WO2015146170A1 - 水素製造システム及び水素製造方法 - Google Patents

水素製造システム及び水素製造方法 Download PDF

Info

Publication number
WO2015146170A1
WO2015146170A1 PCT/JP2015/001706 JP2015001706W WO2015146170A1 WO 2015146170 A1 WO2015146170 A1 WO 2015146170A1 JP 2015001706 W JP2015001706 W JP 2015001706W WO 2015146170 A1 WO2015146170 A1 WO 2015146170A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
dehydrogenation
temperature
generation unit
hydrogen
Prior art date
Application number
PCT/JP2015/001706
Other languages
English (en)
French (fr)
Inventor
修 池田
智之 三栗谷
俊樹 古川
雄飛 尾▲崎▼
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to CA2941705A priority Critical patent/CA2941705C/en
Priority to KR1020167029859A priority patent/KR102313014B1/ko
Priority to EP15767992.9A priority patent/EP3124432B1/en
Priority to US15/125,272 priority patent/US10167777B2/en
Publication of WO2015146170A1 publication Critical patent/WO2015146170A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K5/00Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type
    • F01K5/02Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type used in regenerative installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a hydrogen production system and a hydrogen production method for producing hydrogen by dehydrogenation of an organic hydride, and more particularly to utilization of a heat source required for a dehydrogenation reaction.
  • the dehydrogenation reaction for generating hydrogen from the organic hydride is an endothermic reaction.
  • a reaction heat of about 205 kJ / mol is required.
  • the reaction heat of this dehydrogenation reaction can be supplemented by the combustion heat of fossil fuels, there is a technology that effectively uses exhaust heat as a heat source for the dehydrogenation reaction due to the recent demand for carbon dioxide emission reduction. Has been developed.
  • Patent Document 1 has a large temperature difference between an appropriate temperature range for dehydrogenation (eg, 350 ° C. to 380 ° C.) and the temperature of exhaust gas used as a heat source (about 550 ° C.). Moreover, since heat transfer efficiency is relatively small in heat exchange using exhaust gas, it has been difficult to stably control the temperature of the dehydrogenation reaction to be in an appropriate temperature range. Therefore, for example, when the temperature of the dehydrogenation reaction is excessively increased, coking or the like, which is the main cause of deterioration of the dehydrogenation catalyst, occurs, or byproducts such as benzene increase (that is, the selectivity of the product decreases). There was a risk of inconveniences such as
  • the present invention was devised in view of such problems of the prior art, and when using the exhaust gas of power generation as a heat source for the dehydrogenation reaction, the temperature of the dehydrogenation reaction is controlled within an appropriate range, It is a main object to provide a hydrogen production system and a hydrogen production method that enable efficient and stable hydrogen production by suppressing degradation of a dehydrogenation catalyst and a decrease in selectivity in a dehydrogenation reaction.
  • the hydrogen production system (1) is generated by dehydrogenation reactor (51) for generating hydrogen from organic hydride by dehydrogenation reaction in the presence of a dehydrogenation catalyst, and by combustion of fuel.
  • a first power generation unit (2) that generates power based on the energy of the combustion gas that is generated
  • an exhaust heat recovery unit (3) that recovers heat of the exhaust gas discharged from the first power generation unit
  • the exhaust heat recovery unit A heat exchanger (21) for exchanging heat between the exhaust gas and the heat medium, and introducing the heat medium heated by the heat exchanger into the dehydrogenation reactor in a liquid state, and the dehydrogenation reaction
  • a circulation line (L1 to L3) for returning the heat medium discharged from the apparatus to the heat exchanger, and the introduction temperature of the heat medium introduced into the dehydrogenation reactor is in the range of 352 ° C to 392 ° C
  • the discharge temperature of the heat medium discharged from the dehydrogenation reactor is in the range of 337 ° C. to 367 ° C.
  • the hydrogen production system in a configuration in which the exhaust gas from power generation is used as a heat source for the dehydrogenation reaction, a heat medium (liquid state) having higher heat transfer efficiency than the exhaust gas is used as the heat source for the dehydrogenation reaction, and Since the inlet temperature and outlet temperature of the heat medium at the time of introduction into the dehydrogenation reactor and at the time of discharge from the dehydrogenation reactor, and the temperature difference between them are set within an appropriate range, the temperature of the dehydrogenation reaction is within an appropriate range. Therefore, it is possible to efficiently and stably produce hydrogen by suppressing degradation of the dehydrogenation catalyst and a decrease in selectivity in the dehydrogenation reaction.
  • the exhaust heat recovery unit further includes at least one steam generation unit (22, 23) that generates steam using heat of the exhaust gas. It is characterized by that.
  • the heat of the exhaust gas can be used more effectively by generating steam using the heat of the exhaust gas from the first power generation unit.
  • the third aspect of the present invention relates to the first or second aspect, wherein the steam generation unit includes a high-pressure steam generation unit (22) that generates high-pressure steam at a higher pressure, and a low-pressure steam at a lower pressure. And a second power generation unit (4) for generating power based on the energy of the high-pressure steam and the low-pressure steam.
  • the steam generation unit includes a high-pressure steam generation unit (22) that generates high-pressure steam at a higher pressure, and a low-pressure steam at a lower pressure.
  • a second power generation unit (4) for generating power based on the energy of the high-pressure steam and the low-pressure steam.
  • the heat of the exhaust gas can be used more effectively by generating high-pressure and low-pressure steam using the heat of the exhaust gas from the first power generation unit.
  • the degree of freedom in using the generated steam is also increased.
  • the first power generation unit has a combustor (12) for combusting the fuel, and the steam is introduced into the combustor. It is characterized by that.
  • high-pressure steam generated using the heat of the exhaust gas from the first power generation unit is introduced into the combustor, thereby suppressing the generation of nitrogen oxides in the combustor. Is possible.
  • the fifth aspect of the present invention relates to any one of the first to fourth aspects, further comprising a heating device (54) for heating at least a part of the heat medium flowing through the circulation line. To do.
  • the temperature of the heat medium introduced into the dehydrogenation reaction apparatus can be easily adjusted to an appropriate range, and within the range.
  • the temperature of the heat medium in step it is possible to increase or decrease the amount of hydrogen generated in the dehydrogenation reactor by changing the temperature of the dehydrogenation reaction.
  • the sixth aspect of the present invention relates to any one of the first to fifth aspects, wherein the fuel contains hydrogen produced in the dehydrogenation reactor.
  • hydrogen generated by the dehydrogenation of organic hydride can be effectively used as a fuel for power generation, and the supply balance with other hydrogen customers can be further stabilized. .
  • the seventh aspect of the present invention relates to the second or third aspect, wherein the steam generation unit includes an evaporator (32) that vaporizes water and a superheater (33) that superheats the vaporized water, While the evaporator is disposed on the downstream side of the heat exchanger, the superheater is disposed on the upstream side of the heat exchanger.
  • the steam generation unit includes an evaporator (32) that vaporizes water and a superheater (33) that superheats the vaporized water, While the evaporator is disposed on the downstream side of the heat exchanger, the superheater is disposed on the upstream side of the heat exchanger.
  • the hydrogen production system according to the seventh aspect has the advantage that the temperature of the generated steam can be increased and the degree of freedom of use of the steam is increased.
  • the hydrogen production method includes a dehydrogenation reaction step of generating hydrogen from an organic hydride by a dehydrogenation reaction in the presence of a dehydrogenation catalyst, and energy of combustion gas generated by fuel combustion.
  • a first power generation step for generating power based on the heat
  • a heat recovery step for recovering heat of the exhaust gas discharged in the first power generation step
  • heat for exchanging heat between the exhaust gas and the heat medium in the heat recovery step.
  • the heat medium heated in the heat exchange step is used in a liquid state as a heat source for the dehydrogenation reaction, and the heat medium after being used Is reheated in the heat exchange step, and the temperature before use of the heat medium in the dehydrogenation reaction step is in the range of 352 ° C. to 392 ° C., and after the use of the heat medium in the dehydrogenation reaction step Warm Is in the range of 337 ° C. to 367 ° C., and the temperature difference of the heating medium before and after use is in the range of 10 ° C. to 50 ° C., preferably 20 ° C. to 40 ° C. And
  • the temperature of the dehydrogenation reaction is controlled to an appropriate range, and the deterioration of the dehydrogenation catalyst, the decrease in selectivity, etc. are suppressed.
  • efficient and stable hydrogen production can be performed.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a hydrogen production system 1 according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram showing a detailed configuration of an exhaust heat recovery unit 3 in FIG.
  • the hydrogen production system 1 is discharged from a gas turbine power generation unit (first power generation unit) 2 that generates power based on the energy of combustion gas generated by fuel combustion, and the gas turbine power generation unit 2.
  • the exhaust heat recovery unit 3 that recovers the heat of the exhaust gas
