WO2015146419A1 - レンズ装置およびレンズ装置の補正方法 - Google Patents
レンズ装置およびレンズ装置の補正方法 Download PDFInfo
- Publication number
- WO2015146419A1 WO2015146419A1 PCT/JP2015/055108 JP2015055108W WO2015146419A1 WO 2015146419 A1 WO2015146419 A1 WO 2015146419A1 JP 2015055108 W JP2015055108 W JP 2015055108W WO 2015146419 A1 WO2015146419 A1 WO 2015146419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical system
- focus
- lenses
- aperture
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
- G02B7/005—Motorised alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/02—Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
- G02B15/04—Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by changing a part
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/09—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/10—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/10—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
- G02B7/102—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/14—Mountings, adjusting means, or light-tight connections, for optical elements for lenses adapted to interchange lenses
- G02B7/16—Rotatable turrets
Definitions
- the present invention relates to a lens device and a correction method for the lens device.
- ⁇ As lens performance increases, lens position adjustment at a level that cannot be handled by conventional lens processing and adjustment is required. This effect is particularly noticeable with lenses that outperform high-definition television broadcasting systems.
- a box-type lens can be classified into five locations: a focus lens group, a zoom lens group, an anti-vibration lens group, an extender, and a master lens group according to each function.
- the focus position at each zoom position is constant, but because of deviation from the ideal state due to processing errors of the lens surface shape, mechanical dimensions, etc., the focus position is subtly depending on the zoom position.
- the phenomenon that the position shifts appears (zoom focus movement).
- a phenomenon in which the focal position is shifted occurs (a narrowing focus movement).
- Patent Document 1 there is one that adjusts the position of the focus lens according to the zoom position based on the correspondence between the zoom position and the focus position (Patent Document 1).
- Patent Document 2 there are those that correct the focus position according to the zoom position (Patent Document 2) and those that correct the master lens group alone (Patent Document 3).
- the focal position cannot be corrected with high accuracy.
- the focus movement amount is corrected by the focus lens group, but it is difficult to increase the correction speed because the weight of the focus lens group is heavy.
- the focus movement amount is corrected by the master lens group.
- the adjustment stroke of the master lens group is the upper limit of correction, the zoom lens group is moved to the telephoto side. If set, sufficient correction may not be performed. In particular, when the surface shape and refractive index of the lens are not uniform, sufficient correction cannot be made unless these effects are eliminated.
- An object of the present invention is to make it possible to correct the focal position with high accuracy even when the surface shape and refractive index of the lens are not uniform.
- the lens device includes a plurality of lenses, a lens moving mechanism that moves one or more lenses included in the plurality of lenses in the optical axis direction of the plurality of lenses, and a plurality of lenses in the optical axis direction of the plurality of lenses.
- a storage unit that stores a position and a plurality of rotation angles corresponding to each of the plurality of positions, and at least one lens included in the plurality of lenses, the lens among the plurality of rotation angles stored in the storage unit
- a lens rotation mechanism that can be driven independently of the lens movement mechanism and rotates around the optical axis of the lens at a rotation angle corresponding to the position in the optical axis direction of the lens that is moved by the movement mechanism.
- the lens rotation mechanism that can be driven independently of the lens movement mechanism is a lens rotation mechanism that is not affected by the operation of the lens movement mechanism.
- the present invention also provides a correction method for the lens device. That is, in a correction method for a lens apparatus including a plurality of lenses, the lens moving mechanism moves one or more lenses included in the plurality of lenses in the optical axis direction of the plurality of lenses, and the storage unit A plurality of positions in the optical axis direction of a plurality of lenses and a plurality of rotation angles corresponding to each of the plurality of positions are stored, and the lens rotation mechanism can be driven independently of the lens moving mechanism and is included in the plurality of lenses. Rotate at least one lens around the optical axis of the lens at a rotation angle corresponding to the position in the optical axis direction of the lens that is moved by the lens moving mechanism among a plurality of rotation angles stored in the storage unit It is something to be made.
- the at least one lens rotated by the lens rotation mechanism is, for example, that at least one of the surface shape and the refractive index of the lens is relatively in a circumferential direction perpendicular to the optical axis and centered on the optical axis. It is a non-uniform lens.
- the at least one lens rotated by the lens rotating mechanism may be a lens having a relatively low optical sensitivity among a plurality of lenses.
- the lens moved by the lens moving mechanism may be a lens included in the zoom optical system.
- a focus optical system that adjusts the focal position by being moved in the first movement unit, and the focal position is adjusted by being moved in a second movement unit that is smaller than the movement unit of the focus optical system.
- a master optical system that performs zooming, and a zoom optical system that changes the zoom magnification may be included. Further, according to the aperture for limiting the amount of incident light, the zoom position of the zoom optical system, or the amount of fluctuation of the focus position determined in advance corresponding to the aperture value of the aperture, the focus position adjustment by the focus optical system and the master optical system An adjustment control means for performing at least one of the adjustment of the focal position by may be further provided.
- a memory for storing the adjustment amount of the focal position may be further provided.
- the focus position is adjusted only by adjusting the focus position by moving the focus optical system.
- the focus position is adjusted only by adjusting the focus position by moving the master optical system. To do.
- the amount of focus position variation increases as the focal position adjustment amount due to movement of the focus optical system increases toward the telephoto end and decreases as it approaches the wide end, and increases as the focus position adjustment amount due to movement of the master optical system approaches the wide end. The closer to the tele end, the fewer.
- the amount of variation in the focal position is only the adjustment of the focal position by moving the focus optical system when the aperture of the aperture is the minimum, and the movement of the master optical system when the aperture of the aperture is the maximum. Only the adjustment of the focal position may be used.
- the amount of change in the focal position is such that the amount of adjustment of the focal position due to the movement of the focus optical system is larger when the aperture value of the aperture is near the minimum, and smaller when the aperture value of the aperture is near the maximum.
- the amount of adjustment of the focal position may be larger as the aperture of the diaphragm is closer to the maximum and smaller as the aperture of the diaphragm is closer to the minimum.
- a plurality of positions in the optical axis direction of a plurality of lenses and a plurality of rotation angles corresponding to each of the plurality of positions are stored.
- the lens is rotated around the optical axis independently of the movement of the lens in the optical axis direction at a rotation angle corresponding to the position of the lens in the optical axis direction.
- the lens rotation angle is stored so that non-uniformity of the lens surface shape, refractive index, etc. is eliminated, so that the non-uniformity of the lens surface shape, refractive index, etc.
- the adverse effect on the lens device can be eliminated. Even when the surface shape and refractive index of the lens are not uniform, the focal position can be corrected with high accuracy.
- FIG. 2 shows an optical configuration and an electrical configuration of a television camera lens.
- a lens moving mechanism and a lens rotating mechanism are shown. It is a disassembled perspective view of a lens, a lens fixing frame, and a lens holding frame. It is a rear view of the lens to which the lens fixing frame was fixed. It is a top view which shows a rack. It is an example of a position / rotation angle table.
- 4 is an example of a zoom magnification / focus position variation amount table; It is an example of the variation
- FIG. 1 is a block diagram showing an electrical configuration of a television camera lens (lens device) 1.
- the overall operation of the TV / camera lens 1 is controlled by the control circuit 40.
- the television camera lens 1 includes an image sensor 11.
- a focus optical system 2 including one or more lenses, a zoom optical system 5 for changing the zoom magnification 5, a diaphragm 6, an extender lens (group) 7 and one or more lenses.
- the included master optical system 10 is arranged.
- the optical axis L of the TV camera lens 1 passes through the center of the light receiving surface of the focus optical system 2, zoom optical system 5, aperture 6, master optical system 10 and image sensor 11.
- the zoom optical system 5 includes one or a plurality of zooming system lenses 3 and one or a plurality of correction system lenses 4.
- an imaging lens 8 having an imaging magnification of 1 and an imaging lens having an imaging magnification of 2 are attached to a turret plate (not shown).
- the turret plate of the extender lens 7 rotates in response to a switching control signal from the switch 41. Then, either the 1 ⁇ imaging lens 8 or the 2 ⁇ imaging lens 9 is positioned on the optical axis L.
- the lens position of the lens included in the focus optical system 2 is detected by the detector 13.
- the detection signal indicating the lens position of the lens included in the focus optical system 2 detected by the detector 13 is converted into digital detection data by the analog / digital conversion circuit 14 and input to the control circuit 40.
- the user turns the focus ring (not shown) to set the focus amount.
- the set focus amount and the lens position of the lens included in the focus optical system 2 represented by the detected digital detection data are compared by the control circuit 40 and included in the focus optical system 2 based on the comparison value.
- Data indicating the driving amount of the lens is generated.
- Data indicating the generated drive amount is given to the drive circuit 15, and the focus motor 16 is controlled by the drive circuit 15, whereby the lens position of the lens included in the focus optical system 2 is adjusted.
- the zoom lens 3 constituting the zoom optical system 5 changes the focal length, and the correction lens 4 corrects the focal position so as not to fluctuate.
- the drive circuit 19A is controlled by the control circuit 40 and the motor 20A is rotated.
- At least one of the variable power lens 3 and the correction lens 4 is moved on the optical axis L by the motor 20A.
- the zoom cam barrel (not shown) that rotates according to the rotation of the zoom ring (not shown) operated by the user rotates
- the variable power lens 3 and the correction lens 4 move on the optical axis L. You may move in a certain relationship.
