で、孔Hのピッチが拡大したことによって、他の孔Hについては孔の形成速度が非常に遅くなる。以下、孔の形成速度が遅くなった孔Hを孔H1とし、孔の形成が継続した(拡大した)孔Hを孔H2とする。 The voltage applied to the base material 301 is increased after a predetermined time has elapsed from the start of anodization. Since the pitch of the holes H formed by the self-organization is determined by the magnitude of the applied voltage, the self-organization proceeds so that the pitch of the holes H increases. Thereby, as shown in FIG.26 (c), formation of a hole is continued about some holes H, and a hole diameter expands. On the other hand, since the pitch of the holes H is increased, the hole forming speed of the other holes H is very slow. Hereinafter, the hole H in which the formation speed of the hole is slow is referred to as a hole H1, and the hole H in which the formation of the hole is continued (enlarged) is referred to as a hole H2.
 陽極酸化の条件は適宜設定可能であり、例えば、図26(b)に示す1段階目の陽極酸化の印加電圧は数V~数100V、処理時間は数分~数日に設定することができる。図26(c)に示す2段階目の陽極酸化の印加電圧では、電圧値を1段階目の数倍とし、処理時間は数分~数十分に設定することができる。 The anodizing conditions can be set as appropriate. For example, the applied voltage of the first stage anodizing shown in FIG. 26B can be set to several V to several hundred V, and the processing time can be set to several minutes to several days. . With the applied voltage of the second stage of anodic oxidation shown in FIG. 26 (c), the voltage value can be several times that of the first stage, and the processing time can be set to several minutes to several tens of minutes.
 例えば、1段階目の印加電圧を40Vとすることにより孔径が100nmの孔Hが形成され、2段階目の印加電圧を80Vとすることにより孔H2の孔径が200nmに拡大される。2段階目の電圧値を上述した範囲内とすることにより、孔H1と孔H2の数を概ね同等とすることが可能である。また、2段階目の電圧印加の処理時間を上述の範囲内とすることにより、孔H2のピッチ変換が十分に完了しつつ、2段階目の電圧印加によって底部に形成される基材酸化物302の厚さを小さくすることができる。2段階目の電圧印加で形成される基材酸化物302は、後の工程で除去されるため、できるだけ薄いことが好ましい。 For example, a hole H having a hole diameter of 100 nm is formed by setting the applied voltage at the first stage to 40V, and a hole diameter of the hole H2 is enlarged to 200 nm by setting the applied voltage at the second stage to 80V. By setting the voltage value of the second stage within the above-described range, the number of holes H1 and holes H2 can be made substantially equal. Further, by setting the processing time of the second stage voltage application within the above-mentioned range, the base oxide 302 formed on the bottom by the second stage voltage application while the pitch conversion of the holes H2 is sufficiently completed. Can be reduced in thickness. Since the base material oxide 302 formed by the voltage application in the second stage is removed in a later process, it is preferable that the base material oxide 302 be as thin as possible.
 続いて、図27(a)に示すように、酸化されていない基材301を除去する。基材301の除去は、例えばウェットエッチングによってすることができる。以降、基材酸化物302の孔H1及び孔H2が形成された側の面を表面302aとし、その反対側の面を裏面302bとする。 Subsequently, as shown in FIG. 27A, the non-oxidized base material 301 is removed. The substrate 301 can be removed by wet etching, for example. Hereinafter, the surface of the base oxide 302 on which the holes H1 and H2 are formed is referred to as a front surface 302a, and the opposite surface is referred to as a back surface 302b.
 続いて、図27(b)に示すように、基材酸化物302を裏面302b側から所定の厚さで除去する。これは反応性イオンエッチング(RIE:Reactive Ion Etching)によってすることができる。この際、孔H2が裏面302bに連通し、孔H1は裏面302bに連通しない程度の厚さで、基材酸化物302を除去する。 Subsequently, as shown in FIG. 27B, the base material oxide 302 is removed from the back surface 302b side with a predetermined thickness. This can be done by reactive ion etching (RIE). At this time, the base oxide 302 is removed so that the hole H2 communicates with the back surface 302b and the hole H1 does not communicate with the back surface 302b.