  • the steam power generation unit (second power generation unit) 4 that generates power based on the energy of the steam generated in the exhaust heat recovery unit 3, and the exhaust heat recovery unit 3
  • a liquid heat medium here, hot oil
  • it mainly includes a hydrogen generation unit 5 that generates hydrogen by a dehydrogenation reaction of an organic hydride in the presence of a dehydrogenation catalyst.
  • a compressor 11 that compresses combustion air supplied from the outside and a fuel supplied from the outside are burned using the compressed air from the compressor 11, so Are provided with a combustor 12 that generates the combustion gas, a gas turbine 13 that is rotationally driven by the combustion gas, and a generator 14 that is coupled to the gas turbine 13.
  • the gas turbine power generation unit 2 by rotating the impeller (not shown) of the gas turbine 13 by the combustion gas generated in the combustor 12, the energy of the combustion gas is converted into the rotational energy of the impeller, and further, the gas The rotational energy of the impeller of the turbine 13 is converted into electric power by the generator 14 (first power generation step).
  • the fuel used in the combustor 12 is natural gas or a mixture of natural gas and hydrogen in a predetermined ratio.
  • the high-temperature and high-pressure exhaust gas discharged from the gas turbine 13 is supplied to the exhaust heat recovery unit 3.
  • the exhaust heat recovery unit 3 uses a hot oil heater (heat exchanger) 21 that heats hot oil by using high-temperature exhaust gas introduced from the gas turbine 13, and relatively A high-pressure steam generation unit 22 that generates high-pressure steam at high pressure (here, about 30.9 barA) and a low-pressure steam generation unit 23 that generates low-pressure steam at a relatively low pressure (here, about 3.2 barA) are provided.
  • Table 1 shows a material balance and a heat balance in the exhaust heat recovery unit 3.
  • the column (i)-(ix) in Table 1 shows the numerical values at each position of the exhaust heat recovery unit 3 with the same numbers (i)-(ix) in FIG.
  • the hot oil heater 21 is disposed in the uppermost stream in the exhaust heat recovery unit 3 (that is, the portion through which the hottest exhaust gas flows), and circulates between the hydrogen generation unit 5 and the exhaust heat recovery unit 3 described in detail later. By performing heat exchange between the oil and the exhaust gas, the hot oil is heated so that the temperature of the hot oil falls within a predetermined temperature range.
  • the hot oil heater 21 may employ a heat exchanger having a known configuration such as a fin tube heat exchanger.
  • the amount of exhaust gas introduced into the hot oil heater 21 is about 346 t / hr.
  • the high temperature (here, about 556 ° C.) exhaust gas introduced into the hot oil heater 21 is directed to the high pressure steam generation unit 22 as a lower temperature (here, about 370 ° C.) exhaust gas after heat exchange with the hot oil. Flowing.
  • the amount of hot oil introduced into the hot oil heater 21 is about 972 t / hr.
  • the hot oil introduced into the hot oil heater 21 at a lower temperature (here, about 352 ° C.) is subjected to heat exchange with the exhaust gas, and then the hydrogen generation unit 5 (hot) as hot oil at a higher temperature (here, about 382 ° C.). It is sent out toward the oil header 52).
  • the hot oil is composed of a mixture of diphenyl oxide and biphenyl, and has good chemical stability under the temperature conditions used as a heat source for the dehydrogenation reaction described in detail later. As long as it is (that is, at least not substantially vaporized), a heat medium (such as a synthetic heat medium) composed of other well-known components can be used.
  • a heat medium such as a synthetic heat medium
  • the high-pressure steam generation unit 22 is disposed downstream of the hot oil heater 21 in the exhaust heat recovery unit 3 and generates high-pressure steam using the heat of the exhaust gas that has passed through the hot oil heater 21.
  • the high pressure steam generation unit 22 includes an economizer (preheater) 31 that preheats high pressure feed water for steam generation, an evaporator (evaporator) 32 that vaporizes the preheated high pressure feed water, and a super heater that superheats the vaporized high pressure feed water. (Superheater) 33 is provided in order from the downstream side in the exhaust gas flow.
  • the exhaust gas of about 370 ° C. introduced into the high pressure steam generation unit 22 flows toward the low pressure steam generation unit 23 as a lower temperature exhaust gas after heating the high pressure feed water.
  • the amount of high-pressure water supplied to the high-pressure steam generation unit 22 is about 20 t / hr.
  • the high-pressure feed water having a relatively low temperature here, about 121 ° C.
  • the high-pressure steam sent to the gas turbine power generation unit 2 is injected into the combustion chamber for cooling the flame peak temperature of the combustor 12. Thereby, the combustion temperature in the combustor 12 can be lowered, and the generation of nitrogen oxides (NOx) can be reduced.
  • NOx nitrogen oxides
  • the low-pressure steam generation unit 23 is disposed on the downstream side (that is, the most downstream side) of the high-pressure steam generation unit 22 in the exhaust heat recovery unit 3 and generates low-pressure steam by the heat of the exhaust gas that has passed through the high-pressure steam generation unit 22.
  • the low-pressure steam generation unit 23 is provided with an evaporator 35 that vaporizes the low-pressure feed water and a super heater 36 that superheats the vaporized low-pressure feed water from the downstream side in the exhaust gas flow.
  • the exhaust gas introduced into the low-pressure steam generating unit 23 is heated to the low-pressure feed water and then sent to the outside as a lower-temperature exhaust gas, and finally enters the atmosphere from the chimney 37 (see FIG. 1). Released.
  • the amount of low-pressure water supplied to the low-pressure steam generating unit 23 is about 13 t / hr.
  • the relatively low-temperature (here, about 120 ° C.) low-pressure feed water is heated by the exhaust gas, and then sent to the steam power generation unit 4 as higher-temperature (here, about 175 ° C.) low-pressure steam.
  • heat exchange between the exhaust gas and the heat medium is performed in the hot oil heater 21 (heat exchange process), and the heat of the exhaust gas after the heat exchange is the high pressure in the high-pressure steam generation unit 22.
  • heat exchange process By being used for generation of steam (high-pressure steam generation process) and generation of low-pressure steam in the low-pressure steam generation unit 23 (low-pressure steam generation process), heat recovery of exhaust gas discharged from the gas turbine power generation unit 2 is performed. (Heat exchange process).
  • the configuration of the exhaust heat recovery unit 3 is not limited to that shown here, and various changes can be made.
  • the super heater 33 in the high-pressure steam generation unit 22 can be disposed on the upstream side of the hot oil heater 21.
  • the super heater 36 of the low-pressure steam generating unit 23 can be arranged upstream of the hot oil heater 21.
  • the steam power generation unit 4 includes a steam turbine 41 driven by steam, a generator 42 connected to the steam turbine 41, a condenser 43 that cools and condenses exhaust steam discharged from the steam turbine 41, and Is provided.
  • an impeller (not shown) of the steam turbine 41 is rotated by high-pressure steam and low-pressure steam introduced from the exhaust heat recovery unit 3 to the high-pressure stage and the low-pressure stage of the steam turbine 41, respectively.
  • the energy of the steam is converted into the rotational energy of the impeller, and the rotational energy of the impeller of the steam turbine 41 is further converted into electric power by the generator 42 (second power generation step).
  • the steam discharged from the steam turbine 41 is condensed in the condenser 43, and the water generated therein is circulated to the exhaust heat recovery unit 3 and used as low-pressure feed water and high-pressure feed water.
  • the steam generated in the exhaust heat recovery unit 3 is used in the steam power generation unit 4 (steam turbine 41).
  • steam is used for other well-known purposes. May be.
  • the hydrogen generation unit 5 is provided with a dehydrogenation reaction device 51 that generates hydrogen by dehydrogenation of organic hydride based on the organic chemical hydride method.
  • the hydrogen generation unit 5 includes heat medium introduction lines L1a and L1b for introducing hot oil heated by the hot oil heater 21 into the dehydrogenation reaction device 51 as a heat source for the dehydrogenation reaction, and a dehydrogenation reaction device 51.
  • Heat medium discharge lines L2a and L2b for returning hot oil discharged from the hot oil heater 21 to the hot oil heater 21 are provided.
  • An introduction-side hot oil header 52 is provided between the heat medium introduction lines L1a and L1b, and a discharge-side hot oil header 53 is provided between the heat medium discharge lines L2a and L2b.
  • the connecting line L3 connecting the discharge side hot oil header 53 and the introduction side hot oil header 52 is provided with a heating furnace (heating device) 54 for reheating the hot oil from the heat medium discharge line L2b.
  • a heating furnace heating device
  • Each line L1a, L1b, L2a, L2b, L3 provided in the hydrogen generation unit 5 is provided with a pipeline, a valve, a pump, and the like (details not shown) for transporting hot oil.
  • a circulation line that circulates between the hot oil heater 21 and the dehydrogenation reactor 51 is configured.
  • the dehydrogenation reactor 51 generates hydrogen and an aromatic compound (here, toluene) from an organic hydride (here, methylcyclohexane (hereinafter referred to as “MCH”)) by a dehydrogenation reaction in the presence of a dehydrogenation catalyst. (Dehydrogenation reaction step).
  • the dehydrogenation reactor 51 is a heat exchange type fixed-bed multitubular reactor, and has a known configuration in which a plurality of reaction tubes filled with a dehydrogenation catalyst (solid catalyst) are accommodated in a shell. is doing.
  • MCH supplied to each reaction tube of the dehydrogenation reaction device 51 from an unshown MCH storage facility (storage tank or the like) flows while contacting the catalyst. Hot oil is supplied to the shell from the heat medium introduction lines L1a and L1b, whereby heat exchange is performed with the reaction tube, and the MCH and the dehydrogenation catalyst are heated.