- the zoom position of the zoom optical system 5 is detected by the detector 17.
- the detection signal output from the detector 17 is converted into digital detection data by the analog / digital conversion circuit 18 and input to the control circuit 40.
- the zoom amount set by the zoom ring and the lens position of the lens included in the zoom optical system 5 represented by the detected digital detection data are compared by the control circuit 40, and the zoom optical system 5 is based on the comparison value.
- the data indicating the driving amount of the lens included in is generated.
- Data indicating the generated drive amount is given to the drive circuit 19, and the zoom motor 20A is controlled by the drive circuit 19A, whereby the zoom lens 3 and the correction system lens 4 constituting the zoom optical system 5 are controlled. The position is adjusted.
- the lens included in the zoom optical system 5 can be rotated around the optical axis L.
- the TV camera lens 1 includes a drive circuit 19B and a motor 20B. By driving the motor 20B by the drive circuit 19B, a desired lens included in the zoom optical system 5 can be rotated about the optical axis L.
- the aperture amount of the aperture 6 is detected by the detector 23.
- the detection signal output from the detector 23 is converted into digital detection data by the analog / digital conversion circuit 24 and input to the control circuit 40.
- data indicating the drive amount is generated according to the rotation amount of the aperture ring (not shown) operated by the user.
- Data indicating the generated driving amount is compared with data indicating the detected driving amount, and data indicating the driving amount of the diaphragm 6 is generated based on the comparison value.
- Data indicating the generated drive amount is given to the drive circuit 21, and the aperture motor 22 is controlled by the drive circuit 21, whereby the aperture 6 is set to a desired aperture value.
- a photo interrupter (detector) 25 for detecting which of the imaging lenses 8 and 9 constituting the extender lens 7 is positioned on the optical axis L is provided in the vicinity of the extender lens 7, a photo interrupter (detector) 25 for detecting which of the imaging lenses 8 and 9 constituting the extender lens 7 is positioned on the optical axis L is provided. .
- An output signal from the photo interrupter 25 is input to the control circuit 40, and it is detected whether the imaging lens 8 or 9 designated by the changeover switch 41 is positioned on the optical axis L. If the imaging lens 8 or 9 designated by the changeover switch 41 is not positioned on the optical axis L, the drive data is supplied by the control circuit 40 so that the designated imaging lens 8 or 9 is positioned on the optical axis L. It is generated and given to the drive circuit 26.
- the extender motor 27 is controlled by the drive circuit 26, and the imaging lens 8 or 9 is positioned on the optical axis L.
- a flange back adjustment knob 30 for setting an adjustment amount of the master optical system 10 including one or a plurality of lenses is provided.
- Data indicating the adjustment amount set by the knob 30 is input to the control circuit 40.
- the detection signal output from the potentiometer (detector) 28 for detecting the movement amount of the master optical system 10 is input to the analog / digital conversion circuit 29, converted into digital detection data, and input to the control circuit 40. To do.
- Data indicating the adjustment amount set by the knob 30 and digital detection data indicating the movement amount of the master optical system 10 are compared in the control circuit 40, and drive data is generated based on the comparison value.
- the generated drive data is given to the drive circuit 31, and the master lens motor 32 is driven.
- focus correction is performed so that the subject image is focused on the imaging surface of the image sensor 11.
- the video signal output from the image sensor 11 is input to the signal processing circuit 12, and signal processing such as sampling processing, white balance adjustment, and gamma correction is performed to generate a television signal.
- signal processing such as sampling processing, white balance adjustment, and gamma correction is performed to generate a television signal.
- the generated television signal is output to the view finder for reproduction and given to the output terminal 47.
- control circuit 40 has a memory 42, a timer 43 for measuring the date and time, an error LED 44 for emitting light and informing the user and the like when the optical system constituting the television camera / lens 1 fails.
- a warning LED 45 is also connected to emit light and warn when there is a high possibility of occurrence of a fault.
- FIG. 2 is a partial cross-sectional view of the zoom optical system 5
- FIG. 3 is an exploded perspective view of the lens 51 and the like included in the zoom optical system 5
- FIG. 4 is a view of the lens 51 and the like from the image sensor 11 side.
- FIG. 5 is a plan view showing a part constituting a part of a lens moving mechanism for moving the lens 51 and the like in the direction of the optical axis L.
- a lens fixing frame 52 whose inner peripheral surface is fixed to the outer peripheral surface of the lens 51 is attached to the outer peripheral surface of the lens 51.
- a gear 53 is formed in the circumferential direction inside the outer peripheral surface of the lens fixing frame 52 (see FIG. 4).
- a lens holding frame 56 that surrounds the outer periphery of the lens fixing frame 52 is provided. As shown in FIG. 2, two flanges 56 ⁇ / b> B are formed in the optical axis direction L across the inner peripheral surface 56 ⁇ / b> C of the lens holding frame 56. With the flange 56B, the lens 51 (lens fixing frame 52) can rotate around the optical axis L without being displaced in the optical axis L direction with respect to the lens holding frame 56.
- a ball bearing may be provided between the inner peripheral surface 56C of the lens holding frame 56 and the outer peripheral surface of the lens fixing frame 52. The lens 51 rotates smoothly.
- the motor 20B is fixed to the lens holding frame 56, and a gear 54 is fixed to the shaft of the motor 20B.
- the gear 54 meshes with the gear 53 of the lens fixing frame 52.
- One end of a plurality of pins 60 is fixed to the lens holding frame 56.
- the other ends of these pins 60 are in guide grooves 61 formed in the lens barrel 62 of the zoom optical system 5.
- the guide groove 61 is formed in the optical axis L direction.
- a rack 57 protruding in the direction of the optical axis L is formed on a part of the lens holding frame 56.
- a pinion 58 meshes with the teeth 57A formed on the rack 57.
- the shaft of the motor 20A described above is fixed to the pinion 58.
- rack 57 has a portion where teeth 57A are formed and a portion 57B where teeth 57 are not formed, and motor 20A is disposed on portion 57B where teeth 57 are not formed.
- a guide groove 57C is formed in the optical axis L direction in the portion 57B where the teeth 57A are not formed, and a regulating pin (not shown) protruding downward (downward in FIG. 2) from the motor 58 is formed in the guide groove 57C.
- the motor 20A is driven, the pinion 58 rotates and the rack 57 moves in the optical axis L direction, so that the lens 51 also moves in the optical axis L direction.
- the motor 20A is not fixed to the portion 58B of the rack 57 where the teeth 57A are not formed, but is fixed to the inner peripheral surface of the lens barrel 62.
- the lens 20 moves in the direction of the optical axis L without moving the motor 20A together with the rack 57.
- the motor 20A, pinion 58, rack 57, lens holding frame 56, lens fixing frame 52, pin 60 and guide groove 61 constitute a lens moving mechanism for moving the lens 51 in the optical axis L direction.
- the lens moving mechanism may move a plurality of lenses (one or more lenses) in the direction of the optical axis L instead of one lens.
- the motor 20B, the gear 54, the lens fixing frame 52, and the lens holding frame 56 are lens rotation mechanisms that rotate the lens 51 around the optical axis L, and a lens rotation mechanism that can be driven independently of the lens moving mechanism.
- the lens rotation mechanism that can be driven independently of the lens movement mechanism is that the lens 51 can be rotated around the optical axis L without being influenced by the movement of the lens 51 by the lens movement mechanism (irrelevant). .
- FIG. 6 is an example of a position / rotation angle table showing the relationship between the position of the lens 51 and the rotation angle of the lens 51.
- a plurality of positions of the lens 51 in the optical axis L direction and a plurality of rotation angles corresponding to each of the plurality of positions are stored in a memory (storage unit) 42 as a position / rotation angle table. ing.
- the lens rotation mechanism is configured to move at least one lens included in the optical system among the plurality of rotation angles stored in the memory (storage unit) 42 by the lens movement mechanism.
- the optical system is rotated about the optical axis L of the optical system at a rotation angle corresponding to the direction position, and can be driven independently of the lens moving mechanism. For example, when the lens 51 is positioned at the position P1, the lens 51 is rotated by an angle ⁇ 1. It goes without saying that the reference position in the rotation direction of the lens 51 is determined and is rotated by the motor 20B with reference to the reference position. If necessary, a reference mark is attached to the lens fixing frame 52, and the mark is detected by a sensor, whereby the lens 51 is rotated by a predetermined rotation angle from the rotation reference position of the lens 51 and the rotation reference position. Can be made.
- the lens when the lens is rotated, the relationship between the position in the optical axis L direction and the rotation angle so that the aberration is minimized (small) is stored in the position / rotation angle table, and the lens according to the positioned position. Is rotated, the aberration of the TV camera lens 1 is reduced. Needless to say, when there is another lens to be rotated other than the lens 51, the rotation angle of the lens 51 is determined so as to reduce the aberration in consideration of the rotation angle of the other lens.
- the lens 51 included in the zoom optical system 5 is rotated.
- the lens 51 is not included in the zoom optical system 5, but the focus optical system 2, the master optical system 10, etc.
- One or more lenses included in a plurality of lenses such as an optical system may be rotated around the optical axis L according to the position in the optical axis L direction.