 続いて、図27(c)に示すように、表面302aに導電性材料からなる第1導体層303を成膜する。第1導体層303は、スパッタ法、真空蒸着法等、任意の方法によって成膜することが可能である。 Subsequently, as shown in FIG. 27C, a first conductor layer 303 made of a conductive material is formed on the surface 302a. The first conductor layer 303 can be formed by any method such as sputtering or vacuum deposition.
 続いて、図28(a)に示すように、孔H2内に第1メッキ導体M1を埋め込む。第1メッキ導体M1は、第1導体層303をシード層として基材酸化物302に電解メッキを施すことによって埋め込むことが可能である。孔H1にはメッキ液が侵入しないため、孔H1内には第1メッキ導体M1は形成されない。 Subsequently, as shown in FIG. 28A, the first plating conductor M1 is embedded in the hole H2. The first plating conductor M1 can be embedded by performing electrolytic plating on the base material oxide 302 using the first conductor layer 303 as a seed layer. Since the plating solution does not enter the hole H1, the first plating conductor M1 is not formed in the hole H1.
 続いて、図28(b)に示すように、基材酸化物302を裏面302bから所定の厚さで再度除去する。これは、反応性イオンエッチングによってすることができる。この際、孔H1が裏面302bに連通する程度の厚さで基材酸化物302を除去する。 Subsequently, as shown in FIG. 28B, the base material oxide 302 is removed again from the back surface 302b with a predetermined thickness. This can be done by reactive ion etching. At this time, the base oxide 302 is removed with a thickness that allows the hole H1 to communicate with the back surface 302b.
 続いて、図28(c)に示すように、孔H1内に第2メッキ導体M2を埋め込み、同時に孔H2内に第3メッキ導体M3を埋め込む Subsequently, as shown in FIG. 28C, the second plating conductor M2 is embedded in the hole H1, and at the same time, the third plating conductor M3 is embedded in the hole H2.
 第2メッキ導体M2及び第3メッキ導体M3は、第1導体層303をシード層として基材酸化物302に電解メッキを施すことによって埋め込むことが可能である。この際、孔H2には、先の工程によって第1メッキ導体M1が形成されているため、第3メッキ導体M3の先端は第2メッキ導体M2の先端より突出する。以下、第1メッキ導体M1及び第3メッキ導体M3を第1内部導体304とし、第2メッキ導体M2を第2内部導体305とする。 The second plating conductor M2 and the third plating conductor M3 can be embedded by performing electrolytic plating on the base material oxide 302 using the first conductor layer 303 as a seed layer. At this time, since the first plating conductor M1 is formed in the hole H2 by the previous process, the tip of the third plating conductor M3 protrudes from the tip of the second plating conductor M2. Hereinafter, the first plating conductor M1 and the third plating conductor M3 are referred to as a first inner conductor 304, and the second plating conductor M2 is referred to as a second inner conductor 305.
 続いて、図29(a)に示すように、基材酸化物302を裏面302bから所定の厚さで再度除去する。これは、機械研磨等によってすることができる。この際、第1内部導体304が裏面302bに露出し、第1内部導体305が裏面302bに露出しない程度の厚さで基材酸化物302を除去する。 Subsequently, as shown in FIG. 29A, the base material oxide 302 is removed again from the back surface 302b with a predetermined thickness. This can be done by mechanical polishing or the like. At this time, the base oxide 302 is removed with such a thickness that the first inner conductor 304 is exposed on the back surface 302b and the first inner conductor 305 is not exposed on the back surface 302b.
 続いて、図29(b)に示すように、孔H1の空隙に絶縁体306を埋め込む。絶縁体306は当該空隙に任意の絶縁性材料を充填することによって埋め込むことが可能である。 Subsequently, as shown in FIG. 29B, an insulator 306 is embedded in the gap of the hole H1. The insulator 306 can be embedded by filling the gap with any insulating material.