  • hydrogen and toluene are produced from MCH (C7H14) by a dehydrogenation reaction based on the following chemical reaction formula (1).
  • the reaction from MCH to toluene and hydrogen is preferably performed under conditions of high temperature and low pressure in terms of chemical equilibrium.
  • the reaction temperature is usually the highest at the inlet side temperature of the reaction vessel (temperature of the reactant supply port) and then proceeds to the outlet side of the reaction vessel (that is, the endothermic reaction advances). Therefore, the outlet temperature of the reaction container (the temperature of the product outlet) is lower than the inlet temperature.
  • the temperature of the dehydrogenation reaction is controlled within a range of about 350 ° C. to 380 ° C. Thereby, the favorable conversion rate and selectivity in a dehydrogenation reaction can be maintained.
  • the reaction pressure for the dehydrogenation reaction is in the range of 0.1 MPaG to 1.0 MPaG.
  • the liquid space velocity (LHSV) of MCH is in the range of 0.5h-1 to 5h-1, although it depends on the activity of the catalyst.
  • the temperature of the dehydrogenation reaction in the dehydrogenation reactor 51 is controlled by the temperature and flow rate of the hot oil introduced.
  • the heat medium discharge line L2a is provided with a temperature detector 61 for detecting the temperature of the hot oil discharged from the dehydrogenation reaction device 51, and the heat medium introduction line L1b has a temperature detector 61.
  • a flow rate adjustment valve 62 for adjusting the flow rate of hot oil introduced into the dehydrogenation reactor 51 is provided.
  • the heating of the hot oil in the exhaust heat recovery unit 3 is controlled so that the introduction temperature of the hot oil introduced into the dehydrogenation reactor 51 from the heat medium introduction line L1b is within the range of 352 ° C to 392 ° C. Is done. More preferably, the temperature of the hot oil is controlled to be in the range of 365 ° C to 385 ° C. When the temperature is 352 ° C. or lower, the reaction does not proceed in a balanced manner, which is disadvantageous for heat exchange efficiency. On the other hand, when the temperature is 392 ° C. or higher, the heat medium is easily pyrolyzed and does not perform a desired function.
  • the heat transfer coefficient and the heat capacity are higher than those of the exhaust gas, and the exhaust gas from the gas turbine power generation unit 2 is directly introduced into the dehydrogenation reactor 51.
  • the heat transfer efficiency to the reaction vessel can be improved.
  • the heat transfer area for the reaction vessel of the dehydrogenation reactor 51 can be reduced and the amount of dehydrogenation catalyst used can be reduced compared to the case of exhaust gas.
  • the heat transfer coefficient on the outer surface of the heat transfer tube can be improved by about 5 times, and the heat transfer area can be reduced by nearly 50%.
  • the introduction temperature to the dehydrogenation reactor 51 can be lowered compared to the case of exhaust gas (need to be about 500 ° C. or higher), and a high-temperature heat medium It is possible to suppress adverse effects on the reactor or the like due to the introduction of (such as a decrease in the activity of the catalyst).
  • the flow rate of the hot oil by the flow rate adjusting valve 62 is such that the discharge temperature of the hot oil discharged from the dehydrogenation reaction device 51 (here, the detection value of the temperature detector 61) is in the range of 337 ° C. to 367 ° C. It is controlled to become. More preferably, the hot oil temperature is controlled to be within a range of 347 ° C to 357 ° C.
  • the temperature difference between the hot oil introduced into the dehydrogenation reactor 51 and the hot oil discharged from the dehydrogenation reactor 51 is in the range of 10 ° C. to 50 ° C., preferably 20 ° C. to 40 ° C. Need to be controlled. More preferably, the temperature difference is controlled to be within a range of 25 ° C. to 35 ° C. If the temperature difference is 10 ° C or less, a very large amount of hot oil flow is required. On the other hand, when the temperature difference is 50 ° C. or more, heat input does not proceed, resulting in an increase in the reactor volume. Incidentally, in the case of the present invention, the temperature difference can be reduced to about half compared with the prior art.
  • the heating furnace 54 heats hot oil circulating in the heating coil by the combustion heat of a predetermined fuel.
  • the temperature of the hot oil introduced into the dehydrogenation reactor 51 can be easily adjusted to an appropriate range, and the temperature of the hot oil can be increased or decreased within the range.
  • the means for heating the hot oil is not limited to the heating furnace 54 shown here, and any other known heating device can be employed as long as at least the hot oil can be heated to a desired temperature.
  • the hydrogen produced in the dehydrogenation reactor 51 is sent to a hydrogen demand destination such as a city via the first hydrogen supply line L5. Further, a part of the hydrogen is sent to the gas turbine power generation unit 2 side via the second hydrogen supply line L6 branched from the first hydrogen supply line L5 and mixed with natural gas, or separately in the combustor. Used as 12 fuels. In this way, by using the hydrogen generated in the dehydrogenation reactor 51 as a fuel for power generation (hydrogen cogeneration), it is possible to effectively use the hydrogen and receive it from other hydrogen customers. The balance can be further stabilized.
  • the toluene produced in the dehydrogenation reactor 51 is separated from hydrogen and then stored in a toluene storage facility (storage tank or the like).
  • the stored toluene is supplied to a hydrogenation device (not shown) and can be used as a reaction product of a hydrogenation reaction for generating MCH.
  • the organic hydride used in the dehydrogenation reaction is not limited to MCH, but a monocyclic organic hydride such as cyclohexane, a bicyclic organic hydride such as tetralin, decalin, or methyldecalin, or tetradecahydroanthracene. Etc., such as a tricyclic organic hydride, etc., or a mixture of two or more thereof.
  • the temperature of the hot oil introduced into the dehydrogenation reactor 51 can be appropriately changed within the above temperature range depending on the type of organic hydride.
  • the aromatic compound produced by dehydrogenation of the organic hydride is not particularly limited to toluene, and examples thereof include monocyclic aromatic compounds such as benzene and xylene, and bicyclic rings such as naphthalene, tetralin, and methylnaphthalene. It may be a single aromatic compound, a tricyclic aromatic compound such as anthracene, or a mixture of two or more.
  • the dehydrogenation catalyst is made of nickel (Ni), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), and ruthenium (Ru) on a support selected from alumina, silica alumina, and silica.
  • the catalyst is supported on at least one selected active metal, but is not limited to this, and a known catalyst used for organic hydride dehydrogenation can be used.
  • a uniform highly dispersed metal catalyst is effective as the dehydrogenation catalyst.
  • the catalyst metal is supported substantially in accordance with the distribution of sulfur or sulfur compounds by pre-dispersing sulfur or sulfur compounds substantially uniformly over the entire cross section of the catalyst support.
  • the catalytic metal is supported in a substantially uniformly dispersed state over the entire support cross section.
  • the catalyst support is alumina
  • the slurry of aluminum hydroxide produced by neutralization of the aluminum salt is filtered and washed, and the obtained alumina hydrogel is dehydrated and washed, and then at 400 to 800 ° C. for 1 to 6 hours.
  • a porous ⁇ -alumina support obtained by baking to a certain extent is preferred, and furthermore, the pH value of the alumina hydrogel is alternately varied between the alumina hydrogel dissolution pH region and the boehmite gel precipitation pH region, and at least one of them. More preferred is a porous ⁇ -alumina support obtained through a pH swing process in which an alumina hydrogel-forming substance is added to grow crystals of alumina hydrogel upon pH change from one pH region to the other.
  • Such a porous ⁇ -alumina carrier is excellent in that the physical properties of each pellet are stable and there is little variation in physical properties even in the molded alumina pellets with excellent uniformity of pore distribution. ing.
  • the catalyst is excellent in catalytic activity and selectivity, and in addition, the catalyst can exhibit more excellent functions in a long life.
  • the combination of the gas turbine power generation unit 2 that can use hydrogen as a fuel and the hydrogen generation unit 5 effectively eliminates exhaust heat generated by power generation in the hydrogen generation unit 5 based on the organic chemical hydride method. Can be used.
  • hot oil liquid state having higher heat transfer efficiency than the exhaust gas is used as the heat source for the dehydrogenation reaction, and when introduced into the dehydrogenation reactor 51
  • the temperature of the hot oil at the time of discharge from the dehydrogenation reactor 51 and the temperature difference of the hot oil at the time of introduction and discharge are set to an appropriate range, so that the temperature of the dehydrogenation reaction is controlled to an appropriate range.
  • Hydrogen production system Gas turbine power generation unit (first power generation unit) 3 Waste heat recovery unit 4 Steam power generation unit (second power generation unit) 5 Hydrogen generation unit 12 Combustor 21 Hot oil heater (heat exchanger) 22 High pressure steam generation unit 23 Low pressure steam generation unit 31 Economizer (preheater) 32 Evaporator 33 Super heater (superheater) 35 Evaporator 36 Superheater 51 Dehydrogenation reactor 52 Introduction side hot oil header 53 Discharge side hot oil header 54 Heating furnace (heating device) 61 Temperature detector 62 Flow rate adjusting valves L1a, L1b Heat medium introduction line (circulation line) L2a, L2b Heat medium discharge line (circulation line) L3 connection line (circulation line) L5 1st hydrogen supply line L6 2nd hydrogen supply line