- the one or more lenses that are rotated are lenses that are orthogonal to the optical axis L of the plurality of lenses included in the television camera lens 1 and that are in the circumferential direction about the optical axis L. It is also possible to use a lens in which at least one of the surface shape and the refractive index is relatively nonuniform.
- the degree of non-uniformity is not particularly limited as long as it represents non-uniformity in the circumferential direction. Whether the lens is relatively non-uniform can be determined by determining whether it is larger than the median value or average value when a plurality of lenses included in the TV camera lens 1 are arranged in non-uniform order.
- the at least one lens rotated by the lens rotating mechanism may be a lens having a relatively low optical sensitivity (lens power) among a plurality of lenses. Whether the lens has a relatively low optical sensitivity can be determined by determining whether it is less than the median or average value of the optical sensitivities of a plurality of lenses included in the TV camera lens 1.
- FIG. 7 is an example of a zoom magnification / variation amount table showing the relationship between the zoom magnification and the variation amount of the focal position. This table is also stored in the memory (storage unit) 42.
- the focal position is constant regardless of the zoom magnification, but the focal position may shift due to the zoom magnification (zoom focal point movement) due to the lens surface shape, processing errors, and the like.
- the fluctuation amount of the focal position shifted by the zoom magnification is stored in advance, and the fluctuation amount is adjusted according to the zoom magnification when the television camera lens 1 is actually used.
- the fluctuation amount of the focal position is measured and stored in advance as V1, V2, V3, V4, etc.
- FIG. 8 is an example of an aperture value / variation amount table showing the relationship between the aperture value and the variation amount of the focal position. It is stored in the memory (storage unit) 42 of this table.
- the focal point position is constant regardless of the aperture value, as in the case of zoom focal point movement, but the focal point position may actually shift depending on the aperture value (narrowing focal point movement).
- the fluctuation amount of the focal position that deviates depending on the aperture value is stored in advance, and the fluctuation amount is adjusted according to the aperture value when the TV camera lens 1 is actually used.
- the variation of the focal position is previously measured and stored as V11, V12, V13, V14, V15, etc. according to the aperture value F1 (open aperture), F1.4, F2, F2.8, F4, etc. Yes.
- FIG. 9 is an example of a table showing the variation amount of the focal position according to the zoom magnification and the aperture value. This table is also stored in the memory (storage unit) 42.
- the variation amount of the focal position may be stored in accordance with the zoom magnification or the aperture value, and the variation amount may be adjusted when the TV camera lens 1 is used. You may make it memorize
- a table shown in FIG. 9 stores such fluctuation amounts.
- the focal position fluctuation amount is stored in the table corresponding to the set zoom magnification and aperture value.
- the variation amount stored corresponding to the zoom magnification and aperture value set at the time of actual use is read out, and the read variation amount is adjusted.
- the focus position can be adjusted more accurately.
- FIG. 10 is a flowchart showing a processing procedure for generating the focal position fluctuation amount of the zoom magnification / focal position fluctuation quantity table shown in FIG. This process is performed when the television camera lens 1 is shipped from the factory.
- the zoom optical system 5 is set to the wide end (step 61).
- the focal position shift ⁇ at the wide end position is detected, and the focal position at the wide end is set as a reference position (step 62). If the zoom magnification at the wide end is Z1, this focal position shift ⁇ becomes the focal position variation V1.
- the lens included in the zoom optical system 5 is moved in a prescribed step (step 63), and the zoom magnification described above is obtained. For example, if the zoom magnification at the wide end is Z1, the zoom magnification is Z2.
- the variation ⁇ 1 of the focal position at the zoom magnification is measured (step 64).
- the table shown in FIG. 7 is obtained by such processing.
- the aperture value / variation amount table shown in FIG. 8 is also obtained by measuring the variation amount of the focal position for each aperture value. Further, the table shown in FIG. 9 is also obtained by measuring the variation amount of the focal position for each zoom magnification and aperture value.
- FIG. 11 is a flowchart showing a processing procedure for adjusting the focal position using the table shown in FIG.
- the zoom optical system 5 is set to a zoom magnification according to the zoom command from the user (step 71) (the lens included in the zoom optical system 5 is moved in the optical axis direction).
- the moved lens is a lens that rotates around the optical axis as described above, it is preferable that the lens is rotated by a rotation angle corresponding to the moving position as shown in FIG.
- the focal position fluctuation amount corresponding to the set zoom magnification is read from the table shown in FIG. 7 (step 72).
- the operation ratio between the focus position adjustment by the focus optical system 2 and the focus position adjustment by the master optical system 10 is determined (step 73). For example, the closer to the tele end, the more the focal position adjustment amount due to the movement of the focus optical system 2, and the smaller the focal position adjustment amount due to the movement of the master optical system 10, and the closer to the wide end, The operation ratio is determined so that the focal position adjustment amount due to the movement is small and the focal position adjustment amount due to the movement of the master optical system 10 is large.
- the focus optical system 2 adjusts the focal position by being moved in the first movement unit, and the master optical system 2 is moved in the second movement unit that is smaller than the first movement unit.
- the focal position is adjusted.
- the closer to the tele end the larger the amount of change in the focal position. Therefore, the ratio of adjustment of the adjustment position by the focus optical system 2 having a large movement unit is increased, and quick adjustment can be realized.
- the adjustment position adjustment ratio by the master optical system 10 having a small movement unit is reduced, and high-precision adjustment can be realized.
- At least one of the focus position adjustment by the focus optical system 2 and the focus position adjustment by the master optical system 10 is performed by the control circuit 40 (adjustment control means) at the operation ratio thus determined (step 74).
- the control circuit 40 adjustment control means
- FIG. 12 is a flowchart showing a processing procedure for adjusting the focal position using the table shown in FIG.
- the aperture 6 is set to the desired aperture value of the user (step 81).
- the variation amount of the focal position corresponding to the set aperture value is read from the table shown in FIG. 8 (step 82).
- the operation ratio between the focus position adjustment by the focus optical system 2 and the focus position adjustment by the master optical system 10 is determined (step 83). For example, the closer the aperture of the diaphragm 6 is to the minimum, the more the adjustment amount of the focus optical system 2 is, and the smaller the adjustment amount of the master optical system 10 is. The amount is small and the adjustment amount of the master optical system 10 is large. As the aperture of the diaphragm 6 is closer to the minimum, the amount of fluctuation of the focal position is larger.
- the control circuit 40 (adjustment control means) performs at least one of the focus position adjustment by the focus optical system 2 and the focus position adjustment by the master optical system 10 at the operation ratio thus determined (step 84).
- the focus position is adjusted by the movement of the focus optical system 2
- the aperture of the aperture 6 is the maximum aperture value
- the focus is adjusted by the movement of the master optical system 10. Only the position adjustment may be performed.
- FIG. 13 is a flowchart showing a processing procedure for adjusting the focal position using the table shown in FIG.
- the zoom optical system 5 is set to the zoom magnification according to the zoom command (step 91), and the user's desired aperture value is set (step 92).
- the focal position fluctuation amount corresponding to the set zoom magnification and aperture value is read from the table shown in FIG. 9 (step 93).
- the operation ratio between the focus position adjustment by the focus optical system 2 and the focus position adjustment by the master optical system 10 is determined (step 94).
- the operation ratio between the focus optical system 2 and the master optical system 10 is determined so that the amount of adjustment of the focus optical system 2 decreases as the value approaches the maximum (open).
- the focus position may be adjusted only by moving the focus optical system 2 regardless of the aperture value, or the zoom magnification is at the telephoto end and the aperture of the aperture 6 is minimum. Only the adjustment of the focal position by the movement of the focus optical system 2 may be performed. Further, when the aperture of the diaphragm 6 is minimum, only the focus position adjustment by the movement of the focus optical system 2 may be performed regardless of the zoom magnification. Similarly, if the zoom magnification is at the wide end, the focus position may be adjusted only by moving the master optical system 10 regardless of the aperture value, or the zoom magnification is at the wide end and the aperture of the aperture 6 is maximum.
- adjustment of the focal position by movement of the master optical system 10 may be performed. Further, when the aperture of the diaphragm 6 is maximum, only the focal position adjustment by the movement of the master optical system 10 may be performed regardless of the zoom magnification. At least one of the focus position adjustment by the focus optical system 2 and the focus position adjustment by the master optical system 10 is performed by the control circuit 40 (adjustment control means) at the operation ratio thus determined (step 95).
- focusing by the focus optical system 2 may be performed while performing a zoom operation by the zoom optical system 5.
- the focus optical system 2 has a focus position obtained by adding (subtracting) the focus position variation amount to the focus position of the focus optical system 2 obtained without considering the focus position variation amount. Is controlled.
- the subject can be accurately focused.
- the focus optical system 2 is controlled to the focus position of the focus optical system 2 obtained without considering the variation amount of the focus position. As a result, the subject can be focused quickly. After that, the focus optical system 2 is controlled so that the focal position is obtained by adding the fluctuation amount of the focal position.
- the focal position obtained by adding (subtracting) the fluctuation amount of the focal position may be used with reference to the focal position after adding (subtracting) the fluctuation amount of the focal position.
- the zoom magnification is set to Z2
- the variation amount of the focal position is V2, and therefore, the variation amount from the focal position calculated when the variation amount of the focal position is not considered.