 続いて、図29(c)に示すように、裏面302bに導電性材料からなる第2導体層307を成膜する。第2導体層307は、スパッタ法、真空蒸着法等、任意の方法によって成膜することが可能である。 Subsequently, as shown in FIG. 29C, a second conductor layer 307 made of a conductive material is formed on the back surface 302b. The second conductor layer 307 can be formed by any method such as sputtering or vacuum deposition.
 続いて、図30(a)に示すように、第1導体層303を除去する。第1導体層303の除去は、ウェットエッチング法、ドライエッチング法、イオンミリング法、CMP(Chemical Mechanical Polishing)法等によってすることができる。 Subsequently, as shown in FIG. 30A, the first conductor layer 303 is removed. The removal of the first conductor layer 303 can be performed by a wet etching method, a dry etching method, an ion milling method, a CMP (Chemical-Mechanical-Polishing) method, or the like.
 続いて、図30(b)に示すように、第2導体層307をシード層として、基材酸化物302に電解エッチングを施す。第1内部導体304は第2導体層307に導通しているため、電解エッチングによりエッチングされる。これにより、孔H2において第1内部導体304が除去された空隙が形成される。一方、第2内部導体305は第2導体層307と絶縁されているため、電解エッチングによりエッチングされない。 Subsequently, as shown in FIG. 30B, electrolytic etching is performed on the base material oxide 302 using the second conductor layer 307 as a seed layer. Since the first inner conductor 304 is electrically connected to the second conductor layer 307, it is etched by electrolytic etching. As a result, a gap is formed in the hole H2 from which the first inner conductor 304 has been removed. On the other hand, since the second inner conductor 305 is insulated from the second conductor layer 307, it is not etched by electrolytic etching.
 続いて、図30(c)に示すように、孔H2の空隙に絶縁体308を埋め込む。絶縁体308は当該空隙に任意の絶縁性材料を充填することによって埋め込むことが可能である。 Subsequently, as shown in FIG. 30C, an insulator 308 is embedded in the gap of the hole H2. The insulator 308 can be embedded by filling the gap with an arbitrary insulating material.
 続いて、図31(a)に示すように、導電性材料からなる第3導体層309を表面302aに成膜する。第3導体層309は、スパッタ法、真空蒸着法等、任意の方法によって成膜することが可能である。 Subsequently, as shown in FIG. 31A, a third conductor layer 309 made of a conductive material is formed on the surface 302a. The third conductor layer 309 can be formed by any method such as sputtering or vacuum deposition.
 続いて、図31(b)に示すように、第2導体層307を除去する。第2導体層307の除去は、ウェットエッチング法、ドライエッチング法、イオンミリング法、CMP(Chemical Mechanical Polishing)法等によってすることができる。 Subsequently, as shown in FIG. 31B, the second conductor layer 307 is removed. The removal of the second conductor layer 307 can be performed by a wet etching method, a dry etching method, an ion milling method, a CMP (Chemical-Mechanical-Polishing) method, or the like.
 続いて、図31(c)に示すように、導電性材料からなる第4導体層310を裏面302bに成膜する。この際、第4導体層310は、第3導体層309に対して、層面方向にずらして成膜するものとすることができる。これにより、第4導体層310には、基材酸化物302を介して第3導体層309と対向する領域である対向領域L3と対向しない領域である非対向領域L4が形成される。また、第3導体層309にも、基材酸化物302を介して第4導体層310と対向する領域である対向領域L1と対向しない領域である非対向領域L2が形成される。 Subsequently, as shown in FIG. 31C, a fourth conductor layer 310 made of a conductive material is formed on the back surface 302b. At this time, the fourth conductor layer 310 can be formed by shifting in the layer surface direction with respect to the third conductor layer 309. Thereby, a non-facing region L4 that is a region that does not face the facing region L3 that is the region facing the third conductor layer 309 via the base material oxide 302 is formed in the fourth conductor layer 310. In addition, a non-facing region L2 that is a region that does not face the facing region L1 that is a region facing the fourth conductor layer 310 via the base oxide 302 is also formed in the third conductor layer 309.