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】発電の排ガスを脱水素反応の熱源とする場合に、脱水素反応の温度を適切な範囲に制御し、効率的かつ安定的な水素製造を可能とする。 【解決手段】水素製造システム1が、触媒存在下の脱水素反応によって有機ハイドライドから水素を生成する脱水素反応装置51と、燃焼ガスのエネルギーに基づき発電を行う第1発電ユニット2と、第1発電ユニットの排ガスの熱回収を行う排熱回収ユニット3と、排熱回収ユニットにおいて排ガスと熱媒体との熱交換を行う熱交換器21と、熱交換器で加熱された熱媒体を液体状態で脱水素反応装置に導入し、熱交換器との間で循環させる循環ラインL1~L3とを備え、脱水素反応装置における熱媒体の導入温度は352℃~392℃の範囲内にあり、熱媒体の排出温度は337℃~367℃の範囲内にあり、導入温度と排出温度との温度差が10℃~50℃の範囲内にある構成とする。

Description

水素製造システム及び水素製造方法
 本発明は、有機ハイドライドの脱水素化により水素を製造する水素製造システムおよび水素製造方法に関し、特に、脱水素反応に必要とされる熱源の利用に関する。
 近年、トルエンなどの芳香族化合物を水素化し、有機ハイドライド(水素化芳香族化合物)の状態で水素の貯蔵や輸送を行う有機ケミカルハイドライド法が開発されている。この手法によれば、水素は、その生産地において有機ハイドライドに転換され、有機ハイドライドの形態で輸送される。そして、都市等の水素使用地に隣接したプラントや水素ステーション等において、有機ハイドライドの脱水素反応により水素と芳香族化合物とが生成される。脱水素反応によって生じた化合物は、再び水素生産地に輸送され、水素化反応に利用される。
 一方、上記有機ケミカルハイドライド法において有機ハイドライドから水素を発生させる脱水素反応は吸熱反応であり、例えば、メチルシクロヘキサンから水素を発生させる場合には約205kJ/molの反応熱を必要とする。この脱水素反応の反応熱は、化石燃料の燃焼熱等によっても補うことが可能であるが、近年の炭酸ガスの排出削減の要請から排熱等を脱水素反応の熱源として有効利用する技術が開発されている。
 例えば、脱水素反応器で脱水素触媒の存在下において有機ハイドライドの脱水素反応を行って水素を製造すると共に、その水素を発電装置に燃料として導入するハイブリッド型水素製造・発電システムにおいて、(通常ガスタービンにより構成される)発電装置の高温排ガスから回収される回収熱を、脱水素反応器の脱水素反応に必要な熱として利用する技術が知られている(特許文献1参照)。
特開2012-206909号公報
 しかしながら、上記特許文献1に記載の従来技術では、脱水素反応の適切な温度範囲(例えば、350℃~380℃)と熱源として利用する排ガス等の温度(550℃程度)との温度差が大きく、また、排ガスを用いた熱交換では伝熱効率も比較的小さくなるため、脱水素反応の温度が適切な温度範囲となるように安定的に制御することは容易ではなかった。したがって、例えば、脱水素反応の温度が過度に上昇すると、脱水素触媒の劣化の主因となるコーキング等が発生したり、ベンゼン等の副生成物が増加(すなわち、生成物の選択性が低下)したりするなどの不都合が生じるおそれがあった。
 本発明は、このような従来技術の課題を鑑みて案出されたものであり、発電の排ガスを脱水素反応の熱源として利用する場合に、脱水素反応の温度を適切な範囲に制御し、脱水素触媒の劣化や脱水素反応における選択性の低下等を抑制して効率的かつ安定的な水素製造を可能とする水素製造システム及び水素製造方法を提供することを主目的とする。
 本発明の第1の側面では、水素製造システム(1)が、脱水素触媒の存在下での脱水素反応によって有機ハイドライドから水素を生成する脱水素反応装置(51)と、燃料の燃焼によって発生する燃焼ガスのエネルギーに基づき発電を行う第1発電ユニット(2)と、前記第1発電ユニットから排出される排ガスの熱回収を行う排熱回収ユニット(3)と、前記排熱回収ユニットに設けられ、前記排ガスと熱媒体との熱交換を行う熱交換器(21)と、前記熱交換器で加熱された前記熱媒体を液体状態で前記脱水素反応装置に導入すると共に、前記脱水素反応装置から排出された前記熱媒体を前記熱交換器に戻す循環ライン(L1~L3)とを備え、前記脱水素反応装置に導入される前記熱媒体の導入温度は、352℃~392℃の範囲内にあり、前記脱水素反応装置から排出される前記熱媒体の排出温度は、337℃~367℃の範囲内にあり、前記導入温度と前記排出温度との温度差が10℃~50℃の範囲内にあることを特徴とする。
 この第1の側面による水素製造システムでは、発電の排ガスを脱水素反応の熱源として利用する構成において、排ガスよりも伝熱効率の高い熱媒体(液体状態)を脱水素反応の熱源として用い、かつ、脱水素反応装置への導入時および脱水素反応装置からの排出時の熱媒体の入口温度および出口温度、ならびにそれらの温度差を適切な範囲内に設定したため、脱水素反応の温度を適切な範囲に制御することができ、脱水素触媒の劣化や脱水素反応における選択性の低下等を抑制して効率的かつ安定的な水素製造が可能となる。
 本発明の第2の側面では、上記第1の側面に関し、前記排熱回収ユニットは、前記排ガスの熱を利用して蒸気を発生させる少なくとも1つの蒸気発生ユニット(22、23)を更に備えたことを特徴とする。
 この第2の側面による水素製造システムでは、第1発電ユニットからの排ガスの熱を利用して蒸気を発生させることにより、排ガスの熱をより有効に利用することができる。
 本発明の第3の側面では、上記第1または第2の側面に関し、前記蒸気発生ユニットには、より圧力の高い高圧蒸気を発生させる高圧蒸気発生ユニット(22)と、より圧力の低い低圧蒸気を発生させる低圧蒸気発生ユニット(23)とが含まれ、前記高圧蒸気および前記低圧蒸気のエネルギーに基づき発電を行う第2発電ユニット(4)を更に備えたことを特徴とする。
 この第3の側面による水素製造システムでは、第1発電ユニットからの排ガスの熱を利用して高圧および低圧の蒸気を発生させることにより、排ガスの熱をより有効に利用することができ、また、発生した蒸気の利用の自由度も高まる。
 本発明の第4の側面では、上記第2または第3の側面に関し、前記第1発電ユニットは、前記燃料を燃焼させる燃焼器(12)を有し、前記蒸気が前記燃焼器に導入されることを特徴とする。
 この第4の側面による水素製造システムでは、第1発電ユニットからの排ガスの熱を利用して発生させた高圧蒸気を燃焼器に導入することにより、燃焼器の窒素酸化物の生成を抑制することが可能となる。
 本発明の第5の側面では、上記第1から第4の側面のいずれかに関し、前記循環ラインを流れる前記熱媒体の少なくとも一部を加熱する加熱装置(54)を更に備えたことを特徴とする。
 この第5の側面による水素製造システムでは、熱媒体を再加熱する加熱装置を設けることにより、脱水素反応装置に導入される熱媒体の温度を適切な範囲に容易に調節できると共に、当該範囲内において熱媒体の温度を上下させることにより、脱水素反応の温度を変化させて脱水素反応装置における水素発生量を増減させることが可能となる。また、脱水素反応に用いる排熱を回収するための熱交換器等にトラブルが生じた場合でも、容易にバックアップできるという利点もある。
 本発明の第6の側面では、上記第1から第5の側面のいずれかに関し、前記燃料には、前記脱水素反応装置において生成された水素が含まれることを特徴とする。
 この第6の側面による水素製造システムでは、有機ハイドライドの脱水素によって発生した水素を発電用の燃料として有効利用することができ、他の水素需要先との受給バランスをより安定化させることができる。
 本発明の第7の側面では、上記第2または第3の側面に関し、前記蒸気発生ユニットは、水を気化させる蒸発器(32)および気化した水を過熱する過熱器(33)を含み、前記蒸発器が、前記熱交換器の下流側に配置される一方、前記過熱器が、前記熱交換器の上流側に配置されることを特徴とする。
 この第7の側面による水素製造システムでは、発生する蒸気の温度を高めることができ、蒸気利用の自由度が高まるという利点がある。
 本発明の第8の側面では、水素製造方法が、脱水素触媒の存在下での脱水素反応によって有機ハイドライドから水素を生成する脱水素反応工程と、燃料の燃焼によって発生する燃焼ガスのエネルギーに基づき発電を行う第1発電工程と、前記第1発電工程において排出される排ガスの熱回収を行う排熱回収工程と、前記排熱回収工程において、前記排ガスと熱媒体との熱交換を行う熱交換工程とを有し、前記脱水素反応工程では、前記熱交換工程で加熱された前記熱媒体が液体状態で前記脱水素反応の熱源として使用されると共に、当該使用された後の前記熱媒体が前記熱交換工程で再加熱され、前記脱水素反応工程における前記熱媒体の使用前の温度は、352℃~392℃の範囲内にあり、前記脱水素反応工程における前記熱媒体の使用後の温度は、337℃~367℃の範囲内にあり、前記使用前と前記使用後とにおける前記熱媒体の温度差が10℃~50℃、好ましくは20℃~40℃の範囲内にあることを特徴とする。
 このように本発明によれば、発電の排ガスを脱水素反応の熱源として利用する場合に、脱水素反応の温度を適切な範囲に制御し、脱水素触媒の劣化や選択性の低下等を抑制して効率的かつ安定的な水素製造を行うことが可能となる。
本発明に係る水素製造システムの概略構成を示す構成図 図1中の排熱回収ユニットの詳細構成を示す構成図
 以下、本発明の実施の形態について図面を参照しながら説明する。
 図1は本発明の実施形態に係る水素製造システム1の概略構成を示す構成図であり、図2は図1中の排熱回収ユニット3の詳細構成を示す構成図である。
 図1に示すように、水素製造システム1は、燃料の燃焼によって発生する燃焼ガスのエネルギーに基づき発電を行うガスタービン発電ユニット(第1発電ユニット)2と、ガスタービン発電ユニット2から排出される排ガスの熱回収を行う排熱回収ユニット3と、排熱回収ユニット3で発生した蒸気のエネルギーに基づき発電を行う蒸気発電ユニット(第2発電ユニット)4と、排熱回収ユニット3で加熱された液体状態の熱媒体(ここでは、ホットオイル)を熱源とすることにより、脱水素触媒の存在下での有機ハイドライドの脱水素反応によって水素を生成する水素生成ユニット5とを主として備える。