- the focus optical system 2 and the master optical system 10 are controlled so that the focal position is adjusted by V2, but when the zoom magnification is changed from Z2 to Z3, the difference in focal position variation V3- Since it is only necessary to adjust the focal position by V2, the amount of adjustment may be small. In such a case, only the master optical system 10 may be used. It will be possible to make fine adjustments accurately.
- the current fluctuation amount can be confirmed by performing a routine such as a calibration mode for measuring the focal position at each zoom magnification or aperture value.
- the current driving state of the TV camera lens 1 can be diagnosed by comparing the amount of variation already stored (initial variation amount) with the current amount of variation.
- the hysteresis characteristics of the focus optical system 2 and the master optical system 10 can be compared, so that the amount of rattling caused by the cam can be grasped quantitatively.
- it can also be used for determining the failure of the TV camera lens 1 such as determining that a failure has occurred when the difference between the variation amount of the initial value and the current variation amount exceeds a threshold value.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Lens Barrels (AREA)
- Nonlinear Science (AREA)
Abstract
レンズの表明形状等が均一で無い場合でも焦点位置を高精度に補正できるレンズ装置およびその補正方法を提供する。レンズ51の外周に円環のレンズ固定枠52が取り付けられている。このレンズ固定枠52には,周方向にギア53が形成されている。このギア53に噛み合っているギア54がモータ20Aによって回転させられる。すると,レンズ51は光軸Lを中心として回転する。また,レンズ固定枠52の一部には光軸L方向に伸びているラック57が形成されている。ラック57の歯57Aにはピニオン58がかみ合っており,モータ20Bによってピニオン58が回転させられる。すると,ラック57が光軸L方向に動き,レンズ51も光軸L方向に動く。レンズ51が光軸Lを中心に回転するので,レンズ51が周方向に表面形状等が均一でなくとも,改善できる。
Description
この発明は,レンズ装置およびレンズ装置の補正方法に関する。
レンズの高性能化が進み,従来のレンズ加工や調整では対応できないレベルのレンズ位置調整が必要となっている。とくに高精細度テレビジョン放送システムを上回る性能をもつレンズでは,その影響が顕著に現れる。たとえば,箱型レンズにおいては,各機能により,フォーカス・レンズ群,ズーム・レンズ群,防振レンズ群,エクステンダー,マスタ・レンズ群の5箇所に分類できる。理論的なレンズ形状とメカ部品では,各ズーム位置におけるフォーカス位置は一定になるが,レンズの面形状,メカ寸法の加工誤差等により,理想状態からのずれが生じるため,ズーム位置により微妙に焦点位置がずれる現象が現れる(ズーム焦点移動)。また,ズーム・レンズ群の後方に配置される絞りでも,焦点位置がずれる現象を生じる(絞込み焦点移動)。
これらの変化に対し,従来はメカ部品の選択等で対応している。しかしながら,高精細度テレビジョン放送システムを上回る性能においては従来のやり方では対応できなくなってきており,所望の性能を得ることができない。
このために,ズーム位置と焦点位置との対応関係をもとに,ズーム位置に応じてフォーカス・レンズの位置調整を行うものがある(特許文献1)。また,ズーム位置に応じて,フォーカス位置の補正を行うもの(特許文献2),マスター・レンズ群単体で補正を行うものもある(特許文献3)。
しかしながら,特許文献1から3のいずれにおいても焦点位置を高精度に補正できない。たとえば,特許文献2に記載のものでは,焦点移動量の補正をフォーカス・レンズ群で行なっているが,フォーカス・レンズ群の重量が重いので,補正速度を上げることは難しい。また,特許文献3に記載のものでは,焦点移動量の補正をマスタ・レンズ群で行なっているが,マスタ・レンズ群の調整ストロークが補正の上限となるので,ズーム・レンズ群が望遠側に設定されている場合には充分な補正が行われないことがある。とくに,レンズの表面形状や屈折率が均一でない場合には,それらの影響を排除しなければ充分な補正ができない。
この発明は,レンズの表面形状や屈折率が均一で無い場合であっても,焦点位置を高精度に補正できるようにすることを目的とする。
この発明によるレンズ装置は,複数のレンズ,複数のレンズに含まれている1つ以上のレンズを,複数のレンズの光軸方向に移動させるレンズ移動機構,複数のレンズの光軸方向の複数の位置と,複数の位置の各々に対応する複数の回転角度とを記憶する記憶部,および複数のレンズに含まれている少なくとも1つのレンズを,記憶部に記憶された複数の回転角度うち,レンズ移動機構によって移動させられるレンズの光軸方向の位置に対応する回転角度で,レンズの光軸を中心に回転させる,レンズ移動機構と独立に駆動可能なレンズ回転機構を備えていることを特徴とする。レンズ移動機構と独立に駆動可能なレンズ回転機構とは,レンズ移動機構の動作に影響を受けないレンズ回転機構をいう。
この発明は,レンズ装置の補正方法も提供している。すなわち,複数のレンズを備えたレンズ装置の補正方法において,レンズ移動機構が,複数のレンズに含まれている1つ以上のレンズを,複数のレンズの光軸方向に移動させ,記憶部が,複数のレンズの光軸方向の複数の位置と,複数の位置の各々に対応する複数の回転角度とを記憶し,レンズ回転機構がレンズ移動機構と独立に駆動可能であり,複数のレンズに含まれている少なくとも1つのレンズを,記憶部に記憶された複数の回転角度うち,レンズ移動機構によって移動させられるレンズの光軸方向の位置に対応する回転角度で,レンズの光軸を中心に回転させるものである。
レンズ回転機構により回転させる少なくとも1つのレンズは,たとえば,複数のレンズのうち,光軸と直交し光軸を中心とする円周方向において,レンズの表面形状および屈折率の少なくとも1つが相対的に不均一なレンズである。
レンズ回転機構により回転させられる少なくとも1つのレンズは,複数のレンズのうち,光学感度が相対的に低いレンズでもよい。
レンズ装置に,ズーム光学系が含まれている場合には,レンズ移動機構により移動させられるレンズは,ズーム光学系に含まれているレンズでもよい。
複数のレンズには,第1の移動単位で移動させられることによって焦点位置を調整するフォーカス光学系,フォーカス光学系の移動単位よりも細かい第2の移動単位で移動させられることによって焦点位置を調整するマスタ光学系,およびズーム倍率を変更するズーム光学系が含まれてもよい。また,入射光量を制限する絞り,ならびにズーム光学系のズーム倍率または絞りの絞り値に対応してあらかじめ定められている焦点位置の変動量にしたがって,フォーカス光学系による焦点位置の調整およびマスタ光学系による焦点位置の調整の少なくとも一方を行わせる調整制御手段をさらに備えてもよい。
焦点位置の調整量を記憶するメモリをさらに備えてもよい。
調整制御手段による焦点位置の調整は,たとえば,ズーム倍率がテレ端ではフォーカス光学系の移動により焦点位置の調整のみとし,ズーム倍率がワイド端では,マスタ光学系の移動による焦点位置の調整のみとするものである。
焦点位置の変動量は,フォーカス光学系の移動による焦点位置の調整量がテレ端に近いほど多くワイド端に近いほど少なく,マスタ光学系の移動による焦点位置の調整量がワイド端に近いほど多くテレ端に近いほど少ないものでもよい。
焦点位置の変動量は,絞りの開口が最小の絞り値の場合にはフォーカス光学系の移動による焦点位置の調整のみとし,絞りの開口が最大の絞り値の場合にはマスタ光学系の移動による焦点位置の調整のみとするものでもよい。
焦点位置の変動量は,フォーカス光学系の移動による焦点位置の調整量が,絞りの開口が最小に近い絞り値ほど多く,絞りの開口が最大に近い絞り値ほど少なく,マスタ光学系の移動による焦点位置の調整量が,絞りの開口が最大に近いほど多く,絞りの開口が最小に近いほど少ないものでもよい。
この発明によると,複数のレンズの光軸方向の複数の位置と,複数の位置の各々に対応する複数の回転角度とが記憶されている。移動させられるレンズの光軸方向の位置に対応する回転角度で,レンズの光軸方向の移動とは独立に,レンズが光軸を中心に回転させられる。光軸方向の位置に応じて,レンズの表面形状,屈折率などの不均一さが無くなるようなレンズの回転角度が記憶されるようにすることにより,レンズの表面形状,屈折率などの不均一さのレンズ装置への悪影響を排除できる。レンズの表面形状や屈折率が均一で無い場合であっても,焦点位置を高精度に補正できるようになる。
図1は,テレビ・カメラ用レンズ(レンズ装置)1の電気的構成を示すブロック図である。
テレビ・カメラ用レンズ1の全体の動作は,制御回路40によって統括される。