 続いて、図32(a)に示すように、第3導体層309上に第1保護層311を配設し、第4導体層310上に第2保護層312を配設する。第1保護層311及び第2保護層312は、第3導体層309上及び第4導体層310上に樹脂材料を塗布し、フォトリソグラフィ等によってパターニングすることにより形成することが可能である。パターニングの際に第1保護層311に第3導体層309が露出する開口部311aを形成し、第2保護層312に第4導体層310が露出する開口部312aを形成する。 Subsequently, as shown in FIG. 32A, the first protective layer 311 is disposed on the third conductor layer 309 and the second protective layer 312 is disposed on the fourth conductor layer 310. The first protective layer 311 and the second protective layer 312 can be formed by applying a resin material on the third conductor layer 309 and the fourth conductor layer 310 and patterning them by photolithography or the like. During the patterning, an opening 311a from which the third conductor layer 309 is exposed is formed in the first protective layer 311, and an opening 312 a from which the fourth conductor layer 310 is exposed is formed in the second protective layer 312.
 続いて、図32(b)に示すように、側面302c、第3導体層309、第1保護層311及び第2保護層312上に第1外部導体313を配設する。また、側面302c、第4導体層310、第1保護層311及び第2保護層312上に第2外部導体314を配設する。 Subsequently, as shown in FIG. 32B, the first outer conductor 313 is disposed on the side surface 302 c, the third conductor layer 309, the first protective layer 311, and the second protective layer 312. A second outer conductor 314 is disposed on the side surface 302 c, the fourth conductor layer 310, the first protective layer 311, and the second protective layer 312.
 第1外部導体313及び第2外部導体314は、表面302a、側面302c及び裏面302b上に金属材料を塗布し、フォトリソグラフィ等によってパターニングすることにより形成することが可能である。パターニングの際に金属材料が分離されることで、第1外部導体313及び第2外部導体314が形成される。 The first outer conductor 313 and the second outer conductor 314 can be formed by applying a metal material on the front surface 302a, the side surface 302c, and the back surface 302b and patterning the material by photolithography or the like. By separating the metal material during patterning, the first outer conductor 313 and the second outer conductor 314 are formed.
 コンデンサ100は以上のようにして製造することが可能である。なお、基材酸化物302は誘電体層101に、第2内部導体305は第1内部電極102に、第1内部導体304は第2内部電極103にそれぞれ対応する。第3導体層309は第1外部電極層104に、第4導体層310は第2外部電極層105に、第1保護層311は第1保護層106に、第2保護層312は第2保護層107に、第1外部導体313は第1外部端子114に、第2外部導体314は第2外部端子115にそれぞれ対応する。 The capacitor 100 can be manufactured as described above. The base oxide 302 corresponds to the dielectric layer 101, the second internal conductor 305 corresponds to the first internal electrode 102, and the first internal conductor 304 corresponds to the second internal electrode 103. The third conductor layer 309 is the first external electrode layer 104, the fourth conductor layer 310 is the second external electrode layer 105, the first protective layer 311 is the first protective layer 106, and the second protective layer 312 is the second protective layer. In the layer 107, the first external conductor 313 corresponds to the first external terminal 114, and the second external conductor 314 corresponds to the second external terminal 115, respectively.
 100…コンデンサ
 101…誘電体層
 101a…貫通孔
 101b…第1の面
 101c…第2の面
 102…第1内部電極
 103…第2内部電極
 104…第1外部電極層
 105…第2外部電極層
 L1,L3…対向領域
 L2,L4…非対向領域
DESCRIPTION OF SYMBOLS 100 ... Capacitor 101 ... Dielectric layer 101a ... Through-hole 101b ... 1st surface 101c ... 2nd surface 102 ... 1st internal electrode 103 ... 2nd internal electrode 104 ... 1st external electrode layer 105 ... 2nd external electrode layer L1, L3 ... Opposite area L2, L4 ... Non-opposite area