 ガスタービン発電ユニット2には、外部から供給される燃焼用の空気を圧縮する圧縮機11と、外部から供給される燃料を、圧縮機11からの圧縮空気を用いて燃焼させることにより、高温高圧の燃焼ガスを生成する燃焼器12と、その燃焼ガスによって回転駆動されるガスタービン13と、このガスタービン13に連結された発電機14とが設けられている。
 ガスタービン発電ユニット2では、燃焼器12で発生した燃焼ガスによってガスタービン13の羽根車(図示せず)を回転させることにより、燃焼ガスのエネルギーが羽根車の回転エネルギーに変換され、更に、ガスタービン13の羽根車の回転エネルギーが発電機14によって電力に変換される(第1発電工程)。ここで、燃焼器12で使用される燃料としては、天然ガスまたは天然ガスに所定の割合で水素を混合したものが用いられる。ガスタービン13から排出される高温高圧の排ガスは、排熱回収ユニット3に供給される。
 なお、本実施形態では、ガスタービン発電の排ガス(排熱)を水素生成ユニット5での脱水素反応の熱源として利用する例を示すが、発電ユニットは、少なくとも脱水素反応の熱源として利用可能な排熱を生じさせるものであればよく、ここで示したガスタービン発電ユニット2に限らず、他の公知の発電形式を採用してもよい。ただし、水素生成ユニット5で生成される水素の需給バランスを安定化させる観点から、燃料の少なくとも一部として水素を使用可能なものがより好ましい。
 排熱回収ユニット3には、図2に示すように、ガスタービン13から導入される高温の排ガスをそれぞれ利用することにより、ホットオイルを加熱するホットオイルヒータ(熱交換器)21と、比較的高圧(ここでは、約30.9barA)の高圧蒸気を発生させる高圧蒸気発生ユニット22と、比較的低圧(ここでは、約3.2barA)の低圧蒸気を発生させる低圧蒸気発生ユニット23とが設けられている。なお、表1には、排熱回収ユニット3における物質収支および熱収支が示されている。表1における( i )-(ix)欄は、図2中にそれぞれ同じ番号( i )-(ix)が付された排熱回収ユニット3の各位置における数値を示している。
Figure JPOXMLDOC01-appb-T000001
 ホットオイルヒータ21は、排熱回収ユニット3における最上流(すなわち、最も高温の排ガスが流れる部位)に配置され、後に詳述する水素生成ユニット5と排熱回収ユニット3との間で循環するホットオイルと排ガスとの熱交換を行うことにより、ホットオイルの温度を所定の温度範囲内に収めるようにホットオイルを加熱する。ホットオイルヒータ21には、フィンチューブ熱交換器など周知の構成を有する熱交換器を採用することができる。
 表1に示すように、ホットオイルヒータ21への排ガスの導入量は約346t/hrである。ホットオイルヒータ21に導入された高温(ここでは、約556℃)の排ガスは、ホットオイルとの熱交換の後に、より低温(ここでは、約370℃)の排ガスとして高圧蒸気発生ユニット22に向けて流れる。一方、ホットオイルヒータ21へのホットオイルの導入量は約972t/hrである。ホットオイルヒータ21に導入されたより低温(ここでは、約352℃)のホットオイルは、排ガスとの熱交換の後に、より高温(ここでは、約382℃)のホットオイルとして水素生成ユニット5(ホットオイルヘッダ52)に向けて送出される。
 なお、ホットオイルは、ジフェニルオキシドおよびビフェニルの混合物からなるが、後に詳述する脱水素反応の熱源として使用される温度条件において良好な化学的安定性を有し、その使用の際に液体状態にある(すなわち、少なくとも実質的には気化しない)限りにおいて、他の周知の成分からなる熱媒体(合成系熱媒体など)を使用することができる。
 高圧蒸気発生ユニット22は、排熱回収ユニット3におけるホットオイルヒータ21の下流側に配置され、ホットオイルヒータ21を経た排ガスの熱を利用して高圧蒸気を発生させる。高圧蒸気発生ユニット22には、蒸気発生用の高圧給水を予熱するエコノマイザ(予熱器)31と、予熱された高圧給水を気化させるエバポレータ(蒸発器)32と、気化した高圧給水を過熱するスーパーヒータ(過熱器)33とが排ガス流れにおける下流側から順に設けられている。
 表1に示すように、高圧蒸気発生ユニット22に導入された約370℃の排ガスは、高圧給水を加熱した後に、より低温の排ガスとして低圧蒸気発生ユニット23に向けて流れる。一方、高圧蒸気発生ユニット22への高圧給水の量は約20t/hrである。比較的低温(ここでは、約121℃)の高圧給水は、排ガスによって加熱された後に、より高温(ここでは、約352℃)の高圧蒸気としてガスタービン発電ユニット2および蒸気発電ユニット4に向けて送出される。
 ガスタービン発電ユニット2に送られた高圧蒸気は、燃焼器12の火炎ピーク温度冷却用として、その燃焼室内に噴射される。これにより、燃焼器12における燃焼温度が低下し、窒素酸化物(NOx)の発生を低減することができる。
 低圧蒸気発生ユニット23は、排熱回収ユニット3における高圧蒸気発生ユニット22の下流側(すなわち、最下流)に配置され、高圧蒸気発生ユニット22を経た排ガスの熱によって低圧蒸気を発生させる。低圧蒸気発生ユニット23には、低圧給水を気化させるエバポレータ35と、気化した低圧給水を過熱するスーパーヒータ36とが排ガス流れにおける下流側から順に設けられている。
 表1に示すように、低圧蒸気発生ユニット23に導入された排ガスは、低圧給水を加熱した後に、より低温の排ガスとして外部に送出され、最終的に煙突37(図1参照)から大気中に放出される。一方、低圧蒸気発生ユニット23への低圧給水の量は約13t/hrである。比較的低温(ここでは、約120℃)の低圧給水は、排ガスによって加熱された後に、より高温(ここでは、約175℃)の低圧蒸気として蒸気発電ユニット4に向けて送出される。
 このように、排熱回収ユニット3では、ホットオイルヒータ21において排ガスと熱媒体との熱交換が行われ(熱交換工程)、その熱交換後の排ガスの熱が、高圧蒸気発生ユニット22における高圧蒸気の発生(高圧蒸気発生工程)、及び低圧蒸気発生ユニット23における低圧蒸気の発生(低圧蒸気発生工程)にそれぞれ用いられることにより、ガスタービン発電ユニット2から排出される排ガスの熱回収が行われる(熱交換工程)。
 なお、排熱回収ユニット3の構成は、ここに示したものに限らず、種々の変更が可能である。例えば、図2中に2点鎖線で示すように、高圧蒸気発生ユニット22におけるスーパーヒータ33をホットオイルヒータ21の上流側に配置することができる。これにより、高圧蒸気の温度を高めることができ、延いては蒸気発電ユニット4(後述する蒸気タービン41)の出力を高めることができるという利点がある。なお、同様に低圧蒸気発生ユニット23のスーパーヒータ36についてもホットオイルヒータ21の上流側に配置することが可能である。
 蒸気発電ユニット4には、蒸気によって駆動される蒸気タービン41と、この蒸気タービン41に連結された発電機42と、蒸気タービン41から排出される排蒸気を冷却して凝縮させる復水器43とが設けられている。
 蒸気発電ユニット4では、排熱回収ユニット3から蒸気タービン41の高圧段および低圧段に対してそれぞれ導入された高圧蒸気および低圧蒸気によって蒸気タービン41の羽根車(図示せず)を回転させることにより、蒸気のエネルギーが羽根車の回転エネルギーに変換され、更に、蒸気タービン41の羽根車の回転エネルギーが発電機42によって電力に変換される(第2発電工程)。蒸気タービン41から排出された蒸気は、復水器43で凝縮され、そこで生成された水は、排熱回収ユニット3に循環されて低圧給水および高圧給水として利用される。
 なお、本実施形態では、排熱回収ユニット3で発生する蒸気を蒸気発電ユニット4(蒸気タービン41)で利用する例を示したが、これに限らず、蒸気を他の周知の用途に利用してもよい。
 水素生成ユニット5には、有機ケミカルハイドライド法に基づき有機ハイドライドの脱水素により水素を発生させる脱水素反応装置51が設けられている。また、水素生成ユニット5には、ホットオイルヒータ21で加熱されたホットオイルを脱水素反応の熱源として脱水素反応装置51に導入するための熱媒体導入ラインL1a、L1bと、脱水素反応装置51から排出されたホットオイルをホットオイルヒータ21に戻すための熱媒体排出ラインL2a、L2bが設けられている。熱媒体導入ラインL1a、L1bの間には、導入側ホットオイルヘッダ52が設けられ、また、熱媒体排出ラインL2a、L2bの間には、排出側ホットオイルヘッダ53が設けられている。更に、排出側ホットオイルヘッダ53と導入側ホットオイルヘッダ52とを結ぶ接続ラインL3には、熱媒体排出ラインL2bからのホットオイルを再加熱するための加熱炉(加熱装置)54が設けられている。水素生成ユニット5に設けられた各ラインL1a、L1b、L2a、L2b、L3は、ホットオイルを輸送するための管路、弁及びポンプ等(詳細は図示せず)を備えており、ホットオイルをホットオイルヒータ21および脱水素反応装置51の間で循環させる循環ラインを構成する。
 脱水素反応装置51は、脱水素触媒の存在下における脱水素反応によって有機ハイドライド(ここでは、メチルシクロヘキサン(以下「MCH」という。))から水素および芳香族化合物(ここでは、トルエン)を発生させる(脱水素反応工程)。また、脱水素反応装置51は、熱交換型の固定床多管式反応器からなり、脱水素触媒(固体触媒)が充填された複数の反応管がシェル内に収容された公知の構成を有している。図示しないMCHの貯蔵設備(貯蔵タンク等)から脱水素反応装置51の各反応管に供給されたMCHは触媒に接触しながら流れる。シェルには、熱媒体導入ラインL1a、L1bからホットオイルが供給され、これにより、反応管との間で熱交換が行われ、MCHおよび脱水素触媒が加熱される。