テレビ・カメラ用レンズ1には,撮像素子11が含まれている。この撮像素子11の前方に,1または複数のレンズが含まれているフォーカス光学系2,ズーム倍率を変更するズーム光学系5,絞り6,エクステンダ・レンズ(群)7および1または複数のレンズが含まれているマスタ光学系10が配置されている。テレビ・カメラ用レンズ1の光軸Lは,フォーカス光学系2,ズーム光学系5,絞り6,マスタ光学系10および撮像素子11の受光面の中心を通る。ズーム光学系5は,1または複数の変倍系レンズ3と1または複数の補正系レンズ4とから構成されている。エクステンダ・レンズ7は,ターレット板(図示略)に撮像倍率が1倍の撮像レンズ8および撮像倍率が2倍の撮像レンズが取り付けられている。切替スイッチ41からの切替制御信号に応じてエクステンダ・レンズ7のターレット板が回転する。すると,1倍の撮像レンズ8または2倍の撮像レンズ9のいずれかが光軸L上に位置決めされる。
フォーカス光学系2に含まれているレンズのレンズ位置は,検出器13によって検出される。検出器13によって検出されたフォーカス光学系2に含まれているレンズのレンズ位置を示す検出信号は,アナログ/ディジタル変換回路14においてディジタル検出データに変換されて制御回路40に入力する。ユーザは,フォーカス・リング(図示略)を回してフォーカス量を設定する。設定されたフォーカス量と検出されたディジタル検出データによって表わされるフォーカス光学系2に含まれているレンズのレンズ位置とが制御回路40によって比較され,その比較値にもとづいてフォーカス光学系2に含まれているレンズの駆動量を示すデータが生成される。生成された駆動量を示すデータが駆動回路15に与えられ,駆動回路15によってフォーカス・モータ16が制御されることにより,フォーカス光学系2に含まれているレンズのレンズ位置が調整される。
ズーム光学系5を構成する変倍系レンズ3は焦点距離を変化させ,補正系レンズ4は焦点位置が変動しないように補正するものである。ズーム・ボタン46からのズーム指令が制御回路40に与えられると,制御回路40によって駆動回路19Aが制御され,モータ20Aが回転させられる。モータ20Aによって変倍系レンズ3および補正系レンズ4の少なくとも一方は光軸L上を移動する。もちろん,ユーザによって操作されるズーム・リング(図示略)の回転に応じて回転するズーム・カム筒(図示略)が回転することにより変倍系レンズ3および補正系レンズ4が光軸L上を一定の関係で移動してもよい。ズーム光学系5のズーム位置は検出器17によって検出される。検出器17から出力される検出信号は,アナログ/ディジタル変換回路18においてディジタル検出データに変換されて制御回路40に入力する。ズーム・リングによって設定されたズーム量と検出されたディジタル検出データによって表されるズーム光学系5に含まれるレンズのレンズ位置とが制御回路40によって比較され,その比較値にもとづいてズーム光学系5に含まれるレンズの駆動量を示すデータが生成される。生成された駆動量を示すデータが駆動回路19に与えられ,駆動回路19Aによってズーム・モータ20Aが制御されることにより,ズーム光学系5を構成する変倍系レンズ3および補正系レンズ4のレンズ位置が調整される。
さらに,この実施例では,ズーム光学系5に含まれるレンズを,光軸Lを中心に回転させることができる。このために,テレビ・カメラ用レンズ1には,駆動回路19Bおよびモータ20Bが含まれている。駆動回路19Bによってモータ20Bが駆動させられることにより,ズーム光学系5に含まれる所望のレンズを光軸Lを中心に回転させることができる。
絞り6の絞り量は検出器23によって検出される。検出器23から出力される検出信号は,アナログ/ディジタル変換回路24によってディジタル検出データに変換されて制御回路40に入力する。また,ユーザによって操作される絞りリング(図示略)の回転量に応じて駆動量を示すデータが生成される。生成された駆動量を示すデータと検出された駆動量を示すデータとが比較されて,その比較値にもとづいて絞り6の駆動量を示すデータが生成される。生成された駆動量を示すデータが駆動回路21に与えられ,駆動回路21によって絞りモータ22が制御されることにより,絞り6が所望の絞り値に設定される。
エクステンダ・レンズ7の近傍には,エクステンダ・レンズ7を構成する撮像レンズ8および9のどちらのレンズが光軸L上に位置決めされているかを検出するフォトインタラプタ(検出器)25が設けられている。フォトインタラプタ25からの出力信号が制御回路40に入力し,切替スイッチ41により指定された撮像レンズ8または9が光軸L上に位置決めされているかどうかが検出される。切替スイッチ41により指定された撮像レンズ8または9が光軸L上に位置決めされていなければ,指定された撮像レンズ8または9が光軸L上に位置決めされるように制御回路40によって駆動データが生成され駆動回路26に与えられる。駆動回路26によってエクステンダ・モータ27が制御され,撮像レンズ8または9が光軸L上に位置決めされる。
1または複数のレンズが含まれているマスタ光学系10の調整量を設定するフランジバック調整つまみ30が設けられている。このつまみ30によって設定される調整量を示すデータは制御回路40に入力する。また,マスタ光学系10の移動量を検出するポテンショ・メータ(検出器)28から出力される検出信号は,アナログ/ディジタル変換回路29に入力し,ディジタル検出データに変換されて制御回路40に入力する。つまみ30によって設定された調整量を示すデータとマスタ光学系10の移動量を示すディジタル検出データとが制御回路40において比較され,比較値にもとづいて駆動データが生成される。生成された駆動データが駆動回路31に与えられ,マスタ・レンズ・モータ32が駆動される。マスタ光学系10が光軸L上に沿って移動することにより,被写体像が撮像素子11の撮像面に合焦するように焦点補正が行われる。
撮像素子11から出力される映像信号は,信号処理回路12に入力し,サンプリング処理,白バランス調整,ガンマ補正などの信号処理が行われて,テレビ信号が生成される。生成されたテレビ信号は,ビュー・ファインダに出力されて再生されるとともに出力端子47に与えられる。
さらに,制御回路40には,メモリ42,日時を計測するタイマ43,テレビ用カメラ・レンズ1を構成する光学系が故障したときにユーザ等にその故障を発光して知らせるためのエラーLED44および故障が生じる可能性が高くなったときに発光して警告するための警告LED45も接続されている。
図2は,ズーム光学系5の一部断面図,図3は,ズーム光学系5に含まれているレンズ51等の分解斜視図,図4は,レンズ51等を撮像素子11の側から見た背面図,図5は,レンズ51等を光軸L方向に移動させるレンズ移動機構の一部を構成する部分を示す平面図である。
レンズ51の外周面には,内周面がレンズ51の外周面に固定されているレンズ固定枠52が取り付けられている。レンズ固定枠52の撮像素子11側の端面には,レンズ固定枠52の外周面よりも内側に,周方向にギア53が形成されている(図4参照)。
レンズ固定枠52の外周を囲むレンズ保持枠56が設けられている。図2に示すように,レンズ保持枠56の内周面56Cを挟んで光軸方向Lに2つのフランジ56Bが形成されている。フランジ56Bにより,レンズ51(レンズ固定枠52)は,レンズ保持枠56に対して光軸L方向にずれることなく,光軸Lを中心に回転可能となっている。レンズ保持枠56の内周面56Cとレンズ固定枠52の外周面との間にボール・ベアリングを設けるようにしてもよい。レンズ51がスムーズに回転する。
モータ20Bは,レンズ保持枠56に固定されており,モータ20Bの軸にギア54が固定されている。このギア54は,レンズ固定枠52のギア53に噛み合っている。モータ20Bが駆動させられることにより,レンズ固定枠52が回転させられ,レンズ51が光軸Lを中心に回転する。
レンズ保持枠56には,複数のピン60の一端部が固定されている。これらのピン60の他端部は,ズーム光学系5の鏡筒62内に形成されている案内溝61内に入っている。案内溝61は光軸L方向に形成されており,ピン60が案内溝61に沿って動くことにより,レンズ保持枠56(レンズ51)が光軸L方向に動くことができる。
レンズ保持枠56の一部には,光軸L方向に突出したラック57が形成されている。このラック57に形成されている歯57Aにはピニオン58が噛み合っている。ピニオン58には上述したモータ20Aの軸が固定されている。
図5を参照して,ラック57には,歯57Aが形成されている部分と歯57が形成されていない部分57Bとがあり,歯57が形成されていない部分57B上にモータ20Aが配置されている。歯57Aが形成されていない部分57Bには光軸L方向に案内溝57Cが形成されており,モータ58から下方(図2において下方)に出ている規制ピン(図示略)が案内溝57Cに入っている。モータ20Aが駆動させられると,ピニオン58が回転し,ラック57が光軸L方向に移動するので,レンズ51も光軸L方向に移動する。モータ20Aはラック57の歯57Aが形成されていない部分58Bに固定されていず,鏡筒62の内周面に固定されている。モータ20Aはラック57とともに動かずにレンズ51が光軸L方向に動く。
モータ20A,ピニオン58,ラック57,レンズ保持枠56,レンズ固定枠52,ピン60および案内溝61が,レンズ51を光軸L方向にを移動させるレンズ移動機構を構成する。レンズ移動機構は,1つのレンズでなく複数のレンズ(1つ以上のレンズ)を光軸L方向に移動させるようにしてもよい。また,モータ20B,ギア54,レンズ固定枠52,およびレンズ保持枠56が,レンズ51を光軸Lを中心として回転させるレンズ回転機構であり,レンズ移動機構と独立に駆動可能なレンズ回転機構を構成する。レンズ移動機構と独立に駆動可能なレンズ回転機構とは,レンズ移動機構によるレンズ51の移動により影響を受けずに(関係なく)レンズ51を,光軸Lを中心として回転させることができることである。
図6は,レンズ51の位置とレンズ51の回転角度との関係を示す位置/回転角度テーブルの一例である。
この実施例では,レンズ51の光軸L方向の複数の位置と,これらの複数の位置の各々に対応する複数の回転角度とが,位置/回転角度テーブルとしてメモリ(記憶部)42に記憶されている。レンズ51が光軸L方向の位置に位置決めされると,位置決めされた位置に対応して記憶されている回転角度で,レンズ回転機構によってレンズ51が光軸Lを中心として回転させられる。このようにレンズ回転機構は,光学系に含まれている少なくとも1つのレンズを,メモリ(記憶部)42に記憶された複数の回転角度のうち,レンズ移動機構によって移動させられるレンズの光軸L方向の位置に対応する回転角度で,光学系の光軸Lを中心に回転させ,レンズ移動機構と独立に駆動可能とされている。たとえば,レンズ51が位置P1に位置決めされると,レンズ51はθ1の角度だけ回転させられる。レンズ51の回転方向の基準位置が決められており,その基準位置を基準としてモータ20Bによって回転させられるのはいうまでもない。必要であれば,レンズ固定枠52に基準となる目印をつけ,センサによってその目印を検出することにより,レンズ51の回転基準位置およびその回転基準位置から,決められた回転角度だけレンズ51を回転させることができる。