Claims (7)

  1.  金属の陽極酸化によって形成され、第1の面と、前記第1の面と反対側の第2の面とを有し、前記第1の面と前記第2の面に連通する複数の貫通孔を備える誘電体層と、
     前記第1の面に配設された第1の外部電極層と、
     前記第2の面に配設された第2の外部電極層であって、前記誘電体層を介して前記第1の外部電極層と対向する対向領域と、前記誘電体層を介して前記第1の外部電極層と対向しない非対向領域を有する第2の外部電極層と、
     前記複数の貫通孔の一部に形成され、前記第1の外部電極層に接続され、前記第2の外部電極層と離間する第1の内部電極と、
     前記複数の貫通孔の他の一部に形成され、前記第2の外部電極層に接続され、前記第1の外部電極層と離間する第2の内部電極と
     を具備するコンデンサ。
    A plurality of through-holes formed by metal anodization, having a first surface and a second surface opposite to the first surface, and communicating with the first surface and the second surface A dielectric layer comprising:
    A first external electrode layer disposed on the first surface;
    A second external electrode layer disposed on the second surface, an opposing region facing the first external electrode layer via the dielectric layer, and the first external electrode layer via the dielectric layer. A second external electrode layer having a non-opposing region that does not oppose the first external electrode layer;
    A first internal electrode formed in a part of the plurality of through holes, connected to the first external electrode layer and spaced apart from the second external electrode layer;
    And a second internal electrode formed in another part of the plurality of through holes, connected to the second external electrode layer, and spaced apart from the first external electrode layer.
  2.  請求項1に記載のコンデンサであって、
     前記第1の外部電極層は、前記誘電体層を介して前記第2の外部電極層と対向する対向領域と、前記誘電体層を介して前記第2の外部電極層と対向しない非対向領域を有する
     コンデンサ。
    The capacitor according to claim 1,
    The first external electrode layer includes a facing region that faces the second external electrode layer via the dielectric layer, and a non-facing region that does not face the second external electrode layer via the dielectric layer. Having a capacitor.
  3.  請求項1に記載のコンデンサであって、
     前記対向領域は、前記非対向領域に囲まれている
     コンデンサ。
    The capacitor according to claim 1,
    The counter area is surrounded by the non-opposite area.
  4.  請求項1に記載のコンデンサであって、
     前記非対向領域の幅は0.1μm以上100μm以下である
     コンデンサ。
    The capacitor according to claim 1,
    The width of the non-opposing region is 0.1 μm or more and 100 μm or less.
  5.  請求項2又は3に記載のコンデンサであって、
     前記第1の内部電極と前記第2の外部電極層の間と、前記第2の外部電極層と前記第1の外部電極層の間には、絶縁性材料が充填されている
     コンデンサ。
    The capacitor according to claim 2 or 3,
    A capacitor filled with an insulating material between the first internal electrode and the second external electrode layer and between the second external electrode layer and the first external electrode layer.
  6.  請求項4に記載のコンデンサであって、
     前記誘電体層は、陽極酸化されると自己組織化作用によりポーラスを形成する材料からなる
     コンデンサ。
    The capacitor according to claim 4,
    The dielectric layer is a capacitor made of a material that forms a porous layer by self-organization when anodized.
  7.  請求項5に記載のコンデンサであって、
     前記誘電体層は、アルミニウムの陽極酸化により形成された酸化アルミニウムからなる
     コンデンサ。
    The capacitor according to claim 5,
    The dielectric layer is a capacitor made of aluminum oxide formed by anodization of aluminum.
PCT/JP2015/057663 2014-03-28 2015-03-16 Capacitor WO2015146667A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/023,001 US20160233026A1 (en) 2014-03-28 2015-03-16 Capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014069328A JP6218660B2 (en) 2014-03-28 2014-03-28 Capacitor
JP2014-069328 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146667A1 true WO2015146667A1 (en) 2015-10-01