 脱水素反応装置51では、以下の化学反応式(1)に基づく脱水素反応によりMCH(C7H14)から水素及びトルエン(C7H8)が生成される。この脱水素反応は吸熱反応(ΔH298=205kJ/mol)である。MCHからトルエン及び水素への反応は、化学平衡上は高温・低圧の条件が好ましい。
Figure JPOXMLDOC01-appb-C000001
 脱水素反応装置51では、通常は、反応容器の入側温度(反応物の供給口の温度)が最も高く、その後、反応容器の出口側に進む(すなわち、吸熱反応が進む)にしたがって反応温度が低下するため、反応容器の出側温度(生成物の排出口の温度)は、入側温度よりも低い値となる。ここでは、脱水素反応の温度は、約350℃~380℃の範囲内で制御される。これにより、脱水素反応における良好な転化率および選択率を維持できる。また、脱水素反応の反応圧力は、0.1MPaG~1.0MPaGの範囲にある。また、MCHの液空間速度(LHSV)は、触媒の活性にも左右されるが、0.5h-1~5h-1の範囲にある。
 脱水素反応装置51における脱水素反応の温度は、導入されるホットオイルの温度および流量によって制御される。熱媒体排出ラインL2aには、脱水素反応装置51から排出されたホットオイルの温度を検出するための温度検出器61が設けられており、また、熱媒体導入ラインL1bには、温度検出器61の検出結果に基づき、脱水素反応装置51に導入されるホットオイルの流量を調整するための流量調整弁62が設けられている。
 ここでは、排熱回収ユニット3におけるホットオイルの加熱は、熱媒体導入ラインL1bから脱水素反応装置51に導入されるホットオイルの導入温度が、352℃~392℃の範囲内となるように制御される。より好ましくは、ホットオイルの温度が、365℃~385℃の範囲内となるように制御するとよい。352℃以下であると平衡的に反応が進まなくなり、熱交換効率にも不利になる。また392℃以上になると熱媒体は、熱分解しやすくなり、所望の機能を発揮しなくなる。
 脱水素反応装置51に導入されるホットオイルは、液体状態にあるため、排ガスよりも熱伝達係数および熱容量が高く、ガスタービン発電ユニット2からの排ガスを脱水素反応装置51に直接導入する場合に比べ、反応容器への伝熱効率を向上させることができる。その結果、ホットオイルを脱水素反応の熱源とする場合には、排ガスの場合に比べ、脱水素反応装置51の反応容器に対する伝熱面積を小さくすることができ、脱水素触媒の使用量も抑制することができるという利点がある。即ち、伝熱管外表面の伝熱係数を約5倍向上でき、伝熱面積を50%近く削減することができる。また、伝熱効率の高いホットオイルを用いることにより、脱水素反応装置51への導入温度を排ガスの場合(約500℃以上とすることが必要)に比べて低くすることができ、高温の熱媒体が導入されることによる反応器等への悪影響(触媒の活性の低下等)を抑制することができる。
 また、流量調整弁62によるホットオイルの流量は、脱水素反応装置51から排出されるホットオイルの排出温度(ここでは、温度検出器61の検出値)が、337℃~367℃の範囲内となるように制御される。より好ましくは、ホットオイルの温度が、347℃~357℃の範囲内となるように制御するとよい。
 さらに、脱水素反応装置51に導入されるホットオイルと、脱水素反応装置51から排出されるホットオイルとの温度差が、10℃~50℃、好ましくは20℃~40℃の範囲内となるように制御する必要がある。より好ましくは、その温度差が25℃~35℃の範囲内となるように制御するとよい。温度差が10℃以下では、非常に多くのホットオイル流量が必要となる。また温度差が50℃以上では、入熱が進まなくなり、結果的に反応器容積が大きくなってしまう。因みに、本件発明による場合、上記温度差を従来技術に比べ約半分にすることが可能となる。
 加熱炉54は、所定の燃料の燃焼熱によって加熱コイル内に流通するホットオイルを加熱する。加熱炉54を用いたホットオイルの加熱により、脱水素反応装置51に導入されるホットオイルの温度を適切な範囲に容易に調節することができると共に、当該範囲においてホットオイルの温度を上下させることにより、脱水素反応の温度を変化させて脱水素反応装置51における水素発生量を増減させることが可能である。また、ホットオイルヒータ21等にトラブルが生じた場合でも、容易にバックアップできるという利点もある。なお、ホットオイルを加熱するための手段としては、ここに示した加熱炉54に限らず少なくともホットオイルを所望の温度まで加熱可能な限りにおいて、他の周知の加熱装置を採用することができる。
 脱水素反応装置51で生成された水素は、第1水素供給ラインL5を介して都市等の水素需要先に送られる。また、その水素の一部は、第1水素供給ラインL5から分岐した第2水素供給ラインL6を介してガスタービン発電ユニット2側に送られ、天然ガスに混合された後に、若しくは別々に燃焼器12の燃料として使用される。このように、脱水素反応装置51で生成された水素を発電(水素混焼発電)の燃料として用いて電力を発生させることにより、水素を有効利用することができ、他の水素需要先との受給バランスをより安定化できる。
 一方、詳細は図示しないが、脱水素反応装置51で生成されたトルエンは、水素と分離された後に、トルエン貯蔵設備(貯蔵タンク等)に貯蔵される。その貯蔵されたトルエンは、図示しない水素化装置に供給され、MCHを生成するための水素化反応の反応物として利用することが可能である。
 なお、脱水素反応に用いられる有機ハイドライドは、MCHに限定されるものではなく、シクロヘキサン等の単環式有機ハイドライドや、テトラリン、デカリン、メチルデカリン等の2環式有機ハイドライドや、テトラデカヒドロアントラセン等の3環式有機ハイドライド等の単独、或いは2種以上の混合物とすることができる。脱水素反応装置51に導入されるホットオイルの温度は、有機ハイドライドの種類によって上述の温度範囲内において適宜変更することが可能である。
 同様に、有機ハイドライドの脱水素によって生じる芳香族化合物は、特にトルエンに限定されるものではなく、例えば、ベンゼン、キシレン等の単環式芳香族化合物や、ナフタレン、テトラリン、メチルナフタレン等の2環式芳香族化合物や、アントラセン等の3環式芳香族化合物の単独、或いは2種以上の混合物であってもよい。
 脱水素触媒は、アルミナ、シリカアルミナ、及びシリカから選ばれた担体に、ニッケル(Ni)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、及びルテニウム(Ru)から選ばれた少なくとも1種の活性金属を担持されたものであるが、これに限らず、有機ハイドライドの脱水素反応に用いられる公知の触媒を用いることができる。
 特に、脱水素触媒としては、均一型高分散金属触媒が有効である。均一型高分散金属触媒の製造では、触媒担体の断面全体に亘って略均一に硫黄又は硫黄化合物を予め分散させておくことにより、この硫黄又は硫黄化合物の分布に略一致して触媒金属が担持され、結果として触媒金属が担体断面全体に亘って、略均一に分散して担持される。
 とりわけ、触媒担体がアルミナである場合には、アルミニウム塩の中和により生成した水酸化アルミニウムのスラリーを濾過洗浄し、得られたアルミナヒドロゲルを脱水洗浄した後、400~800℃で1~6時間程度焼成することにより得られた多孔性γ-アルミナ担体が好ましく、さらには、アルミナヒドロゲルのpH値をアルミナヒドロゲル溶解pH領域とベーマイトゲル沈殿pH領域との間で交互に変動させるとともに、少なくともいずれか一方のpH領域から他方のpH領域へのpH変動に際してアルミナヒドロゲル形成物質を添加してアルミナヒドロゲルの結晶を成長させるpHスイング工程を経て得られた多孔性γ-アルミナ担体がより好ましい。このような多孔性γ-アルミナ担体は、細孔分布の均一性に優れた成形後のアルミナペレットにおいても物理性状のばらつきが少なく、個々のペレット毎の物理性状が安定しているという点で優れている。結果として、本件の脱水素反応にとって、触媒活性や選択性に優れた触媒となり、加えて長期に亘る寿命においてより優れた機能を発揮できる触媒となる。
 上記水素製造システム1によれば、水素を燃料として使用できるガスタービン発電ユニット2と水素生成ユニット5との組合せにより、有機ケミカルハイドライド法に基づく水素生成ユニット5において、発電によって生じた排熱を有効利用することができる。特に、発電の排ガスを脱水素反応の熱源として利用する構成において、排ガスよりも伝熱効率の高いホットオイル(液体状態)を脱水素反応の熱源として用い、かつ、脱水素反応装置51への導入時および脱水素反応装置51からの排出時のホットオイルの温度、ならびに導入時と排出時とにおけるホットオイルの温度差を適切な範囲に設定したため、脱水素反応の温度を適切な範囲に制御することができ、脱水素触媒の劣化や脱水素反応における選択性の低下等を抑制して効率的かつ安定的な水素製造が可能となる。
 以上、本発明を特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本発明はこれらの実施形態によって限定されるものではない。なお、上述の実施形態に示した本発明に係る水素製造システム及び水素製造方法の各構成要素は、必ずしも全てが必須ではなく、少なくとも本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。
1 水素製造システム
2 ガスタービン発電ユニット(第1発電ユニット)
3 排熱回収ユニット
4 蒸気発電ユニット(第2発電ユニット)
5 水素生成ユニット
12 燃焼器
21 ホットオイルヒータ(熱交換器)
22 高圧蒸気発生ユニット
23 低圧蒸気発生ユニット
31 エコノマイザ(予熱器)
32 エバポレータ(蒸発器)
33 スーパーヒータ(過熱器)
35 エバポレータ
36 スーパーヒータ
51 脱水素反応装置
52 導入側ホットオイルヘッダ
53 排出側ホットオイルヘッダ
54 加熱炉(加熱装置)
61 温度検出器
62 流量調整弁
L1a、L1b 熱媒体導入ライン(循環ライン)
L2a、L2b 熱媒体排出ライン(循環ライン)
L3 接続ライン(循環ライン)
L5 第1水素供給ライン
L6 第2水素供給ライン
 