たとえば,レンズを回転させることにより,収差が最小(小さく)となるような,光軸L方向の位置と回転角度との関係が位置/回転角度テーブルに格納され,位置決めされた位置に応じてレンズが回転させられることにより,テレビ・カメラ用レンズ1の収差が小さくなる。レンズ51以外に回転させるその他のレンズが存在する場合,その他のレンズの回転角度を考慮して収差が小さくなるようにレンズ51の回転角度が定められているのはいうまでもない。
上述した実施例では,ズーム光学系5に含まれているレンズ51が回転されているが,ズーム光学系5に含まれているレンズでなく,フォーカス光学系2,マスタ光学系10など,その他の光学系等の複数の複数のレンズに含まれている1つ以上のレンズが,光軸L方向の位置に応じて,光軸Lを中心として回転させられるようにしてもよい。また,回転させられる1つ以上のレンズは,テレビ・カメラ用レンズ1に含まれている複数のレンズのうち,光軸Lと直交し,その光軸Lを中心とする円周方向において,レンズの表面形状および屈折率の少なくとも1つが相対的に不均一なレンズとしてもよい。レンズの表面形状,屈折率が不均一により生じる収差などを小さくできる。不均一の程度は,周方向における不均一さを表わすものであればよく,例えば分散値を利用して不均一かどうかか分かる。また,相対的に不均一かどうかは,テレビ・カメラ用レンズ1に含まれる複数のレンズを不均一な順に並べた場合の中央値または平均値よりも大きいかどうかで判断できる。
さらに,レンズ回転機構により回転させられる少なくとも1つのレンズは,複数のレンズのうち,光学感度(レンズパワー)が相対的に低いレンズでもよい。光学感度が相対的に低いレンズかどうかは,テレビ・カメラ用レンズ1に含まれる複数のレンズの光学感度の中央値以下,または平均値以下かどうかで判断できる。
図7は,ズーム倍率と焦点位置の変動量との関係を示すズーム倍率/変動量テーブルの一例である。このテーブルもメモリ(記憶部)42に記憶されている。
理論上ではズーム倍率にかかわらず焦点位置は一定になるが,レンズの面形状,加工誤差などにより,ズーム倍率によって焦点位置がずれてしまうことがある(ズーム焦点移動)。この実施例では,ズーム倍率によってずれる焦点位置の変動量があらかじめ記憶されており,テレビ・カメラ用レンズ1の実際の使用時に,ズーム倍率に応じて変動量が調整される。
ズーム倍率がZ1,Z2,Z3,Z4などに応じて,焦点位置の変動量がV1,V2,V3,V4などとあらかじめ測定され,かつ記憶されている。
図8は,絞り値と焦点位置の変動量との関係を示す絞り値/変動量テーブルの一例である。このテーブルのメモリ(記憶部)42に記憶されている。
ズーム焦点移動と同様に,理論上では,絞り値にかかわらず焦点位置は一定になるが,実際には絞り値によって焦点位置がずれてしまうことがある(絞込み焦点移動)。この実施例では,絞り値によってずれる焦点位置の変動量があらかじめ記憶されており,テレビ・カメラ用レンズ1の実際の使用時に,絞り値に応じて変動量が調整される。
絞り値がF1(開放絞り),F1.4,F2,F2.8,F4などに応じて,焦点位置の変動量がV11,V12,V13,V14,V15などとあらかじめ測定され,かつ記憶されている。
図9は,ズーム倍率および絞り値に応じた焦点位置の変動量を示すテーブルの一例である。このテーブルもメモリ(記憶部)42に記憶されている。
上述したように,ズーム倍率または絞り値に応じて焦点位置の変動量を記憶しておき,テレビ・カメラ用レンズ1の使用時に,それらの変動量を調整してもよいが,ズーム倍率および絞り値の両方に応じた焦点位置の変動量を記憶するようにしてもよい。このような変動量を記憶するものが図9に示すテーブルである。
設定されたズーム倍率および絞り値に対応して焦点位置の変動量がテーブルに格納されている。実際の使用時に設定されたズーム倍率および絞り値に対応して記憶されている変動量が読み出され,読み出された変動量が調整される。より正確に焦点位置調整を実現できる。
図10は,図7に示したズーム倍率/焦点位置変動量テーブルの焦点位置変動量を生成する処理手順を示すフローチャートである。この処理はテレビ・カメラ用レンズ1の工場出荷時に行なわれる。
まず,ズーム光学系5がワイド端とされる(ステップ61)。そのワイド端の位置での焦点位置のずれΔが検出され,ワイド端における焦点位置が基準位置とされる(ステップ62)。ワイド端でのズーム倍率がZ1であるとすると,この焦点位置のずれΔが焦点位置の変動量V1となる。ズーム光学系5に含まれるレンズが規定ステップで移動させられ(ステップ63),上述したズーム倍率とされる。たとえば,ワイド端でのズーム倍率がZ1であるとしたら,ズーム倍率がZ2とされる。そのズーム倍率での焦点位置の変動量Δ1が測定される(ステップ64)。ズーム倍率Z2の変動量V2は,Δ+Δ1となる。ズーム光学系5がテレ端となるまでステップ63および64の処理が繰り返される(ステップ65)。
このような処理により,図7に示すテーブルが得られる。
図8に示す絞り値/変動量テーブルも,絞り値ごとに焦点位置の変動量を測定することにより得られる。また,図9に示すテーブルも,ズーム倍率および絞り値ごとに焦点位置の変動量を測定することにより得られる。
図11は,図7に示すテーブルを利用して焦点位置調整を行う処理手順を示すフローチャートである。
ズーム光学系5が,ユーザからのズーム指令に応じたズーム倍率に設定される(ステップ71)(ズーム光学系5に含まれるレンズが光軸方向に移動させられる)。この場合,移動させられたレンズが上述のように,光軸を中心に回転するレンズであれば,図6に示すように,その移動位置に応じた回転角度だけ回転させられることが好ましい。
設定されたズーム倍率に対応する焦点位置の変動量が,図7に示すテーブルから読み取られる(ステップ72)。読み取られた変動量から,フォーカス光学系2による焦点位置調整とマスタ光学系10による焦点位置調整との動作比率が決定される(ステップ73)。たとえば,テレ端に近いほど,フォーカス光学系2の移動による焦点位置の調整量が多く,マスタ光学系10の移動による焦点位置の調整量が少なくなり,ワイド端に近いほど,フォーカス光学系2の移動による焦点位置の調整量が少なく,マスタ光学系10の移動による焦点位置の調整量が多くなるように動作比率が決定される。フォーカス光学系2は,第1の移動単位で移動させられることにより,焦点位置を調整するものであり,マスタ光学系2は,第1の移動単位よりも細かい第2の移動単位で移動させられることにより,焦点位置を調整するものである。テレ端に近いほど焦点位置の変動量が大きいので,移動単位の大きなフォーカス光学系2による調整位置の調整の割合を大きくしており,迅速な調整を実現できる。また,ワイド端ほど焦点位置の変動量が小さいので,移動単位の小さなマスタ光学系10による調整位置の調整の割合を小さくしており,高精度の調整を実現できる。このようにして決定した動作比率で,フォーカス光学系2による焦点位置調整およびマスタ光学系10による焦点位置調整の少なくとも一方が制御回路40(調整制御手段)により行われる(ステップ74)。焦点位置調整により,被写体が撮像素子11の受光面に正確に合焦する。
また,ズーム倍率がテレ端では,フォーカス光学系2の移動による焦点位置の調整のみとし,ズーム倍率がワイド端では,マスタ光学系10の移動による焦点位置の調整のみとするようにしてもよい。
図12は,図8に示すテーブルを利用して焦点位置調整を行う処理手順を示すフローチャートである。
ユーザの所望の絞り値に絞り6が設定される(ステップ81)。設定された絞り値に対応する焦点位置の変動量が,図8に示すテーブルから読み取られる(ステップ82)。読み取られた変動量から,フォーカス光学系2による焦点位置調整とマスタ光学系10による焦点位置調整との動作比率が決定される(ステップ83)。たとえば,絞り6の開口が最小に近いほどフォーカス光学系2の調整量が多く,マスタ光学系10の調整量が少なくなり,絞り6の開口が最大(開放)に近いほどフォーカス光学系2の調整量が少なく,マスタ光学系10の調整量が多くなる。絞り6の開口が最小に近いほど焦点位置の変動量が大きいので,移動単位の大きなフォーカス光学系2による調整位置の調整の割合を大きくしており,迅速な調整を実現できる。また,絞り6の開口が最大に近いほど焦点位置の変動量が小さいので,移動単位の小さなマスタ光学系10による調整位置の調整の割合を小さくしており,高精度の調整を実現できる。このようにして決定した動作比率で,フォーカス光学系2による焦点位置調整およびマスタ光学系10による焦点位置調整の少なくとも一方が制御回路40(調整制御手段)により行われる(ステップ84)。
また,絞り6の開口が最小の絞り値の場合にはフォーカス光学系2の移動による焦点位置の調整のみとし,絞り6の開口が最大の絞り値の場合にはマスタ光学系10の移動による焦点位置の調整のみとするようにしてもよい。
図13は,図9に示すテーブルを利用して焦点位置調整を行う処理手順を示すフローチャートである。
上述のように,ズーム指令に応じたズーム倍率にズーム光学系5が設定され(ステップ91),かつユーザの所望の絞り値が設定される(ステップ92)。設定されたズーム倍率および絞り値に対応する焦点位置変動量が図9に示すテーブルから読み取られる(ステップ93)。読み取られた偏同僚から,フォーカス光学系2による焦点位置調整とマスタ光学系10による焦点位置調整との動作比率が決定される(ステップ94)。この決定方法も上述したのと同様に,テレ端に近いほど,フォーカス光学系2の調整量が多く,マスタ光学系10の調整量が少なくなり,ワイド端に近いほど,フォーカス光学系2の調整量が少なく,マスタ光学系10の調整量が多くなり,かつ絞り6の開口が最小に近いほどフォーカス光学系2の調整量が多く,マスタ光学系10の調整量が少なくなり,絞り6の開口が最大(開放)に近いほどフォーカス光学系2の調整量が少なくなるように,フォーカス光学系2とマスタ光学系10との動作比率が決定される。
この場合ズーム倍率がテレ端であれば,絞り値にかかわらずフォーカス光学系2の移動による焦点位置の調整のみとしてもよいし,ズーム倍率がテレ端であり,かつ絞り6の開口が最小の場合にのみフォーカス光学系2の移動による焦点位置の調整のみとしてもよい。また,絞り6の開口が最小の場合にはズーム倍率にかかわらず,フォーカス光学系2の移動による焦点位置の調整のみとしてもよい。同様に,ズーム倍率がワイド端であれば,絞り値にかかわらず,マスタ光学系10の移動による焦点位置の調整のみとしてもよいし,ズーム倍率がワイド端であり,かつ絞り6の開口が最大の場合にのみマスタ光学系10の移動による焦点位置の調整のみとしてもよい。また,絞り6の開口が最大の場合にはズーム倍率にかかわらず,マスタ光学系10の移動による焦点位置の調整のみとしてもよい。このようにして決定した動作比率で,フォーカス光学系2による焦点位置調整およびマスタ光学系10による焦点位置調整の少なくとも一方が制御回路40(調整制御手段)により行われる(ステップ95)。