Family

ID=54195190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057663 WO2015146667A1 (en) 2014-03-28 2015-03-16 Capacitor

Country Status (2)

Country Link
JP (1) JP6218660B2 (en)
WO (1) WO2015146667A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610201B1 (en) * 2016-12-01 2023-12-06 삼성전자주식회사 Case of electronic device and fabrication method thereof
US10867752B2 (en) 2017-09-28 2020-12-15 Samsung Electro-Mechanics Co., Ltd. Capacitor and method of manufacturing the same
KR102004806B1 (en) * 2017-09-28 2019-07-29 삼성전기주식회사 Capacitor and method of manufacturing the same
DE112018006155T5 (en) * 2017-11-30 2020-09-10 Murata Manufacturing Co., Ltd. CAPACITOR
JP7305588B2 (en) 2020-03-19 2023-07-10 エヌ・ティ・ティ・コミュニケーションズ株式会社 Data distribution control device, method and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254848A (en) * 2012-06-07 2013-12-19 Taiyo Yuden Co Ltd Capacitor
JP2014011419A (en) * 2012-07-03 2014-01-20 Taiyo Yuden Co Ltd Capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907594B2 (en) * 2007-06-14 2012-03-28 太陽誘電株式会社 Capacitor and manufacturing method thereof
JP4493686B2 (en) * 2007-09-27 2010-06-30 太陽誘電株式会社 Capacitor and manufacturing method thereof
JP5665618B2 (en) * 2011-03-17 2015-02-04 太陽誘電株式会社 Capacitor configuration unit and capacitor
JP5665617B2 (en) * 2011-03-17 2015-02-04 太陽誘電株式会社 Capacitor configuration unit and capacitor
JP5904765B2 (en) * 2011-11-10 2016-04-20 太陽誘電株式会社 Capacitor and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254848A (en) * 2012-06-07 2013-12-19 Taiyo Yuden Co Ltd Capacitor
JP2014011419A (en) * 2012-07-03 2014-01-20 Taiyo Yuden Co Ltd Capacitor

Also Published As

Publication number Publication date
JP6218660B2 (en) 2017-10-25
JP2015192083A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6543622B2 (en) Structure with improved capacitor
WO2015146667A1 (en) Capacitor
US8023249B2 (en) Capacitor and method of manufacturing the same
US8841749B2 (en) Semiconductor device comprising a capacitor and an electrical connection via, and fabrication method
US11101072B2 (en) Capacitor with limited substrate capacitance
US8134826B2 (en) Capacitor and method of manufacturing the same
JP5270124B2 (en) Capacitors and electronic components
US9818537B2 (en) Capacitor
JP6043548B2 (en) Capacitor
WO2012002083A1 (en) Capacitor and method of manufacturing thereof
JP6840502B2 (en) Manufacturing methods for microstructures, electronic components, circuit modules and electronic devices
KR20030040083A (en) Process for manufacturing multiple layer wiring substrate onto which thin film capacitor is incorporated
JP6343529B2 (en) Electronic components, circuit modules and electronic equipment
JP2014011419A (en) Capacitor
KR101538538B1 (en) Capacitor, structure and method of forming capacitor
US20160233026A1 (en) Capacitor
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2022168485A1 (en) Capacitor component
JP4337423B2 (en) Circuit module
CN112466841B (en) TSV structure with embedded capacitor and preparation method thereof
JP2006253268A (en) Semiconductor device and its manufacturing method
WO2015141617A1 (en) Capacitor
JP2016004827A (en) Capacitor, circuit module, and mobile communication equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768692

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15023001

Country of ref document: US

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15768692

Country of ref document: EP

Kind code of ref document: A1