Claims (8)

  1.  脱水素触媒の存在下での脱水素反応によって有機ハイドライドから水素を生成する脱水素反応装置と、
     燃料の燃焼によって発生する燃焼ガスのエネルギーに基づき発電を行う第1発電ユニットと、
     前記第1発電ユニットから排出される排ガスの熱回収を行う排熱回収ユニットと、
     前記排熱回収ユニットに設けられ、前記排ガスと熱媒体との熱交換を行う熱交換器と、
     前記熱交換器で加熱された前記熱媒体を液体状態で前記脱水素反応装置に導入すると共に、前記脱水素反応装置から排出された前記熱媒体を前記熱交換器に戻す循環ラインと
    を備え、
     前記脱水素反応装置に導入される前記熱媒体の導入温度は、352℃~392℃の範囲内にあり、
     前記脱水素反応装置から排出される前記熱媒体の排出温度は、337℃~367℃の範囲内にあり、
     前記導入温度と前記排出温度との温度差が10℃~50℃の範囲内にあることを特徴とする水素製造システム。
  2.  前記排熱回収ユニットは、前記排ガスの熱を利用して蒸気を発生させる少なくとも1つの蒸気発生ユニットを更に備えたことを特徴とする請求項1に記載の水素製造システム。
  3.  前記蒸気発生ユニットには、より圧力の高い高圧蒸気を発生させる高圧蒸気発生ユニットと、より圧力の低い低圧蒸気を発生させる低圧蒸気発生ユニットとが含まれ、
     前記高圧蒸気および前記低圧蒸気のエネルギーに基づき発電を行う第2発電ユニットを更に備えたことを特徴とする請求項1または請求項2に記載の水素製造システム。
  4.  前記第1発電ユニットは、前記燃料を燃焼させる燃焼器を有し、
     前記蒸気が前記燃焼器に導入されることを特徴とする請求項2または請求項3に記載の水素製造システム。
  5.  前記循環ラインを流れる前記熱媒体の少なくとも一部を加熱する加熱装置を更に備えたことを特徴とする請求項1から請求項4のいずれかに記載の水素製造システム。
  6.  前記燃料には、前記脱水素反応装置において生成された水素が含まれることを特徴とする請求項1から請求項5のいずれかに記載の水素製造システム。
  7.  前記蒸気発生ユニットは、水を気化させる蒸発器および気化した水を過熱する過熱器を含み、
     前記蒸発器が、前記熱交換器の下流側に配置される一方、前記過熱器が、前記熱交換器の上流側に配置されることを特徴とする請求項2または請求項3のいずれかに記載の水素製造システム。
  8.  脱水素触媒の存在下での脱水素反応によって有機ハイドライドから水素を生成する脱水素反応工程と、
     燃料の燃焼によって発生する燃焼ガスのエネルギーに基づき発電を行う第1発電工程と、
     前記第1発電工程において排出される排ガスの熱回収を行う排熱回収工程と、
     前記排熱回収工程において、前記排ガスと熱媒体との熱交換を行う熱交換工程と
    を有し、
     前記脱水素反応工程では、前記熱交換工程で加熱された前記熱媒体が液体状態で前記脱水素反応の熱源として使用されると共に、当該使用された後の前記熱媒体が前記熱交換工程で再加熱され、
     前記脱水素反応工程における前記熱媒体の使用前の温度は、352℃~392℃の範囲内にあり、
     前記脱水素反応工程における前記熱媒体の使用後の温度は、337℃~367℃の範囲内にあり、
     前記使用前と前記使用後とにおける前記熱媒体の温度差が10℃~50℃の範囲内にあることを特徴とする水素製造方法。
     