また,動きのある被写体を撮像する場合には,ズーム光学系5によるズーム動作を行いながらフォーカス光学系2によるフォーカシングを行なうことがある。被写体の動きが遅い場合には,焦点位置の変動量を考慮しないで得られるフォーカス光学系2の焦点位置に,焦点位置の変動量を加算(減算)した焦点位置となるようにフォーカス光学系2が制御される。正確に被写体を合焦させることができる。被写体の動きが速い場合には,焦点位置の変動量を考慮しないで得られるフォーカス光学系2の焦点位置にフォーカス光学系2が制御される。これにより,迅速に被写体を合焦させることができる。その後に焦点位置の変動量を加算した焦点位置となるようにフォーカス光学系2が制御される。
上述した実施例では,焦点位置の変動量を考慮しない焦点位置を基準として,焦点位置の変動量を加算(減算)した焦点位置となるようにフォーカス光学系2およびマスタ光学系10を用いて調整しているが,焦点位置の変動量を加算(減算)した後の焦点位置を基準として,焦点位置の変動量を加算(減算)した焦点位置としてもよい。たとえば,図7を参照して,ズーム倍率がZ2に設定された場合には,焦点位置の変動量はV2であるので,焦点位置の変動量を考慮しない場合に算出される焦点位置から変動量V2だけ焦点位置が調整されるように,フォーカス光学系2およびマスタ光学系10が制御されるが,ズーム倍率がZ2からZ3に変更された場合には焦点位置の変動量の差分であるV3-V2だけ焦点位置を調整すればよいこととなるので,その調整量は少ないことがある。そのような場合には,マスタ光学系10のみを利用するようにしてもよい。正確に微調整できるようになる。
また,各ズーム倍率または絞り値での焦点位置を測定する校正モードのようなルーチンを行なうことで,現在の変動量を確認できる。すでに記憶されている変動量(初期値の変動量)と現在の変動量とを比較することで,現在のテレビ・カメラ用レンズ1の駆動状態を診断できる。往復動作での補正量を記憶するシステムではフォーカス光学系2およびマスタ光学系10のヒステリシス特性を比較することができるので,カムによるがたつき量を定量的に捉えることができる。さらに,初期値の変動量と現在の変動量との差分がしきい値を超えた場合には故障と判断するなど,テレビ・カメラ用レンズ1の故障判断にも使用できる。
1 テレビ・カメラ用レンズ(レンズ装置)
2 フォーカス光学系
5 ズーム光学系
6 絞り
40 制御回路(調整制御手段)
42 メモリ(記憶部)
51 レンズ
52 レンズ固定枠
56 レンズ保持枠
2 フォーカス光学系
5 ズーム光学系
6 絞り
40 制御回路(調整制御手段)
42 メモリ(記憶部)
51 レンズ
52 レンズ固定枠
56 レンズ保持枠
Claims (11)
- 複数のレンズ,
上記複数のレンズに含まれている1つ以上のレンズを,上記複数のレンズの光軸方向に移動させるレンズ移動機構,
上記複数のレンズの光軸方向の複数の位置と,上記複数の位置の各々に対応する複数の回転角度とを記憶する記憶部,および
上記複数のレンズに含まれている少なくとも1つのレンズを,上記記憶部に記憶された複数の回転角度うち,上記レンズ移動機構によって移動させられるレンズの光軸方向の位置に対応する回転角度で,上記レンズの光軸を中心に回転させる,上記レンズ移動機構と独立に駆動可能なレンズ回転機構,
を備えたレンズ装置。 - 上記レンズ回転機構により回転させる上記少なくとも1つのレンズは,上記複数のレンズのうち,光軸と直交し上記光軸を中心とする円周方向において,レンズの表面形状および屈折率の少なくとも1つが相対的に不均一なレンズである,
請求項1に記載のレンズ装置。 - 上記レンズ回転機構により回転させられる上記少なくとも1つのレンズは,上記複数のレンズのうち,光学感度が相対的に低いレンズである,
請求項1に記載のレンズ装置。 - 上記レンズ装置には,ズーム光学系が含まれており,
上記レンズ移動機構により移動させられるレンズは,上記ズーム光学系に含まれているレンズである,
請求項1から3のうち,いずれか一項に記載のレンズ装置。 - 上記複数のレンズには,第1の移動単位で移動させられることによって焦点位置を調整するフォーカス光学系,上記フォーカス光学系の移動単位よりも細かい第2の移動単位で移動させられることによって焦点位置を調整するマスタ光学系,およびズーム倍率を変更するズーム光学系が含まれており,
入射光量を制限する絞り,ならびに
上記ズーム光学系のズーム倍率または上記絞りの絞り値に対応してあらかじめ定められている焦点位置の変動量にしたがって,上記フォーカス光学系による焦点位置の調整および上記マスタ光学系による焦点位置の調整の少なくとも一方を行わせる調整制御手段,
をさらに備えた請求項1から4のうち,いずれか一項に記載のレンズ装置。 - 上記焦点位置の調整量を記憶するメモリ,
をさらに備えた請求項5に記載のレンズ装置。 - 上記調整制御手段による上記焦点位置の調整は,
ズーム倍率がテレ端ではフォーカス光学系の移動により焦点位置の調整のみとし,ズーム倍率がワイド端では,マスタ光学系の移動による焦点位置の調整のみとするものである,
請求項5または6に記載のレンズ装置。 - 上記焦点位置の変動量は,
フォーカス光学系の移動による焦点位置の調整量がテレ端に近いほど多くワイド端に近いほど少なく,マスタ光学系の移動による焦点位置の調整量がワイド端に近いほど多くテレ端に近いほど少ないものである,
請求項5から7のうち,いずれか一項に記載のレンズ装置。 - 上記焦点位置の変動量は,
絞りの開口が最小の絞り値の場合にはフォーカス光学系の移動による焦点位置の調整のみとし,絞りの開口が最大の絞り値の場合にはマスタ光学系の移動による焦点位置の調整のみとするものである,
請求項5から8のうち,いずれか一項に記載のレンズ装置。 - 上記焦点位置の変動量は,
フォーカス光学系の移動による焦点位置の調整量が,絞りの開口が最小に近い絞り値ほど多く,絞りの開口が最大に近い絞り値ほど少なく,マスタ光学系の移動による焦点位置の調整量が,絞りの開口が最大に近いほど多く,絞りの開口が最小に近いほど少ないものである,
請求項5から9のうち,いずれか一項に記載のレンズ装置。 - 複数のレンズを備えたレンズ装置の補正方法において,
レンズ移動機構が,上記複数のレンズに含まれている1つ以上のレンズを,上記複数のレンズの光軸方向に移動させ,
記憶部が,上記複数のレンズの光軸方向の複数の位置と,上記複数の位置の各々に対応する複数の回転角度とを記憶し,
レンズ回転機構が上記レンズ移動機構と独立に駆動可能であり,上記複数のレンズに含まれている少なくとも1つのレンズを,上記記憶部に記憶された複数の回転角度うち,上記レンズ移動機構によって移動させられるレンズの光軸方向の位置に対応する回転角度で,上記レンズの光軸を中心に回転させる,
レンズ装置の補正方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580015147.0A CN106104350B (zh) | 2014-03-28 | 2015-02-24 | 透镜装置及透镜装置的校正方法 |
JP2016510142A JP6096377B2 (ja) | 2014-03-28 | 2015-02-24 | レンズ装置およびレンズ装置の補正方法 |
US15/228,403 US10088654B2 (en) | 2014-03-28 | 2016-08-04 | Lens device and correction method for lens device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-067470 | 2014-03-28 | ||
JP2014067470 | 2014-03-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/228,403 Continuation US10088654B2 (en) | 2014-03-28 | 2016-08-04 | Lens device and correction method for lens device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015146419A1 true WO2015146419A1 (ja) | 2015-10-01 |
Family
ID=54194954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055108 WO2015146419A1 (ja) | 2014-03-28 | 2015-02-24 | レンズ装置およびレンズ装置の補正方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10088654B2 (ja) |
JP (1) | JP6096377B2 (ja) |
CN (1) | CN106104350B (ja) |
WO (1) | WO2015146419A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016099605A (ja) * | 2014-11-26 | 2016-05-30 | オリンパス株式会社 | 光学機器およびレンズ制御方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106104350B (zh) * | 2014-03-28 | 2019-01-18 | 富士胶片株式会社 | 透镜装置及透镜装置的校正方法 |
JP7202066B2 (ja) * | 2017-10-19 | 2023-01-11 | 株式会社ミツトヨ | 焦点距離可変レンズ装置 |
CN115097590B (zh) * | 2022-05-30 | 2024-02-02 | 昆明北方红外技术股份有限公司 | 红外光学系统变焦导向驱动机构及控制方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0935322A (ja) * | 1995-07-11 | 1997-02-07 | Nec Corp | 光ヘッド |
JPH09184951A (ja) * | 1995-12-28 | 1997-07-15 | Canon Inc | スリット露光装置、スリット露光光学系調整方法、及び画像記録装置 |