PCT/JP2015/001706 2014-03-26 2015-03-25 水素製造システム及び水素製造方法 WO2015146170A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2941705A CA2941705C (en) 2014-03-26 2015-03-25 System and method for producing hydrogen
KR1020167029859A KR102313014B1 (ko) 2014-03-26 2015-03-25 수소 제조 시스템 및 수소 제조 방법
EP15767992.9A EP3124432B1 (en) 2014-03-26 2015-03-25 Hydrogen generation system and hydrogen generation method
US15/125,272 US10167777B2 (en) 2014-03-26 2015-03-25 System and method for producing hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064627 2014-03-26
JP2014064627A JP6244242B2 (ja) 2014-03-26 2014-03-26 水素製造システム及び水素製造方法

Publications (1)

Publication Number Publication Date
WO2015146170A1 true WO2015146170A1 (ja) 2015-10-01

Family

ID=54194714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001706 WO2015146170A1 (ja) 2014-03-26 2015-03-25 水素製造システム及び水素製造方法

Country Status (8)

Country Link
US (1) US10167777B2 (ja)
EP (1) EP3124432B1 (ja)
JP (1) JP6244242B2 (ja)
KR (1) KR102313014B1 (ja)
AR (1) AR099852A1 (ja)
CA (1) CA2941705C (ja)
TW (1) TWI633050B (ja)
WO (1) WO2015146170A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118892A (ja) * 2017-01-27 2018-08-02 関西電力株式会社 水素製造設備、発電システム及び水素製造方法
WO2019211300A1 (en) 2018-05-02 2019-11-07 Hysilabs, Sas Hydrogen carrier compounds
EP3816204A1 (en) 2019-10-31 2021-05-05 Hysilabs, SAS Process for producing and regenerating hydrogen carrier compounds
WO2021084046A1 (en) 2019-10-31 2021-05-06 Hysilabs Sas Process for producing and regenerating hydrogen carrier compounds
WO2021084044A1 (en) 2019-10-31 2021-05-06 Hysilabs Sas Hydrogen carrier compounds
EP4108630A1 (en) 2021-06-25 2022-12-28 Hysilabs, SAS Hydrogen carrier compounds

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458329B2 (en) * 2014-03-06 2019-10-29 Uop Llc System and process for recovering power and steam from regenerator flue gas
WO2016048383A1 (en) 2014-09-27 2016-03-31 Intel Corporation Substrate warpage control using temper glass with uni-directional heating
JP6417167B2 (ja) * 2014-09-29 2018-10-31 川崎重工業株式会社 ガスタービン
JP6609180B2 (ja) 2015-12-24 2019-11-20 株式会社東芝 プラント制御装置、プラント制御方法、および発電プラント
DE202017003690U1 (de) * 2017-07-13 2018-10-16 Thomas Lamla Wasserstoff-Dampf-Kraft-Werk
JP7143120B2 (ja) 2018-06-01 2022-09-28 株式会社神戸製鋼所 ガス供給システム
CN109306918B (zh) * 2018-09-26 2021-09-21 云南电网有限责任公司电力科学研究院 一种直接利用液体有机储氢材料的热气机
CN109850846B (zh) * 2019-01-29 2022-06-07 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种自热式有机液体脱氢供氢系统及其应用
US20220333783A1 (en) * 2021-03-07 2022-10-20 CPS-Holding Limited Hydrogen-Fueled Combustor for Gas Turbines
WO2022216779A1 (en) * 2021-04-08 2022-10-13 Siemens Energy Global GmbH & Co. KG On-demand hydrogen for power generation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206909A (ja) * 2011-03-30 2012-10-25 Chiyoda Kako Kensetsu Kk ハイブリッド型水素製造・発電システム
JP2013067588A (ja) * 2011-09-22 2013-04-18 Hitachi Ltd 動力変換システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236706A (ja) * 1985-04-14 1986-10-22 Somar Corp 防菌剤
JP4279546B2 (ja) 2002-12-20 2009-06-17 千代田化工建設株式会社 高圧水素の供給システム
US7351395B1 (en) * 2003-05-06 2008-04-01 Air Products And Chemicals, Inc. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates
CA2606117A1 (en) * 2005-05-02 2006-11-16 Hrein Energy, Inc. Organic hydride synthesizing apparatus, organic hydride synthesizing system and hydrogen production apparatus
JP5046359B2 (ja) 2006-03-06 2012-10-10 株式会社フレイン・エナジー 水素発生装置および水素添加反応装置
JP4483901B2 (ja) * 2007-06-29 2010-06-16 株式会社日立製作所 エンジンシステム
US20110274994A1 (en) * 2010-05-07 2011-11-10 Carrier Andrew J Catalyst and Liquid Combination for a Thermally Regenerative Fuel Cell
WO2012014225A2 (en) * 2010-07-26 2012-02-02 Council Of Scientific & Industrial Research An improved process for the storage delivery of hydrogen using catalyst
JP5856484B2 (ja) * 2012-01-06 2016-02-09 株式会社日立製作所 動力変換システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206909A (ja) * 2011-03-30 2012-10-25 Chiyoda Kako Kensetsu Kk ハイブリッド型水素製造・発電システム
JP2013067588A (ja) * 2011-09-22 2013-04-18 Hitachi Ltd 動力変換システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124432A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118892A (ja) * 2017-01-27 2018-08-02 関西電力株式会社 水素製造設備、発電システム及び水素製造方法
WO2019211300A1 (en) 2018-05-02 2019-11-07 Hysilabs, Sas Hydrogen carrier compounds
WO2019211301A1 (en) 2018-05-02 2019-11-07 Hysilabs, Sas Process for producing and regenerating hydrogen carrier compounds
EP3816204A1 (en) 2019-10-31 2021-05-05 Hysilabs, SAS Process for producing and regenerating hydrogen carrier compounds
WO2021084046A1 (en) 2019-10-31 2021-05-06 Hysilabs Sas Process for producing and regenerating hydrogen carrier compounds
WO2021084044A1 (en) 2019-10-31 2021-05-06 Hysilabs Sas Hydrogen carrier compounds
EP4108630A1 (en) 2021-06-25 2022-12-28 Hysilabs, SAS Hydrogen carrier compounds
WO2022269009A1 (en) 2021-06-25 2022-12-29 Hysilabs Sas Hydrogen carrier compounds

Also Published As

Publication number Publication date
TW201542448A (zh) 2015-11-16
CA2941705C (en) 2022-04-12
KR102313014B1 (ko) 2021-10-14
US10167777B2 (en) 2019-01-01
EP3124432B1 (en) 2019-01-09
JP2015187049A (ja) 2015-10-29
JP6244242B2 (ja) 2017-12-06
KR20160140789A (ko) 2016-12-07
EP3124432A1 (en) 2017-02-01
AR099852A1 (es) 2016-08-24
EP3124432A4 (en) 2017-12-27
CA2941705A1 (en) 2015-10-01
TWI633050B (zh) 2018-08-21
US20170074163A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6244242B2 (ja) 水素製造システム及び水素製造方法
EP3054519A1 (en) Reversible fuel cell system and method for operating a fuel cell system
US11674068B2 (en) Hydrogen extraction reactor and hydrogen extraction process using phase change materials
JP2007238341A (ja) 水素発生装置および水素添加反応装置
JP6194143B2 (ja) 水素及び合成天然ガスの製造装置及び製造方法
JP5897811B2 (ja) ハイブリッド型水素製造・発電システム
CN110606467B (zh) 一种甲醇重整制氢工艺及系统
WO2015033583A1 (ja) 水素及び合成天然ガスの製造装置及び製造方法
JP6437191B2 (ja) 水素製造システム及びこれを備えた水素貯蔵・輸送システム並びに水素製造方法
CN113292045A (zh) 一种甲醇水重整制氢系统及控制方法
JP5602698B2 (ja) 動力変換システム
JP6964920B1 (ja) 発電設備併設気化利用炭化水素製造システム
WO2012140994A1 (ja) Co2を排出しない合成ガスの製造方法
JP2015182919A (ja) 水素製造システム及び水素製造方法
WO2014065020A1 (ja) サチュレータ及びこれを備える天然ガス改質システム
JP5132183B2 (ja) 水素製造装置
JP7033094B2 (ja) コージェネレーションシステム
WO2017121978A1 (en) Methanol process
WO2015129228A1 (ja) 芳香族化合物の水素化システムおよび水素化方法
WO2015114716A1 (ja) 熱輸送システム
JP2007186572A (ja) 重質油の改質装置、重質油改質装置を備えたガスタービン、重質油改質装置を備えたガスタービンプラント、及び重質油の改質方法
JP2017133701A (ja) 燃焼ガス供給システム
JP2773334B2 (ja) メタノール改質反応装置
JP2803266B2 (ja) メタノール改質反応装置
CN115614717A (zh) 一种二氧化碳热催化还原的余热利用技术与系统装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2941705

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15125272

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015767992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015767992

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167029859

Country of ref document: KR

Kind code of ref document: A