JPH10186209A (ja) * | 1996-12-25 | 1998-07-14 | Fuji Photo Optical Co Ltd | レンズの焦点補正方法及び装置 |
JPH1123944A (ja) * | 1997-07-01 | 1999-01-29 | Sony Corp | フオーカス調整方法 |
JP2006064986A (ja) * | 2004-08-26 | 2006-03-09 | Canon Inc | 画像記録装置、その制御方法、並びにプログラム及び記憶媒体 |
JP2007080318A (ja) * | 2005-09-12 | 2007-03-29 | Enplas Corp | 光学素子の固定構造および固定方法 |
JP2010152168A (ja) * | 2008-12-25 | 2010-07-08 | Nikon Corp | 光学装置、光学装置の製造方法、光学装置の調整方法、及び撮影装置 |
JP2010237250A (ja) * | 2009-03-30 | 2010-10-21 | Canon Inc | 撮像装置 |
JP2014044319A (ja) * | 2012-08-27 | 2014-03-13 | Nikon Corp | 可変焦点距離レンズ、撮像装置、可変焦点距離レンズの調整方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4733945A (en) * | 1986-01-15 | 1988-03-29 | The Perkin-Elmer Corporation | Precision lens mounting |
JP3206840B2 (ja) * | 1992-12-09 | 2001-09-10 | 富士写真光機株式会社 | レンズ偏心調整方法及びレンズ装置 |
JP4669170B2 (ja) | 2001-08-10 | 2011-04-13 | キヤノン株式会社 | ズームレンズ制御装置、ズームレンズ制御方法、及びプログラム |
JP4208589B2 (ja) | 2003-01-31 | 2009-01-14 | キヤノン株式会社 | 光学機器 |
JP5816390B2 (ja) * | 2013-03-13 | 2015-11-18 | 富士フイルム株式会社 | レンズ装置およびその動作制御方法 |
CN106104350B (zh) * | 2014-03-28 | 2019-01-18 | 富士胶片株式会社 | 透镜装置及透镜装置的校正方法 |
JP5969728B2 (ja) * | 2014-03-31 | 2016-08-17 | 富士フイルム株式会社 | ズームレンズ装置およびその制御方法 |
-
2015
- 2015-02-24 CN CN201580015147.0A patent/CN106104350B/zh active Active
- 2015-02-24 WO PCT/JP2015/055108 patent/WO2015146419A1/ja active Application Filing
- 2015-02-24 JP JP2016510142A patent/JP6096377B2/ja active Active
-
2016
- 2016-08-04 US US15/228,403 patent/US10088654B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0935322A (ja) * | 1995-07-11 | 1997-02-07 | Nec Corp | 光ヘッド |
JPH09184951A (ja) * | 1995-12-28 | 1997-07-15 | Canon Inc | スリット露光装置、スリット露光光学系調整方法、及び画像記録装置 |
JPH10186209A (ja) * | 1996-12-25 | 1998-07-14 | Fuji Photo Optical Co Ltd | レンズの焦点補正方法及び装置 |
JPH1123944A (ja) * | 1997-07-01 | 1999-01-29 | Sony Corp | フオーカス調整方法 |
JP2006064986A (ja) * | 2004-08-26 | 2006-03-09 | Canon Inc | 画像記録装置、その制御方法、並びにプログラム及び記憶媒体 |
JP2007080318A (ja) * | 2005-09-12 | 2007-03-29 | Enplas Corp | 光学素子の固定構造および固定方法 |
JP2010152168A (ja) * | 2008-12-25 | 2010-07-08 | Nikon Corp | 光学装置、光学装置の製造方法、光学装置の調整方法、及び撮影装置 |
JP2010237250A (ja) * | 2009-03-30 | 2010-10-21 | Canon Inc | 撮像装置 |
JP2014044319A (ja) * | 2012-08-27 | 2014-03-13 | Nikon Corp | 可変焦点距離レンズ、撮像装置、可変焦点距離レンズの調整方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016099605A (ja) * | 2014-11-26 | 2016-05-30 | オリンパス株式会社 | 光学機器およびレンズ制御方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106104350B (zh) | 2019-01-18 |
CN106104350A (zh) | 2016-11-09 |
US10088654B2 (en) | 2018-10-02 |
JP6096377B2 (ja) | 2017-03-15 |
JPWO2015146419A1 (ja) | 2017-04-13 |
US20160341941A1 (en) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5995521B2 (ja) | レンズ鏡筒およびカメラシステム | |
US9509943B2 (en) | Lens apparatus and a camera system | |
US10425571B2 (en) | Focusing and image pickup apparatus, storage medium, and method for controlling positioning of a focus lens | |
JP6096377B2 (ja) | レンズ装置およびレンズ装置の補正方法 | |
US20110032615A1 (en) | Lens barrel, method of adjusting lens barrel, method of manufacturing lens barrel and imaging device | |
US8320755B2 (en) | Autofocusing zoom lens | |
US10165188B2 (en) | Optical apparatus, display controlling method, and non-transitory computer readable storage medium storing a program, that display object distance information | |
US8860827B2 (en) | Zoom lens apparatus and image pickup system having an image stabilzer with a lens positional deviation control, and operation unit thereof | |
US10473883B2 (en) | Variable magnification optical system and control method thereof | |
JP2773310B2 (ja) | ピント調整手段を有したズームレンズ | |
JP5969728B2 (ja) | ズームレンズ装置およびその制御方法 | |
US9571825B2 (en) | Lens apparatus and method of controlling operation of same | |
WO2015146420A1 (ja) | レンズ装置および焦点位置調整方法 | |
US11394867B2 (en) | Lens apparatus, camera, and non-transitory computer-readable storage medium | |
US20160282613A1 (en) | Zoom lens apparatus and method of controlling same | |
US20160150150A1 (en) | Focus detection apparatus and control method for the same | |
JP2017106954A (ja) | レンズ装置、カメラ本体および光学機器 | |
US20190369354A1 (en) | Lens apparatus, imaging apparatus, and imaging system | |
US9720206B2 (en) | Lens apparatus having magnification variator configured to move during magnification varying and image pickup apparatus having the same | |
JP2015175863A (ja) | 位置制御方法および光学機器 | |
US11454788B2 (en) | Optical apparatus, control method, and storage medium | |
JP2011137928A (ja) | 光学機器 | |
JP2016157036A (ja) | レンズ位置制御装置を有する光学装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15769018 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016510142 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 15769018 Country of ref document: EP Kind code of ref document: A1 |